

India's Number 1 Education App

MATHS

BOOKS - PEARSON IIT JEE FOUNDATION

MATHEMATICAL INDUCTION AND BIONOMIAL THEOREM

Example

1. Prove that
$$1+2+3+\ldots .$$
 $n=rac{n(n+1)}{2}$

Watch Video Solution

2. Prove that
$$1+2+3+\ldots\ldots+n=rac{n(n+1)}{2}$$

3. Prove that $1+2+3+.... + = (2n+1)) = n^2$

- 4. Prove that
- $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \ldots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3}$
 - Watch Video Solution

- **5.** Prove that $3^{n+1} > 3(n+1)$
 - Watch Video Solution

- **6.** Prove that 7 is a factor of $2^{3n}-1$ for all natural numbers n.
 - Watch Video Solution

7. Expand $\left(x+2y
ight)^5$

8. Find the 3rd term in the expansion of $\left(3x-5y\right)^7$

9. Find the middal term in the expansionof $\left(2x+3y\right)^8$

10. Find the middle the terms in the expansion of $\left(5x-7y\right)^7$

11. Find the term indepnedent of x in $\left(x+\frac{1}{x}\right)^4$

- **12.** Findt the coefficient of x^2 in $\left(x^2+rac{1}{x^3}
 ight)^6$
 - Watch Video Solution

- **13.** Find the total number of terms in the expansion of $(2+3x)^{15}+(2-3x)^{15}$
 - Watch Video Solution

14. If the expansion $\left(x^2+\frac{1}{x^3}\right)^n$ is to contain and independent term, then what should be the value of m ?

15. If the coefficient of x^7 in $\left(ax + \frac{1}{x}\right)$ and x^{-7} in $\left(bx - \frac{1}{x}\right)^9$ are equal, find the relation between a and b?

16. Find the term independent of 'x' in the expansion of $\left(1+x^2\right)^4\left(1+rac{1}{x^2}\right)^4$

17. Find the sum of the coefficients of the term expansion $\left(1+x+2x^2\right)^6$

18. Find the value of x, if the fourth term in the expansion of

$$\left(rac{1}{x^2} + x^2 \cdot 2x
ight)^6$$
 is 160

Test Your Concepts Very Short Answer Type Questions

1. If P(n) is a statement which is true for n=1 and true for (x+1)

,then____

2. According to the principle of mathematical induction when, can we say that a statemen X(n)is true for all natural numbers n?

3. If $p(n)=n(n+1)(n+2)$ then highest common factor of p(n),					
for different values of mn where n is any ntural number, is					
Watch Video Solution					
4. Is 2^{3-n} a prime number for all natural numbers n?					
Watch Video Solution					
5. The product of (q-1) consecutive integers where $q>1$ is divisible					
by					

6. An algebraic expressioon with two tems is called a _____

7. In Pascal, triangle, each row of coefficiets is bounded on both sides by

8. If n is a positive integer, then the number of terms in the expansion of $(x+a)^n$ is

9. In the expansion of $(x+y)^n$, if the exponent of x in second term is 10, what is the exponent of y in 11th term.

10. What is the coefficient of a term in a row of Pscal triangle if in the preceding row, the coeficient on the immediate left is 5 on the immediate rigth is 10

11. In the expansion of various power of $(x+y)^n$ if the expansion contains 49 times, then it is the expansion of

12. In the expression of $\left(x+y\right)^{123}$, the sum of the exponents of x and y in 63 rd term is _____

13. $(n-r)$!=	:
-----------------------	---

14. The vlaue of $^{n+1}C_r$ = _____

15. If ${}^nC_r=1$ and n=6, then what may be the value (s) of r be?

16. In the expansion of $(x+y)^n, T_{r+1}$ =______

17.
$7C_2$
 = _____

18.
$$^{1230}C_0$$
= _____

19. The coefficient of x in the expansion of $(2x+3)^5$ is ______

20. The coefficient of y^7 in the expansion of $\left(y+z\right)^7$ is ______

21.
$$(x+y)^3 =$$

22. The term which does not contain 'a' in the expansion of $\left(\frac{x}{a}+6x\right)^{12}$ is _____

23. If
$$^{12}C_r(4)^{12-r}(x)^{12-3r}$$
 is a contant term in an expansion, then r

24. Write the first, the middle and the last terms in the expansion of
$$\left(x^2+1\right)^3$$

26. The sum of the first n even natural numbers is _____

27. The sum of the first n odd natural number is

A. 2n-1

B.2n+1

 $\mathsf{C}.\,n^2$

D. n^2-1

Answer: C

28. The elmennts in the fifth row of Pascal triangle is _____

29. If ${}^nC_3={}^nC_{15}$, then ${}^{20}C_n$ is _____

30. The inequality $2^n>n$ is true for _____

- **1.** Prove that $1+2+2^2+\ldots+2^n=2^{n+1}-1$, for all natural number n.
 - Watch Video Solution

