

CHEMISTRY

BOOKS - MTG CHEMISTRY (ENGLISH)

EQUILIBRIUM

1. Which of the following is not a general characteristic of equilibrium involving physical processes ?

A. (a) Equilibrium is possible only in a closed system at a given

temperature.

B. (b) The equilibrium is dynamic in nature.

C. (c) Measurable properties of the system keep changing.

D. (d) Equilibrium can be attained from both sides of the reaction.

Answer: C

2. Match the colume I with column II and mark the appropriate choice.

Answer: B

View Text Solution

3. A reaction is said to be in equilibrium when

A. (a) the rate of transformation of reactants to products is equal to

the rate of transformation of products to the reactants

B. (b) $50~\%\,$ of the reactants are converted to products

- C. (c) the reaction is near completion and all the reactants are converted to products
- D. (d) the volume of reactants is just equal to the volume of the products.

Answer: A

> Watch Video Solution

4. Which of the following is not true about a reversible reaction ?

A. (a) The reaction does not proceed to completion.

B. (b) It cannot be influenced by catalyst

C. (c) Number of moles of reactants and products is always equal.

D. (d) It can be attained only in a closed container.

Answer: C

Watch Video Solution

5. For the reaction : $PCl_5(g) o PCl_3(g) + Cl_2(g)$:

A. (a) Equal volumes of PCl_5 , PCl_3 and Cl_2 are present.

B. (b) Equal masses of PCl_5 , PCl_3 and Cl_2 are present.

C. (c) The concentrations of PCl_5 , PCl_3 and Cl_2 become constant.

D. (d) Reaction stops

Answer: C

6. Consider the following graph and mark the correct statement.

- A. Chemical equilibrium in the reaction, $H_2+I_2 \Leftrightarrow 2HI$ can be attained from either directions.
- B. Equilibrium can be obtained when H_2 and I_2 are mixed in an open vessel.
- C. The concentration of HI keeps increasing with time.
- D. We can find out equailibrium concentration of H_2 and I_2 from the

given graph.

Answer: A

7. For the reaction, $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$ What is K_c when the equilibrium concentration of

 $[SO_2] = 0.60M, [O_2] = 0.82M$ and $[SO_3] = 1.90M$?

A. (a) $12.229 Lmol^{-1}$

B. (b) 24.5*Lmol*⁻¹

C. (c) 36.0*Lmol*⁻¹

D. (d) $2.67 imes 10^3 Lmol^{-1}$

Answer: A

8. PCl_5 , PCl_3 and Cl_2 are at equilibrium at 500 K with concentration 2.1M PCl_3 , 2.1M Cl_2 and 1.9M PCl_5 .

The equilibrium constant for the given reaction is

```
PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}
```

A. (a) 2.32

B. (b) 1.79

C. (c) 4.2

D. (d) 3.8

Answer: A

Watch Video Solution

9. For the following reaction :

 $NO_{(g)} + O_{3(g)} \Leftrightarrow NO_{2(g)} + O_{2(g)}$

The value of K_c is $8.2 imes 10^4$. What will be the value of K_c for the reverse

reaction ?

A. (a)
$$8.2 \times 10^4$$

B. (b) $\frac{1}{8.2 \times 10^4}$
C. (c) (8.2×10^4)
D. (d) $\sqrt{8.2 \times 10^4}$

Answer: B

10. If the equilibrium constant for the given reaction is 0.25

 $NO \Leftrightarrow \frac{1}{2}N_2 + \frac{1}{2}O_2$, then the equilibrium constant for the reaction $\frac{1}{2}N_2 + \frac{1}{2}O_2 \Leftrightarrow NO$ will be

A. (a) 1

B. (b) 2

C. (c) 3

D. (d) 4

Answer: D

11. If the equilibrium constant for the reaction,

 $2XY \Leftrightarrow X_2 + Y_2$ is 81,

what is the value of equilibrium constant for the reaction

 $XY \Leftrightarrow rac{1}{2}X_2 + rac{1}{2}Y_2$ A. (a) 81 B. (b) 9 C. (c) 6561 D. (d) 40.5

Answer: B

12. If the value of equilibrium constant K_c for the reaction, $N_2+3H_2\Leftrightarrow 2NH_3$ is 7. The equilibrium constant for the reaction $2N_2+6H_2\Leftrightarrow 4NH_3$ will be

A. (a) 49

B. (b) 7

C. (c) 14

D. (d) 28

Answer: A

Watch Video Solution

13. At 473 K, K_c for the reaction

 $PCl_{5(g)} \Leftrightarrow PCl_{3(g)}Cl_{2(g)}$ is 8.3×10^{-3} . What will be the value of K_c for the formation of PCl_5 at the same temperature ?

A. (a) $8.3 imes10^3$

B. (b) 120.48

C. (c) $8.3 imes 10^{-3}$

D. (d) 240.8

Answer: B

Watch Video Solution

14. Which of the following is an example of homogeneous equilibrium ?

A. (a)
$$2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$$

B. (b) $C_{(s)} + H_2O_{(g)} \Leftrightarrow CO_{(g)} + H_{2(g)}$
C. (c) $CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}$
D. (d) $NH_4NS_{(s)} \Leftrightarrow NH_{3(g)} + H_2S_{(g)}$

Answer: A

15. Which of the following relations between the reactions and equilibrium constant for a general reaction $aA + bB \Leftrightarrow cC + dD$ is not correct ?

A. (1)
$$aA + bB \Leftrightarrow cC + dD$$
 : K_c

B. (2)
$$cC+dD \Leftrightarrow aA+bB\!:K_c'=rac{1}{K_c}$$

C. (3) $naA + nbB \Leftrightarrow ncC + ndD$: $K_c^{'\,'} = K_c^n$

D. (4)
$$aA+bB \Leftrightarrow cC+dD$$
 : $K_c=K_p$

Answer: D

Watch Video Solution

16. 1 mole of NO 1 mole of O_3 are taken in a 10 L vessel and heated. At equilibrium, 50 % of NO (by mass) reacts with O_3 according to the equation :

$$NO_{(g)} + O_{3(g)} \Leftrightarrow NO_{2(g)} + O_{2(g)}.$$

What will be the equilibrium constant for this reaction ?

A. (a) 1

B. (b) 2

C. (c) 3

D. (d) 4

Answer: A

17. When sulphur is heated at 900 K, S_8 is converted to S_2 . What will be the equilibrim constant for the reaction if initial pressure of 1 atm falls by 25~% at equilibrium ?

A. (a) $0.75 atm^3$

B. (b) $2.55 atm^3$

C. (c) $25.0 atm^3$

D. (d) $1.33 atm^3$

Answer: D

18. 5 moles of PCl_5 are heated in a closed vessel of 5 litre capacity. At equilibrium 40 % of PCl_5 is found to be dissociated. What is the value of K_c ?

A. (a) 0.266 M

B. (b) 0.133 M

C. (c) 2.5 M

D. (d) 0.20 M

Answer: A

19. For a reaction, $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$, 1.5 moles of SO_2 and 1 mole of O_2 are taken in a 2 L vessel. At equilibrium the concentration of SO_3 was found to be 0.35 mol L^{-1} The K_c for the reaction would be

A. (a) $5.1 \mathrm{L} \mathrm{mol}^{-1}$

B. (b) $1.4 L \text{ mol}^{-1}$

C. (c) $0.6 \mathrm{L} \ \mathrm{mol}^{-1}$

D. (d) $2.35 \mathrm{L} \mathrm{mol}^{-1}$

Answer: A

Watch Video Solution

20. 18.4 g of N_2O_4 is taken in a 1 L closed vessel and heated till the equilibrium is reached.

 $N_2O_{4(g)} \Leftrightarrow 2NO_{2(g)}$

At equilibrium it is found that 50% of N_2O_4 is dissociated . What will be

the value of equilibrium constant?

A. (a) 0.2

B. (b) 2

C. (c) 0.4

D. (d) 0.8

Answer: C

Watch Video Solution

21. 5 moles of SO_2 and 5 moles of O_2 react in a closed vessel. At equilibrium 60% of the SO_2 is consumed . The total number of gaseous moles(SO_2 , O_2 and SO_3) in the vessel is :-

A. 5.1

B. 3.9

C. 10.5

D. 8.5

Answer: D

View Text Solution

22. At 500 K, the equilibrium costant for the reaction $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$ is 24.8 If $\frac{1}{2}mol/L$ of HI is present at equilibrium, what are the concentrations of H_2 and I_2 , assuming that we started by taking HI and reached the equilibrium at 500 K?

A. $0.068 mol \ L^{-1}$

B. 1.020mol L^{-1}

 $C. 0.10 mol L^{-1}$

D. 1.20mol L^{-1}

Answer: C

23. In the system $X+2Y \Leftrightarrow Z$, the equilibrium concentration are,

 $[X] = 0.06 \hspace{.1in} ext{mol } ext{L}^{-1}, [Y] = 0.12 \hspace{.1in} ext{mol } ext{L}^{-1},$

 $[Z] = 0.216 \hspace{0.2cm} ext{mol} \hspace{0.1cm} ext{L}^{-1}.$ Find the equilibrium constant of the reaction.

A. 250

B. 500

C. 125

D. 273

Answer: A

Watch Video Solution

24. For the reaction $a + b \Leftrightarrow c + d$, initially concentrations of a and b are equal and at equilibrium the concentration of will be twice of that of a. What will be equilibrium constant for the reaction ?

C. 4

D. 3

Answer: C

Watch Video Solution

25. In the relation, $K_p = K_c (RT)^{\,\Delta\,n}$ the value of Δn is

A. number of moles of gaseous reactants-number of moles of gaseous

products in a balanced equation

B. number of moles of gaseous products - number of moles of

gaseous reactants in a balanced equation

C. number of moles of gaseous products \times number of moles of

gaseous reactants in a balanced equation

D. number of moles of gaseous reactants + number of moles of

gaseous products in balanced equation

Answer: B

Watch Video Solution

26. For which of the following reaction $K_p = K_c$?

A.
$$PCl_{3(g)} + Cl_{2(g)} \Leftrightarrow PCl_{4(g)}$$

$$\mathsf{B}.\,H_{2\,(\,g\,)}\,+Cl_{2\,(\,g\,)}\,\Leftrightarrow 2HCl_{\,(\,g\,)}$$

C.
$$N_{2\,(\,g\,)}\,+3H_{2\,(\,g\,)}\,\Leftrightarrow 2NH_{3\,(\,g\,)}$$

D.
$$CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}$$

Answer: B

27. For the reaction $2NO_{2\,(\,g\,)} \, \Leftrightarrow \, N_2O_{4\,(\,g\,)}\,, K_p\,/\,K_c$ is equal to

A. $\frac{1}{RT}$ B. \sqrt{RT} C. RT

 $\mathsf{D.}\left(RT\right)^2$

Answer: A

Watch Video Solution

28. For the reaction $N_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,\Rightarrow NO_{\,(\,g\,)}$, the value of K_c at $800^\circ\,$ C

is 0.1 . What is the value of K_p at this temperature ?

A. 0.5

B. 0.01

C. 0.05

D. 0.1

Answer: D

29. At 350 K, K_p for the reaction given below is $3.0 \times 10^{10} {
m bar}^{-1}$ at equilibrium. What be the value of K_c at this temperature ? $2N_{2(g)} + O_{2(g)} \Leftrightarrow 2N_2O_{(g)}$ A. $7.4 \times 10^{11} {
m L} {
m mol}^{-1}$

B. $8715 imes 10^{10} L$ mol $^{-1}$

C. $0.08 L \text{ mol}^{-1}$

D. $8.715 imes10^{11} \mathrm{L}~\mathrm{mol}^{-1}$

Answer: D

30. The value of K_c for the following equilibrium is

```
CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}.
```

Given $K_p = 167$ bar at 1073 K.

A. 1.896 $mol L^{-1}$

 $\text{B.}\,4.38\times 10^{-4}\ \ mol\ L^{-1}$

 $\textrm{C.}\,6.3\times10^{-4}~~mol~L^{-1}$

D. $6.626 \mod L^{-1}$

Answer: A

Watch Video Solution

31. Calculate K_p for the equilibrium,

 $NH_4HS_{(s)} \Leftrightarrow NH_{3(g)} + H_2S_{(g)}$

if the total pressure inside reaction vessel s 1.12 atm at $105.^{\,\circ}$ C.

