© 'doubtnut

CHEMISTRY

BOOKS - PEARSON IIT JEE FOUNDATION

CHEMICAL KINETICS AND EQUILIBRIUM

Example

1. On the basis of collision theory, explain the action of a
catalyst on the rate of reaction

D View Text Solution
2. Hydrogen peroxide decomposes to water abd oxygen.

The uncatalysed reaction has activation energy of 86 $\mathrm{KJ} / \mathrm{mol}$. The activation energy value in the presence of acetanilide is $112 \mathrm{KJ} / \mathrm{mol}$ and in the presence of MnO_{2} it is $49 \mathrm{KJ} / \mathrm{mol}$. What conclusion can you draw from the above observations?

D Watch Video Solution

3. Assuming that $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is a single-step reaction, what will be the rate of reaction when the volume of the reaction vessel is reduced of $1 / 4^{\text {th }}$ of the initial value ? The original rate of reaction is $64 \mathrm{~mol} / \mathrm{L} / \mathrm{s}$.
4. When two moles of hydrogen are heated with two moels of iodine, 2.96 moles of hydrogen iodide are formed.

Calculate K_{c} for the reaction of formation of hydrogen iodide.

(Watch Video Solution

5. Calculate K_{p} for the following reaction if partial pressures of NH_{3}, N_{2} and H_{2} are 0.4,0.3,0.2, atm, respectively.
$2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$
6. For reaction $\mathrm{HI} \Leftrightarrow 1 / 2 H_{2}+1 / 2 I_{2}$ value of K_{c} is $1 / 8$, then value of K_{c} for $H_{2}+I_{2} \Leftrightarrow 2 H I$.

(Watch Video Solution

7. In the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$, the dissociation of $\mathrm{N}_{2} \mathrm{O}$ was found to be 40 per cent at equilibrium when the reaction is conducted in a 2 L container at 300 K . Find the equilibrium constant and the number of moles of reactants and products.
8. (I) What is the effect of pressure on the equilibrium of the reaction between nitrogen and oxygen to give nitric oxide?
(II) In a reversible reaction, some amount of heat energy is liberated in th forward reaction. Name the reaction. What change in temperature favours the forward reaction?

- Watch Video Solution

9. A teacher, while revising asked Raman and Bose to sketch a potential energy diagram for a reaction
$A+B \Leftrightarrow C+D . \Delta H$ for the reverse reaction is -10 KJ
and E_{a} of the forward reaction is 40 KJ . The graphs drawn by both of them are X and Y, respectively. Between X and Y, which graph is correct and why ? Also, explain why the
other one is wrong.

- View Text Solution

10. During the preparation of soap the addition of common salt allows the precipitation of soap. Expalin the principle involved (Soap is the sodium salt of carboxylic acid).

- Watch Video Solution

Very Short Answer Type Questions

1. Define instantaneous reactions.

- Watch Video Solution

2. What are the units of rate of reaction ?

- Watch Video Solution

3. The equation that describes mathematically the dependence of the rate of rection on the concentration terms of reactant is \qquad or \qquad
4. For a reaction $A \rightarrow B, \Delta C_{B}$ is $0.01 \mathrm{~mol} / \mathrm{L}$ is 20 s , what is the average rate of reaction?

- Watch Video Solution

5. The reaction between Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is an example for ___-_ reaction.

(Watch Video Solution

6. The activation energy for an uncatalysed reaction is less than that for a catalysed reaction. What do you conclude from the above statement?
7. A ____ does not change the position of equilibrium but____ the rate of backward as well as forward reaction.

Watch Video Solution

8. Give the general expression for a balanced chemical equation by applying the law of mass action.

- Watch Video Solution

9. When the reaction of synthesis of ammonia is carried out
with a mixture of hydrogen and deuterium, what are the products obtained at the end of the process
10. Write the equilibrium constant for the dissociation of CaCO_{3}.