- **2.** a-b divides $a^n-b^n, n\in N$
 - Watch Video Solution

- - **Watch Video Solution**

4. $2.5+3.8+4.11+\ldots$ + upto n terms $=nig(n^2+4n+5ig),\,n\in N$

5. Prove that
$$:1^2+2^2+3^2++n^2=rac{n(n+1)(2n+1)}{6}$$

 $[a+(a+d)+(a+2d)+....+[a+(n-1)d]=rac{n}{2}(2a+(n-1)d)$

$$\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$$

8. Using the principle of mathmatical induction, prove each of the following for all $n \in N$

$$(4^n+15n-1)$$
 is divisible by 9.

9. Prove the following by the principle of mathematical induction:

$$(2+5+8+11+ + (3n-1) = rac{1}{2} n \, (3n+1)$$

10. Exapand
$$\left(3x^2+rac{5}{y^2}
ight)^6$$

12. Find the middle term or terms of the expansion of
$$\left(x+5y\right)^9$$

13. find the middle term of terms or the expanison of $\left(x+\frac{1}{x}\right)^{o}$

14. Find the 7th term in the expansion of
$$\left(5x-\frac{1}{7y}\right)^{9}$$

- **1.** Evalute: $\left(\sqrt{3}+1\right)^5-\left(\sqrt{3}-1\right)^5$
 - Watch Video Solution

- **2.** Find the coefficient of x^{-5} in the expansion of $\left(2x^2-\frac{1}{5x}\right)^8$
 - Watch Video Solution

- **3.** Find the term independent of x in $\left(6x^2 \frac{1}{7x^3}\right)^{10}$
 - Watch Video Solution

- **4.** Find the coefficient of x^3 in the expansion of $\left(x^2+rac{1}{3x^3}
 ight)^4$
 - Watch Video Solution

5. Find the term independent of x in $\left(2x^5+rac{1}{3x^2}
ight)^{21}$

Watch Video Solution

Level 1

1. n^2+n+1 is a/an _____ number for all $n\in N$

A. even

B. odd

C. prime

D. none

Answer: B

2. If the expansion $\left(x^3+\frac{1}{x^2}\right)^n$ contains a term independent of x,

then the value of n, can be _____

A. 18

B. 20

C. 24

D. 22

Answer: B

3. 1+5+9+...+(4n-3)=n(2n-1), for all natural number n.

- **4.** Prove that 7 is a factor of $2^{3n}-1$ for all natural numbers n. A. 3
 - B. 5 C. 7
 - D. 2

Answer: B

- **5.** For what values of n is $14^n + 11^n$ divisiblle by 5 ?
- A. When n is an even postive integer
 - B. For all values of n
 - C. When n is a prime number

D.	When	n i	İS	bbo	positive	integer
υ.	VVIICII		-	ouu	POSITIVE	IIICECI

Answer: D

Watch Video Solution

- **6.** The smallest positive inteter n for which $n! < \dfrac{(n-1)^n}{2}$ holds , is
 - A. 4
 - B. 3
 - C. 2
 - D. 1

Answer: A

Watch Video Solution

8. In the 8thb term of $(x+y)^n$, the exponent of x is 3, then the exponent of x in 5th term is

7. The third term form the end in the expansion of $\left(\frac{4x}{3y} - \frac{3y}{2x}\right)^9$ is

- A. 5
- B. 7
- C. 2
- D. 6

Answer: D

9. The sum of the elements in the sixth row of Pascal triangle is

10. In $(n+y)^n-(x-y)^n$, if the number of term is 5, then find n.

- A. 32
- B. 63
- C. 128

D. 64

Answer: D

- A. 6

B. 5

- C. 10

Answer: D

Watch Video Solution

- **11.** If the third term the in the exapansion of $\left(x+x^{\log_2^x}\right)^6$, 960, then the value of x is
 - A. 2
 - B. 3
 - C. 4
 - D. 8

