India's Number 1 Education App

MATHS

BOOKS - PEARSON IIT JEE FOUNDATION

MATRICES

Example

1. If A =
$$\begin{bmatrix} 2 & 3 & -1 \\ 5 & 6 & 1 \end{bmatrix}$$
, then find (0) -A (b) 3A (c) $\frac{1}{4}A$.

- **2.** If $A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 1 \\ 4 & -2 \end{bmatrix}$ then find A B.
 - Watch Video Solution

3. If
$$A = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$
 , then find $A^{2009} + \left(A^T
ight)^{2009}$

Watch Video Solution

- **4.** If $A = \begin{pmatrix} 2 & 3 \\ 5 & 1 \end{pmatrix}$, $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and AB = -13I, then find the value of a + b-c+d.
- (a) 5 (b) 3 (c) 2 (d) 1

Watch Video Solution

- **5.** If $A = \begin{pmatrix} 3 & -6 \\ -1 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 6 \\ 1 & 3 \end{pmatrix}$ are two matrices, then find AB
- (a) I (b) O (c) A (d) B

+ BA.

6. If
$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$
, ps = 15 and det A = 21, then find the value of qr.

(a) 6 (b) -6 (c) 5 (d) -8

7. Find the inverse of the matrix $A = \begin{bmatrix} 2 & -4 \\ 3 & -5 \end{bmatrix}$.

8. If
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
 , then find $A^{-1} + A$.

9. If
$$A = \begin{bmatrix} x^2 & y \\ 5 & -4 \end{bmatrix}$$
 and $A = A^{-1}$, then find $\begin{bmatrix} x^3 & y+x \\ 1 & 2x^2+y \end{bmatrix}^{-1}$ (a) $\frac{1}{41} \begin{bmatrix} 8 & 1 \\ -1 & 5 \end{bmatrix}$ (b) $\frac{1}{41} \begin{bmatrix} 5 & 8 \\ 1 & -1 \end{bmatrix}$

10. Solve the simulteneous linear equations

11. Solve the system of linear equations 3x + 4y = 2, 5x-3y = 13 by Cramer's

(c) $\begin{bmatrix} 5 & 1 \\ -1 & 8 \end{bmatrix}$

(d) $\frac{1}{41}\begin{bmatrix} 5 & 1\\ -1 & 8 \end{bmatrix}$

2x-5y = 1, 5x + 3y = 18.

method.

Exercise Very Short Answer Type Questions

1. Who gave the name 'matrix' to a rectangular arrangement of certain numbers in some rows and columns?

2. If $a_j=0 (i
eq j)$ and $a_{ij}=4 (i=j)$ "then the matrix $A=\left[a_{ij}
ight]_{n imes n}$ is a matrix

3. If A = $\begin{bmatrix} -1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & m \end{bmatrix}$ is a scalar matrix, then x + m = ____.

4. The order of column matrix containing n rows is ____.

5. If
$$P = \begin{bmatrix} 3 & 0 \\ 0 & \lambda \end{bmatrix}$$
 is scalar matrix then $\lambda =$ ____.

6. If
$$\begin{bmatrix} 4 & -3 \\ 2 & 16 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 2' \end{bmatrix}$$
 then t =___.

7. If
$$A = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$$
, then find $|A|$.

8. The product of two matrices, i.e., AB = I, then B is called the___ of A and written as .

9. If $\left(A+B^T
ight)^T$ is a matrix of order 4 imes 3, then the order of matrix B

is .

- **10.** If $\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} + \begin{bmatrix} -y & 4 \\ 7 & x \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 7 & 6 \end{bmatrix}$ then x =___ and y =__.
 - Watch Video Solution

- **11.** Is A = $\begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$ singular?
 - Watch Video Solution

- **12.** If A is any square matrix, then $\frac{1}{2}(A-A^T)$ is a ____matrix.
 - Watch Video Solution

13. If the determinant of a square matrix is non-zero, then the matrix is called a matrix.

14.
$$(AB)^{-1} =$$
___.