- Watch Video Solution

11. In the reaction $A+B \rightarrow C, \operatorname{rk}[A]$, if $[\mathrm{A}]$ is increased by three then the difference in the rate is \qquad of the initial rate.

- Watch Video Solution

12. What are the effective collisions?
13. ____ enables any two systems to reach a state of equilibrium more quickly.

Watch Video Solution
14. Define a reversible reaction. Give an example.

- Watch Video Solution

15. What is meant by specific reaction rate?

- Watch Video Solution

16. The value of equilibrium constant for a reversible reaction is 3×10^{-2}. If the reaction quotient for the same reaction is 5×10^{-3}, predict the direction of equilibrium reaction.

- Watch Video Solution

17. In the reaction $2 \mathrm{NO}_{g}+2 \mathrm{H}_{2(g)} \rightarrow \mathrm{N}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}$, if initial concentration of hydrogen is kept constant and the concentration of NO is doubled, the rate of reaction increases by four times. This shows that rate is directly proportional to \qquad .
18. The equilibrium $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{g}$ is not affected by the change in \qquad .

D Watch Video Solution

19. What is the effect of catalyst on the equilibrium state in a chemical reaction?

(Watch Video Solution

20. Active mass of a solid is taken as \qquad .
21. Ammonia dissociates to give nitrogen and hydrogen .

What happens if the pressure is increased on the system at equilibrium ?

(Watch Video Solution

22. What are the units for the rate of the reaction $A \rightarrow B$?

D Watch Video Solution

23. If K_{c} for the formation of HI from H_{2} and I_{2} is 48 , then
K_{c} for decomposition of 1 mole of $H I$ is \qquad .

- Watch Video Solution

24. The magnitude of \qquad decreases in the presence of catalyst.

- Watch Video Solution

25. Give the units the K_{c} for the formation of 1 mole of NH_{3} from its constituents .

- Watch Video Solution

26. The chemical equilibrium is in nature.

Short Answer Type Questions

1. How are the reactions classified on the basis of rates of reactions ? Give examples.

- Watch Video Solution

2. What is the effect of temperature on the rate of a reaction.

- Watch Video Solution

3. Define reversible and irreversible reactions. Give examples.
4. Discuss how the chemical equilibrium is dynamic by giving graphical representation.

D Watch Video Solution

5. What are the charactersitics of dynamic equilibrium ?

(Watch Video Solution

6. How is it possible to make reversible reaction irreversible?
7. Apply the law of mass action to the following equilibria :
(i) Formation of SO_{3} from SO_{2} and O_{2}
(ii) Formation of NO_{2} from nitric oxide and oxygen

D Watch Video Solution

8. How does a catalyst influence the equilibrium constant ?

- Watch Video Solution

9. Product the shift in equilibrium when the volume is decreased on the following equilibrium reactions:
(i) $P C l_{3(g)}+C l_{2(g)} \Leftrightarrow P C l_{5(g)}$
(ii) $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
10. What are the applications of equilibrium constant ?

- Watch Video Solution

Essay Type Questions

1. State and explain the law of mass action. Apply it to the following equilibria:
(i) $H_{2(g)}+F_{2(g)} \Leftrightarrow 2 H F_{g}$
(ii) $\mathrm{NH}_{4} H S_{S} \Leftrightarrow \mathrm{NH}_{3(g)}+\mathrm{H}_{2} S_{g}$
(iii) $P C l_{5(s)} \Leftrightarrow P C l_{3(l)}+C l_{2(g)}$
2. If the rate with respect to $O_{2}, N O$ and $N O_{2}$ are respectively
$\frac{-\Delta\left[O_{2}\right]}{\Delta t}, \frac{-1}{2}, \frac{\Delta[N O]}{\Delta t}, \frac{+1}{2} \frac{\Delta\left[N O_{2}\right]}{\Delta t}$ then the corresponding chemical equation is $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$

- Watch Video Solution

2. The slope obtained by drawing a tangent at time ' t ' on the curve for the concentration of reactants vs time is equal to instantaneous rate.