A. 0.56

B. 1.25

C. 0.31

D. 0.63

Answer: C

Watch Video Solution

32. $NH_4COONH_4(s) \Leftrightarrow 2NH_3(g) + CO_2(g).$ If equilibrium pressure is

 $3~{\rm atm}$ for the above reaction, K_p will be

A. 27

B. 4

C. 3

D. 9

Answer: B

33. The expression for equilibrium constant, K_c for the following reaction

is

$$2Cu(NO_3)_{2(s)} \Leftrightarrow 2CuO_{(s)} + 4NO_{2(g)} + O_{2(g)}$$

$$\begin{split} \mathsf{A}.\, K_{c} &= \frac{\left[CuO_{(s)}\right]^{2} \left[NO_{2(g)}\right]^{4} \left[O_{2(g)}\right]^{2}}{\left[Cu(NO_{3})_{2(s)}\right]^{2}} \\ \mathsf{B}.\, K_{c} &= \frac{\left[NO_{2(g)}\right]^{4} \left[O_{2(g)}\right]}{\left[Cu(NO_{3})_{2(g)}\right]^{2}} \\ \mathsf{C}.\, K_{c} &= \left[NO_{2(g)}\right]^{4} \left[O_{2(g)}\right] \\ \mathsf{D}.\, K_{c} &= \frac{\left[CuO_{(s)}\right]^{2}}{\left[Cu(NO_{3})_{2(g)}\right]^{2}} \end{split}$$

Answer: C

Watch Video Solution

34. The expression for equilibrium constant, K_c for the following reaction

is

$$Fe^{3\,+}_{(aq)}+3OH^{-}_{(aq)} \Leftrightarrow Fe(OH)_{3\,(s)}$$

A.
$$K_c = rac{\left[Fe(OH)_3
ight]}{\left[Fe^{3+}
ight]\left[OH^{-}
ight]^3}$$

B. $K_c = rac{\left[Fe(OH)_3
ight]}{\left[Fe^{3+}
ight]\left[OH^{-}
ight]}$
C. $K_c = rac{1}{\left[Fe^{3+}
ight]\left[OH^{-}
ight]^3}$
D. $K_c = \left[Fe(OH)_3
ight]$

Answer: C

Watch Video Solution

35. What is the equilibrium expression for the reaction $P_{4(s)} + 5O_{2(g)} \Leftrightarrow P_4O_{10(s)}$?

A. a. $k_c = rac{\left[P_4\right]\left[O_2
ight]^5}{\left[P_4O_{10}
ight]}$ B. b. $K_c = rac{1}{\left[O_2
ight]^5}$ C. c. $K_c = rac{\left[P_4O_{10}
ight]}{\left[P_4
ight]\left[O_2
ight]^5}$ D. d. $K_c = \left[O_2
ight]^5$

Answer: B

36. $N_2O_{4(g)} \Rightarrow 2NO_2, K_c = 5.7 imes 10^{-9}$ at 298 K. At equilibrium :-

A. a. concentration of NO_2 is higher than that of N_2O_4

B. b. concentration of N_2O_4 is higher than that of NO_2

C. c. both N_2O_4 and NO_4 have same concentration

D. d. concentration of N_2O_4 and NO_2 keeps on changing.

Answer: B

Watch Video Solution

37. In the following reaction:

 $2NO_{(g)} + Cl_{2(g)} \Leftrightarrow 2NOCl_{(g)}$

it is observed that equilibrium is not attained and the rate of forward reaction is greater than rate of backward reaction. Which of the following is true for the reaction ? (A) K p = Q p (B) Q p > K p (C) Q p < K p (D) Q p =

0

A. $K_p = Q_p$ B. $Q_p > K_p$ C. $Q_p < K_p$ D. $Q_p = 0$

Answer: C

Watch Video Solution

38. 0.6 moles of PCl_5 , 0.3 mole of PCl_3 and 0.5 mole of Cl_2 are taken in a

1 L flask to obtain the following equilibrium ,

 $PCl_{5(g)} \Rightarrow PCl_{3(g)} + Cl_{2(g)}$ If the equilibrium constant K_c for the reaction is 0.2 Predict the direction of the reaction.

A. a. Forward direction

B. b. Backward direction

C. c. Direction of the reaction cannot be predicted

D. d. Reaction does not move in any direction.

Answer: B

O Watch Video Solution

39. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_c is:

A.
$$\Delta G = RT {
m ln}\, K_c$$

$$\mathsf{B.} - \Delta G = RT \ln K_c$$

 $\mathsf{C.}\,\Delta G^\circ\,=RT{\ln K_c}$

D.
$$-\Delta G^\circ = RT {
m ln}\, K_c$$

Answer: D

40. For a reversible reaction at 298 K the equilibrium constant K is 200.

What is value of $\Delta G^\circ\,$ at 298 K ?

A. a. -13.13kcal

B. b.-0.13kcal`

 $\mathsf{C.\,c.}-3.158 kcal$

 $\mathsf{D.\,d.}-0.413 kcal$

Answer: C

Watch Video Solution

41. The following reaction is at equilibrium,

$$egin{aligned} Fe^{3\,+}_{(aq)} + SCN_{(aq)} &\Rightarrow \left[Fe(SNC)
ight]^{2\,+}_{(aq)} \ & ext{Pellow} & ext{Colourless} & ext{Deep red} \ & ext{K}_{c} &= rac{\left[Fe(SCN)
ight]}{\left[Fe^{3\,+}
ight]\left[SCN
ight]} \end{aligned}$$

In the above reaction , colour intensity of red colour can be increased by

:- (A) addition of KSCN (B) addition of oxalic acid which reacts with F e 3 +

ions (C) addition of H g 2 + ions which react with S C N - ions (D)red colour intensity cannot be changed

A. addition of KSCN

B. addition of oxalic acid which reacts with Fe^{3+} ions

C. addition of Hg^{2+} ions which react with SCN^- ions

D. red colour intensity cannot be changed.

Answer: A

Watch Video Solution

42. Consider the equilibrium set up :

 $2H_{2(g)} + CO_{(g)} \Leftrightarrow CH_3OH_{(g)}$

What will be the effect of the following on the equilibrium of the reaction

?

(i) Addition of ${\cal H}_2$ (ii) Addition of CH_3OH

(iii) Removal of CO (iv) Removal of CH_3OH

A.

43. Formation of ClF_3 from Cl_2 and F_2 is an exothermic process. The equilibrium system can be represented as

 $Cl_{2(g)} + 3F_{2(g)} \Rightarrow 2ClF_{3(g)}, \Delta H = -329kJ$ Which of the following will increase quantity of ClF_3 in the equilibrium mixture ? i(A)ncrease in

temperature, decrease in pressure, addition of C \mid 2 (B)Decrease in temperature and pressure, addition of C \mid F 3 (C)Increase in temperature and pressure, removal of C \mid 2 (D) Decrease in temperature, increase in pressure, addition of F 2

A. Increase in temperature, decrease in pressure addition of Cl_2

B. Decrease in temperature and pressure, addition of ClF_3

C. Increase in temperature and pressure, removal of Cl_2

D. Decrease in temperature, increase in pressure, addition of F_2

Answer: D

44. Which of the following reaction will not affected on increasing the pressure ?

A.
$$2H_{2(g)}+CO_{(g)} \Leftrightarrow CH_{3}OH_{(g)}$$

 $\mathsf{B.}\,4NH_{3\,(\,g\,)}\,+5O_{2\,(\,g\,)}\,\Leftrightarrow 4NO_{\,(\,g\,)}\,+6H_2O_{\,(\,g\,)}$

$$\mathsf{C.}\,CH_{4\,(\,g\,)}\,+2S_{2\,(\,g\,)}\,\Leftrightarrow CS_{2\,(\,g\,)}\,+2H_2S_{(\,s\,)}$$

$$\mathsf{D}.\operatorname{PCl}_{5(g)} \Leftrightarrow \operatorname{PCl}_{3(g)} + \operatorname{Cl}_{2(g)}$$

Answer: C

Watch Video Solution

45. In which of the following reaction the increase in pressure will favour the increase in products ?

A.
$$N_{2(g)} + O_{2(g)} \Leftrightarrow 2NO_{(g)}$$

B. $PCl_{3(g)} + Cl_{2(g)} \Leftrightarrow PCl_{5(g)}$

$$\mathsf{C.} \operatorname{PCl}_{5(g)} \Leftrightarrow \operatorname{PCl}_{3(g)} + \operatorname{Cl}_{2(g)}$$

D.
$$2CO_{2\,(\,g\,)} \Leftrightarrow 2CO_{\,(\,g\,)} + O_{2\,(\,g\,)}$$

Answer: B

46. In a vessel N_2 , H_2 and NH_3 are at equilibrium. Some helium gas is introduction into the vessel so that total pressure increases while temperature and volume remain constant. According to Le Chatelier's principle, the dissociation of NH_3 (A)increases (B)decreases (C)remains unchanged (D)equilibrium is disturbed

A. increases

B. decreases

C. remains unchanged

D. equilibrium is disturbed.

Answer: C

Watch Video Solution

47. When I_2 dissociates to its atomic from the following reaction occurs :

 $I_{2\,(\,g\,)}\,\Leftrightarrow 2I_{(\,g\,)}\,,\Delta H^{\,\circ}\,=\,+\,150~~
m kJ~mol^{\,-\,1}$

The reaction is favoured at (a)low temperature (B)high temperature (C)no change with temperature (D)high pressure

A. low temperature

B. high temperature

C. no change with temperature

D. high pressure.

Answer: B

Watch Video Solution

48. For the reaction,

 $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$, the forward reaction at constant

temperature is favoured by:

A. a. introducing an inert gas at constant volume

B. b.introducing Cl_2 at constant volume

C. c. introducing PCl_5 at constant volume
D. d. reducing the volume of the container.

Answer: C

49. The reaction $2SO_2 + 2O_2 \Leftrightarrow 2SO_3$ will be favoured by

A. a. high temperature and low pressure

B. b. low temperature and high pressure

C. c. high temperature and high pressure

D. d. low temperature and low pressure.

Answer: B

50. In an experiment, NO_2 gas is prepared and taken into 3 test tubes X,Y and Z. NO_2 gas which is brown in colour dimerises into N_2O_4 which is colourless. Test tube X is kept at roop temperature, Y is kept in ice and Z is kept in hot water. What colour changes will you observe in the test tubes and why

A. a. In test tube X, brown colour intensifies since backward reaction is

favoured at low temperature.

B. b.In test tube Y, brown colour intensifies since backward reaction

takes place at roop temperature.

C. c. In test tube Z, brown colour intensifies since high temperature

favours the backward reaction.

D. d. Brown colour of test tubes X,Y and remains same since there is

no effect of change in temperature on the reaction .

Answer: C

A. change in pressure and temperature

B. change in temperature and concentration of N_2

C. change in pressure and concentration of N_2

D. change in pressure, temperature and concentration of N_2 .

Answer: D

> Watch Video Solution

52. According to Lewis concept acid is(A) proton donor (B)electron pair

donor (C)proton acceptor (D)electron pair acceptor

A. proton donor

B. electron pair donor

C. proton acceptor

D. electron pair acceptor .

Answer: D

Watch Video Solution

53. Which of thef following is not Lewis acid

A. BF_3

B. $AlCl_3$

 $\mathsf{C}.\,FeCl_3$

D. PH_3

Answer: D

Answer: A

55. Which of the following species can act both as an acid as well as a

base ?

A. $SO_4^{2\,-}$

 $B.HSO_4^-$

 $\mathsf{C.}\,PO_4^{3\,-}$

D. $OH^{\,-}$

Answer: B

Watch Video Solution

56. Classify the following as acid or base according to Bronsted - Lowry concept.

(i) CH_3COO^-

(ii) H_3O^+

(iii) $SO_4^{2\,-}$

(iv) HCl

A.(i)(ii)(iv)Bronsted acidBronsted baseBronsted baseBronsted acidB.(i)(ii)(iii)(iv)Bronsted acidBronsted acidBronsted acidBronsted base

Answer: C

Watch Video Solution

57. Fill in the blanks in the given table with the appropriate choice.

Ender	Conjugate acid Conjugate base		
HCQ.	-P-	CO_3^2	
11504	112504		
NHO			
HO		OH	

$$\begin{array}{ccccccccccccccc} \mathsf{A} & p & q & r & s & t \\ \mathsf{H}_2 CO_3 & SO_4^{2-} & NH_4^+ & NH_2^- & H_3O^+ \\ \mathsf{B} & p & q & r & s & t \\ \mathsf{H}CO_3^- & H_2 SO_3 & NH_2^- & NH_4^+ & H_3O^+ \\ \mathsf{C} & p & q & r & s & t \\ \mathsf{H}_2 CO_3 & H_2 SO_3 & NH_2^- & NH_4^+ & H_3O^+ \\ \mathsf{D} & p & q & r & s & t \\ \mathsf{H}CO_3^- & H_2 SO_4 & NH_2^+ & NH_2^- & OH^- \end{array}$$

Answer: A

Watch Video Solution				
58. Nucleophiles are while electrophiles are				
A. Lewis bases, Lewis acids				
B. Lewis acids, Lewis bases				
C. Bronsted acids, Bronsted bases				
D. Lewis acids Bronsted bases				
Answer: A				
Vatch Video Solution				

59. Which of the following salts will give basic solution on hydrolysis ?

A. NH_4Cl

 $\mathsf{B.}\,KCl$

 $\mathsf{C.}\,K_2CO_3$

D. $(NH_4)_2 CO_3$

Answer: C

Watch Video Solution

60. Which of the following salts with a concentration .1 M will give a basic solution ? (A)Ammonium acetate (B)Ammonium chloride (C)Ammonium sulphate (D)Sodium acetate

A. Ammonium acetate

B. Ammonium chloride

C. Ammonium sulphate

D. Sodium acetate

Answer: D

61. Which of the following salts does show its correct nature mentioned

against it?

A. KBr solution - Neutral

B. NaCN solution - Acidic

C. NH_4NO_3 solution - Acisdic

D. KF solution - Basic

Answer: B

Watch Video Solution

Column I $(A)CH_3COONa$ **62.** $(B)NH_4CI$ $(C)NaNO_3$

Column II (i)Almost neutralpH > 7or < 7(ii)AcidicpH < 7 $(iii) {
m Alkaline} ~~ pH>7$ $(D)CH_3COONH_4$ (iv)Neutral pH = 7

$$egin{aligned} \mathsf{A}.\,(A) &
ightarrow (i),\,(B)
ightarrow (ii),\,(C)
ightarrow (iii),\,(D)
ightarrow (iv) \ \mathsf{B}.\,(A) &
ightarrow (ii),\,(B)
ightarrow (iii),\,(C)
ightarrow (iv),\,(D)
ightarrow (i) \ \mathsf{C}.\,(A) &
ightarrow (iii),\,(B)
ightarrow (ii),\,(C)
ightarrow (iv),\,(D)
ightarrow (i) \ \mathsf{D}.\,(A) &
ightarrow (iv),\,(B)
ightarrow (i),\,(C)
ightarrow (iii),\,(D)
ightarrow (ii) \end{aligned}$$

Answer: C

Watch Video Solution

63. The pH of 0.001 M $Ba(OH)_2$ solution will be

A. 2

B. 8.4

C. 11.3

D. 2.7

Answer: C

Watch Video Solution

64. What will be the pH of $1 imes 10^{-4}$ M H_2SO_4 solution ?

A. 10.4

B. 3.7

C. 3

D. 13

Answer: B

Watch Video Solution

65. Solution of a monobasic acid has a pH=5. If one mL of it is diluted to 1

litre, what will be the pH of the resulting solution ?