Answer: A

12. Finx the sum of coefficients of all the terms of the exapansin $(ax+y)^n.$

A.
$$^{n}C_{0}+^{n}C_{1}^{n-1}x^{n-1}y+^{b}C_{2}a^{n-2}x^{n-2}+.....+^{n}C_{n}y^{n}$$

$${\rm B.}\ ^{n}C_{0}a^{n}+{}^{n}C_{1}a^{n-1}+{}^{n}C_{2}a^{n-2}+\ldots\ldots\ +{}^{n}C_{n}$$

 $\mathsf{C}.\,2^n$

D. None of these

Answer: B

13. If the sum of the coefficients in the exapansion $\left(4ax-1-3a^2x^2\right)^{10}$ is 0, then the value of a can be _____

A. 2

B. 4

C. 1

D. 7

Answer: C

Watch Video Solution

14. Find the coefficient of x^4 in the expansion of $\left(2x^2+rac{3}{x^3}
ight)^7$

A. $^{7}C_{2}2^{5}3^{3}$

B. $^7C_22^53^2$

c. $^7C_23^52^2$

D. $^7C_22^53^2$

Answer: B

15. n^2-n+1 is an odd number for all _____

A. n > 1

 $\mathrm{B.}\,n>2$

 $\mathsf{C}.\,n\geq 1$

D. $n \geq 5$

Answer: C

16. Statement-1: For each natural number $n, \left(n+1\right)^7 - n^7 - 1$ is divisible by 7. Statement-2: For each natural number $n, n^7 - n$ is divisible by 7.

A. 10 fol all natural numbers n

B. 10 for odd natural numbers n

C. 10 for even natural numbers n

D. None of these

Answer: C

Watch Video Solution

17. For $n \in N, 2^{3n}+1$ is divisisble by _____

A. 3^{n+11}

B. 3^{n-11}

C. 3^{n+1}

D. 3^{n+111}

Answer: C

18. 2^n-1 gives the set of all odd ntural numbers for all $n\in N$.
Comment on he given statement .
A Two for all values of m

A. True for allI values of n

В.

C. True for only odd values of n

D. True for only prime values of n

Answer: B

19. In the 10th term of $(x+y)^n$, the exponent of x is 3, then the exponent of x in the 7th term is _____

A. 1

B. 7

C. 5

D. 9

Answer: B

Watch Video Solution

20. If the coefficients of the 6th and 5th terms of expansion $(1+x)^n$ are in the ratio 7:5, then find the value of n.

A. 11

B. 12

C. 10

D. 9

Answer: A

21. The third term from the end in the expansion of $\left(3x-2y\right)^{15}$ is

A.
$$-{}^{15}C_53^{13}2^2x^{13}y^2$$

B.
$$^{15}C_53^{13}2^2x^{13}y^2$$

C.
$$^{15}C_53^22^{13}x^2y^{12}$$

D.
$$^{15}C_5 3^2 2^{13} x^2 y^1$$

Answer: D

- **22.** Find the sixth term in the exapnasion of $\left(2x^3-rac{3}{7x^2}
 ight)^{11}$
- A. $-{}^{11}C_5rac{2^63^5}{7^5}x^3$
 - B. $^{11}C_5rac{2^63^5}{7^5}x^{-3}$

C.
$$^{10}C_{9}$$

Watch Video Solution

C. $-{}^{11}C_5rac{2^63^5}{7^5}x^{-3}$

D. $-{}^{11}C_5rac{2^33^5}{7^5}x^{-3}$

Answer: C

23. The term independent of x in the exapansion of
$$\left(x^3 - \frac{1}{x^2}\right)^{10}$$
 is

A.
$$^{10}C_6$$

$${}^{0}C_{6}$$

B.
$$^{10}C_{7}$$

D.
$$-{}^{10}C_6$$

Answer: A

24. Which term is the constant term in the exapansion of
$$\left(2x-rac{1}{3x}
ight)^6$$

- A. 2nd term
- B. 3rd term
- C. 4th term
- D. 5th term

Answer: C

Watch Video Solution

25. The sum of the coefficients in the expasnio of $\left(x+y
ight)^{7}$ is _____

A. 119

B. 64

C. 256

D. 128

Answer: D

Watch Video Solution

26. The number of terms which are not radicals in the exapansion

$$\left(\sqrt{7}+4
ight)^6+\left(\sqrt{7}-4
ight)^6$$
 after simplification, is _____