- View Text Solution

3. In an equilibrium , the catalyst increases th rate of the forward reaction while decreases the rate of the backward reaction.

- Watch Video Solution

4. Threshold energy =energy of normal molecules + Activation energy.

- Watch Video Solution

5. An increase in pressure increase the rate of reaction due to the increase in the number of collisions among the molecules .
6. In the reactio : $N O_{2}+C O \Leftrightarrow N O+C O_{2}$, the equilibrium state may be recognised by the constancy of colour.

D View Text Solution

7. At equilibrium the reaction quotient is greater than equilibrium constant.

(Watch Video Solution

8. Equilibrium constant has a definite value for every reaction at a given temperature. It is independent of
\qquad .

(Watch Video Solution

9. The minimum energy that two molecules should possess
so that their collisions result in a chemical reaction is called
____ energy.

- Watch Video Solution

10. Decomposition of phosphorous pentachloride is an example of \qquad equilibria.
(Watch Video Solution
11. K_{c} changes with change in \qquad

(Watch Video Solution

12. \qquad in temperature favours an endothermic reaction.

- Watch Video Solution

13. The equilibrium constant of a reaction $A+B \Leftrightarrow 2 C$ if the concentrations of A and B together is 0.8 moles L^{-1} and that of C is $0.6 \mathrm{~mol} L^{-1}$ is \qquad
14. If K_{C} for the formation of ammonia is $2 \mathrm{~mol}^{-2} L^{2}, K_{c}$ for decoposition of ammonia is \qquad .

- Watch Video Solution

15. If $r=\frac{-3}{2} \frac{\Delta[A]}{\Delta t}=\frac{-5}{2} \frac{\Delta[B]}{\Delta t}=\frac{+7}{3} \frac{[\Delta C]}{\Delta t}$, which of the following is the corresponding reaction ?

> A. $2 / 3 A+2 / 5 B \rightarrow 3 / 7 C$
> B. $2 / 3 A+5 / 2 B \rightarrow 7 / 3 C$
> C. $3 / 2 A+5 / 2 B \rightarrow 7 / 3 C$
> D. $7 / 3 C+5 / 2 B \rightarrow 3 / 2 A$

Answer: A
16. In the reaction $N_{2}+O_{2} \Leftrightarrow 2 N O$ - Heat, which of following conditions is suitable to get a good yield of NO ?
A. Increase in temperature
B. Decrease in temperature
C. Increase in pressure
D. The addition of a catalyst

Answer: A

- Watch Video Solution

17. Which of the following is true?
A. In an endothermic equilibrium reaction, activation energy required for a forward reaction is higher than that for a backward reaction.
B. To an endothermic reaction, activation energy required to forward reaction is lower than that for a backward reaction.
C. Activation energy required for both forward and backward reactions is same in equilibrium.
D. No activation energy is required for an exothermic backward equilibrium reaction.

Answer: A

18. The equilibrium constant for the given reaction,
$\mathrm{CaCO}_{3(\mathrm{~g})} \rightarrow \mathrm{CaO}_{s}+\mathrm{CO}_{2(\mathrm{~g})}$ is given by:
A. $K_{c}=\frac{[\mathrm{CaO}] \cdot\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CaCo}_{3}\right]}$
B. $K_{c}=\frac{[\mathrm{CaO}]}{\left[\mathrm{CaCO}_{3}\right]}$
C. $K_{c}=\left[\mathrm{CO}_{2}\right]$
D. $K_{c}=\frac{[\mathrm{CaO}]}{\left[\mathrm{CO}_{2}\right]}$

Answer: C

- Watch Video Solution

19. For the chemical reaction to occur
A. the reaching molecules must collide with ecah other
B. reacting molecules should have sufficient enegy at the tie of collision.
C. reacting molecules must be properly oriented
D. all of the above