A. a.3.45

B. b.6.96

C. c.8.58

D. d.10.25

Answer: B

66. If the pH of a solution is 2, the hydrogen ion concentration in moles per litre is

A. a. $1 imes 10^{-14}$ B. b. $1 imes 10^{-2}$ C. c. $1 imes 10^{-7}$ D. d. $1 imes 10^{-12}$

Answer: B

Watch Video Solution

67. 0.05 mole of NaOH is added to 5 liters of water What will be the pH of

the solution ?

A. a.12

B. b.7

C. c. 2

D. d. 10

Answer: A

> Watch Video Solution

68. The concentration of hydrogen ion in a sample of soft drink is $3.8 imes 10^{-3} M$. What is its pH?

A. a. 3.8

B. b. 5.04

C. c. 2.42

D. d.9.2

Answer: C

69. What is pOH of an aqueous solution with hydrogen ion concentration equal to 3×10^{-5} mol L⁻¹? A. a. 9.47 B. b. 4.52 C. c. 12.69

D. d. 11.69

Answer: A

Watch Video Solution

70. The degree of ionisation of an acid HA is 0.00001 at 0.1 M concentration. Its dissociation constant will be

A. a. 10^{-9} B. b. 10^{-11} C. c. 10^{-8} D. d. 10^{-7}

Answer: B

Watch Video Solution

71. What will be the ionisation constant of formic acid if its 0.01 M solution is 14.5% ionised ?

A. a. $2.1 imes 10^{-4}$

 $\mathsf{B}.\,\mathsf{b}.14.5$

 $\mathsf{C.\,c.}0.145$

D. d.1.45 \times 10^{-4}

Answer: A

72. What is the percentage dissociation of 0.1 M solution of acetic acid ?

 $ig(K_a = 10^{-5}ig)(A)10\,\%\,(B)100\,\%\,(C)1\,\%\,(D)0.01\,\%$

A. 10~%

B. 100 %

 $\mathsf{C.1}~\%$

D. 0.01~%

Answer: C

Watch Video Solution

73. NH_4CN is a salt of weak acid $HCNig(K_a=6.2 imes10^{-10}ig)$ and a weak base $NH_4OHig(K_b=1.8 imes10^{-5}ig)$. 1 molar solution of NH_4CN will be :-

A. neutral

B. strongly acidic

C. strongly basic

D. weakly basic.

Answer: D

Watch Video Solution

74. For poly basic acid , the dissociation constant have a different valves for each step.

 $H_{3}A \Leftrightarrow H^{+} + A, Keq = Ka_{1}$

 $H_2A \Leftrightarrow H^+ + A^{-2}, Keq = Ka_2$

 $HA^2 \Leftrightarrow H^{\,+} + A^{3\,-}, Keq = Ka_3$

What is the observed trend of dissociation constant im successive stages

A.
$$K_{a_1} > K_{a_2} > K_{a_3}$$

B. $K_{a_1} = K_{a_2} = K_{a_3}$
C. $K_{a_1} < K_{a_2} < K_{a_3}$
D. $K_{a_1} = K_{a_2} + K_{a_3}$

Answer: A

?

Watch Video Solution

75. Equimoler solulition of HF, HCOOH and HCN at 298 K have the values of Ka as 6.8×10^{-4} , 1.8×10^{-4} and 4.8×10^{-9} respectively, what will be the order of their acidic strength ? (A)H F > H C N > H C O O H (B)H F > H C O O H > H C N (C)H C N > H F > H C O O H (D)H C O O H > H C N > H F

A. HF > HCN > HCOOH

 $\mathsf{B}.\,HF > HCOOH > HCN$

C.HCN > HF > HCOOH

 $\mathsf{D}.\,HCOOH > HCN > HF$

Answer: B

Watch Video Solution

76. Given below are the dissociation constant values of few acids. Arrange them in order of increasing acidic strength.

 $egin{aligned} &H_2SO_3=1.3 imes 10^{-2}, HNO_2=4 imes 10^{-4}\ &CH_3COOH=1.8 imes 10^{-5}, HCN=4 imes 10^{-10}\ &A.\,a.\,HCN< CH_3COOH< HNO_2< H_2SO_3\ &B.\,b.\,CH_3COOH< HNO_2< HCN< H_2SO_3\ &C.\,c.CH_3COOH< HCN< H_2SO_3< HNO_2\ &D.\,d.HNO_2< H_2SO_3< CH_3COOH< HCN \end{aligned}$

Answer: A

77. pK_a of a weak acid is 5.76 and pK_b of a weak base is 5.25. What will be

the pH of the salt formed by the two ?

A. 7.255

B. 7.005

C. 10.225

D. 4.255

Answer: A

Watch Video Solution

78. What is the pH of a solution obtained by mixing 10 mL of 0.1 M HCl and

40 mL 0.2 M H_2SO_4 ?(A) 0.74 (B)7.4 (C)4.68 (D)0.468

A. 0.74

B. 7.4

C. 4.68

D. 0.468

Answer: D

Watch Video Solution

79. Dissociation constant of CH_3COOH and NH_4OH in squeous solution are 10^{-5} if pH of a CH_3COOH solution is 3, what will be the pH of NH_4OH ?

A. 3.0

 $\mathsf{B.}\,4.0$

C. 10.0

 $D.\,11.0$

Answer: D

80. An acidic buffer solution can be prepared by mixing solution of

A. sodium acetate and acetic acid

B. ammonium acetate and ammonium hydroxide

C. sodium chloride and sodium hydroxide

D. potassium sulphate and sulphuric acid.

Answer: A

81. Mark the appropriate choice to fill up the blanks in the given paragraph.

A solution which maintains constant pH when small amounts of acid or base are added is known as a (i). A mixture of acetic acid and sodium acetate acts as (ii) with a pH around (iii) and a mixture of ammonium chloride and ammonium hydroxide acts as (iv) with a pH around (v)

^	(i)	(ii)	(iii)	(iv)	(v)
A.	buffer capacity	basic buffer	9.25	acidic buffer	4.75
п	(i)	(ii)	(iii)	(iv)	(v)
в.	buffer solution	acidic buffer	9.25	basic buffer	4.75
C.	(i)	(ii)	(iii)	(iv)	(v)
	buffer solution	basic buffer	4.75	acidic buffer	9.25
D.	(i)	(ii)	(iii)	(iv)	(v)
	buffer solution	acidic buffer	4.75	basic buffer	9.25

Answer: D

Watch Video Solution

82. For a reaction, $A_x, B_y \Leftrightarrow xA^{y+} + yB^{x-}, K_{sp}$ xan be represented as

A.
$$\left[A^{y\,+}
ight]^x \left[B^{x\,-}
ight]^y$$

- $\mathsf{B}.\left[A\right]^{y}\left[B\right]^{x}$
- $\mathsf{C}.\,[A]^x[B]^y$
- $\mathsf{D}.\left[A\right]^{x\,+\,y}\left[B\right]^{x\,-\,y}$

Answer: A

83. The solubility product of $BaCl_2$ is 3.2×10^{-9} . What will be solubility

in mol L^{-1}

A. $4 imes 10^{-3}$ B. $3.2 imes 10^{-9}$ C. $1 imes 10^{-3}$

 $\mathsf{D}.\,1 imes10^{-9}$

Answer: C

84. Solubility of CaF_2 is $0.5 imes 10^{-4} \mod {
m L}^{-1}$. The value of K_{sp} for the

salt is

A. a. $5 imes 10^{-12}$

B. b. $2.5 imes10^{-16}$

C. c.1 imes 10 $^{-13}$

D. d.5 imes 10 $^{-13}$

Answer: D

Watch Video Solution

85. Match the column I with column II and mark the appropriate choice.

Answer: B

86. solubility product of radium sulphate is $4 imes 10^{-9}$. What will be the solubility of Ra^{2+} in 0.10M $NaSO_4$?

A. $4 imes 10^{-10}M$ B. $2 imes 10^{-5}M$ C. $4 imes 10^{-5}M$ D. $2 imes 10^{-10}M$

Answer: A

87. At $20^{\circ}C$, the Ag^+ ion concentration in a saturated solution Ag_2CrO_4 is $1.5x10^{-4}$ mol / litre. At $20^{\circ}C$, the solubility product of

 Ag_2CrO_4 would be

A. $1.687 imes 10^{-12}$

B. $1.75 imes 10^{-10}$

 $\text{C.}\,3.0\times10^{-8}$

D. 4.5 imes 10 $^{-10}$

Answer: A

Watch Video Solution

88. The solubility product of AgCl is $1.56 imes10^{-10}$ find solubility in g/ltr

A. 143.5

B. 108

C. $1.57 imes 10^{-8}$

D. 1.79 \times 10 $^{-3}$

Answer: D

89. What will be the solubility of AgCl in 0.05 M NaCl aqueous solution if solubility product of AgCl is $1.5 imes10^{-10}$?

```
A. 3 \times 10^{-9} mol L^{-1}
```

 $\text{B.}\,0.05\ mol\ L^{-1}$

- $\textrm{C.}\,1.5\times10^{-5}~\textrm{mol}~\textrm{L}^{-1}$
- $\textrm{D.}\,3\times10^9~\textrm{mol}~L^{-1}$

Answer: A

Watch Video Solution

90. Solubility product expression of salt MX_4 which is sparingly soluble

with a solubility s can be given as

A. $256s^5$

 $\mathsf{B}.\,16s^3$

 $\mathsf{C.}\,5c$

 $\mathsf{D.}\,25s^4$

Answer: A

Watch Video Solution

91. Which of the following is not an application of solubility product ?

A. Predicting precipitation formation

B. Predicting solubility of sparingly soluble salt

C. Predicting pH of a buffer solution

D. Qualitative analysis

Answer: C

Watch Video Solution

- **92.** Predict if there will be any precipitate by mixing 50 mL of 0.01 M NaCl and 50 mL of 0.01 M $AgNO_3$ solution. The solubility product of AgCl is 1.5×10^{-10} .
 - A. Since ionic product is greater than solubility product no precipitate will be formed.
 - B. Since ionic product is lesser than solubility product, precipitation will occur .
 - C. Since ionic product is greater than solubility product, precipitation will occur.
 - D. Since ionic product and solubility product are same, precipitation

will not occur.

Answer: C

Watch Video Solution

93. The solubility product of AgCl is 1.8×10^{-10} . Precipitation of AgCl will occur only when equal volumes of solutions of :

A.
$$10^{-8}$$
M Ag^+ and 10^{-8} M Cl^- ions
B. 10^{-3} M Ag^+ and 10^{-3} M Cl^- ions
C. 10^{-6} M Ag^+ and 10^{-6} M Cl^- ions

D. 10^{-10} M Ag^+ and 10^{-10} M Cl^- ions

Answer: B

Watch Video Solution

94. Calculate pH at which $Mg(OH)_2$ begins to precipitate from a solution containing $0.10MMg^{2+}$ ions. $(K_{SP}ofMg(OH)_2 = 1 \times 10^{-11})$

A. 4

B. 6

C. 9

Answer: C

Watch Video Solution

95. What is minimum concentration of SO_4^{2-} required to precipitate $BaSO_4$ in solution containing 1×10^{-4} mole of Ba^{2+} ? (K_{sp} of $BaSO_4 = 4 \times 10^{-10}$)

A. $4 imes 10^{-10}M$

B. $2 imes 10^{-10}M$

 ${\sf C.4 imes10^{-6}}M$

D. $2 imes 10^{-3}M$

Answer: C

Watch Video Solution

96. A solution which is $10^{-3}M$ each in Mn^{2+} , Fe^{2+} , Zn^{2+} , and Hg^{2+} it treated with $10^{-16}M$ sulphide ion. If the K_{sp} of MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} , and 10^{-54} , respectively, which one will precipitate first?

A. FeS

B. MnS

C. HgS

D. ZnS

Answer: C

Watch Video Solution

Hots

1. At 1127K and 1atm pressure, a gaseous mixture of CO and CO_2 in equilibrium with solid carbon has 90.55 % CO by mass:

 $C_{(s)} + CO_{2(g)} \Leftrightarrow 2CO_{(g)}$

Calculate K_c for the reaction at the above temperature.

A. a. 1.53

B. b. 0.153

C. c. 0.53

D. d. 0.76

Answer: B

Watch Video Solution

2. A mixture of 1.57mol of N_2 , 1.92mol of H_2 and 8.13mol of NH_3 is introduced into a 20L reaction vessel at 500K. At this temperature, the equilibrium constant K_c for the reaction $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ is 1.7×10^2 . Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

A. Forward

B. Backward

C. At equilibrium

D. Data is insufficient

Answer: B

Watch Video Solution

3. At 473K, equilibrium constant, K_c for decomposition of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If decomposition is depicted as : $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}, \Delta_r H^\circ = 124.0 \text{ kJ mol}^{-1}$ what would be the effect on reaction if the temperature is increased ?

A. Reaction will shift in the backward direction.

B. Reaction will shift in the forward direction.

C. Reaction is in equilibrium.

D. Reaction first moves forward and then remains at equilibrium.
Answer: B

4. The ionisation constant of benzoic acid (PhCOOH) is 6.46×10^{-5} and K_{sp} for silver benzoate is 2.5×10^{-3} . How many times is silver benzoate more soluble in a buffer of pH3.19 compared to its solubility is pure water?

A. a. 4

B. b. 3.32

C. c. 3.01

D. d. 2.5

Answer: B

Watch Video Solution

5. A solution which is 10^{-3} M each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with $10^{-16}M$ sulphide ion. If K_{sp} od MnS, ZnS and HgS are 10^{-15} , 10^{-25} , 10^{-20} and 10^{-54} respectively, which one will precipitate first ?