15. The inverse of matrix A, if A^2 = 1, is ____.

16. The additive inverse of $\begin{bmatrix} -1 & 3 & 4 \\ 5 & -7 & 8 \end{bmatrix}$ is ____.

17. If
$$A imes \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$
, then the order of A is ____.

A.
$$1 imes2$$

B.
$$2 imes 2$$

$$\mathsf{C.}\,3 imes2$$

D.
$$4 imes2$$

Answer: C

18. If the order of matrices A, B and C are $3 \times 4, 7 \times 3$ and 4×7 respectively, then the order of (AC) B is ____.

19. Express the equations 2x-y + 6 = 0 and 6x + y + 8 = 0, in the matrix equation form.

20. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $A^{-1} =$ ____.

21. If
$$\begin{bmatrix} 2 & -4 \\ 9 & d-3 \end{bmatrix} = 4$$
, then d=___.

22. If
$$AB=KI$$
, where $K\in R$, then $A^{-1}=$

23. If
$$p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, then $P^{-1} =$ ___.

24. The value of $\begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} =$ ___.

25. If K is real number, then $(KA)^{-1} = ___.$

26. The matrix $A = \begin{bmatrix} a & d \\ c & a \end{bmatrix}$ is singular then a =___.

28. If |A|=5, $|B_1|=5$ and $|B_2|=25$, then find the values of x and y in Cramer's method.

29. If
$$A = [s2]$$
 and $B = \begin{bmatrix} x \\ y \end{bmatrix}$ then $AB = \underline{\hspace{1cm}}$.

30. The matrix obtained by multiplying each of the given matrix A with -1 is called the ___ of A and is denoted by ____.

- **1.** $IfA = ig[a_{ij}ig]_{2 imes 2}$ such that $a_{ij} = i j + 3$,then find A.
 - Watch Video Solution

- **2.** If $A+B^T=\begin{bmatrix}1&3\\4&5\end{bmatrix}$ and $A^T-B=\begin{bmatrix}7&8\\-1&3\end{bmatrix}$, then find matrices A and B.
 - Watch Video Solution

- **3.** If $\begin{pmatrix} \frac{1}{2} & -\frac{3}{5} \\ \frac{4}{6} & -\frac{1}{7} \end{pmatrix} = \begin{pmatrix} -a & b \\ c & -d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then find a, b,c and d.
 - Watch Video Solution

- **4.** If $B=\begin{bmatrix} -1 & 0 \\ 2 & 4 \end{bmatrix}$ and $f(x)=x^2-4x+5$, then find f(B).
 - Watch Video Solution

7. Two friends Jack and Jill attend IIT entrance test which has three

Watch Video Solution

C).

6. If $A imes egin{bmatrix} -3 & 4 \ 5 & 10 \end{bmatrix} = \begin{bmatrix} 13 & 6 \end{bmatrix}$, then find A.

Mathematics, Physics and Chemistry. Each question sections, Mathematics, Physics and Chemistry carry 5 marks, 8 marks and 3 marks respectively. Jack attempted 10 questions in Mathematics, 12 in Physics and 6 in Chemistry while Jill attemped 18, 5 and 9 questions in Mathematics, Physics and Chemistry respectively Assuming that all the questions attempted were correct, find the individual marks obtained by the boys by showing the above information as a matrix product.

5. If $A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 5 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} -1 & 2 \\ 0 & 5 \end{bmatrix}$ then find A(B +

View Text Solution

8. If A and B are two matrices such that A + B =
$$\begin{bmatrix} 3 & 8 \\ 11 & 6 \end{bmatrix}$$
 and $A - B = \begin{bmatrix} 3 & 8 \\ 11 & 6 \end{bmatrix}$

[{:(5, 2),(-3, -6):}]`, then find the matrices A and B.

Watch Video Solution

9. Compare the product,

$$\begin{pmatrix} -5 & 1 \\ 6 & -1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 4 & -5 & -1 \\ 5 & 6 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \\ 1 \end{pmatrix}$$

10. If
$$A=\begin{pmatrix} 7 & 2 \\ 18 & 5 \end{pmatrix}$$
, then show that $A-A^{-1}=12I$.

11. If $A=\begin{pmatrix} 9&-7\\-4&3 \end{pmatrix}$ and $B=\begin{pmatrix} -3&-7\\-4&-9 \end{pmatrix}$, then find AB and hence find A^{-1} .

12. Given
$$A=\begin{pmatrix} 3 & P \\ 2 & 5 \end{pmatrix}$$
 and $B=\begin{pmatrix} 1 & 0 \\ 5 & 6 \end{pmatrix}$. If AB= BA, then find p.