Answer: D

- Watch Video Solution

20. If an activated complex is formed in chemical reactions
according to the collision theory, which of the following is
true with respect to its stability?
A. It is highly stable because it has high energy
B. it is less stable because it has lower eneryg
C. It is less stable because it has high energy

D. None of the above

Answer: C

- Watch Video Solution

21. The equilibrium constant for the reaction $N_{2_{g}}+O_{2_{g}} \Leftrightarrow 2 N O_{g}$ and $N O_{g} \Leftrightarrow+\frac{1}{2} N_{2(g)}+\frac{1}{2} O_{2(g)}$ are k and K^{1}, respectively, the relation between k and k^{1} is
A. $k=\left(k^{1}\right)^{2}$
B. $k=\left(\frac{1}{k^{1}}\right)^{2}$
C. $k^{2}=k^{1}$
D. $k^{1}=\left(\frac{1}{k}\right)^{2}$

- Watch Video Solution

22. With respect to the equilibrium reaction $A \Leftrightarrow B$. Which of the following graphs indicate the highest K_{c} value ?

A.

B.
C.

D.

Answer: C

- Watch Video Solution

23. Equlibrium position of which of the following reactions is not affected by change in pressure?
A. $I_{2(s)}+5 F_{2(g)} \rightarrow 2 I F_{5(g)}$
B. $\mathrm{Fe} \mathrm{O}_{(s)}+C O_{(g)} \rightarrow F e_{(s)}+C O_{(g)}$
C.

$$
2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(s)} \rightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2(g)}+\mathrm{O}_{2((\mathrm{~g}))}
$$

D. $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$

Answer: B

- Watch Video Solution

24. The equilibrium constant K_{c} is 10^{2} for the reaction
$A B+C \Leftrightarrow A C+B$
The rate constant for the forward reaction K is 10^{6}, the rate constant of backward reaction is
A. 10^{4}
B. 10^{8}
C. 10^{-4}
D. $\frac{1}{100}$

- Watch Video Solution

25. Which among the following is the graphical representation of a reaction is the ΔH for the forward reaction is twice the activation energy of the I step and activation energy of the II step is half of the I step
A.

B.

Answer: C

D View Text Solution

26. $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 S O_{3(g)}+Q \mathrm{KJ}$

In the above reaction, how can the yield of product be increased without increasing the pressure?
A. by increasing temperature
B. by decreasing temperature
C. by increasing th volume of the reaction vessel
D. by the addition of the catalyst

Answer: B

- Watch Video Solution

27. For a reaction $2 A+B \rightarrow 2 A B$, it is found that doubling the concentration of both the reactants increases the rate to eight times that of initial rate but doubling the concentration of B alone doubles the rate. Then the order of the reaction with respect to A and B is
A. 0,3
B. 0,2
C. 2,1
D. 2,2

Answer: C

(Watch Video Solution

28. In the reaction $N_{2} O_{4} \Leftrightarrow 2 N O_{2}$, the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ increases with the
A. increase in pressure
B. Decrease in temperature
C. increase in volume
D. presence of catalyst

- View Text Solution

29. Identify the correct sequence of steps in an experiment to show the effect of temperature on the rate of the reaction.(1) Measuring the volumes of H_{2} gas liberated in the two test tubes.
(2) Heating the test tube B by $10^{\circ} \mathrm{C}$
(3) Comparison of relative volumes of H_{2} liberated in test tubes B and A .
(4) Addition of same concentration of HCl ot the two test tubes.
(5) Taking equal masses of fine granules of zinc in two test tubes A and B.
A. $3,4,5,1,2$
B. 5,4,2,1,3
C. $2,1,3,5,4$
D. 5,4,2,3,1

Answer:

D View Text Solution

30. The graph given below shows the change in comcentration of ' B ' with time for the reaction $A \rightarrow B$.

Identify the steps given below in sequence for determining instantaneous rate.
(1) Find the slope of y-axis, that is $y_{2}-y_{1}$ gives change in concentratino of ' B ', whereas change in the x -axis, that is
$x_{2}-x_{1}$ gives a small change in time interval.
(3) Slope of the tangent is equal to instantaneous rate.
(4) Draw the tangent on the curve at a particular instant of time ' t '.