A. FeS

B. MnS

C. HgS

D. ZnS

Answer: C

Watch Video Solution

6. What will be the amount of $(NH_4)_2SO_4$ (in g) which must be added to 500 mL of 0.2 M NH_4OH to yield a solution of pH 9.35? [Given, pK_a of $NH_4^+ = 9.26$, $pK_bNH_4OH = 14 - pK_a(NH_4^+)$] A. a. 5.35

B. b. 6.47

C. c. 10.03

D. d. 7.34

Answer: A

Watch Video Solution

Exemplar Problems

1. We know that the relationship between K_c and K_p is $K_p = K_c (RT)^{\Delta n}$

What would be the value of Δn for the reaction :

$$NH_4Cl_{\,(\,s\,)}\,\Leftrightarrow NH_{3\,(\,g\,)}\,+HCl_{\,(\,g\,)}\,?$$

A. 1

B. 0.5

C. 1.5

D. 2

Answer: D

Watch Video Solution

2. For the reaction $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$, the standard free energy is $\Delta G^{\Theta} > 0$. the equilibrium constant (k) would be. (A)K = 0 (B)K > 1 (C)K = 1 (D)K < 1

A. K=0

- ${\sf B}.\,K>1$
- C. K = 1
- $\mathsf{D}.\,K<1$

Answer: D

Watch Video Solution

3. Which of the following is not a general characteristic of equilibrium involving physical processes ? (A)Equilibrium is possible only in a closed system at a given temperature. (B)All measurable properties of system remain constant. (C)All the physical processes stop at equilibrium. (D)The opposing processes occur at the same rate and there is dynamic but stable condition.

A. Equilibrium is possible only in a closed system at a given temperature.

B. All measurable properties of system remain constant.

C. All the physical processes stop at equilibrium.

D. The opposing processes occur at the same rate and there is

dynamic but stable condition.

Answer: C

4. PCI_5 , PCI_3 and CI_2 are in equilibrium at 500 K in a closed container

and their concentration are $0.8 \times 10^{-3} \text{ mol}L^{-1}$ and $1.2 \times 10^{-3} \text{mol}L^{-1}$ and $1.2 \times 10^{-3} \text{mol}L^{-1}$ respectively. The value of K_c for the reaction $PCI_5(g) \Leftrightarrow PCI_3(g) + CI_2(g)$ will be

A. $1.8 imes 10^3 mol \ L^{-1}$

B. $1.8 imes 10^{-3}$

 $\textrm{C.}~1.8\times10^{-3}L~\textrm{mol}^{-1}$

D. $0.55 imes10^4$

Answer: B

Watch Video Solution

5. Which of the following statements is incorrect ?

A. In equilibrium mixture of ice and water kept in perfectly insulated

flask, amss of ice and water does not change with time.

- B. The intensity of red colour increase when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate.
- C. On addition of catalyst, the equilibrium constant value is not affected.
- D. Equilibroum constant for a reaction with negative ΔH value decreases as the temperature increases.

Answer: B

6. When hydrochloric aicd is addded to cobalt and nitrate solution at room temperautre, the following reaction takes place and the reaction mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information mark the corect ansewer.

$$\begin{bmatrix} Co(H_2O)_6 \end{bmatrix}^{3+} (aq) + 4CI^- \Leftrightarrow \\ \underset{\text{blue}}{\text{pink}} \\ CoCI_4^{2-}(aq) + 6H_2O(l) \text{ (A)}\Delta \text{ H} > 0 \text{ for the reaction (B)}\Delta \text{ H} < 0 \text{ for the} \end{cases}$$

reaction (C) Δ H = 0 for the reaction (D)The sign of Δ H cannot be

predicted on the basis of this information

A. $\Delta H > 0$ for the reaction

B. $\Delta H < 0$ for the reaction

C. $\Delta H=0$ for the reaction

D. The sign of ΔH cannot be predicted on the basis of this

information.

Answer: A

Watch Video Solution

7. The Ph OF NEUTRAL WATER AT $25^{\circ}C$ is 7.0. As the temperature increases, ionisation of water increases, however the concentration of H^+ ions nad OH^- ions equal. What will be the ph of puire water at

 $60^{\circ}C$? (A)Equal to 7.0 (B)Greater than 7.0 (C)Less than 7.0 (D)Equal to

zero

A. Equal to 7.0

B. Greater than 7.0

C. Less than 7.0

D. Equal to zero

Answer: C

Watch Video Solution

8. The ionisation cosntabnt of an acid, K_a is the meaure of strength of an acid. The K_a values of acetic acid, hypochlorous acid and formic acid are 1.74×10^{-5} , 3.0×10^{-8} and 1.8×10^{-4} respectively. Which of the following orders of ph of 0.1 mol dm^{-3} solutions of these acids is correct ? (A)Acetic acid > Hypochlorous acid > Formic acid (B)Hypochlorous acid > Acetic acid > Formic acid (C)Formic acid >

Hypochlorous acid > Acetic acid (D)Formic acid > Acetic acid > Hypochlorous acid

A. Acetic acid > Hypochlorous acid > Formic acid

B. Hypochlorous acid > Acetic acid > Formic acid

C. Formic acid > Hypochlorous acid > Acetic acid

D. Formic acid > Acetic acid > Hypochlorous acid

Answer: B

Watch Video Solution

9. K_{a1} , K_{a2} and K_{a3} are the respective ionisation constants for the following reactions.

$$H_2S \Leftrightarrow H^+ + HS^-$$
 , $HS^- \Leftrightarrow H^+S^{-2}$

 $H_2S \Leftrightarrow 2H^+ + S^{2-}$

The correct relationship between K_{a1} , K_{a2} and K_{a3} is

A.
$$K_{a_3} = K_{a_1} imes K_{a_2}$$

B.
$$K_{a_3}=K_{a_1}+K_{a_2}$$

C. $K_{a_3} = K_{a_1} - K_{a_2}$

D.
$$K_{a_3} = K_{a_1} \, / \, K_{a_2}$$

Answer: A

Watch Video Solution

10. Acidity of BF_3 can be explained on the basis of which of the follwoing concepts? (A)Arrhenius concept (B)Bronsted - Lowry concept (C)Lewis concept (D)Bronsted - Lowry as well as Lewis concept

A. Arrhenius concept

B. Bronsted - Lowry concept

C. Lewis concept

D. Bronsted - Lowry as well as Lewis concept

Answer: C

11. Which of the following is true ?

A. 0.1 mol dm⁻³NH₄OH and 0.1 mol dm⁻³HCl

B. 0.05 mol dm⁻³NH₄OH and 0.1 mol dm⁻³HCl

C. 0.1mol dm⁻³NH₄OH and 0.05 mol dm⁻³HCl

D. 0.1 mol dm⁻³ CH_3COONa and 0.1 mol dm⁻³NaOH

Answer: C

Watch Video Solution

12. In which of the following solvents is silver chloride most soluble ?

A. 0.1mol dm⁻³AgNO₃ solution

B. 0.1 mol dm⁻³HCl solution

 $\mathsf{C}.\,H_2O$

D. Aqueous ammonia

Answer: D

13. What will be the value of pH of 0.01 $m mol~dm^{-3}CH_3COOHig(K_1=1.74 imes10^{-5}ig)?$

- A. 3.4
- B. 3.6
- C. 3.9

 $\mathsf{D}.\,3.0$

Answer: A

Watch Video Solution

14. K_a for CH_3COOH is $1.8 imes 10^{-5}$ and K_b for NH_4OH is $1.8 imes 10^{-5}$

The pH of ammonium acetate will be :

A. 7.005

B. 4.75

C.7.0

D. between 6 and 7

Answer: C

Watch Video Solution

15. Which of the following options will be correct for the stage of half completion of the reaction : $A \Leftrightarrow B$?

A. $\Delta G^{\,\circ}\,=0$

B. $\Delta G^{\,\circ}\,>0$

C. $\Delta G^\circ\,< 0$

D.
$$\Delta G^\circ = -RT\ln 2$$

Answer: A

16. On increasing the pressure, in which dirction will the gas phase reaction proceed to re-establish equilibrium, is predicated by applying the Le Chatelier's principle. Consider the reaction.

 $N_2(g)+3H_2 \Leftrightarrow 2NH_3(g)$

Which of the following is correct, if the total pressure at which the equlibrium is established, is increased without changing the temperature

?

A. K will remain same.

B. K will decrease.

C. K will increase.

D. K will increase initially and decrease when pressure is very high.

Answer: A

17. What will be the correct order of vapour pressure of water, acetone and ether at $30.^{\circ}$ *C*. Given that among these compounds, water has maximum boiling point and ether has minimum boiling point ? (A)Water < Ether < Acetone (B)Water < Acetone < Ether (C)Ether < Acetone < Water (D)Acetone < Ether < Water

A. Water < Ether < Acetone

B. Water < Acetone < Ether

C. Ether < Acetone < Water

D. Acetone < Ether < Water

Answer: B

Watch Video Solution

18. At 500 K, equilbrium constant, K_c for the following reaction is 5.

$$1/2H_2(g)+1/2(g) \Leftrightarrow HI(g)$$

What would be the equilibrium constant K_c for the reaction $2HI(g) \Leftrightarrow H_2(g) + l_2(g)$

A. 0.04

B. 0.4

C. 25

D. 2.5

Answer: A

Watch Video Solution

19. In which of the following reactions, the equilibrium reamins unaffected on addition of small amount of argon at constant volume?

A.
$$H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$$

$$\mathsf{B}. PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$$

 $\mathsf{C}.\, N_{2\,(\,g\,)}\,+\, 3H_{2\,(\,g\,)}\,\Leftrightarrow\, 2NH_{3\,(\,g\,)}$

D. The equilibrium will remain unaffected in all the three cases.

Answer: D

Watch Video Solution

Assertion Reason Corner

1. Assertion : When ice and water are kept in a perfectly insulated thermos flask at 273 K and the atmospheric pressure, there is no change in mass of ice and water.

Reason : The system is in static equilibrium.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

Watch Video Solution

2. Assertion : The equilibrium constant for the reverse reaction is equal to the inverse of the equilibrium constant for the forward reaction .Reason : The value of equilibrium constant is independent of initial

concentrations of the reactants and products.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

3. Assertion : For the reaction : $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}, K_p = K_c$ Reason : Concentration of gaseous reactants and products is taken as

unity.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Watch Video Solution

4. Assertion : K_p can be less than, greater than or equal to K_c

Reason : Relation between K_p and K_c depends on the change in number of moles of gaseous reactants and products (Δn) .

A. If both assertion and reason are true and reason is the correct explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

5. Assertion : If reaction quotient, Q_c for a particular reaction is greater than K_c the reaction will proceed in the direction of reactants.

Reason : Reaction quotient is defined in the same way as the equilibrium constant K_c except that the concentrations in Q_c are not necessarily equilibrium values. (a)If both assertion and reason are true and reason is the correct explanation of assertion. (b)If both assertion and reason are true but reason is not the correct explanation of assertion. (c)If assertion is true but reason is false. (d)If both assertion and reason are false

A. If both assertion and reason are true and reason is the correct explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: B

6. Assertion : In the dissociation of PCl_5 at constant pressure and temperature addition of helium at equilibrium increases the dissociation of PCl_5 .

Reason : Helium reacts with Cl_2 and hence shifts the equilibrium in forward direction.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

Watch Video Solution

7. Assertion : Weak acids have very strong conjugate bases while strong acids have weak conjugate bases.

Reason : Conjugate acid - base pair differ only by one proton.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

8. Assertion :- A solution of NH_4Cl in water is acidic in nature.

Reacon : - Ammonium ions undergo hydroysis to from NH_4OH .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

> Watch Video Solution

9. Statement: The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate.

Explanation: The ionisation of acetic acid is suppressed by the addition of sodium acetate.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Watch Video Solution

10. Assertion : Higher order ionization constants (K_{a_2}, K_{a_3}) are smaller than the lower order ionization constant (K_{a_1}) of polyprotic acid.

Reason : Polyprotic acid solutions contain a mixture of acids.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

11. Assertion : Benzoic acid is stronger acid than acetic acid.

Reason : K_a for benzoic acid is $6.5 imes 10^{-5}$ and for acetic acid is $1.74 imes 10^{-5}.$

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

12. Assertion : The strength of haloacids increases in the order : $HI < \ < HBr < \ < HCl < \ < HF$

Reason : Strength of acid HA depends only on the electronegatively difference between H and A.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

> Watch Video Solution

13. Assertion : The pH of NH_4Cl solution in water is less than 7 and pH of CH_3COONa solution is more than 7.

Reason : NH_4Cl is a salt of weak NH_4OH and strong acid HCl whereas CH_3COONa is salt of a weak acid CH_3COOH and strong base NaOH. (a)If both assertion and reason are true and reason is the correct explanation of assertion. (b)If both assertion and reason are true but reason is not the correct explanation of assertion. (c)If assertion is true but reason is false. (d)If both assertion and reason are false

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

14. Assertion : pH of the buffer solution is not affected by dilution.

 $ext{Reason}: pH = pK_a + \log rac{[ext{Conjugate base}]}{[ext{Acid}]}$

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

15. Assertion : The solubility of salts of weak acids like phosphates

decreases at lower pH.

Reason : The is because at lower pH concentration of cations increases.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Watch Video Solution

Equilibrium In Physical Process

1. Which of the following is not a general characteristic of equilibrium involving physical processes ?

A. (a) Equilibrium is possible only in a closed system at a given

temperature.

- B. (b) The equilibrium is dynamic in nature.
- C. (c) Measurable properties of the system keep changing.
- D. (d) Equilibrium can be attained from both sides of the reaction.