13. If
$$A=\begin{bmatrix}2&-5\\0&1\end{bmatrix}$$
 and $I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ then find the matrix X such that $4A-2X+I=0$.

14. If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -5 & 9 \\ 3 & 4 \end{bmatrix}$, and $C = \begin{bmatrix} -3 & 6 \\ 2 & 1 \end{bmatrix}$, then find 2A

+ 3B - 4C.

15. Find the possible orders for matrices A and B if they have 18 and 19 elements respectively.

Watch Video Solution

Essay Type Questions

1. If
$$A=egin{pmatrix} 4 & 3 \ -2 & 1 \end{pmatrix}$$
 , then find $A+10A^{-1},$

2. Solve the following simultaneous equations using Cramer's method:

$$\frac{3x - 5y}{18} = 1, 2y - 4x + 10 = 0.$$

3. If A =
$$\binom{2}{1} \binom{7}{4}$$
 and B = $\binom{5}{-2} \binom{-7}{3}$ find AB, $(AB)^{-1}, A^{-1}, B^{-1}$ and $B^{-1}A^{1}$. What do you notice?

4. Solve the following system of linear equations using matrix inversion method:

$$5x-3y = -13, 2x + 5y = 1.$$

5. If
$$A=\left(egin{array}{cc} 4 & -3 \ 5 & 2 \end{array}
ight)$$
 , then show that $A+23A^{-1}=61.$

Exercise Concept Application Level 1

1. If
$$\begin{vmatrix} 2 & -3 \\ p-4 & 2p-1 \end{vmatrix} = -6$$
, then p =___.

A. $\frac{8}{7}$

B. $\frac{7}{8}$

Answer: A

2. If $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b+c \\ b-c & d \end{pmatrix} = \begin{pmatrix} 4 & -5 \\ 3 & 2 \end{pmatrix}$, then (a-b) + (c-d)=___.

C. 2

Answer: D

Watch Video Solution

- 3. If $\begin{vmatrix} 5 & -3 \\ 6 & -a \end{vmatrix} = 4$, then 5a-4 =____.
 - A. 0
 - B. 10
 - C. 14
 - D. $\frac{14}{5}$

Answer: B

- **4.** If $\begin{bmatrix} 2 & -3 \\ 5x+4 & 4 \end{bmatrix}$ has a multiplicative inverse, then x cannot be_____.

$$\operatorname{B.}\frac{4}{5}$$

$$\mathsf{C.}\,\frac{-3}{4}$$

$$\text{D.}\,\frac{-4}{3}$$

Answer: D

Watch Video Solution

5. If
$$A = \begin{bmatrix} 8 & 7 \\ -9 & -8 \end{bmatrix}$$
, then A^{-1} =____.

A. A

B.-A

C. 2A

D. $\begin{bmatrix} 8 & 7 \\ -(-9) & -8 \end{bmatrix}$

Answer: A

6. Given
$$A = \begin{bmatrix} 4 & -2 \\ 2a-1 & 5a-3 \end{bmatrix}$$
 and if A does not have multiplicative

inverse, then 12a-13=____.

B.
$$\frac{7}{12}$$

c.
$$\frac{12}{7}$$

$$\mathsf{D.}-6$$

Answer: D

7. If
$$A=\begin{pmatrix} 7 & 2 \\ -3 & 9 \end{pmatrix}$$
, $B=\begin{pmatrix} p & 2 \\ -3 & 5 \end{pmatrix}$ and AB = BA, then find p.

