©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - PEARSON IIT JEE FOUNDATION

LINEAR PROGRAMMING

Example

1. Maximize the function $f=4 x+5 y$ subject to the constraints
$3 x+2 y \leq 18, x+y \leq 7$ and $x \geq 0, y \geq 0$.

D Watch Video Solution
2. A manufacturer makes two models A and B of a product. Each model is processed by two machines.

To complete one unit of model. A, machines I and II must work 1 hours and 3 hours respectively. To complete one unit of model B, machine I and II must
work 2 hours and 1 hour respectively. Machine I may not operate for more than 8 hours per day, and machine II for not more than 9 hours per day. If profits on model A and B per unit are Rs. 300 and Rs. 350 , then how many units of each model should be produced, per day, to maximize the profits ?
3. A transport company has two main depots P and

Q, from where buses are sent to three subdepots A, B and C in difference parts of a region. The number of buses available at P and Q are 12 and 18 . The requirements of A, B and C are 9,13 and 8 buses respectively. The distance between the two main depots and the three sub-depots are given in the following table (in km).

From $\downarrow^{\text {To }} \rightarrow$	A	B	C
P	15	40	50
Q	20	30	70

How should the buses be sent from P and Q to A, B
and C, so that the total distance covered by the buses is the minimum?

- View Text Solution

4. Minimize $3 x+2 y$ subject to the constraints $x+y \geq 5$ and $x+2 y \geq 6, x \geq 0, y \geq 0$

- Watch Video Solution

5. In an examination, mark obatined by Rohan in two subject are x and y . The total marks in the two subjects is less than or equal to 150 . The maximum of marks of each subject is 100 . Find the sum of the minimum and the maximum values of $3 x+4 y$. (No negative marks in the examination)
A. 400
B. 550
C. 500
D. 300

Answer: B

Watch Video Solution

6. Find the maximum value of $4 x+7 y$ with the conditions $3 x+8 y \leq 24, y \leq 2, x \geq 0$, and $y \geq 0$.
A. 14
B. $\frac{74}{3}$
C. 21
D. 32

Answer: D

D Watch Video Solution

7. Which of the following is a point in the feasiable region determined by the linear inequalities $3 x+2 y \geq 6$ and $8 x+7 y \leq 56 ?$
A. $(3,1)$
B. $(-3,1)$
C. $(1,-3)$
D. $(-3,1)$

Answer:

D Watch Video Solution

8. The solution of the system of inequalities
$x \geq 0, y \geq 0,5 x+2 y \geq 10,6 x+5 y \leq 30 \quad$ is \quad a polygonal region with the vertices
A. (0,0),(2,0),(0,5),(0,6)
B. $(0,0),(5,0),(6,0),(0,2)$
C. $(2,0),(5,0),(0,6),(0,5)$
D. $(0,0),(0,5),(6,0),(2,0)$

Answer:

D Watch Video Solution

9. The length and breadth of a rectangle (in cm) are X and y respectively
$x \leq 30, y \leq 20, x \geq 0$ and $y \geq 0$. If a rectangle has
a maximum perimeter, then its are is \qquad .
A. $400 \mathrm{~cm}^{2}$
B. $600 \mathrm{~cm}^{2}$
C. $900 \mathrm{~cm}^{2}$
D. None of these

Answer: B

- Watch Video Solution

Very Short Answer Type Questions

1. Does the point $(1,3)$ lie in the region specified by x -
$y+2>0 ?$
2. The region specified by the inequality $4 x+6 y \leq 12$ contains the origin . (True/ False)

- Watch Video Solution

3. Does the point $(0,0)$ lie in the region specified by $x+y \geq 6$?

- Watch Video Solution

4. In a rectangular coordinate system, the region specified by the inequlity $y \geq 1$ lies below the X-axis (

True/ False)

D Watch Video Solution

5. The feasible solution that maximizes an objective function is called

- Watch Video Solution

6. If the line segment joining any two point A and B,
belonging to a subset Y of a plane, is contained in the subset Y, then Y is called \qquad .

7. Does the line $y-x+3=0$ pass through the point $(3,0)$

- Watch Video Solution

8. If $x>0$ and $y<0$, then the point (x, y) lies in the ____ quadrant of a rectangular co-ordinate system.

- Watch Video Solution

9. State whether the point $(-3,4)$ lies on the line,

Watch Video Solution

10. Define the feasible region.

- Watch Video Solution

11. Define the feasible solution.

- Watch Video Solution

12. The distance of a point P from the positive X axis and positive Y axis are 3 units and 5 units, respectively . Find the coordinates of P.

