©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - PEARSON IIT JEE

FOUNDATION

REMAINDER AND FACTOR THEOREMS

Example

1. Find the remainder when the polynomital
$p(z)=z^{3}-3 z+2$ is divided by $z-2$.

- Watch Video Solution

2. Find the value of a if
$a x^{3}-(a+1) x^{2}+3 x-5 a$ is divisible by
$(x-2)$.

D Watch Video Solution

3. If the polynomial $x^{3}+a x^{2}-b x-30$ is exactly divisible by $x^{2}-2 x-15$. Find a and b and also the third factor.

Watch Video Solution

4. Find the linear polynomial in x which when divided bt $(x-3)$ leaves 6 as remainder and is exactly divisible by $(x+3)$.

- Watch Video Solution

5. A quadratic polynomial in x leaves remainders as 4 and 7 respectively when divided by $(x+1)$ and $(x-2)$. Also it is
exactly divisible by $(x-1)$. Find the quadratic polynomial.

D Watch Video Solution

6. Find a common factor of the quadratic polynomials $3 x^{2}-x-10$ and $2 x^{2}-x-6$.

- Watch Video Solution

7. Find the remainder when x^{999} is divided by
$x^{2}-4 x+3$.
8. Find the remainder when x^{5} is divided by $x^{3}-4 x$.

- Watch Video Solution

9. If $f(x+2)=x^{2}+7 x-13$, then find the remainder when $f(x)$ is divided by $(x+2)$.
A. -25
B. -12
C. -23
D. -11

Answer: A

D Watch Video Solution

10. If $(x-2)$ and $(x-3)$ are two factors of
$f(x)=x^{3}+a x+b$, then find the remainder
when $\mathrm{f}(\mathrm{x})$ is divided by $x-5$.
A. 0
B. 15
C. 30
D. 60

Answer: D

- Watch Video Solution

11. If the polynomials
$f(x)$

$$
=x^{2}+5 x-p \text { and } g(x)=x^{2}-2 x+6 p
$$

have a common factor, then find the common
factor .
A. $x+2$
B. x
C. $x+4$
D. Either (b) or (c)

Answer:

D Watch Video Solution
12. When a fourth degree polynomial $f(x)$ is divided by $(x+6)$, the quotient is $Q(x)$ and
the remainder is -6 . And when $f(x)$ is divided by $[Q(x)+1]$, the quotient is $(x+6)$ and the remainder is $R(x)$. Find $R(x)$.
A. $12+x$
B. $-(x+12)$
C. 0
D. 3

- Watch Video Solution

13. Given $f(x)$ is a cubic polynomial in x. If $f(x)$ is
divided
$(x+3),(x+4),(x+5)$ and $(x+6)$, then
it leaves the remainders $0,0,4$ and 6 respectively. Find the remainder when $f(x)$ is divided by $x+7$.
A. 0
B. 1
C. 2
D. 3

Answer:

(D) Watch Video Solution

Test Your Concepts Very Short Answer Type Questions

1. Let
$f(x)$
$=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}\left(a_{0} \neq 0\right)$ be a
polynomial of degree n. If $x+1$ is one of its factors, then

D Watch Video Solution

2. If a polynomial $\mathrm{f}(\mathrm{x})$ is divided by $(x+a)$, then the remainder obtained is \qquad .

D Watch Video Solution

3. If $a a n d b$ are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, wherever n is a
positive integer.

- Watch Video Solution

4. If $f(x)=x^{3}+2$ is divided by $x+2$. Then
the remainder obtained is \qquad .

D Watch Video Solution

5. The condition for which $a x^{2}+b x+a$ is exactly divisible by $x-a$ is

D Watch Video Solution

6. If $\mathrm{x}+1$ is a factor of $x^{n}+1$, then n is

D Watch Video Solution

$$
\begin{aligned}
& \text { 7. } \begin{array}{l}
\text { The } \\
f(x)=x^{3}+5 x^{2}+2 x+3 \text { is divided by } \mathrm{x} \text { is }
\end{array}
\end{aligned}
$$