D. p does not have a unique value

Answer: C

Watch Video Solution

8. Given
$$A = \begin{pmatrix} 5 & -3 \\ -2 & 1 \end{pmatrix}$$
, then $A^{-1} =$ ____.

A.
$$\begin{pmatrix} -1 & -3 \\ 2 & 5 \end{pmatrix}$$
B. $\begin{pmatrix} -1 & -3 \\ -2 & -5 \end{pmatrix}$

$$\mathsf{C}.\begin{pmatrix} -1 & -3 \\ 2 & -5 \end{pmatrix}$$

D. $\begin{pmatrix} 1 & 3 \\ 2 & -5 \end{pmatrix}$

Answer: B

Watch Video Solution

9. If $\begin{vmatrix} 7a-5b & 3c \\ -1 & 2 \end{vmatrix} = 0$, then which of the following in true?

A.
$$14a + 3c = 5b$$

B. 14a - 3c = 5b

C. 14a + 3c = 10b

D. 14a + 10b = 3c

Answer: C

Watch Video Solution

10. If a square matrxi A is skew-symmetric, then which of the following is correct?

A. A^T is skew-symmetric

B. A^{-1} is skew-symmetric

C. A^{2007} is skew-symmetric

D. All of these

Answer: D

11. If
$$|A|=47$$
, then find $|A^T|$.

$$A. - 47$$

D. 1

Answer: B

12. There are 25 software engineers and 10 testers in Infosys and 15 software engineers and 8 testers in Wipro. In both the companies, a software engineer is paid Rs. 5000 per month and a tester is paid Rs 3000 per month. Find the total amount paid by each of the companies per month by representing the data in matrix form.

Watch Video Solution

 $\left(rac{155000}{99000}
ight)$

13. If det (A) = 5, then find det (15A) where A is of order 2×2

A. 225

Answer: A

14. If
$$A = \begin{bmatrix} \csc \alpha & \tan \alpha \\ \cot \alpha & -\sin \alpha \end{bmatrix}$$
 , then A is a/an____.

- A. singular matrix
- B. scalar matrix
- C. symmetric matrix
- D. non-singular matrix

Answer: D

Watch Video Solution

- **15.** Which of the following statements is true?
 - A. A singular matrix has an inverse.

singular matrix.

B. If a matrix does not have multiplicative inverse, it need not be a

singular matrix. D. $\begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix}$ is a singular matrix.

C. If a, b are non-zero real numbers, then $\begin{bmatrix} a+b & a-b \\ b-a & a+b \end{bmatrix}$ is a non-

16. What is the condition that is to be satisfied for the identify (P +Q) (P-

Q) = $P^2 - Q^2$ to be true for any two square matrices P and Q?

Answer: C

- - A. The identity is always true.

B. $PQ \neq QP$.

- C. Both PQ and QP are not null matrices.
- D. P, Q and PQ are symmetric.

Answer: D

17. Solve the simultaneous equations:

2x-3y = 11 and 5x + 4y = 16

A.
$$x = 5, y = -\frac{1}{3}$$

$$\operatorname{B.} x = 2, y = \frac{2}{3}$$

C.
$$x=-1$$
, $y=4$

D.
$$x = 4, y = -1$$

Answer: D

Watch Video Solution

18. If is a 2×2 identity matrix, then $\left| \left(3I \right)^{30} \right|^{-1}$ =____.

A.
$$\frac{1}{3^{30}}$$

$$\mathsf{B.}\;\frac{1}{3^{60}}$$

$$C. 3^{30}$$

D.	3^{60}
ν.	J

Answer: B

Watch Video Solution

- **19.** If A is 2×2 square matrix, such that det A = 9, then det (9A) = ____.
 - A. $\frac{1}{3^{30}}$
 - B. 9
 - C. 81
 - D. 729

Answer: D

Watch Video Solution

20. Which of the following statement (s) is true?

A. Inverse of a square matrix is not unique.

B. If A and B are two square matrices, then $\left(AB\right)^T=A^TB^T.$

C. If A and B are two square matrices, then $(AB)^{-1}=A^{-1}B^{-1}$.

D. If A is a non-singular square matrix, then its inverse can be uniquely expressed as sum of a symmetric and skew-symmetric matrix.

Answer: D

Watch Video Solution

21. If A and B are two square matices such that AB= A and BA = B, then find $\left(A^{2006}B^{2006}\right)^{-1}$.

A.
$$A^{-1}B^{-1}$$

B.
$$B^{-1}A^{-1}$$

C. AB

D. Cannot be determined

Answer: B

Watch Video Solution

22. If $A=\begin{bmatrix}3&4\\-1&2\end{bmatrix}$ and $\mathrm{B}=\begin{bmatrix}2&-3\\4&-5\end{bmatrix}$, then find the determinant of

A. 10

AB.