A. 3,1,2,4
B. 1,2,3,4
C. $4,2,1,3$
D. 4,3,1,2

- View Text Solution

31. For the reaction $A \rightarrow B$, identify the correct sequence of steps for the calculation of average rate of reaction.
(1) plotting a graph of concentration of ' A ' at various time intervals.
(2) identification of C_{2} and C_{1} at different time interval t_{2}
and t_{1}, respectively by reading the graph
(3) Calculation of $\frac{C_{2}-C_{1}}{t_{2}-t_{1}}$
(4) finding out the experimental values of concentratiions of ' A ' at regular intervals
A. $4,2,3,1$
B. 4,1,2,3
C. 3,2,1,4
D. 1,2,3,4

Answer:

D View Text Solution

32. Initial number of moles of reactants taken in a closed reaction vessel is given. Percentage degree of dissociation is also given. Identify the correct sequence of steps to calculate k_{c} value.
(1) calculation of equilibrium concentrations of reactants and products
(2) calculation of equilibrim concentration number of moles
(3) writing equilibrium constant expression for the reaction
(4) calculation of k_{c} value by using the equilibrium concentration
A. $4,2,3,1$
B. 2,1,3,4
C. $3,2,1,4$
D. 2,1,4,3

Answer:

- View Text Solution

33. Which among the following reactions is an example of instantaneous reaction under normal conditions?
A. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
C. $\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Answer:

- View Text Solution

34. The rate of the reaction between ionic compounds
cannot be determined because they are generally
A. immeasurably slow reactions
B. moderately slow reactions
C. instantaneous reactions

D. not precipitation reaction

Answer:

- View Text Solution

35. For a reaction $A+B \rightarrow C$, the rate law is written as $r=k[A]^{2}[B]$. Doubling the concentration of 'A' without changing concentration of ' B ' increases the rate of reaction by
A. 2 times
B. 4 times
C. 8 times
D. 16 times

- View Text Solution

36. Identify the common property for a chemical reaction at dynamic equilibrium
A. The measurable properties like concentration, density, colour, pressure , etc., remain constant at constant temperature .
B. The forward and backward reactions take place with the same rate.
C. It can be achieved from both directions
D. all of the above

- View Text Solution

37. Which of the following k_{c} values corresponds to the maximum yield of the product ?
A. 9.2×10^{2}
B. 1.8×10^{-15}
C. 2.8×10^{3}
D. 3.4×10^{-25}

Answer:
38. For a reaction $A+B \Leftrightarrow C+D$, if the activation energy of backward reaction is more than that of forward reaction, the forward reaction is
A. endothermic
B. exothermic
C. reaction need not necessarily involve heat changes
D. cannot be predicted

Answer:

- Watch Video Solution

39. According to Le Chatelier's principle,
A. an increase in pressure always causes a change in position of equilibrium for any reaction
B. the yield of NH_{3} decrease from its constituents at lower temperature
C. an increase in temperature causes a decrease in the value of Kc for an exothermic reaction.
D. the k_{c} is decrease for the reaction
$A_{(s)}+B_{(g)} \rightarrow C_{(g)}$, if the concentration of A is
increased

Answer:

40. In which among the following reactions, the formation of product is favoured by decreasing the temperature or volume?
A. $2 \mathrm{SO}_{3(g)} \Leftrightarrow 2 \mathrm{SO}_{2(g)}+O_{2(g)}-q$
B. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{g}-q$
C.

$$
\begin{aligned}
& \quad 4 \mathrm{NH}_{3(g)}+5 O_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{g}, \Delta H=-v e \\
& \text { D. } 2 \mathrm{NO}_{(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{2(g)}, \Delta H=-v e
\end{aligned}
$$