Answer: C

Watch Video Solution

2. Match the colume I with column II and mark the appropriate choice.

$$\mathsf{D}.\,(A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)$$

Answer: B

View Text Solution

Equilibrium In Chemical Process Dynamic Process

- 1. A reaction is said to be in equilibrium when
 - A. (a) the rate of transformation of reactants to products is equal to

the rate of transformation of products to the reactants

- B. (b) 50~% of the reactants are converted to products
- C. (c) the reaction is near completion and all the reactants are

converted to products

D. (d) the volume of reactants is just equal to the volume of the products.

Answer: A

2. Which of the following is not true about a reversible reaction ?

A. (a) The reaction does not proceed to completion.

B. (b) It cannot be influenced by catalyst

C. (c) Number of moles of reactants and products is always equal.

D. (d) It can be attained only in a closed container.

Answer: C

Watch Video Solution

3. For the reaction : $PCl_5(g) o PCl_3(g) + Cl_2(g)$:

A. (a) Equal volumes of PCl_5 , PCl_3 and Cl_2 are present.

B. (b) Equal masses of PCl_5 , PCl_3 and Cl_2 are present.

C. (c) The concentrations of PCl_5 , PCl_3 and Cl_2 become constant.

D. (d) Reaction stops

Answer: C

Watch Video Solution

4. Study the given figure and label X,Y, and Z.

C.XYZReversible reactionIrreversible reactonEquilibriumD.XYZForward reactionForward reactionBackward reaction

Answer: B

Watch Video Solution

Law Of Chemical Equilibrium And Equilibrium Constant

1. For the reaction, $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$ What is K_c when the equilibrium concentration of

 $[SO_2] = 0.60M, [O_2] = 0.82M$ and $[SO_3] = 1.90M$?

A. (a) $12.229 Lmol^{-1}$

B. (b) $24.5 Lmol^{-1}$

C. (c) $36.0 Lmol^{-1}$

D. (d) $2.67 imes 10^3 Lmol^{-1}$
Answer: A

2. PCl_5 , PCl_3 and Cl_2 are at equilibrium at 500 K with concentration $2.1M PCl_3$, $2.1M Cl_2$ and $1.9M PCl_5$.

The equilibrium constant for the given reaction is

 $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$

A. (a) 2.32

B. (b) 1.79

C. (c) 4.2

D. (d) 3.8

Answer: A

3. For the following reaction :

 $NO_{(g)} + O_{3(g)} \Leftrightarrow NO_{2(g)} + O_{2(g)}$

The value of K_c is $8.2 imes 10^4$. What will be the value of K_c for the reverse reaction ?

A. (a)
$$8.2 \times 10^4$$

B. (b) $\frac{1}{8.2 \times 10^4}$
C. (c) (8.2×10^4)
D. (d) $\sqrt{8.2 \times 10^4}$

Answer: B

Watch Video Solution

4. If the equilibrium constant for the given reaction is 0.25

 $NO \Leftrightarrow \frac{1}{2}N_2 + \frac{1}{2}O_2$, then the equilibrium constant for the reaction $\frac{1}{2}N_2 + \frac{1}{2}O_2 \Leftrightarrow NO$ will be A. (a) 1

B. (b) 2

C. (c) 3

D. (d) 4

Answer: D

Watch Video Solution

5. If the equilibrium constant for the reaction,

 $2XY \Leftrightarrow X_2 + Y_2$ is 81,

what is the value of equilibrium constant for the reaction

$$XY \Leftrightarrow rac{1}{2}X_2 + rac{1}{2}Y_2$$

A. (a) 81

B. (b) 9

C. (c) 6561

D. (d) 40.5

Answer: B

6. If the value of equilibrium constant K_c for the reaction, $N_2+3H_2\Leftrightarrow 2NH_3$ is 7. The equilibrium constant for the reaction $2N_2+6H_2\Leftrightarrow 4NH_3$ will be

A. (a) 49

B. (b) 7

C. (c) 14

D. (d) 28

Answer: A

7. At 473 K, K_c for the reaction

 $PCl_{5(g)} \Leftrightarrow PCl_{3(g)}Cl_{2(g)}$ is 8.3×10^{-3} . What will be the value of K_c for the formation of PCl_5 at the same temperature ?

A. (a) $8.3 imes 10^3$ B. (b) 120.48C. (c) $8.3 imes 10^{-3}$

 $C.(C) 0.3 \times 10$

D. (d) 240.8

Answer: B

Watch Video Solution

Homogeneous Equilibrium

1. Which of the following is an example of homogeneous equilibrium ?

A. (a) $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$

B. (b)
$$C_{(s)} + H_2O_{(g)} \Leftrightarrow CO_{(g)} + H_{2(g)}$$

C. (c) $CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}$
D. (d) $NH_4NS_{(s)} \Leftrightarrow NH_{3(g)} + H_2S_{(g)}$

Answer: A

Watch Video Solution

2. Which of the following relations between the reactions and equilibrium constant for a general reaction $aA + bB \Leftrightarrow cC + dD$ is not correct ?

A. (1)
$$aA + bB \Leftrightarrow cC + dD$$
 : K_c

B. (2) $cC+dD \Leftrightarrow aA+bB$: $K_c'=rac{1}{K_c}$

C. (3) $naA + nbB \Leftrightarrow ncC + ndD$: $K_c^{'\,'} = K_c^n$

D. (4) $aA + bB \Leftrightarrow cC + dD$: $K_c = K_p$

Answer: D

3. 1 mole of NO 1 mole of O_3 are taken in a 10 L vessel and heated. At equilibrium, 50 % of NO (by mass) reacts with O_3 according to the equation :

 $NO_{(g)} + O_{3(g)} \Leftrightarrow NO_{2(g)} + O_{2(g)}.$

What will be the equilibrium constant for this reaction ?

A. (a) 1 B. (b) 2 C. (c) 3

D. (d) 4

Answer: A

4. When sulphur is heated at 900 K, S_8 is converted to S_2 . What will be

the equilibrim constant for the reaction if initial pressure of 1 atm falls by

25~% at equilibrium ?

A. (a) $0.75 atm^3$

B. (b) $2.55 atm^3$

C. (c) $25.0 atm^3$

D. (d) $1.33 atm^3$

Answer: D

Watch Video Solution

5. 5 moles of PCl_5 are heated in a closed vessel of 5 litre capacity. At equilibrium 40 % of PCl_5 is found to be dissociated. What is the value of K_c ?

A. (a) 0.266 M

B. (b) 0.133 M

C. (c) 2.5 M

Answer: A

Watch Video Solution

6. For a reaction, $2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_{3(g)}$, 1.5 moles of SO_2 and 1 mole of O_2 are taken in a 2 L vessel. At equilibrium the concentration of SO_3 was found to be 0.35 mol L^{-1} The K_c for the reaction would be

A. (a) $5.1 \mathrm{L} \, \mathrm{mol}^{-1}$

B. (b) $1.4 L \text{ mol}^{-1}$

C. (c) $0.6 L \text{ mol}^{-1}$

D. (d) $2.35 L \text{ mol}^{-1}$

Answer: A

7. 18.4 g of N_2O_4 is taken in a 1 L closed vessel and heated till the equilibrium is reached.

 $N_2O_{4(g)} \Leftrightarrow 2NO_{2(g)}$

At equilibrium it is found that 50% of N_2O_4 is dissociated . What will be

the value of equilibrium constant?

A. (a) 0.2

B. (b) 2

C. (c) 0.4

D. (d) 0.8

Answer: C

Watch Video Solution

8. 5 moles of SO_2 and 5 moles of O_2 react in a closed vessel. At equilibrium 60% of the SO_2 is consumed. The total number of gaseous moles $(SO_2, O_2 \text{ and } SO_3)$ in the vessel is :-

A. 5.1

B. 3.9

C. 10.5

D. 8.5

Answer: D

View Text Solution

9. At 500 K, the equilibrium costant for the reaction $H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$ is 24.8 If $\frac{1}{2}mol/L$ of HI is present at equilibrium, what are the concentrations of H_2 and I_2 , assuming that we started by taking HI and reached the equilibrium at 500 K?

A. 0.068mol L^{-1}

B. 1.020mol L^{-1}

C. 0.10mol L^{-1}

D. 1.20mol L^{-1}

Answer: C

10. In the system $X+2Y \Leftrightarrow Z$, the equilibrium concentration are,

$$[X] = 0.06 \;\; \mathrm{mol} \; \mathrm{L}^{-1}, [Y] = 0.12 \;\; \mathrm{mol} \; \mathrm{L}^{-1},$$

 $[Z] = 0.216 \hspace{1mm} ext{mol} \hspace{1mm} ext{L}^{-1}.$ Find the equilibrium constant of the reaction.

A. 250

B. 500

C. 125

D. 273

Answer: A

11. For the reaction $a + b \Leftrightarrow c + d$, initially concentrations of a and b are equal and at equilibrium the concentration of will be twice of that of a. What will be equilibrium constant for the reaction ?

Answer: C

Watch Video Solution

12. In the relation, $K_p = K_c (RT)^{\,\Delta\,n}$ the value of Δn is

A. number of moles of gaseous reactants-number of moles of gaseous

products in a balanced equation

B. number of moles of gaseous products - number of moles of

gaseous reactants in a balanced equation

C. number of moles of gaseous products $\,\, imes\,\,$ number of moles of

gaseous reactants in a balanced equation

D. number of moles of gaseous reactants + number of moles of

gaseous products in balanced equation

Answer: B

Watch Video Solution

13. For which of the following reaction $K_p = K_c$?

A.
$$PCl_{3(g)} + Cl_{2(g)} \Leftrightarrow PCl_{4(g)}$$

$$\mathsf{B}.\,H_{2\,(\,g\,)}\,+Cl_{2\,(\,g\,)}\,\Leftrightarrow 2HCl_{\,(\,g\,)}$$

 $\mathsf{C}.\, N_{2\,(\,g\,)}\,+3H_{2\,(\,g\,)}\,\Leftrightarrow\,2NH_{3\,(\,g\,)}$

 $\mathsf{D}. \, CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}$

Answer: B

14. For the reaction $2NO_{2\,(\,g\,)}\,\Leftrightarrow\,N_2O_{4\,(\,g\,)}\,,\,K_p\,/\,K_c$ is equal to

A.
$$\frac{1}{RT}$$

B. \sqrt{RT}
C. RT

 $\mathsf{D.}\left(RT\right) ^{2}$

Answer: A

15. For the reaction $N_{2\,(\,g\,)}\,+O_{2\,(\,g\,)}\,\Rightarrow NO_{\,(\,g\,)}$, the value of K_c at $800^{\,\circ}\,$ C

is 0.1 . What is the value of ${\cal K}_p$ at this temperature ?

A. 0.5

B. 0.01

C. 0.05

D. 0.1

Answer: D

Watch Video Solution

16. At 350 K, K_p for the reaction given below is $3.0 \times 10^{10} {
m bar}^{-1}$ at equilibrium. What be the value of K_c at this temperature ?

$$2N_{2(g)} + O_{2(g)} \Leftrightarrow 2N_2O_{(g)}$$

A. $7.4 \times 10^{11} L$ mol $^{-1}$

B. 8715 \times $10^{10} L$ mol $^{-1}$

C. $0.08L\ mol^{-1}$

 $\textrm{D.}\,8.715\times10^{11}L\,\textrm{mol}^{-1}$

Answer: D

Heterogeneous Equilibrium

1. The value of K_c for the following equilibrium is

 $CaCO_{3(s)} \Leftrightarrow CaO_{(s)} + CO_{2(g)}.$

Given $K_p=167$ bar at 1073 K.

A. 1.896 $mol L^{-1}$

 $\text{B.}\,4.38\times10^{-4}\ \ mol\ L^{-1}$

 $\textrm{C.}\,6.3\times10^{-4}~\textrm{mol}~L^{-1}$

D. $6.626 \mod L^{-1}$

Answer: A

2. Calculate K_p for the equilibrium,

 $NH_4HS_{(s)} \Leftrightarrow NH_{3(g)} + H_2S_{(g)}$

if the total pressure inside reaction vessel s 1.12 atm at $105.^{\,\circ}\,$ C.

A. 0.56

B. 1.25

C. 0.31

D. 0.63

Answer: C

Watch Video Solution

3. $NH_4COONH_4(s) \Leftrightarrow 2NH_3(g) + CO_2(g).$ If equilibrium pressure is 3

atm for the above reaction, K_p will be

A. 27

B. 4

C. 3

D. 9

Answer: B

Watch Video Solution

4. The expression for equilibrium constant, K_c for the following reaction

is

$$2Cu(NO_3)_{2\,(\,s\,)} \Leftrightarrow 2CuO_{\,(\,s\,)} + 4NO_{2\,(\,g\,)} + O_{2\,(\,g\,)}$$

$$\begin{split} \mathsf{A}.\, K_{c} &= \frac{\left[CuO_{(s)}\right]^{2} \left[NO_{2(g)}\right]^{4} \left[O_{2(g)}\right]^{2}}{\left[Cu(NO_{3})_{2(s)}\right]^{2}} \\ \mathsf{B}.\, K_{c} &= \frac{\left[NO_{2(g)}\right]^{4} \left[O_{2(g)}\right]}{\left[Cu(NO_{3})_{2(g)}\right]^{2}} \\ \mathsf{C}.\, K_{c} &= \left[NO_{2(g)}\right]^{4} \left[O_{2(g)}\right] \\ \mathsf{D}.\, K_{c} &= \frac{\left[CuO_{(s)}\right]^{2}}{\left[Cu(NO_{3})_{2(g)}\right]^{2}} \end{split}$$

Answer: C

5. The expression for equilibrium constant, K_c for the following reaction is

$$Fe^{3\,+}_{(aq)}+3OH^{\,-}_{(aq)} \Leftrightarrow Fe(OH)_{3\,(\,s\,)}$$

A.
$$K_c = rac{\left[Fe(OH)_3
ight]}{\left[Fe^{3+}
ight]\left[OH^{-}
ight]^3}$$

B. $K_c = rac{\left[Fe(OH)_3
ight]}{\left[Fe^{3+}
ight]\left[OH^{-}
ight]}$
C. $K_c = rac{1}{\left[Fe^{3+}
ight]\left[OH^{-}
ight]^3}$
D. $K_c = \left[Fe(OH)_3
ight]$

Answer: C

6. What is the equilibrium expression for the reaction $P_{4(s)}+5O_{2(g)}\Leftrightarrow P_4O_{10(s)}$?

A. a.
$$k_c = rac{\left[P_4
ight] \left[O_2
ight]^5}{\left[P_4 O_{10}
ight]}$$

B. b. $K_c = rac{1}{\left[O_2
ight]^5}$
C. c. $K_c = rac{\left[P_4 O_{10}
ight]}{\left[P_4
ight] \left[O_2
ight]^5}$
D. d. $K_c = \left[O_2
ight]^5$

Answer: B

Watch Video Solution

Applications Of Equilibrium Constant

1. $N_2O_{4\,(\,g\,)}\,\Rightarrow\,2NO_2,\,K_c=5.7 imes10^{-\,9}$ at 298 K. At equilibrium :-

A. a. concentration of NO_2 is higher than that of N_2O_4

B. b. concentration of N_2O_4 is higher than that of NO_2

C. c. both N_2O_4 and NO_4 have same concentration

D. d. concentration of N_2O_4 and NO_2 keeps on changing.

Answer: B Watch Video Solution **2.** Study the figure below and mark the correct statement about K_c and dependence of extent of reaction on it. Extremely $\overline{K_c}$ Extremely large small 10-3 1 103 (Z)(X)(Y)A. XYZReaction does not occur Reaction processds to completion Reaction

Β.