B. 20

C. 12

D. 15

Answer: B

Watch Video Solution

23. If the trace of the matrix A is 4 and the trace of matrix B is 7, the find trace of the matrix AB.

25. If
$$A = \left[egin{array}{cc} 3 & 0 \ 0 & 3 \end{array}
ight]$$
 , then find $A^n, \ ext{(where } n \in N)$

A.
$$\begin{bmatrix} 3n & 0 \\ 0 & 3n \end{bmatrix}$$

B.
$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
C.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

D. $I_{2\times 2}$

Answer: C

26. If A is a `2 xx 2 scalar matrix and 7 is the one of the elements in its principal diagonal, then the inverse of A is____.

A.
$$\begin{bmatrix} \frac{-1}{7} & 0 \\ 0 & \frac{-1}{7} \end{bmatrix}$$
B.
$$\begin{bmatrix} 0 & -7 \\ -7 & 0 \end{bmatrix}$$

D.
$$\begin{bmatrix} \frac{1}{7} & 0 \\ 0 & \frac{1}{7} \end{bmatrix}$$
Answer: D

 $\mathsf{C.} \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$

27.
$$A_1,A_2,A_3,\ldots,A_n$$
 and B_1,B_2,B_3,\ldots,B_n are non-singular square matrices of order n such that $A_1B_1=I_n,A_2B_2=I_n,A_3B_3=I_n,\ldots,A_nB_n=I_n$ then $(A_1A_2A_3,\ldots,A_nB_n)$

A.
$$B_1B_2B_3\ldots B_n$$

$$\mathsf{B}.\, B_1^{-1} B_2^{-1} B_3^{-1} \dots B_n^{-1}$$

$$\mathsf{C.}\,B_nB_n-_1B_n-_2\ldots B_1$$

D.
$$B_{n-1}B_{n-1^{-1}}B_{n-2^{-1}}...B_1^{-1}$$

28. If
$$A = \begin{bmatrix} 5 & 6 \\ 9 & 9 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ p & 3 \end{bmatrix}$ and AB = BA, then p=____.

A.
$$\frac{9}{2}$$

$$\mathsf{B.}\,\frac{-2}{9}$$

$$\mathsf{C.}\,\frac{-9}{2}$$

D.
$$\frac{2}{9}$$

Answer: A

Watch Video Solution

29. The inverse of a scalar matrix A of order 2×2 , where one of the principal diagoanl elements is 5, is ____.

A. 51

B. I

$$\mathsf{C.}\ \frac{1}{5}I$$

D. $\frac{1}{25}I$

Answer: C

Watch Video Solution

30. If $A = \begin{bmatrix} 3 & -2 \\ 6 & 4 \end{bmatrix}$, then AA^{-1} =____. A. $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathsf{B.} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\mathsf{C}. \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Answer: C

Exercise Concept Application Level 2

1. If
$$A=\left(egin{array}{cc} 4 & 22 \ -1 & -6 \end{array}
ight)$$
 , then find $A+A^{-1}$.

$$A. \begin{bmatrix} 8 & -11 \\ -1 & -6 \end{bmatrix}$$

B.
$$\begin{bmatrix} 7 & 33 \\ \frac{1}{2} & -4 \end{bmatrix}$$
C. $\begin{bmatrix} 7 & 33 \\ -\frac{3}{2} & -8 \end{bmatrix}$

D.
$$\begin{bmatrix} 7 & 33 \\ -rac{3}{2} & -4 \end{bmatrix}$$

Answer: C

Watch Video Solution

2. If $A = \begin{bmatrix} 4 & p \\ 3 & -4 \end{bmatrix}$ and $A - A^{-1} = 0$, then p = ____.

A. 4

- B. 3
- C.-5

Watch Video Solution

3. If
$$\begin{pmatrix} 11 & -4 \\ 8 & -3 \end{pmatrix} \begin{pmatrix} -x & 4 \\ -8 & y \end{pmatrix} = -\begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$$
, then find 2x - y.