D Watch Video Solution

8. The remainder when $(x-a)^{2}+(x-b)^{2}$ is divided by x is \qquad

D Watch Video Solution

$$
\begin{aligned}
& \text { 9. The remainder } \\
& x^{6}-4 x^{5}+8 x^{4}-7 x^{3}+3 x^{2}+2 x-7 \text { when }
\end{aligned}
$$

divided by $x-1$ is

- Watch Video Solution

10. For two odd numbers x and y , if $x^{3}+y^{3}$ is divisible by $2^{k}, k \in \mathrm{~N}$, then $\mathrm{x}+\mathrm{y}$ is divisible by 2^{k}.[True/False]

D Watch Video Solution

11. One of the factors of $2 x^{17}+3 x^{15}+7 x^{33}$ is
$\ldots \ldots$

D Watch Video Solution
12. If $(x-2)^{2}$ is the factor of an expression of the form $x^{3}+b x+c$, then the other factor is
\qquad

D Watch Video Solution

13. What should be added to
$3 x^{3}+5 x^{2}-6 x+3$ to make it exactly divisible by $x-1$?
14. The remainder when $2 x^{6}-5 x^{3}-3$ is divided by $x^{3}+1$ is

- Watch Video Solution

15. The remainder when $f(x)$ is divided by $f(x)$
is $f\left(-\frac{3}{2}\right)$, then $\mathrm{g}(\mathrm{x})$ is necessarily $2 x+3$ [
True/False]

- Watch Video Solution

16. Find the remainder when the polynomial $x^{2}+13 x+11$ is divided by $\mathrm{x}-1$.

D Watch Video Solution

17. Find the value of the polynomial
$a^{2}-\frac{1}{6} a+\frac{3}{2}$ when $a=\frac{1}{2}$.

- Watch Video Solution

18. The polynomial $7 x^{2}-11 x+a$ when
divided by $x+1$ leaves a remainder of 8 . Then
find the value of 'a' .

D Watch Video Solution

19. If $x+2$ is a factor of $f(x)$ and $f(x)$ $=x^{3}+4 x^{2}+k x-6$, then find the value of k.

D Watch Video Solution
20. Find the values of a if
$x^{3}-5 x(a-1)-3(x+1)+5 a$ is divisible by $x-a$.

- Watch Video Solution

21. Find the value of a if $x-a$ is a factor of the
polynomial
$x^{5}-a x^{4}+x^{3}-a x^{2}+2 x+3 a-2$.

- Watch Video Solution

22. Find the remainder when $x^{3}+3 p x+q$ is divided by $\left(x^{2}-a^{2}\right)$ without actual division.

- Watch Video Solution

23. The remainder obtained when $x^{2}+3 x+1$ is divided by $(x-5)$ is \qquad .

D Watch Video Solution

24. If the polynomial $3 x^{4}-11 x^{2}+6 x+k$ is divided by $x-3$, it leaves a remainder 7 . Then
the value of k is

- Watch Video Solution

25. $(7 x-1)$ is a factor of
 $7 x^{3}+6 x^{2}-15 x+2 .($ True/False)

D Watch Video Solution

26. If $a x^{2}+b x+c$ is exactly divisible by
$2 x-3$, then the relation between a, b and c

- Watch Video Solution

27. If $x^{2}+5 x+6$ is a factor of $x^{3}+9 x^{2}+26 x+24$, then find the remaining factor.

D Watch Video Solution

28. If $(2 x-1)$ is a factor of $2 x^{2}+p x-2$,
then the other factor is

Watch Video Solution
29. The expression $x^{m}-1$ is divisible by $x+1$, only if M is ____(even/odd)

(Watch Video Solution

30. If $x+m$ is one of the factors of the polynomial $x^{2}+m x-m+4$, then the value of m is \qquad

- Watch Video Solution

Short Answer Type Questions

1. For what values of m and n is $2 x^{4}-11 x^{3}+m x+n$ is divisible by $x^{2}-1$?

- Watch Video Solution

2. Find a linear polynomial which when divided
by $(2 x+1)$ and $(3 x+2)$ leaves remainders
3 and 4, respectively.
3. Prove that $x^{m}+1$ is a factor of $x^{m n}-1$ if n
is even.