Watch Video Solution

13. State which of the following points belong to the region specified by the corresponding inequation that is , $3 x+4 y<4$
A. $(0,2)$,
B. $(3,2)$
C. $(1,-2)$
D. $(4,5)$

Answer: C

14. State which of the following points belong to the region specified by the corresponding inequation that is, $5 x-6 y+30>0$.
A. $(0,2)$
B. $(-4,8)$
C. $(2,3)$
D. $(4,5)$

Answer: D

Short Anwere Type Question

1. If $(0,0),(0,4),(2,4)$ and $(3,2)$ are the vertices of a

 polygonal region subject to certain constraints, then the maximum value of the objective funciton $f=3 x+2 y$ is \qquad
D Watch Video Solution

2. If $(3,2),(2,3),(4,2)$ and $(2,4)$ are the vertices of a
polygonal region subject to certain constraint, then the minimum value of the objective function $f=9 x+5 y$ is \qquad
3. A profit of Rs. 300 is made on class I ticket, and Rs. 800 is made on class II ticket. If x and y are the number of tickets of class I and class II sold, then the profit function is

- Watch Video Solution

4. In the following figure, find AP and BP.

- Watch Video Solution

5. Draw the graphs of the following inequations .
$x-4 y+8 \geq 0$

D Watch Video Solution
6. Draw the graphs of the following inequations .

$$
4 x-5 y-20 \leq 0
$$

- Watch Video Solution

7. Draw the polygonal region represented by the given systems of inequations.
$x \geq 1, y \geq 1, x \leq 4, y \leq 4$

- Watch Video Solution

8. Minimize $3 x+2 y$ subject to the constraints
$x+y \geq 5$ and $x+2 y \geq 6, x \geq 0, y \geq 0$

- Watch Video Solution

9. Define the following Convex set

- Watch Video Solution

10. Define the following Feasible solution

- Watch Video Solution

Easy Type Question

1. A dietician wishes ot mix two type of item in such a
way that the mixture contians at least 9 units of
vitamin A and at least 15 units of vitamin C. Item (1)
unit/kg of vitamin A and 3 units/kg of vitamin C while item (2) contains 3 units/ kg of vitamin C while item
(2) contains 3 units/ kg of vitamin A and 5 units/ kg of
vitamin C. Item(1) cost Rs. $6.00 / \mathrm{kg}$ and item (2) costs
Rs. $9.00 / \mathrm{kg}$. Formulate the above information as a linear programming problem.

- Watch Video Solution

2. A manufacturer produces pend and pencils. It takes 1 hour of work on machine A and 2 hours on machine B to produce a package of pens while it take

2 hours on machine A and 1 hour on machine B to produce a package of pencils. He earn a profit of Rs.
4.00 per package on pens and Rs. 3.00 per package on pencils. How many packages of each should be produce each day so as to maximize his profit, if he operates his machines for at most 12 hours a day ?

Formulate the above information mathematically and then solve.

- Watch Video Solution

3. Santosh wants to invest a maximum of Rs. 150,000 in saving certificates and national saving bonds.

Which are in denominations of Rs. 4000 and Rs.
5000. respectively. The rate of interest on saving certificate is 10% per annum, and the rate of interest on national saving bond is 12% per annums. Forulate the above formation as a linear programming problem.

D View Text Solution

4. A company manufactures two type of novelty souvenirs made of plywood, Souvenirs of type A
recquire 8 minutes each for cutting and 10 minutes each for assembling. Souvenirs of type B require 10 minutes each for cutting and 15 minutes each for assembling. There are 4 hours available for for
assembling. THere are 4 hours available for cutting and 5 hours available for assembling. The profit is 60 paise on each itme of type A and 75 paise on each item of tyep B. Formulate the above information as a
linear programming problem.

D View Text Solution

5. Find the ratio of the maximum and minimum
values of the objective function $f=3 x+5 y$ subject to

$$
x \geq 0, y \geq 0,2 x+3 y \geq 6 \text { and } 9 x+10 y \leq 90 .
$$

D Watch Video Solution

Level 1

1. If an isoprofit line coincides with the edge of the polygon, then the problem has
A. no solution
B. one solution
C. infinite solution
D. None of these

Answer: C

- Watch Video Solution

2. Which of the following is a convex set ?
A. A triangle
B. A square
C. A circle
D. All of these

Answer: D
3. Which of the following is not a convex set ?
A.
$(\mathrm{a})\langle$
(b)
B.