Answer:

- View Text Solution

41. The rate of a reaction depends on the
A. temperature of the reaction
B. catalyst
C. concentration of the reactants
D. all of these

Answer:

- Watch Video Solution

42. If the formation of NO and O_{2} from NO_{2}, the rate of production of
A. NO and O_{2} are equal
B. NO is double the rate of consumption of NO_{2}
C. NO is twice the rate of production of O_{2}
D. O_{2} is twice the rate of production of NO

Answer:

- Watch Video Solution

43. For a reaction $A+B \rightarrow C$, the rate law is written as
$r=k[A]^{2}[B]$. Doubling the concentrations of both of 'A' and ' B ' increases the rate of reaction by
A. 2 times
B. 4 times
C. 8 times
D. 16 times

(Watch Video Solution

Level 2

1. Nitrogen dioxide gas dissociates to give nitric oxide and oxygen. For this reaction, when a graph is ploted between concentration of NO_{2} and time, the slope of tangent drawn at time $\mathrm{t}=10 \mathrm{~s}$ is found to be $6.8 \times 10^{-4} \mathrm{~mol}$ $L^{-1} s^{-1}$.predict the slope of the graph at $\mathrm{t}=10 \mathrm{~s}$ when the concentration of NO and O_{2} are plotted against time. Justify your answer.
2. Based on the following curves predict in which case the rate of reaction would be more and justify ?

D View Text Solution

3. Hydrogen peroxide decomposes into water and oxygen.

The uncatalysed reaction has activation energy of $86 \mathrm{KJ} / \mathrm{mol}$
. The E_{a} value in the presence of acetanilide is $112 \mathrm{KJ} / \mathrm{mol}$
and in the presence of MnO_{2} it is $49 \mathrm{KJ} / \mathrm{mol}$. What conclusion can you draw from the above observations?

- Watch Video Solution

4. In the decomposition, $2 \mathrm{~N}_{2} \mathrm{O}_{5} \Leftrightarrow 4 \mathrm{NO}_{2}+O_{2}$ oxygen gas is produced at the average rate of $9.1 \times 10^{-4} \mathrm{~mol}$ $L^{-1} s^{-1}$. Over the same period what is the average rate of production of NO_{2} and loss of $\mathrm{N}_{2} \mathrm{O}_{5}$

- Watch Video Solution

5. Energy profile diagram for a reversible chemical reaction is given. On the basis of the given diagram, explain the
effect of temperature on the equilibrium

- View Text Solution

6. For a reversible reaction, the activation energy of a forward reaction is $85 \mathrm{KJ} / \mathrm{mol}$. The net reaction is assoicated with the release of $15 \mathrm{KJ} / \mathrm{mol}$. What is the activation energy of the backward reaction ? Explain it on the bais of the collision theory?
7. On what factors do the equilibrium position and equilibrium constant depend ? Explain by giving appropriate reasons.

- Watch Video Solution

8. In a gas phase reaction, the decomposition of $P C l_{3}$ takes place at $273^{\circ} C$ and 1 atmosphere pressure. It percentage degree of dissociation is 40 per cent. Assuming that all gases in the reaction behave ideally, calculate the density of the equilibrium mixture. [atomic weight of phosphorus $=3$ and chlorine=35.5]
9. Carbon monoxide and water vapor react to give Co_{2} and H_{2} in a vessel of 2 L capacity at 1090 K . Equilibrium is established and the number of moles of various components is found to be $0.8,0.6,0.4$ and 1.2 mol , respectively. Calculate K_{c} value. 1.2 mol by increasing the concentration of CO_{2} at the equilibrium, find the number of moles of CO_{2} to be added to the reaction mixture at the same temperature.