XYZReaction completesReaction does not occurReactants and product

C.

XYReaction hardly occursReactants and products are at equilibrium

D.

XYReaction proceeds to completionReactants and products are at equi

Answer: C View Text Solution

3. Predict the direction of the reaction from comparison of Q_c and K_c

Mark the incorrect statement.

A. If $Q_c < K_c$, reaction goes from left to right.

B. If $Q_c = K_c$, reaction goes from right to left.

C. If $Q_c > K_c$, net reaction goes from right to left.

D. If $Q_c = K_c$, reactants and products are at equilibrium.

Answer: B

4. In the following reaction:

$$2NO_{(g)} + Cl_{2(g)} \Leftrightarrow 2NOCl_{(g)}$$

it is observed that equilibrium is not attained and the rate of forward reaction is greater than rate of backward reaction. Which of the following is true for the reaction ? (A) K p = Q p (B) Q p > K p (C) Q p < K p (D) Q p = 0

A. $K_p = Q_p$ B. $Q_p > K_p$ C. $Q_p < K_p$ D. $Q_p = 0$

Answer: C

5. 0.6 moles of PCl_5 , 0.3 mole of PCl_3 and 0.5 mole of Cl_2 are taken in a

1 L flask to obtain the following equilibrium,

 $PCl_{5(g)} \Rightarrow PCl_{3(g)} + Cl_{2(g)}$ If the equilibrium constant K_c for the reaction is 0.2 Predict the direction of the reaction.

A. a. Forward direction

B. b. Backward direction

C. c. Direction of the reaction cannot be predicted

D. d. Reaction does not move in any direction.

Answer: B

Watch Video Solution

Relation Between Equilibrium Constant Constant Reaction Quotient And Gibbs Energy **1.** The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_c is:

A. $\Delta G = RT \ln K_c$

 $\mathbf{B}.-\Delta G=RT\mathrm{ln}\,K_c$

 $\mathsf{C}.\Delta G^\circ = RT \ln K_c$

D. $-\Delta G^\circ = RT \ln K_c$

Answer: D

Watch Video Solution

2. For a reversible reaction at 298 K the equilibrium constant K is 200.

What is value of ΔG° at 298 K ?

A. a. -13.13kcal

B. b.-0.13kcal`

 $\mathsf{C.\,c.}-3.158 kcal$

 $\mathsf{D.\,d.}-0.413 kcal$

Answer: C

Watch Video Solution

Factors Affecting Equilibria

1. The following reaction is at equilibrium,

$$egin{aligned} Fe^{3+}_{(aq)} + SCN_{(aq)} & \Rightarrow \left[Fe(SNC)
ight]^{2+}_{(aq)} \ & ext{Pellow} & ext{Colourless} & ext{Deep red} \ & ext{K}_c & = rac{\left[Fe(SCN)
ight]}{\left[Fe^{3+}
ight]\left[SCN
ight]} \end{aligned}$$

In the above reaction, colour intensity of red colour can be increased by

:- (A) addition of KSCN (B) addition of oxalic acid which reacts with F e 3 + ions (C) addition of H g 2 + ions which react with S C N - ions (D)red colour intensity cannot be changed

A. addition of KSCN

B. addition of oxalic acid which reacts with $Fe^{3\,+}$ ions

C. addition of Hg^{2+} ions which react with SCN^- ions

D. red colour intensity cannot be changed.

Answer: A

Watch Video Solution

2. Consider the equilibrium set up :

$$2H_{2(g)}+CO_{(g)}\Leftrightarrow CH_{3}OH_{(g)}$$

What will be the effect of the following on the equilibrium of the reaction

?

(i) Addition of H_2 (ii) Addition of CH_3OH

(iii) Removal of CO (iv) Removal of CH_3OH

A.

Β.

(i) (ii) (iii)
(a) Forward direction Backward direction Backward direction
(i) (ii) (iii)
(a) Backward direction Backward direction Forward direction

C.

3. Formation of ClF_3 from Cl_2 and F_2 is an exothermic process . The equilibrium system can be represented as

 $Cl_{2(g)} + 3F_{2(g)} \Rightarrow 2ClF_{3(g)}, \Delta H = -329kJ$ Which of the following will increase quantity of ClF_3 in the equilibrium mixture ? i(A)ncrease in temperature, decrease in pressure, addition of C I 2 (B)Decrease in temperature and pressure, addition of C I F 3 (C)Increase in temperature and pressure, removal of C I 2 (D) Decrease in temperature, increase in pressure, addition of F 2

A. Increase in temperature, decrease in pressure addition of Cl_2

B. Decrease in temperature and pressure, addition of ClF_3

C. Increase in temperature and pressure, removal of Cl_2

D. Decrease in temperature, increase in pressure, addition of F_2

Answer: D

Watch Video Solution

4. Which of the following reaction will not affected on increasing the pressure ?

A.
$$2H_{2(g)} + CO_{(g)} \Leftrightarrow CH_3OH_{(g)}$$

$$\mathsf{B.4}NH_{3(g)} + 5O_{2(g)} \Leftrightarrow 4NO_{(g)} + 6H_2O_{(g)}$$

C.
$$CH_{4\left(\,g
ight) }+2S_{2\left(\,g
ight) }\Leftrightarrow CS_{2\left(\,g
ight) }+2H_{2}S_{\left(\,s
ight) }$$

$$\mathsf{D}.\operatorname{PCl}_{5(g)} \Leftrightarrow \operatorname{PCl}_{3(g)} + \operatorname{Cl}_{2(g)}$$

Answer: C

5. In which of the following reaction the increase in pressure will favour the increase in products ?

$$\begin{array}{l} \mathsf{A.} \ N_{2(g)} \ + \ O_{2(g)} \ \Leftrightarrow \ 2NO_{(g)} \\\\ \mathsf{B.} \ PCl_{3(g)} \ + \ Cl_{2(g)} \ \Leftrightarrow \ PCl_{5(g)} \\\\ \mathsf{C.} \ PCl_{5(g)} \ \Leftrightarrow \ PCl_{3(g)} \ + \ Cl_{2(g)} \\\\ \mathsf{D.} \ 2CO_{2(g)} \ \Leftrightarrow \ 2CO_{(g)} \ + \ O_{2(g)} \end{array}$$

Answer: B

Watch Video Solution

6. In a vessel N_2 , H_2 and NH_3 are at equilibrium. Some helium gas is introduction into the vessel so that total pressure increases while temperature and volume remain constant. According to Le Chatelier's principle, the dissociation of NH_3 (A)increases (B)decreases (C)remains unchanged (D)equilibrium is disturbed

A. increases

B. decreases

C. remains unchanged

D. equilibrium is disturbed.

Answer: C

Watch Video Solution

7. When I_2 dissociates to its atomic from the following reaction occurs :

 $I_{2\,(\,g\,)}\, \Leftrightarrow 2I_{(\,g\,)}\,, \Delta H^{\,\circ} = \,+\,150~~{
m kJ}~{
m mol}^{-1}$

The reaction is favoured at (a)low temperature (B)high temperature (C)no

change with temperature (D)high pressure

A. low temperature

B. high temperature

C. no change with temperature

D. high pressure.

Answer: B

8. For the reaction,

 $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$, the forward reaction at constant temperature is favoured by:

A. a. introducing an inert gas at constant volume

B. b.introducing Cl_2 at constant volume

C. c. introducing PCl_5 at constant volume

D. d. reducing the volume of the container.

Answer: C

Watch Video Solution

9. The reaction $2SO_2 + 2O_2 \Leftrightarrow 2SO_3$ will be favoured by

A. a. high temperature and low pressure

B. b. low temperature and high pressure

C. c. high temperature and high pressure

D. d. low temperature and low pressure.

Answer: B

 Watch Video Solution

10. The yield of NH_3 in the reaction $N_2+3H_2 \Leftrightarrow 2NH_3, \Delta H=-22.08$ kcal is affected by

A. change in pressure and temperature

B. change in temperature and concentration of N_2

C. change in pressure and concentration of N_2

D. change in pressure, temperature and concentration of N_2 .

Answer: D

Acids Bases And Salts

1. According to Lewis concept acid is(A) proton donor (B)electron pair donor (C)proton acceptor (D)electron pair acceptor

A. proton donor

B. electron pair donor

C. proton acceptor

D. electron pair acceptor .

Answer: D

2. Which of thef following is not Lewis acid

A. BF_3

B. $AlCl_3$

 $C. FeCl_3$

D. PH_3

Answer: D

Watch Video Solution

3. Conjugate acid of SO_4^{2-} is

A. HSO_4^-

 $\mathsf{B.}\,H^{\,+}$

 $\mathsf{C}.\,H_2SO_4$

D. $SO_4^{2\,-}$

Answer: A
4. Which of the following species can act both as an acid as well as a base

A.
$$SO_4^{2-}$$

B. HSO_4^{-}
C. PO_4^{3-}

D. OH^{-}

?

Answer: B

Watch Video Solution

5. According to Bronsted - Lowry concept of acids and bases a conjugate

acid - base paie can exist as

Mark the option in which conjugate pair is not correctly matched.

A. a	Species	Conjugate acid	Conjugate base
	HCO_3^-	CO_3^{2-}	H_2CO_3
B. b	Species	Conjugate acid	Conjugate base
	HPO_4^{2-}	$H_2PO_4^{-}$	PO_4^{3-}
С. с	Species	Conjugate acid	Conjugate base
	$\dot{N}H_3$	NH_2^{-}	NH_4^{1+}
D. d	Species	Conjugate acid	Conjugate base
	$~HS^{-}$	S^{2-}	H_2S

Answer: B

Watch Video Solution

6. Classify the following as acid or base according to Bronsted - Lowry concept.

(i) CH_3COO^-

(ii) H_3O^+

(iii) SO_4^{2-}

(iv) HCl

(ii) (iii) (iv)(i)A. Bronsted acid Bronsted base Bronsted base Bronsted acid (i)(ii)(iii)(iv)Β. Bronsted acid Bronsted acid Bronsted acid Bronsted base (i)(ii)(iii) (iv)С. Bronsted base Bronsted acid Bronsted base Bronsted acid (i)(ii) (iii) (iv)D. Bronsted acid Bronsted acid Bronsted base Bronsted base

Answer: C

- 7. Nucleophiles are ______ while electrophiles are ______ .
 - A. Lewis bases, Lewis acids
 - B. Lewis acids, Lewis bases
 - C. Bronsted acids, Bronsted bases
 - D. Lewis acids Bronsted bases

Answer: A Watch Video Solution 8. Which of the following salts will give basic solution on hydrolysis ? A. NH_4Cl B. KCl $C. K_2 CO_3$ D. $(NH_4)_2CO_3$ Answer: C Watch Video Solution

9. Which of the following salts with a concentration .1 M will give a basic solution ? (A)Ammonium acetate (B)Ammonium chloride (C)Ammonium sulphate (D)Sodium acetate

A. Ammonium acetate

B. Ammonium chloride

C. Ammonium sulphate

D. Sodium acetate

Answer: D

> Watch Video Solution

Ionization Of Acids And Bases

1. Which of the following salts does show its correct nature mentioned

against it ?

A. KBr solution - Neutral

B. NaCN solution - Acidic

C. NH_4NO_3 solution - Acisdic

D. KF solution - Basic

Answer: B

Answer: C

Watch Video Solution

3. The pH of 0.001 M $Ba(OH)_2$ solution will be

A. 2

B. 8.4

C. 11.3

D. 2.7

Answer: C

Watch Video Solution

4. What will be the pH of $1 imes 10^{-4}$ M H_2SO_4 solution ?

A. 10.4

B. 3.7

C. 3

D. 13

Answer: B

5. Solution of a monobasic acid has a pH=5. If one mL of it is diluted to 1

litre, what will be the pH of the resulting solution ?

A. a.3.45

B. b.6.96

C. c.8.58

D. d.10.25

Answer: B

Watch Video Solution

6. If the pH of a solution is 2, the hydrogen ion concentration in moles per

litre is

A. a. $1 imes 10^{-14}$

 $\text{B. b.1}\times10^{-2}$

C. c.1 imes 10 $^{-7}$

D. d.1 \times 10 $^{-12}$

Answer: B

Watch Video Solution

7.0.05 mole of NaOH is added to 5 liters of water What will be the pH of

the solution ?