D.
(d)

Answer: B
4. Which of the following points belongs to the region indicated by the ineqation $2 x+3 y<-6$?
A. $(0,2)$
B. $(-3,8)$
C. (3,-2)
D. $(-2,-2)$

Answer: D

- Watch Video Solution

5. The inequation represent by the following graph is

A. $2 x+3 y+6 \leq 0$
B. $2 x+3 y-6 \geq 0$
C. $2 x+3 \leq 6$

$$
\text { D. } 2 x+3 y+6 \geq 0
$$

6. The minimum value of $2 x+3 y$ subject to the condition
$x+4 y \geq 8,4 x+y \geq 12, x \geq 0$ and $y \geq 0$ is
A. $\frac{28}{3}$
B. 16
C. $\frac{25}{3}$
D. 10

Answer: A
7. Find the maximum value of $x+y$ subjected to the condition

$$
4 x+3 y \leq 12,2 x+5 y \leq 10, x \leq 0, x \geq 0, y \geq 0
$$

A. 3
B. $\frac{20}{7}$
C. 4
D. $\frac{23}{7}$

Answer: D
8. The inequation represented by the graph given below is :

A. $x \geq y$
B. $x \leq y$
C. $x+y \geq 0$
D. $x+y \leq 0$

Answer: B

- Watch Video Solution

9. The solution of the system of inequalities
$x \geq 0, x-5 \leq 0$ and $x \geq y$ is a polygonal region with the vertices as
A. $(0,0),(5,0),(5,5)$
B. $(0,0),(0,5),(5,5)$
C. $(5,5),(0,5),(5,0)$
D. $(0,0),(0,5),(5,0)$

- Watch Video Solution

10. If the isoprofit line moves away from the origin, then the value of the objective functions \qquad
A. increses
B. Decrease
C. does not change
D. become zero

Answer: A
11. The solution of the inequations
$x \geq 0, y \geq 0, y=2$ and $x=2$ form the polygonal region with the vertices (0,0),(0,2),(2,0) and (2,2) and the polygon so formed by joining the vertices is a
A. parallelogram
B. rectangle
C. square
D. rhombus
12. Maximize $5 x+7 y$, subject to the constraints

$$
2 x+3 y \leq 12, x+y \leq 5, x \geq 0 \text { and } y \geq 0 .
$$

A. 29
B. 30
C. 28
D. 31

Answer: A
13. The inequation that best describes the graph given below is \qquad

A. $x>y$
B. $x<y$
C. $x \leq y$
D. $x \geq y$

D Watch Video Solution

14. The inequation that best describes the following graph is \qquad

A. $2 x+3 y+6 \leq 0$
В. $2 x+3 y+6 \geq 0$
C. $2 x+3 y+6>0$
D. $2 x+3 y+6<0$

Answer: C

- Watch Video Solution

15. The vertices of a closed -convex polygon determined by the inequations
$7 x+9 y \leq 63$ and $5 x+7 y \geq 35, x \geq 0, y \geq 0$ are
A. $(7,0),(5,0),(9,0),(0,9)$

$$
\begin{aligned}
& \text { B. }(7,0),(9,0),(0,7),(0,5) \\
& \text { C. }(9,0),(6,0),(5,0),(0,8) \\
& \text { D. }(0,9),(0,5),(7,0),(3,0)
\end{aligned}
$$

Answer: B

- Watch Video Solution

Level 2

1. The vertices of a closed convex polygon representing the feasible region of the objective
function are $(6,2),(4,6),(5,4)$ and $(3,6)$. Find the maximum value of the function $f=7 x+11 y$
A. 64
B. 79
C. 94
D. 87

Answer: C

- Watch Video Solution

2. If the vertices of a closed - convex polygon are $A(8,0), O(0,0), B(20,10), C(24,5)$ and $D(16,20)$, then find
the maximum value of the objective function

$$
f=\frac{1}{4} x+\frac{1}{5} y .
$$

A. $7 \frac{1}{2}$
B. 8
C. 6
D. 7

Answer: B

D Watch Video Solution

3. Find the profit function p, if it yields the values 11 and 7 at (3,7) and (1,3), respectively .
А. $p=-8 x+5 y$
B. $p=8 x-5 y$
C. $p=8 x+5 y$
D. $p=-(8 x+5 y)$