D View Text Solution

10. For a gas phase reaction
$\mathrm{Cl}_{2}+\mathrm{CHCl}_{3} \rightarrow \mathrm{HCl}+\mathrm{CCl}_{4}$, the rate law is given as $r=k\left[\mathrm{Cl}_{2}\right]^{1 / 2}\left[\mathrm{CHCl}_{3}\right]$. Explain how the rate of reaction
varies when the concentration of chlorine is doubled. Give units of rate constant

- View Text Solution

11. $\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

The order of reaction with respect to BrO_{3}^{-}is 2 and with
respect to other reactants is one. Complete the following table.

	BrO_{5}	Br	$\mathrm{H}+$	Initial rates
I	0.1	0.1	0.1	$?$
II	0.2	0.1	0.1	1.6×10^{-3}
III		0.2	0.1	3.2×10^{-3}
IV	0.1	0.1	0.2	$?$

12. A reaction takes place in two steps. The rates of the two elementary steps are given. On the basis of these, predict the rate of reaction with changes in concentration. Also the given units of rate constant are
$2 A_{(g)}+B_{2(g)} \rightarrow 2 A B_{(g)} \rightarrow$ Overall reaction
$A+B_{2} \rightarrow A B+B$ in the first step, $\mathrm{r}=3.2 \times 10^{4} \mathrm{~mol}$
$L^{-1} s^{-1}$
$B+A \rightarrow A B$, in the second step , $r=1.9 \times 10^{6} \mathrm{~mol}$ $L^{-1} s^{-1}$

D View Text Solution

13. A chemist was studying the reaction of type
$2 A_{(g)}+2 B_{(g)}+C_{(g)}=2 D_{(g)} \quad$ experimentally. He found out that the order of the reaction is 2 . Complete the
following table based on the experimental results given by him.

[A]	[B]	Rates (moletis-1)
(i) $5 \times 10^{-3} \mathrm{M}$	$2.5 \times 10^{-2} \mathrm{M}$	3.0×10^{-5}
(ii) $15 \times 10^{-3} \mathrm{M}$	$2.5 \times 10^{-2} \mathrm{M}$	9.0×10^{-5}
(iii) $15 \times 10^{-3} \mathrm{M}$ M	7.5×10^{-6}
(iv) $1.25 \times 10^{-3} \mathrm{M}$	$2.5 \times 10^{-2} \mathrm{M}$	

- View Text Solution

14. Energy profile diagrams for hypothetical reaction
$2 A_{(g)}+B_{(g)} \rightarrow 2 D_{(g)}$ and $X_{2(g)}+Y_{2(g)} \rightarrow 2 X Y_{(g)}$ are given below. Predict the slow and fast steps from these two reactions. Also identify the factors that favour the
formation of reactants from products. Justify.

- View Text Solution

15. From the three energy profile diagrams A, B and C, find out which of the above irreversible reactions gives maximum yield within a given period of time ? Justify.
[Consider that the initial concentration of the reactants
and temperature is same for all the reactions.]

c

Course of reaction

- View Text Solution

16. Why is the reaction of SO_{2} to SO_{3} not rapid ini clean and dry air?
17. Change in temperature results in change in equilibrium position. However, the addition of a catalyst results in no change in the equilibrium position . Justify.

- View Text Solution

18. $A g_{2} S+4 N a C N \Leftrightarrow 2 N a\left[A g(C N)_{2}\right]+N a_{2} S$

Oxidation of sodium sulphide formed is the important step in the extration of silver from its ore . Justify.

- Watch Video Solution

19. An absent-mined prodessie, Mr Waage, took elements A
and B in a reaction vessel at room temperature, to study the reaction $A+2 B \Rightarrow 2 C+D$. He took the
concentration of B as 1.5 times the concentration of A. After the reaction reached equilbrium, he round that the concentrations of A and D were equal. However, he forgot to calculate K_{c} and removed oneof the products from the mixture. Now, can you calculate K_{c} for the equilibrium attained in his experiment and help him out?