- Watch Video Solution

4. The remainders of a polynomial $f(x)$ in x are

10 and 15 respectively when $f(x)$ is divided by
$(x-3)$ and ($x-4$). Find the remaider when $f(x)$ is divided by $(x-3)(x-4)$.
5. If x^{555} is divided by $x^{2}-4 x+3$, then find its remainder.

- Watch Video Solution

6. If $\left(x^{2}-1\right)$ is a factor of
$a x^{3}-b x^{2}-a x+d$, then find the relation
between a and c.

- Watch Video Solution

7. When $x^{4}-3 x^{3}+4 x^{2}+p$ is divided by $(x-2)$
, the remainder is zero Find the value of p.

- Watch Video Solution

8. Find the common factors of the expressions
$a_{1} x^{2}+b_{1} x+c_{1}$ and $a_{2} x^{2}+b_{2} x+c_{1}$ where $c_{1} \neq 0$.

- Watch Video Solution

9. If $(x-3)$ is a factor of $x^{2}+q$ (where q
$\in Q)$, then find the remainder when
$\left(x^{2}+q\right)$ is divided by $(x-2)$.

- Watch Video Solution

10. If $p+q$ is a factor of the polynomial $p^{n}-q^{n}$, then n is

- Watch Video Solution

11. The expression $x^{4005}+y^{4005}$ is divided by ______

D View Text Solution
12. The value of a for which $x-7$ is a factor of
$x^{2}+11 x-2 z$, is

- Watch Video Solution

13. If a polynomial $f(x)$ is divided by
$(x-3)$ and $(x-4)$ it leaves remainders as 7
and 12 respectively, then find the remainder when $f(x)$ is divided by $(x-3)(x-4)$.

D Watch Video Solution

14. Find the ramainder when $5 x^{4}-11 x^{2}+6$
is divided by $5 x^{2}-6$.

D Watch Video Solution

1. If $\mathrm{f}(x-2)-2 x^{2}-3 x+4$, then find the remainder when $f(x)$ is divided by $(x-1)$.

D Watch Video Solution
2. Factorize $x^{4}-2 x^{3}-9 x^{2}+2 x+8$ using remainder theorem.

D Watch Video Solution
3. Find the remainder when x^{29} is divided by $x^{2}-2 x-3$.

- Watch Video Solution

4. If $x^{2}-2 x-1$ is a factor of $p x^{3}+q x^{2}+1$,
(where p, q are integers) then find the value of $p+q$.

- Watch Video Solution

5. If $x^{2}-x+1$ is a factor of $x^{4}+a x^{2}+b$,
then the values of a and b are respectively

- Watch Video Solution

6. If $l x^{2}+m x+n$ is exactly divisible by
$(x-1)$ and $(x+1)$ and leaves a remainder 1
when divided by $\mathrm{x}+2$, then find m and n .

- Watch Video Solution

1. The value of a which the polynomial $y^{3}+a y^{2}-2 y+a+4$ in y has $(y+a)$ as one of its factors is
A. $\frac{-3}{4}$
B. $\frac{4}{3}$
C. $\frac{3}{4}$
D. $\frac{-4}{3}$

- Watch Video Solution

2. If the expression $2 x^{3}-7 x^{2}+5 x-3$ leaves
a remainder of $5 \mathrm{k}-2$ when divided by $\mathrm{x}+1$, then find the value of k.
A. 3
B. -3
C. 5
D. -5

3. Find the remainder when $x^{2003}+y^{6009}$ is

 divided by $x+y^{3}$.A. y^{4006}
B. 1
C. 0
D. y^{4000}

Answer: C
4. Find the remainder when $x^{6}-7 x^{3}+8$ is divided by $x^{3}-2$.
A. -2
B. 2
C. 7
D. 1

Answer: A

- Watch Video Solution

5. If both the expressions
$x^{1248}-1$ and $x^{672}-1, \quad$ are divisible by
$x^{n}-1$, then the greatest integer value of n
is
A. 48
B. 96
C. 54
D. 112
6. When $x^{2}-7 x+2$ is divided by $\mathrm{x}-8$, then
the remainder is
A. 122
B. 4
C. 45
D. 10

Answer: D
7. If $a x^{2}+b x+c$ is exactly divisible by $4 x+5$, then
A. $25 a-5 b+16 c=0$.
B. $25 a+20 b+16 c=0$.
C. $25 a-20 b-16 c=0$.
D. $25 a-20 b+16 c=0$.