A. a.12

B. b.7

C. c. 2

D. d. 10

Answer: A

8. The concentration of hydrogen ion in a sample of soft drink is $3.8 imes 10^{-3} M$. What is its pH?

A. a. 3.8

B. b. 5.04

C. c. 2.42

D. d.9.2

Answer: C

Watch Video Solution

9. What is pOH of an aqueous solution with hydrogen ion concentration equal to $3 \times 10^{-5} \mod L^{-1}$?

B. b. 4.52

A. a. 9.47

C. c. 12.69

D. d. 11.69

Answer: A

10. The degree of ionisation of an acid HA is 0.00001 at 0.1 M concentration. Its dissociation constant will be

A. a. 10^{-9}

B. b. 10^{-11}

C. c. 10^{-8}

D. d. 10^{-7}

Answer: B

11. What will be the ionisation constant of formic acid if its 0.01 M solution is 14.5~% ionised ?

A. a. $2.1 imes 10^{-4}$

B. b.14.5

C. c. 0.145

D. d.1.45 imes 10 $^{-4}$

Answer: A

Watch Video Solution

12. What is the percentage dissociation of 0.1 M solution of acetic acid ?

 $ig(K_a = 10^{-5}ig)(A)10\,\%\,(B)100\,\%\,(C)1\,\%\,(D)0.01\,\%$

A. 10~%

 $\mathbf{B}.\,100~\%$

 $\mathsf{C}.1\,\%$

D. 0.01~%

Answer: C

Watch Video Solution

13. NH_4CN is a salt of weak acid $HCNig(K_a=6.2 imes10^{-10}ig)$ and a weak base $NH_4OHig(K_b=1.8 imes10^{-5}ig)$. 1 molar solution of NH_4CN will be :-

A. neutral

B. strongly acidic

C. strongly basic

D. weakly basic.

Answer: D

14. For poly basic acid , the dissociation constant have a different valves for each step.

 $egin{aligned} H_3A &\Leftrightarrow H^+ + A, Keq = Ka_1 \ H_2A &\Leftrightarrow H^+ + A^{-2}, Keq = Ka_2 \ HA^2 &\Leftrightarrow H^+ + A^{3-}, Keq = Ka_3 \end{aligned}$

What is the observed trend of dissociation constant im successive stages ?

A.
$$K_{a_1} > K_{a_2} > K_{a_3}$$

B. $K_{a_1} = K_{a_2} = K_{a_3}$
C. $K_{a_1} < K_{a_2} < K_{a_3}$
D. $K_{a_1} = K_{a_2} + K_{a_3}$

Answer: A

15. Equimoler solulition of HF, HCOOH and HCN at 298 K have the values of Ka as 6.8×10^{-4} , 1.8×10^{-4} and 4.8×10^{-9} respectively, what will be the order of their acidic strength ? (A)H F > H C N > H C O O H (B)H F > H C O O H > H C N > H F > H C O O H (D)H C O O H > H C N > H F

A. HF > HCN > HCOOH

 $\mathsf{B}.\,HF > HCOOH > HCN$

C.HCN > HF > HCOOH

 $\mathsf{D}.\,HCOOH > HCN > HF$

Answer: B

Watch Video Solution

16. Given below are the dissociation constant values of few acids. Arrange

them in order of increasing acidic strength.

$$H_2SO_3 = 1.3 imes 10^{-2}, HNO_2 = 4 imes 10^{-4}$$

$$CH_{3}COOH = 1.8 imes 10^{-5}, HCN = 4 imes 10^{-10}$$

A. a. $HCN < CH_3COOH < HNO_2 < H_2SO_3$

B. b. $CH_3COOH < HNO_2 < HCN < H_2SO_3$

C. c. $CH_3COOH < HCN < H_2SO_3 < HNO_2$

D. d. $HNO_2 < H_2SO_3 < CH_3COOH < HCN$

Answer: A

Watch Video Solution

17. pK_a of a weak acid is 5.76 and pK_b of a weak base is 5.25. What will be

the pH of the salt formed by the two ?

A. 7.255

B. 7.005

C. 10.225

D. 4.255

Answer: A

18. What is the pH of a solution obtained by mixing 10 mL of 0.1 M HCl and 40 mL 0.2 M H_2SO_4 ?(A) 0.74 (B)7.4 (C)4.68 (D)0.468

A. 0.74

B. 7.4

C. 4.68

D. 0.468

Answer: D

Watch Video Solution

19. Dissociation constant of CH_3COOH and NH_4OH in squeous solution are 10^{-5} if pH of a CH_3COOH solution is 3, what will be the pH of NH_4OH ?

A. 3.0

 $\mathsf{B.}\,4.0$

C. 10.0

D. 11.0

Answer: D

Watch Video Solution

Buffer Solutions

1. An acidic buffer solution can be prepared by mixing solution of

A. sodium acetate and acetic acid

B. ammonium acetate and ammonium hydroxide

C. sodium chloride and sodium hydroxide

D. potassium sulphate and sulphuric acid.

Answer: A

Watch Video Solution

2. Mark the appropriate choice to fill up the blanks in the given paragraph.

A solution which maintains constant pH when small amounts of acid or base are added is known as a (i). A mixture of acetic acid and sodium acetate acts as (ii) with a pH around (iii) and a mixture of ammonium chloride and ammonium hydroxide acts as (iv) with a pH around (v)

A.	(i)	(ii)	(iii)	(iv)	(v)
	buffer capacity	basic buffer	9.25	acidic buffer	4.75
B.	(i)	(ii)	(iii)	(iv)	(v)
	buffer solution	acidic buffer	9.25	basic buffer	4.75
C.	(i)	(ii)	(iii)	(iv)	(v)
	buffer solution	basic buffer	4.75	acidic buffer	9.25
D.	(i)	(ii)	(iii)	(iv)	(v)
	buffer solution	acidic buffer	4.75	basic buffer	9.25

Answer: D

Solubility Equilibria Of Sparingly Soluble Solids

1. For a reaction, $A_x, B_y \Leftrightarrow x A^{y+} + y B^{x-}, K_{sp}$ xan be represented as

A.
$$\left[A^{y\,+}
ight]^x \left[B^{x\,-}
ight]^y$$

- $\mathsf{B}.\left[A\right]^{y}\!\left[B\right]^{x}$
- $\mathsf{C}.\,[A]^x[B]^y$

$$\mathsf{D}.\left[A\right]^{x\,+\,y}\left[B\right]^{x\,-\,y}$$

Answer: A

Watch Video Solution

2. The solubility product of $BaCl_2$ is $3.2 imes 10^{-9}$. What will be solubility in

 ${\rm mol} \ L^{-1}$

A. $4 imes 10^{-3}$

B. $3.2 imes10^{-9}$ C. $1 imes10^{-3}$ D. $1 imes10^{-9}$

Answer: C

Watch Video Solution

3. Solubility of CaF_2 is $0.5 imes 10^{-4} \mod \mathrm{L}^{-1}$. The value of K_{sp} for the salt is

A. a.5 imes 10^{-12}

 $\texttt{B.b.}2.5\times10^{-16}$

 ${\rm C.\,c.1}\times 10^{-13}$

D. d.5 \times 10^{-13}

Answer: D

4. Match the column I with column II and mark the appropriate choice.

Column I Column II (A) $Fe(OH)_3$ (i) $K_{sp} = s^2$ (B) Ag_2CrO_4 (ii) $K_{sp} = 27s^4$ (C) CH_3COOAg (iii) $K_{sp} = 108s^5$ (D) $Ca_3(PO_4)$ (iv) $K_{sp} = 4s^3$ A. (A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (iv), (D) \rightarrow (i) B. (A) \rightarrow (ii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (iii) C. (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv) D. (A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (ii)

Answer: B

5. solubility product of radium sulphate is 4×10^{-9} . What will be the solubility of Ra^{2+} in 0.10M $NaSO_4$?

A. $4 imes 10^{-10}M$ B. $2 imes 10^{-5}M$ C. $4 imes 10^{-5}M$ D. $2 imes 10^{-10}M$

Answer: A

Watch Video Solution

6. At $20^{\circ}C$, the Ag^+ ion concentration in a saturated solution Ag_2CrO_4 is $1.5x10^{-4}$ mol / litre. At $20^{\circ}C$, the solubility product of Ag_2CrO_4 would be

A. $1.687 imes 10^{-12}$

B. 1.75×10^{-10}

 $\text{C.}~3.0\times10^{-8}$

D. 4.5 \times 10^{-10}

Answer: A Watch Video Solution 7. The solubility product of AgCl is $1.56 imes10^{-10}$ find solubility in g/ltr A. 143.5 B. 108 $C. 1.57 \times 10^{-8}$ D. $1.79 imes 10^{-3}$

Answer: D

8. What will be the solubility of AgCl in 0.05 M NaCl aqueous solution if solubility product of AgCl is $1.5 imes10^{-10}$?

A. $3\times 10^{-9}~~mol~L^{-1}$

- $\text{B.}\,0.05\ mol\ L^{-1}$
- $\text{C.}\, 1.5 \times 10^{-5} \ \ \text{mol} \ L^{-1}$
- $\textrm{D.}\,3\times10^9~\textrm{mol}~\textrm{L}^{-1}$

Answer: A

Watch Video Solution

9. Solubility product expression of salt MX_4 which is sparingly soluble with a solubility s can be given as

A. $256s^5$

 $\mathsf{B}.\,16s^3$

C.5c

D. $25s^4$

Answer: A

10. Which of the following is not an application of solubility product?

A. Predicting precipitation formation

B. Predicting solubility of sparingly soluble salt

C. Predicting pH of a buffer solution

D. Qualitative analysis

Answer: C

Watch Video Solution

11. Predict if there will be any precipitate by mixing 50 mL of 0.01 M NaCl and 50 mL of 0.01 M $AgNO_3$ solution. The solubility product of AgCl is 1.5×10^{-10} .

A. Since ionic product is greater than solubility product no precipitate

will be formed.

- B. Since ionic product is lesser than solubility product, precipitation will occur .
- C. Since ionic product is greater than solubility product, precipitation will occur.
- D. Since ionic product and solubility product are same, precipitation will not occur.

Answer: C

Watch Video Solution

12. The solubility product of AgCl is 1.8×10^{-10} . Precipitation of AgCl will occur only when equal volumes of solutions of :

A. 10^{-8} M Ag^+ and 10^{-8} M Cl^- ions

B. 10^{-3} M Ag^+ and 10^{-3} M Cl^- ions

C. 10^{-6} M Ag^+ and 10^{-6} M Cl^- ions

D. 10^{-10} M Ag^+ and 10^{-10} M Cl^- ions

Answer: B

Watch Video Solution

13. Calculate pH at which $Mg(OH)_2$ begins to precipitate from a solution

containing $0.10 MMg^{2+}$ ions. $\left(K_{SP} of Mg(OH)_2 = 1 imes 10^{-11}
ight)$

A. 4

B. 6

C. 9

D. 7

Answer: C

14. What is minimum concentration of SO_4^{2-} required to precipitate $BaSO_4$ in solution containing 1×10^{-4} mole of Ba^{2+} ? (K_{sp} of $BaSO_4 = 4 \times 10^{-10}$)

A. $4 imes 10^{-10}M$ B. $2 imes 10^{-10}M$ C. $4 imes 10^{-6}M$

D. $2 imes 10^{-3}M$

Answer: C

Watch Video Solution

15. A solution which is $10^{-3}M$ each in Mn^{2+} , Fe^{2+} , Zn^{2+} , and Hg^{2+} it treated with $10^{-16}M$ sulphide ion. If the K_{sp} of MnS, FeS, ZnS and HgS are 10^{-15} , 10^{-23} , 10^{-20} , and 10^{-54} , respectively, which one will precipitate first?

A. FeS

B. MnS

C. HgS

D. ZnS

Answer: C

Watch Video Solution

Higher Order Thinking Skills

1. At 1127K and 1atm pressure, a gaseous mixture of CO and CO_2 in equilibrium with solid carbon has 90.55 % CO by mass:

 $C_{(s)} + CO_{2(g)} \Leftrightarrow 2CO_{(g)}$

Calculate K_c for the reaction at the above temperature.

A. a. 1.53

B. b. 0.153

C. c. 0.53

D. d. 0.76

Answer: B

Watch Video Solution

2. A mixture of 1.57*mol* of N_2 , 1.92*mol* of H_2 and 8.13*mol* of NH_3 is introduced into a 20*L* reaction vessel at 500*K*. At this temperature, the equilibrium constant K_c for the reaction $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ is 1.7×10^2 . Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

A. Forward

B. Backward

C. At equilibrium

D. Data is insufficient

Answer: B

3. $N_2O_4 \Leftrightarrow 2NO_2, K_c = 4$. This reversible reaction is studied graphically as shown in the figure. Select the correct statement out of I, II and III. I: Reaction quotient has maximum value at point AII : Reaction proceeds left to right at a point when $[N_2O_4] = [NO_2] = 0.1M$

III : K = Q when point D or F is reached:

A. a. I,II

B. b. II,III

C. c. I,III

D. d. I,II,III

Answer: B

Watch Video Solution

4. At 473K, equilibrium constant, K_c for decomposition of phosphorus pentachloride, PCl_5 is 8.3×10^{-3} . If decomposition is depicted as : $PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}, \Delta_r H^\circ = 124.0 \text{ kJ mol}^{-1}$ what would be the effect on reaction if the temperature is increased ?

A. Reaction will shift in the backward direction.

B. Reaction will shift in the forward direction.

C. Reaction is in equilibrium.

D. Reaction first moves forward and then remains at equilibrium.

Answer: B

5. The % yield of ammonia as a function of time in the reaction, $N_2(g)+3H_2(g) \Leftrightarrow 2NH_3(g)$ ' $\Delta H < 0$

at (p, T_1) is given below

If this reaction is conducted at (p,T_1) , with $T_2>T_1$ the % yield by of ammonia as a function of time is represented by

Answer: B

6. The ionisation constant of benzoic acid (PhCOOH) is 6.46×10^{-5} and K_{sp} for silver benzoate is 2.5×10^{-3} . How many times is silver benzoate more soluble in a buffer of pH3.19 compared to its solubility is pure water?