A.
$$-5$$

C. 0

B. 5

D. 14

Answer: A

Watch Video Solution

4. If $\begin{bmatrix} a^x \\ a^{-x} \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} p & a^{-2} \\ a & \log_2 2 \end{bmatrix}$, (a>0) then $a^{p-q}=$

C. 1

A. $2^{\frac{3}{2}}$

B. $2^{\frac{-3}{2}}$

Answer: D

D. $4^{\frac{3}{2}}$

Watch Video Solution

- **5.** If the matrix $\left[egin{array}{cc} 2^a & 32 \ 36 & 12^b \end{array}
 ight]$ is singular and if $k=rac{2a}{ca+1}$, then find c. A. $\frac{2}{3}$

 - $\mathsf{B.}\;\frac{3}{2}$
 - $\mathsf{C.}\,\frac{4}{5}$ D. $\frac{3}{4}$
- **Answer: A**

6. If
$$A=\left[egin{array}{cc} 7 & 6 \ -8 & -7 \end{array}
ight]$$
 then find $\left(A^{12345}
ight)^{-1}$.

 $\mathsf{A.}\,A^T$

B. A

C. I

D. Cannot be determined

Answer: B

Watch Video Solution

7. The inverse of a diagonal matrix, whose principal diagonal elements are

$$l, m$$
 is

A.
$$\begin{bmatrix} \frac{1}{l} & 0 \\ 0 & \frac{1}{m} \end{bmatrix}$$

$$\mathsf{B.}\begin{bmatrix} l & 0 \\ 0 & m \end{bmatrix}$$

C.
$$\begin{bmatrix} l^2 & 0 \\ 0 & m^2 \end{bmatrix}$$
 D.
$$\begin{bmatrix} 2l & 0 \\ 0 & 2m \end{bmatrix}$$

Answer: A

8. If
$$\begin{bmatrix} 4^b & 288 \\ 72 & 18^a \end{bmatrix}$$
 is a singular matrix and $2b=a+rac{1}{c}$ then c is

$$\mathsf{B.}\;\frac{1}{4}$$

C.
$$\frac{1}{6}$$

D. 6

Answer: B

9. If A is a non-singular square matrix such that
$$A^2-7A+5I=0$$
, then

$$A^{-1}$$

$$A.7A - I$$

$$\mathsf{B.}\ \frac{7}{5}I-\frac{1}{5}A$$

C.
$$rac{7}{5}I+rac{1}{5}A$$

D.
$$rac{A}{5}-rac{7}{5}$$

Answer: B

10. If
$$A=a\begin{bmatrix}-1&0\\-1&2\end{bmatrix}$$
 nd $B=\begin{bmatrix}3&2\\-1&0\end{bmatrix}$, then find B^{-1},A^{-1} .

A.
$$\begin{bmatrix} \frac{-1}{2} & \frac{3}{4} \\ \frac{-1}{2} & \frac{-5}{4} \end{bmatrix}$$

B.
$$\begin{bmatrix} 2 & 4 \\ -1 & \frac{1}{2} \\ \frac{-5}{2} & \frac{3}{2} \end{bmatrix}$$

$$\begin{bmatrix}
\frac{-3}{4} & \frac{3}{4}
\end{bmatrix}$$
C.
$$\begin{bmatrix}
\frac{1}{2} & \frac{-1}{2} \\
\frac{-5}{4} & \frac{3}{4}
\end{bmatrix}$$

D.
$$\begin{bmatrix} \frac{1}{2} & \frac{-3}{4} \\ \frac{-1}{2} & \frac{-5}{4} \end{bmatrix}$$

Watch Video Solution

11. If
$$P=\begin{bmatrix} \sec \alpha & \tan \alpha \\ -\cot \alpha & \cos \alpha \end{bmatrix}$$
 and $Q=\begin{bmatrix} -\cos \alpha & \tan \alpha \\ -\cot \alpha & -\sec \alpha \end{bmatrix}$, than $2P^{-1}+Q=$

A.
$$\begin{bmatrix} \cos \alpha & -\tan \alpha \\ \cot \alpha & \sec \alpha \end{bmatrix}$$
B.
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathsf{C}. \begin{bmatrix} -\cos\alpha & \tan\alpha \\ -\cot\alpha & -\sec\alpha \end{bmatrix}$$