A. 6

B. 5

C. 4

D. 3

Answer: C

27. The coeeficient of x^4 in the exapnsion of $(4x^2)+(3)/(x)^3$ is

- A. $^8C_512^5$
- B. $^8C_412^4$
- C. ${}^8C_312^3$
- D. $^8C_612^6$

Answer: B

Watch Video Solution

28. In the expansion of $(X + Y)^n$, the coefficients of the 17th and the 13th terms equal. Find the number of term in the expansion

A. 26

- B. 25
- C. 20

D. 24

Answer: B

Watch Video Solution

29. The number of terms in the expansion of $\left[\left(2x+3y
ight)^4(4x-6y)^4
ight]^9$ is _____

- A. 36
- B. 37
- C. 10
- D. 40

Answer: B

30. If sum of the coefficients of the first two odd terms of the expansion $(x+y)^n$ is 16,then find n

- A. 10
- B. 8
- C. 7
- D. 6

Answer: D

Watch Video Solution

Level 2

1. The number of irrational terms in the expansion of
$$\left(2^{1/5}+3^{1/10}
ight)^{55}$$
 is

- A. 5
- В. 6
- C. 4
- D. 7

Answer: A

2. The remainder when $9^{49}+7^{49}$ is divide by 64 is _____

- A. 24
 - B. 8
 - C. 16

Answer: C

Watch Video Solution

- 3. If p(n)=(n-2)(n-1)n(n+1)n(n+2), then greatest number which divides p(n)for all $n\in N$ is _____
 - A. 12
 - B. 24
 - C. 120
 - D. None of these

Answer: C

4. If a,b and n are natural numbers then $a^{2n-1}+b^{2n-1}$ is divisible

by

- A. a+b
- B. $(a + b)^2$
- $\mathsf{C.}\,a^3+b^3$
- D. $a^2 + b^2$

Answer: A

5. Find the coefficient of the independent term in the expansion of $\left(x^{1/2}+7x^{-1/3}
ight)^{10}$

- A. $^{10}C_47^4$
- B. $^{10}C_67^6$

C.
$$^{10}C_67^5$$

D. $^{10}C_47^7$

Answer: B

Watch Video Solution

6. Find the term which has the exponent of x as 8 in the expansion of

$$\left(x^{5/2}-rac{3}{x^3\sqrt{x}}
ight)^{10}$$

A. T_2

 $C. T_4$

B. T_3

D. Does not exist

Answer: D

7. The greatest number which divides $25^n-24n-1$ for all $n\in N$ is

A. 24

B. 578

C. 27

D. 576

Answer: D

View Text Solution

8. If three consective coefficient in the expansion of $\left(1+x\right)^n$, where n is a natural number are 36,84 and 126 respectively, then n is

Answer: B

Watch Video Solution

9. Find the value of k for which the term independent of x in

$$\left(x^2+rac{k}{x}
ight)^{12}$$
 is 7920

A.
$$\frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{2}$$

C.
$$\sqrt{2}$$

Answer: C

Watch Video Solution

- **10.** Find the coefficient of x^7 in the expansion of $\left(7x+\frac{2}{x^2}\right)^{13}$
 - A. $78 imes 8^8 imes 4$
 - B. $78 imes 7^6 imes 4^2$
 - C. $78 imes 7^{11} imes 4$
 - D. $78 \times 7^{11} \times 4^2$

Answer: C

Watch Video Solution

11. The value of $\left(\sqrt{5}+2\right)^6+\left(\sqrt{5}-2\right)^6$ is

- A. a positive integer
- B. a negative integer
- C. an irration number
- D. a rationla number but not n integer

Answer: A

- **12.** The ratio of the coefficients of x(4) to that of the term independent of x in the expansion of $\left(x^2+\frac{9}{x^2}\right)^{18}$ is _____
 - A. 1:6
 - B. 3:8
 - C. 1: 10
 - D. 1:8

Answer: C

Watch Video Solution

13.
$$\sum_{r=2}^{16}{}^{16}C_r=$$

A.
$$2^{15} - 15$$

B.
$$2^{16} - 16$$

$$\mathsf{C.}\,2^{16}-17$$

D.
$$2^{17} - 17$$

Answer: C

14. Number of non-zero terms in the exapansion of
$$\left(5\sqrt{5}x+\sqrt{7}\right)^6+\left(5\sqrt{5}x-\sqrt{7}\right)^6$$
 is _____

- A. 4
- B. 10
- C. 12
- D. 14

Answer: A

- **15.** Find the value of $(98)^4$ by using the binomial theorem.
 - A. 92236846
 - B. 92239816
 - C. 9233886