D View Text Solution

20. When 2.82 g of solid $\mathrm{NH}_{4} \mathrm{Cl}$ is intoroduced into a 2 L flask at $30^{\circ} \mathrm{C} .40$ per cent of the solid $\mathrm{NH}_{4} \mathrm{Cl}$ decomposes into two gaseous products, that is NH_{3} and HCl . Calculate the Kc. What would happen if more amount of $\mathrm{NH}_{4} \mathrm{Cl}$ is introduced into the flask?
21. 0.5 moles of CO thken in a 2 L flask is maintained at 750 k in the presence of a catalyst so that the following reaction can take place: $\mathrm{CO}+2 \mathrm{H}_{2} \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}$. When hydrogen is introduced, the pressure of the system in increased to 23.629 antm from 15.129 atm at equilibrium and 0.08 moles of gaseous product, methanol is formed. Clculate k_{C}.

D View Text Solution

22. A mixture of 0.75 mol of N_{2} and 1.20 mol of H_{2} is placed in a 3 L container. When the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3} \quad$ reaches the equilibrium, the concentration of H_{2} is 0.1 M . Calculate the concentration of
N_{2} and NH_{3} when the reaction is carried out with double the number of moles.

- Watch Video Solution

Level 3

1. What is the use of catalytic convertic in automobile exhaust systems?

- View Text Solution

2. From the above three energy profile diagrams find out which of the above irreversible reactions gives maximum yield within a given period of time ? Justify. [Consider that
the initial concentration of the reactants and temperature is same for all the reactions.]

- View Text Solution

3. The decomposition reaction $\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ takes place on platinum surface. Here, the rate of reaction is independent of the concentrations of the reactant .

However, when this reaction is carried out in the absence of platinum surface, the rate of reaction depends on the concentration of the reactant How do you account for this ?

D View Text Solution

4. Energy profile diagram for a two-step reaction is given.

On the basis of given diagram, predict the slow and fast
steps in the reaction. Explain it on the basis of collision
theory. Predict the factors that favour the formation of
reactants from the products.

- View Text Solution

5. Explain the effect of addition of CO and O_{2} and solid carbon to the equilibrium mixture separately. Also explain the effect of addition of all the three simultaneously. What happens to the equilibrium when the above changes are carried out in a container having less volume ?
6. A 1 L reaction vessel contained 1 mole each of solid
$\mathrm{NH}_{4} \mathrm{HS}, \mathrm{NH}_{30}$ and $\mathrm{H}_{2} \mathrm{~S}$ at a temperature of $150^{\circ} \mathrm{C}$. When the decomposition of $N H_{4} H S$ was carried out , equilibrium is established K_{p} value at that temperature is
7. Calculate the equilibrium partial pressures at which 60 per cent dissociation of $\mathrm{NH}_{4} H S$ takes place at a lower temperature where K_{p} value is equal to $200 \mathrm{~atm}^{2}$.

D View Text Solution

7. Under what conditions, addition of insert gas affects the equilibrium position in case of the following equilibrium at constant temperature . Give a reason in support of your answer.
(a) decomposition of NO to N_{2} and O_{2}
(b) decomposition of SO_{3}
(c) formation of $\mathrm{CH}_{3} \mathrm{OH}$ from CO and H_{2}

- View Text Solution

8. In a reaction, A is converted to C with the formation of an intermediate B. On the basis of the given graph compare
the rate constatns.

- View Text Solution

9. Nitric oxide can catalyse ozone formation in troposhere .

Justify.
10. Carbon monoxide and water vapour react to give CO_{2}
and H_{2} in a vessel of 2 L capacity at 1090 K . Equilibrium is established and the number of moles of various components is found to be $0.8,0.6,0.4$ and 1.02 respectively.

Calculate K_{c} value. If the concentration of CO has to be increased to 1.2 mol by increasing the concentration of CO_{2} at the equilibrium, find the number of moles of CO_{2} to be added to the reaction mixture at the same temperature.

- View Text Solution