D.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer: B

12. If A is a skew-symmetric matrix such that AB=aI, then find $\left(A^{-1}
ight)^T$

A.
$$-1B$$

B. $\left(-aB^T\right)$

 $C.\frac{B}{a}$

 $D. - \frac{B}{a}$

Answer: D

Watch Video Solution

13. If $A = \begin{bmatrix} 8 & -7 \\ 9 & -8 \end{bmatrix}$, then $(A^{2007})^{-1} =$ ___.

A. I

B. 2A

C. A

D. 2007I

Watch Video Solution

- **14.** If the matrix $\begin{pmatrix} 10 & -9 \\ 5x+7 & 5 \end{pmatrix}$ is non-singular, then the range of x.
 - A. $\frac{113}{45}$
 - $\mathsf{B.}\,R \left\{\frac{-113}{45}\right\}$
 - $\mathsf{C.}\,R \left\{\frac{113}{45}\right\}$
 - D. $\frac{-113}{45}$

Answer: B

Watch Video Solution

15. If AB = BA, then prove that ABAB = A^2B^2 . The following are the steps involved in proving the above result. Arrange them in the sequential order.

(A)
$$ABAB = A(BA)B$$

- (B) (AA)(BB)
- (C) A(AB)B

(D) A^2B^2

A. ABCD

B. ACBD

- C. BCAD
- D. ADBC

Answer: B

Watch Video Solution

16. The following are the steps in finding the matrix B, if $B+\left(egin{array}{cc} 2 & 3 \ 4 & 5 \end{array}
ight)=\left(egin{array}{cc} 5 & 4 \ 3 & 2 \end{array}
ight)$. Arrange them in sequential order.

(A)
$$\therefore \begin{pmatrix} p & q \\ r & s \end{pmatrix} + \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix}$$

(B) Let
$$B=egin{pmatrix} p & q \ r & s \end{pmatrix}$$

17. $(AB)^{-1} = ___.$

A. $A^{-1}B^{-1}$

(C) $\begin{pmatrix} p+2 & q+3 \\ r+4 & s+5 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix}$

(E) $\therefore B = \begin{pmatrix} 3 & 1 \\ -1 & -3 \end{pmatrix}$

A. BACDE

B. BADCE

C. BDCAE

D. BADEC

 $\Rightarrow p = 3, q = 1, r = -1, s = -3$

(D) P+2=5, q+3=4, r+4=3, s+5=2

Watch Video Solution

B. $B^{-1}A$

$$\mathsf{C}.\,AB^{-1}$$

D.
$$B^{-1}A^{-1}$$

Answer: D

Watch Video Solution

18. If $\begin{vmatrix} 2 & -4 \\ 9 & d-3 \end{vmatrix}$ =4, then d = ____.

- A. 13
- B. 26
- C. -13
- D. -26

Answer: C

19. If
$$A=egin{pmatrix} 2 & 3 \ 6 & 9 \end{pmatrix}$$
 , then find |A|.

- B. 1
- C. 2
- D. 3

Answer: A

Exercise Concept Application Level 3

- **1.** The number of integral values of x for which the determinant of the matrix $\begin{bmatrix} 5x+14&-2\\7x+8&x \end{bmatrix}$ is always less than 1 is
 - A. 3
 - B. 4

D. 6

Answer: B

Watch Video Solution

2.

A. $\frac{1}{65}\begin{bmatrix} 7 & 2\\ -1 & 9 \end{bmatrix}$

 $B. \frac{1}{65} \begin{bmatrix} 7 & -2 \\ 1 & 9 \end{bmatrix}$

 $\mathsf{C.} \, \frac{1}{65} \left[\begin{matrix} 7 & 2 \\ 1 & 9 \end{matrix} \right]$

D. $\frac{1}{65}\begin{bmatrix} 9 & 2\\ -1 & 7 \end{bmatrix}$

 $A = \begin{bmatrix} x^2 & y^2 \\ \log_{1024} a & -9 \end{bmatrix}, a = 16^{25} \; ext{ and if } \; A = A^{-1}, \; ext{ then } \begin{bmatrix} x^2 & y \\ 1 & x^2 + y \end{bmatrix}$

If

Answer: A

3. If
$$A=\begin{pmatrix}5&5\\0&0\end{pmatrix}\begin{pmatrix}0&0\\5&5\end{pmatrix}$$
 and $A^n=\begin{pmatrix}5^{200}&5^{200}\\0&0\end{pmatrix}$, then find n.