Answer: A

D Watch Video Solution

4. A shopkeeper sells x units of books and y units of stationery. If he makes a profit of Rs. 2 On each book and Rs. 3 on each unit of stationery, then the profit function is
A. $p=2 x-3 y$
B. $p=2 x+3 y$
C. $p=3 x-2 y$
D. $p=3 x+2 y$

Answer: B

Watch Video Solution

5. The vertices of a closed - convex polygon representing the feasible region of the objective function f are $(4,0),(2,4),(3,2)$ and (1,4). Find the maximum value of the objective function $f=7 x+8 y$.
A. 39
B. 46
C. 49
D. 38

Answer: B

- Watch Video Solution

6. The cost of each table and each chair cannot exceed Rs. 7. If the cost of 3 tables and 4 chairs
cannot exceed Rs. 30, form the inequation for the above data.
A. $x>0, y>0, x \leq 7, y \geq 7,3 x+4 y \leq 30$
B. $x<0, y<0, x \leq 7, y \leq 7,3 x+4 y \leq 30$
C. $0<x<7,0<y \leq 7,3 x+4 y \leq 30$
D.

$$
x>0, \leq y>0, x \geq 7, y \geq 7 \text { and } 3 x+4 y \leq 30
$$

Answer: C

- Watch Video Solution

7. The vertices of the closed - convex polygon determined by the inequations $3 x+2 y \geq 6,4 x+3 y \leq 12, x>0$ and $y \geq 0$ are
A. $(1,0),(2,0),(0,2),(0,1)$
B. $(2,0),(3,0),(0,4)$ and (0,3)
C. $(1,0),(2,0),(0,2)$ and (2,2)
D. (1,0),(0,2),(2,2) and (1,1)

Answer: B

D Watch Video Solution

8. Which of the following is a point in the feasiable region determined by the linear inequalities
$2 x+3 y \leq 6$ and $3 x-2 y \leq 16 ?$
A. $(4,-3)$
B. $(-2,4)$
C. $(3,-2)$
D. $(3,-4)$

Answer: C

- Watch Video Solution

9. The maximum value of the function $f=5 x+3 y$
subjected to the constraints $x \geq 3$ and $y \geq 3$ is
A. 15
B. 9
C. 24
D. Does not exist

Answer: D

- Watch Video Solution

10. A telecom company manufactures mobile phones and landline phone. They require 9 hours to make a mobile phone. The company can work not more than 1000 hours per day. The packing department can
pack at most 600 telephones per day. If x and y are the set of mobile phones and landline phones, respectively, then the inequalities are :
A. $x+y \geq 600,9 x+y \leq 1000, x \geq 0, y \geq 0$
B. $x+y \leq 600,9 x+y \geq 1000, x>0, y \geq 0$
C. $x+y \leq 600,9 x+y \leq 1000, x \leq 0, y \leq 0$
D. $9 x+y \leq 1000, x+y \leq 600, x \geq 0, y \geq 0$

Answer: D

D Watch Video Solution

11. If the isoprofit line moves towards the origin, then the value of the objective function \qquad
A. increses
B. does not change
C. become zero
D. decrease

Answer: D
12. The minimum cost of each table is Rs. 10 and each
capsule is Rs. 10. If the cost of 8 table and 5 capsules is not less than Rs. 150, frame the inequations for the given data.

$$
\begin{aligned}
& \text { A. } x \geq 10, y \geq 10,8 x+5 y \geq 150 \\
& \text { B. } x \geq 10, y \geq 10,8 s+5 y \leq 150 \\
& \text { C. } x \leq 10, y \leq 10,8 x+5 y \geq 150 \\
& \text { D. } x \leq 10, y \leq 10,8 x+5 y \leq 150
\end{aligned}
$$

Answer: A

D Watch Video Solution

13. Find the profit function p, in two variable x and y,
if it yields the values 23 and 7 at $(3,2)$ and $(2,3)$ respectively .

$$
\begin{aligned}
& \text { A. } p=11 x+5 y \\
& \text { B. } p=5 x+11 y \\
& \text { C. } p=11 x-5 y \\
& \text { D. } p=5 x-11 y
\end{aligned}
$$

Answer: C

- Watch Video Solution

14. The maximum value of the function, $f=3 x+5 y$, subject to the constraints $x \geq 5$ and $y \geq 5$, is
A. 40
B. 24
C. 8
D. Does not exist.

Answer: D

15. The vertices of a closed - convex polygon representing the feasible region of the objective function $f=5 x+3 y$, are (0,0), (3,0), (3,1), (1,3) and (0,4).