A. a. 4

B. b. 3.32

C. c. 3.01

D. d. 2.5

Answer: B

Watch Video Solution

7. A solution which is 10^{-3} M each in Mn^{2+} , Fe^{2+} , Zn^{2+} and Hg^{2+} is treated with $10^{-16}M$ sulphide ion. If K_{sp} od MnS, ZnS and HgS are
10⁻¹⁵, 10⁻²⁵, 10⁻²⁰ and 10⁻⁵⁴ respectively, which one will precipitate first ? A. FeS B. MnS C. HgS D. ZnS

Watch Video Solution

8. What will be the amount of $(NH_4)_2SO_4$ (in g) which must be added to 500 mL of 0.2 M NH_4OH to yield a solution of pH 9.35? [Given, pK_a of $NH_4^+ = 9.26$, $pK_bNH_4OH = 14 - pK_a(NH_4^+)$]

A. a. 5.35

B. b. 6.47

C. c. 10.03

D. d. 7.34

Answer: A

Ncert Exemplar

1. We know that the relationship between K_c and K_p is $K_p = K_c (RT)^{\,\Delta\,n}$

What would be the value of Δn for the reaction :

 $NH_4Cl_{(s)} \Leftrightarrow NH_{3(g)} + HCl_{(g)}$?

A. 1

B. 0.5

C. 1.5

D. 2

Answer: D

2. For the reaction $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$, the standard free energy is $\Delta G^{\Theta} > 0$. the equilibrium constant (k) would be. (A)K = 0 (B)K > 1 (C)K = 1 (D)K < 1

A. K=0

 $\operatorname{B.} K>1$

 $\mathsf{C}.\,K=1$

 $\mathrm{D.}\,K<1$

Answer: D

3. Which of the following is not a general characteristic of equilibrium involving physical processes ? (A)Equilibrium is possible only in a closed system at a given temperature. (B)All measurable properties of system

remain constant. (C)All the physical processes stop at equilibrium. (D)The opposing processes occur at the same rate and there is dynamic but stable condition.

- A. Equilibrium is possible only in a closed system at a given temperature.
- B. All measurable properties of system remain constant.
- C. All the physical processes stop at equilibrium.
- D. The opposing processes occur at the same rate and there is

dynamic but stable condition.

Answer: C

Watch Video Solution

4. PCI_5 , PCI_3 and CI_2 are in equilibrium at 500 K in a closed container

and their concentration are $0.8 imes 10^{-3} \ {
m mol} L^{-1}$ and $1.2 imes 10^{-3} {
m mol} L^{-1}$ and $1.2 imes 10^{-3} {
m mol} L^{-1}$

respectively. The value of K_c for the reaction $PCI_5(g) \Leftrightarrow PCI_3(g) + CI_2(g)$ will be A. 1.8×10^3 mol L⁻¹ B. 1.8×10^{-3} C. 1.8×10^{-3} L mol⁻¹ D. 0.55×10^4

Answer: B

Watch Video Solution

- 5. Which of the following statements is incorrect ?
 - A. In equilibrium mixture of ice and water kept in perfectly insulated

flask, amss of ice and water does not change with time.

B. The intensity of red colour increase when oxalic acid is added to a

solution containing iron (III) nitrate and potassium thiocyanate.

- C. On addition of catalyst, the equilibrium constant value is not affected.
- D. Equilibroum constant for a reaction with negative ΔH value

decreases as the temperature increases.

Answer: B

6. When hydrochloric aicd is addded to cobalt and nitrate solution at room temperautre, the following reaction takes place and the reaction mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information mark the corect ansewer.

$$\begin{split} & \left[Co(H_2O)_6 \right]^{3+}(aq) + 4CI^- \Leftrightarrow \\ & CoCI_4{}^{2-}(aq) + 6H_2O(l) \text{ (A)}\Delta \text{ H} > 0 \text{ for the reaction (B)}\Delta \text{ H} < 0 \text{ for the blue} \\ & \text{reaction (C)}\Delta \text{ H} = 0 \text{ for the reaction (D)}\text{The sign of }\Delta \text{ H cannot be} \\ & \text{predicted on the basis of this information} \end{split}$$

- A. $\Delta H > 0$ for the reaction
- B. $\Delta H < 0$ for the reaction
- C. $\Delta H = 0$ for the reaction

D. The sign of ΔH cannot be predicted on the basis of this

information.

Answer: A

Watch Video Solution

7. The Ph OF NEUTRAL WATER AT $25^{\circ}C$ is 7.0. As the temperature increases, ionisation of water increases, however the concentration of H^+ ions nad OH^- ions equal. What will be the ph of puire water at $60^{\circ}C$? (A)Equal to 7.0 (B)Greater than 7.0 (C)Less than 7.0 (D)Equal to zero

A. Equal to 7.0

B. Greater than 7.0

C. Less than 7.0

D. Equal to zero

Answer: C

Watch Video Solution

8. The ionisation cosntabnt of an acid, K_a is the meaure of strength of an acid. The K_a values of acetic acid, hypochlorous acid and formic acid are 1.74×10^{-5} , 3.0×10^{-8} and 1.8×10^{-4} respectively. Which of the following orders of ph of 0.1 mol dm^{-3} solutions of these acids is correct ? (A)Acetic acid > Hypochlorous acid > Formic acid (B)Hypochlorous acid > Acetic acid > Formic acid (C)Formic acid > Hypochlorous acid > Acetic acid (D)Formic acid > Acetic acid > Hypochlorous acid

A. Acetic acid > Hypochlorous acid > Formic acid

B. Hypochlorous acid > Acetic acid > Formic acid

C. Formic acid > Hypochlorous acid > Acetic acid

D. Formic acid > Acetic acid > Hypochlorous acid

Answer: B

9. K_{a1} , K_{a2} and K_{a3} are the respective ionisation constants for the following reactions.

 $egin{aligned} H_2S &\Leftrightarrow H^+ + HS^-, \!HS^- &\Leftrightarrow H^+S^{-2} \ H_2S &\Leftrightarrow 2H^+ + S^{2-} \end{aligned}$

The correct relationship between K_{a1} , K_{a2} and K_{a3} is

A.
$$K_{a_3} = K_{a_1} imes K_{a_2}$$

B. $K_{a_3} = K_{a_1} + K_{a_2}$
C. $K_{a_3} = K_{a_1} - K_{a_2}$
D. $K_{a_3} = K_{a_1}/K_{a_2}$

Answer: A

10. Acidity of BF_3 can be explained on the basis of which of the following concepts? (A)Arrhenius concept (B)Bronsted - Lowry concept (C)Lewis concept (D)Bronsted - Lowry as well as Lewis concept

A. Arrhenius concept

B. Bronsted - Lowry concept

C. Lewis concept

D. Bronsted - Lowry as well as Lewis concept

Answer: C

Watch Video Solution

11. Which of the following is true ?

A. 0.1 mol dm⁻³NH₄OH and 0.1 mol dm⁻³HCl

B. 0.05 mol dm⁻³ NH_4OH and 0.1 mol dm⁻³HCl

C. 0.1mol dm $^{-3}NH_4OH$ and 0.05 mol dm ^{-3}HCl

D. 0.1mol dm⁻³CH₃COONa and 0.1 mol dm⁻³NaOH

Answer: C

Watch Video Solution

12. In which of the following solvents is silver chloride most soluble ?

A. 0.1mol dm $^{-3}AgNO_3$ solution

B. 0.1 mol dm⁻³HCl solution

 $\mathsf{C}.\,H_2O$

D. Aqueous ammonia

Answer: D

13. What will be the value of pH of 0.01 $\mathrm{mol}~\mathrm{dm}^{-3}CH_3COOHig(K_1=1.74 imes10^{-5}ig)$?

A. 3.4

B. 3.6

C. 3.9

 $\mathsf{D}.\,3.0$

Answer: A

Watch Video Solution

14. K_a for CH_3COOH is $1.8 imes 10^{-5}$ and K_b for NH_4OH is $1.8 imes 10^{-5}$

The pH of ammonium acetate will be :

A. 7.005

B. 4.75

C. 7.0

D. between 6 and 7

Answer: C

15. Which of the following options will be correct for the stage of half completion of the reaction : $A \Leftrightarrow B$?

A. $\Delta G^\circ = 0$

- B. $\Delta G^{\,\circ}\,> 0$
- C. $\Delta G^{\,\circ}\,< 0$
- D. $\Delta G^\circ = -RT\ln 2$

Answer: A

16. On increasing the pressure, in which dirction will the gas phase reaction proceed to re-establish equilibrium, is predicated by applying the Le Chatelier's principle. Consider the reaction.

 $N_2(g)+3H_2 \Leftrightarrow 2NH_3(g)$

Which of the following is correct, if the total pressure at which the equlibrium is established, is increased without changing the temperature

?

A. K will remain same.

B. K will decrease.

C. K will increase.

D. K will increase initially and decrease when pressure is very high.

Answer: A

17. What will be the correct order of vapour pressure of water, acetone and ether at $30.^{\circ}$ *C*. Given that among these compounds, water has maximum boiling point and ether has minimum boiling point ? (A)Water < Ether < Acetone (B)Water < Acetone < Ether (C)Ether < Acetone < Water (D)Acetone < Ether < Water

A. Water < Ether < Acetone

B. Water < Acetone < Ether

C. Ether < Acetone < Water

D. Acetone < Ether < Water

Answer: B

18. At 500 K, equilbrium constant, K_c for the following reaction is 5.

 $1/2H_2(g)+1/2(g) \Leftrightarrow HI(g)$

What would be the equilibrium constant K_c for the reaction $2HI(g) \Leftrightarrow H_2(g) + l_2(g)$

A. 0.04

B. 0.4

C. 25

D. 2.5

Answer: A

Watch Video Solution

19. In which of the following reactions, the equilibrium reamins unaffected on addition of small amount of argon at constant volume?

A.
$$H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$$

 $\mathsf{B}. PCl_{5(g)} \Leftrightarrow PCl_{3(g)} + Cl_{2(g)}$

 $\mathsf{C}.\, N_{2\,(\,g\,)}\,+3H_{2\,(\,g\,)}\,\Leftrightarrow\,2NH_{3\,(\,g\,)}$

D. The equilibrium will remain unaffected in all the three cases.

Answer: D

Watch Video Solution

Assertion And Reason

1. Assertion : When ice and water are kept in a perfectly insulated thermos flask at 273 K and the atmospheric pressure, there is no change in mass of ice and water.

Reason : The system is in static equilibrium.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

Watch Video Solution

2. Assertion : The equilibrium constant for the reverse reaction is equal to the inverse of the equilibrium constant for the forward reaction . Reason : The value of equilibrium constant is independent of initial

concentrations of the reactants and products.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

3. Assertion : For the reaction : $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)}, K_p = K_c$ Reason : Concentration of gaseous reactants and products is taken as unity.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

4. Assertion : K_p can be less than, greater than or equal to K_c

Reason : Relation between K_p and K_c depends on the change in number of moles of gaseous reactants and products (Δn).

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

5. Assertion : If reaction quotient, Q_c for a particular reaction is greater

than K_c the reaction will proceed in the direction of reactants.

Reason : Reaction quotient is defined in the same way as the equilibrium constant K_c except that the concentrations in Q_c are not necessarily equilibrium values. (a)If both assertion and reason are true and reason is the correct explanation of assertion. (b)If both assertion and reason are true but reason is not the correct explanation of assertion. (c)If assertion is true but reason is false. (d)If both assertion and reason are false

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: B

6. Assertion : In the dissociation of PCl_5 at constant pressure and temperature addition of helium at equilibrium increases the dissociation of PCl_5 .

Reason : Helium reacts with Cl_2 and hence shifts the equilibrium in forward direction.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

7. Assertion : Weak acids have very strong conjugate bases while strong acids have weak conjugate bases.

Reason : Conjugate acid - base pair differ only by one proton.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

8. Assertion :- A solution of NH_4Cl in water is acidic in nature.

Reacon : - Ammonium ions undergo hydroysis to from NH_4OH .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

> Watch Video Solution

9. Statement: The pH of an aqueous solution of acetic acid remains unchanged on the addition of sodium acetate.

Explanation: The ionisation of acetic acid is suppressed by the addition of sodium acetate.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Watch Video Solution

10. Assertion : Higher order ionization constants (K_{a_2}, K_{a_3}) are smaller than the lower order ionization constant (K_{a_1}) of polyprotic acid.

Reason : Polyprotic acid solutions contain a mixture of acids.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

11. Assertion : Benzoic acid is stronger acid than acetic acid.

Reason : K_a for benzoic acid is $6.5 imes 10^{-5}$ and for acetic acid is $1.74 imes 10^{-5}.$

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

12. Assertion : The strength of haloacids increases in the order : $HI < \ < HBr < \ < HCl < \ < HF$

Reason : Strength of acid HA depends only on the electronegatively difference between H and A.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

13. Assertion : The pH of NH_4Cl solution in water is less than 7 and pH of CH_3COONa solution is more than 7.

Reason : NH_4Cl is a salt of weak NH_4OH and strong acid HCl whereas CH_3COONa is salt of a weak acid CH_3COOH and strong base NaOH. (a)If both assertion and reason are true and reason is the correct explanation of assertion. (b)If both assertion and reason are true but reason is not the correct explanation of assertion. (c)If assertion is true but reason is false. (d)If both assertion and reason are false

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

14. Assertion : pH of the buffer solution is not affected by dilution.

 $ext{Reason}: pH = pK_a + \log rac{[ext{Conjugate base}]}{[ext{Acid}]}$

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

15. Assertion : The solubility of salts of weak acids like phosphates

decreases at lower pH.

Reason : The is because at lower pH concentration of cations increases.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D