A. 100

B. 50

C. 25

D. None of these

Answer: A

4. If
$$\begin{bmatrix} 7 & -6 \\ 8 & -7 \end{bmatrix}^{2008} = \begin{bmatrix} 7 & -6 \\ 8 & -7 \end{bmatrix}^{2010}$$
 then $\begin{bmatrix} 7 & -6 \\ 8 & -7 \end{bmatrix}^{2009}$ is

A.
$$\begin{pmatrix} 7 & -6 \ 8 & -7 \end{pmatrix}^{2008} + \begin{pmatrix} 7 & -6 \ 8 & -7 \end{pmatrix}^{2010}$$

$$\mathsf{B.} \, \frac{1}{2} \bigg[\left(\begin{matrix} 7 & -6 \\ 8 & -7 \end{matrix} \right)^{2010} - \left(\begin{matrix} 7 & -6 \\ 8 & -7 \end{matrix} \right)^{2008} \bigg]$$

$$\mathsf{C.}\begin{pmatrix}1&0\\0&1\end{pmatrix}$$

D.
$$\begin{pmatrix} 7 & -6 \\ 8 & -7 \end{pmatrix}$$

Answer: D

Watch Video Solution

5. If
$$A=egin{bmatrix} \sin \theta & an heta \ an heta & an heta \end{bmatrix}$$
 has no multiplicative inverse, then____.

A.
$$q=0^{\circ}$$

B.
$$q=45^{\circ}$$

C.
$$q=60^{\circ}$$

D.
$$q = 30$$

Answer: A

6. A and B are two square matrices of same order. If
$$AB=B^{-1}$$
, then A^{-1} = .

A.
$$BA$$

B.
$$A^2$$

C.
$$B^2$$

D.
$$B$$

7. $A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$ where p, q, r and s are positive integers. If A is symmetric matrix, |A| = 20 and p = q, then find how many values are possible for s.

- **A.** 1
- B. 2
- C. 3

Watch Video Solution

- **8.** If $A=\left[egin{array}{cc}2&0\\5&-3\end{array}
 ight], B=\left[egin{array}{cc}-2&1\\3&-1\end{array}
 ight]$ then find the trace of $\left(AB^T
 ight)^T$
 - A. 10
 - B. 14
 - $\mathsf{C.}-4$
 - D. 18

Answer: B

9. If A is a 2 × 3 matrix and B is 3 × 2 matrix, then the order of $(AB)^T$ is equal to the order of

A. AB

 $\mathbf{B}. A^T B^T$

C. BA

D. All of these

Answer: A

Watch Video Solution

10. If $A_{2\times 3}, B_{4\times 3}$ and $C_{2\times 4}$ are three matrices, then which of the following is/are defined?

A. AC^TB

B. B^TC^TA

 $\mathsf{C}.\,AB^TC$

D.
$$A^TBC$$

Answer: B

Watch Video Solution

- **11.** If $A=egin{bmatrix} 2 & 4 \ k & -2 \end{bmatrix}$ and $A^2=O$, find the value of k.
 - A.-4
 - B.-3
 - $\mathsf{C.}-2$
 - D. 1

Answer: D

12. If
$$A = \begin{bmatrix} a & b & c \\ x & y & z \\ 1 & m & n \end{bmatrix}$$
 is a skew-symmetric matrix, then which of the

following is equal to x + y + z?

A.
$$a + b + c$$

$$B, l+m+n$$

$$C.a-b-m$$

$$D, c-l-m$$

Answer: C

13. If
$$A=\begin{bmatrix}0&4&-2\\x&0&-y\\2&-8&0\end{bmatrix}$$
 is a skew-symmetric matrix, then x-y =____.

$$C. - 12$$

$$D. - 8$$

Answer: B

Watch Video Solution

14. In solving simultaneous linear equations Crammer's method,

$$B_1=\left[egin{array}{cccc} 3&3\4&1 \end{array}
ight] ext{ and } B_2=\left[egin{array}{ccccc} 2&3\1&4 \end{array}
ight]$$
 , then det $A=_ \ _ \ _ \ A$ is the coefficient $A=_ \ _ \ _ \ A=_ \ A=_-$

cient matrix)

A.
$$-1$$

$$\mathsf{B.}-2$$

C. 3

D. 4

Answer: A

15. $M = \left(egin{array}{cc} p & q \\ r & s \end{array}
ight)$ is a sin gular matrix. Its determinantis equal to its

trace, then p =

A.-q

B.r

C. 0

D.-s

Answer: D