Find the maximum value of the objective function.
A. 6
B. 18
C. 14
D. 15

Answer: B

1. The cost of each table or each chair cannot exceed Rs. 9 . If the cost of 4 table and 5 chairs cannot exceed

Rs. 120, then the inequation which best represents the above information are :

$$
\begin{aligned}
& \text { А. } x<9, y<9,5 x+4 x \geq 120 \\
& \text { В. } x>9, y>9,4 x+5 y \geq 120 \\
& \text { С. } 0<x \leq 9,0<y<9,4 x+5 y \leq 120 \\
& \text { D. } 0<\leq 9,0<y \leq 9,5 x+4 y \geq 120
\end{aligned}
$$

Answer: C

2. The vertices of a closed- convex polygon determined by the inequations
$5 x+4 y \leq 20,, 3 x+7 y \leq 21, x>0$ and $y \geq 0$ are

$$
\begin{aligned}
& \text { А. }(0,0)(7,)(0,3)\left(\frac{148}{69}, \frac{45}{23}\right) \\
& \text { в. }(4,0)(0,3)(0,5)\left(\frac{148}{69}, \frac{45}{23}\right) \\
& \text { С. }(0,0)(4,0)(0,3)\left(\frac{56}{23}, \frac{45}{23}\right) \\
& \text { D. }(0,0)(7,0)(4,0)(0,3)
\end{aligned}
$$

Answer: C

3. The profit function p which yields the values 61 and

 57 at (4,7) and (5,6), respectively , is \qquadA. $2 x+5 y$
B. $7 x+3 y$
C. $5 x+2 y$
D. $3 x+7 y$

Answer: D
4. The vertices of a closed convex polygon representing the feasible region of the objective function are $(6,2),(4,6),(5,4)$ and $(3,6)$. Find the maximum value of the function $f=7 x+11 y$
A. 61
B. 69
C. 59
D. 49

Answer: B
5. The cost of each table of each chair cannot exceed Rs. 13. If the cost of 5 table and 7 chairs cannot exceed Rs. 250 , then the inequations which best represents the above information are
A. $x>13, y>13,5 x+7 y>250$
B. $x>0, y>0,5 x+7 y<250$
C. $x<13, y<13,5 x+7 y \leq 25$
D. $0<x \leq 13,0<y \leq 13,5 x+7 y \leq 250$

Answer: D

- Watch Video Solution

6. The minimum value of $f=x+4 y$ subject to the constraints $x+y \geq 8,2 x+y \geq 10, x>0, y>0$ is
A. 4
B. 26
C. 5
D. 8

Answer: D
7. A tailor stiches trousers and shirts and each piece is completed by two machine I and II. To complete each trousers, machines I and II must work 3/2 hours and 2 hours respectively, and to complete each shirt, machines I and II must work 2 hours and 1 hours respectively Machine I may not operate for more than 12 hours ped day and machine II not more than

11 hours per day. If the profit on each trouser and each shirt is Rs. 150 and Rs. 100 repectively, then the maximum profit is
A. Rs. 900
B. Rs. 500

C. Rs. 375

D. Rs. 600

Answer: A

D View Text Solution

8. Which inequations represent the shaded region in the given figure

A. $y>0, x+y \leq 3, x-y \geq-3$
B. $x \geq 0, x \pm y \leq 3$
C. $y \geq 0, x \pm y>-3,-3 \leq x$
D. $x \geq 0, x \pm y \leq-3$

Answer: A
9. A telecom company offers calls for day and night hours. Calls can be aviled 8 hours during the day and 4 hours at night and at most 10 hours a day. The profit on the day calls is Rs. 60 per hour, and on night
calls Rs. 50 per hours. How many hours during the day and at night a customer must use to fetch a maximum profit to the company ?
A. 6 hours during day and 4 hours at night
B. 5 hours during day and 5 hours at night
C. 8 hours during day and 2 hours at night
D. 6 hours during day and 2 hours at night .

Answer: C

D View Text Solution

10. On a rainy day, a shopkeeper sells two colours (black and red) of umbrellas. He sells not more than 20 umbrellas of each colour. At least twice as many black ones are sold as the red one. If the profit on each of the black umbrellas is Rs. 30 and that of the red ones is Rs. 40 , then how many of each kind must be sold to get a maximum profit ?
A. 20,10
B. 30,15
C. 40,20
D. 10,5

Answer: A

- Watch Video Solution