D	92	2	รล	06
υ.	92.	23	ပဝ	υu

Answer: B

Watch Video Solution

- **16.** If the number of terms in the expansion $(2x+y)^n-(2x-y)^n$ is, 8 then the value of n is _____ (where n is odd)
 - A. 17
 - B. 19
 - C. 15
 - D. 13

Answer: C

17. If the expansion $\left(2x^5+rac{1}{3x^4}
ight)^n$ contains a term independent of

x, then the value of n can be ______

- A. 6
- B. 18
- C. 3
- D. 12

Answer: B

- **18.** Find the sum of the coefficients in the expansion of $\left(5x^6-\frac{4}{x^9}\right)^{10}$
 - A. 5^{10}
 - B. 1

 $\mathsf{C.}\,4^{10}$

D. 0

Answer: B

Watch Video Solution

19. $49^n+16n-1$ is an divisible by _____ $(n\in N)$

A. 64

B. 28

C. 48

D. 54

Answer: A

20. Find the coefficient of x^{11} in the expansion of $\left(1+2x+x^2\right)^6$

A. 1

B. 2

C. 6

D. 12

Answer: D

Level 3

1. The number of irrational terms in the binomial expansion of $\left(3^{1/5}+7^{1/3}\right)^{100}$ is ___

A. 70

Answer: C

Watch Video Solution

Find the independent term in the expansion of $\left(x^4 + \frac{3}{8x^3\sqrt{x}}\right)^{15}$

A.
$$^{15}C_4igg(rac{3}{8}igg)^{16}$$

B.
$$^{15}C_{12}igg(rac{3}{8}igg)^8$$

c.
$$^{15}C_8 \left(\frac{3}{8}\right)^8$$

D.
$$^{15}C_7igg(rac{3}{8}igg)^8$$

Answer: C

3.
$$\sum_{r=1}^{30} r rac{^{30}C_r}{^{30}C_{r-1}} =$$

D. 630

Answer: B

Watch Video Solution

4. For all $n \in N, 41^n - 40n - 1$ is divisible by _____

A. 41

B. 40

C. 300

D. 500

Answer: B

Watch Video Solution

5. If m and n are the coeficients of x^{a^2} and x^{b^2} respectively in $(1+x)^{a^2+b^2}$, then relation between m and n is ______

A. n=2m

B. m + n = 0

 $\mathsf{C.}\,2n=m$

D. m = n

Answer: D

6. For each
$$n \in N,$$
 $5^{3n}-1$ is divisible by ____

A. 115

B. 124

C. 5

D. 6

Answer: B

Watch Video Solution

7. In the exapansion $(6+9x)^5$ the coefficient of x^3 is ______

A. $2^2 imes 3^8$

B. $2^4 imes 3^7$

C. $2^3 imes 3^8 imes 5$

D. $2^4 imes 3^75$

Answer: C

Watch Video Solution

8. In the expansion of $(X+y)^n$, the coefficients of the 17th and the

13th terms equal. Find the numbher of term in the expansion

A. 18

B. 22

C. 28

D. 29

Answer: D

A. 240

B. 150

C. 100

D. 180

Answer: A

10. In the 10th term of $(x+y)^n$, the exponent of x is 3, then the exponent of x in the 7th term is

11.
$$\sqrt{20}\Big\{ig(\sqrt{20}+1ig)^{100}-ig(\sqrt{20}-1ig)^{100}\Big\}$$
 is a/an _____

B. whole number

C. negtive number

D. rational number

Answer: B

12. If $x=-{}^{n}C_{1}+{}^{n}C_{2}(2)-{}^{n}C_{3}(2)^{2}+....$ (where n is odd), then

A. 1

B. - 1

C. 0

Answer: B

Watch Video Solution

- **13.** Find the independent term in the expansion of $\left(5x^2-rac{1}{x^4}
 ight)^6$
 - A. 8250
 - B. 8560
 - C. 9250
 - D. 9375

Answer: D

14. The sum of the first three coefficients in the expansion $\left(x+\frac{1}{y}\right)^n$ is 22. Find the value of n.

A. 8

B. 7

C. 6

D. 5

Answer: C

Watch Video Solution

15. If $^{12}C_0^{\ 12}C_1$ $^{12}C_{12}$ are the binomial coefficients of the expansion $(1+x)^{12}$, $herm{them}^{12}C_0-^{12}C_1+^{12C_{2-12}C_3+\dots \dots 12C_{12=}}$

A. 4096

- B. 1024
- C. 0
- D. 1024

Answer: C