Answer: D

- Watch Video Solution

8. The expression $2 x^{3}+3 x^{2}-5 x+p$ when divided by $x+2$ leaves a remainder of $3 p+2$.

Find p.
A. -2
B. 1
C. 0
D. 2

Answer: D
9. $3 x-4$ is a factor of

$$
\begin{aligned}
& \text { A. } 18 x^{4}-3 x^{3}-28 x^{2}-3 x+4 \\
& \text { B. } 3 x^{4}-10 x^{3}-7 x^{2}+38 x-24 \\
& \text { C. } 9 x^{4}-6 x^{3}+5 x^{2}-15 \\
& \text { D. } 9 x^{4}+36 x^{3}+17 x^{2}-38 x-24
\end{aligned}
$$

Answer: A

10. Which of the following is a factor of $5 x^{20}+7 x^{15}+x^{9} ?$
A. x^{20}
B. x^{15}
C. x^{9}
D. x^{24}

Answer: C
11. If $(x-2)$ and $(x-3)$ are two factors of
$f(x)=x^{3}+a x+b$, then find the remainder
when $\mathrm{f}(\mathrm{x})$ is divided by $x-5$.
A. 1
B. 0
C. 5
D. 4

Answer: B

- Watch Video Solution

12. The expression $x^{m n}+1$ is divisible by $\mathrm{x}+1$, only if
A. n is odd.
B. m is odd.
C. both m and n are even.
D. Cannot say.

Answer: B

D Watch Video Solution
13. If both the expressions
$x^{1215}-1$ and $x^{945}-1$, are divisible by
$x^{n}-1$, then the greatest inteatest integer
value of n is
A. 135
B. 270
C. 945
D. None of these.

Answer: A

14. If $(x-2)$ is a factor of $x^{2}+b x+1$ (where
b $\in Q$), then find the remainder when
$\left(x^{2}+b x+1\right)$ is divided by $2 x+3$.
A. 7
B. 8
C. 1
D. 0

Answer: A
15. When $x^{3}+3 x^{2}+4 x+a$ is divided by $(x+2)$, the remainder is zero. Find the value of a.
A. 4
B. 6
C. -8
D. -12

Answer: A
16. If $(x+1)$ and $(x-1)$ are the factors of $a x^{3}+b x^{2}+c x+d$, then which of the following is true?
A. $a+b=0$
B. $b+c=0$
C. $b+d=0$
D. $a+c=0$

Answer: C
17. Find the remainder when x^{5} is divided by $x^{2}-9$.
A. 81 x
B. $81 x+10$
C. $3^{5} x+34$
D. 81

Answer: A
18.

The
remainder
when
$x^{45}+x^{25}+x^{14}+x^{9}+x$ divided by $x^{2}-1$
is \qquad
A. $4 x-1$
B. $4 x+2$
C. $4 x+1$
D. $4 x-2$

Answer: C
19. For what values of a and b, the expression $x^{4}+4 x^{3}+a x^{2}-b x+3$ is a multiple of $x^{2}-1 ?$

$$
\begin{aligned}
& \text { A. } a=1, b=7 \\
& \text { B. } a=4, b=-4 \\
& \text { C. } a=3, b=-5 \\
& \text { D. } a=-4, b=4
\end{aligned}
$$

Watch Video Solution

20.

When
the
polynomial
$p(x)=a x^{2}+b x+c \quad$ is divided by
$(x-1)$ and $(x+1) \quad, \quad$ the remainders
obtained are 6 and 10 respectively. If the value
of $p(x)$ is 5 at $\mathrm{x}=0$, then the value of
$5 a-2 b+5 c$ is \qquad
A. 40
B. 44
C. 21
D. 42

Answer: B

D Watch Video Solution

21. If $\mathrm{p}-\mathrm{q}$ is a factor of the polynomial $p^{n}-q^{n}$,
then n is \qquad
A. a prime number
B. an odd number
C. an even number

D. All of these

Answer: C

- Watch Video Solution

22. When the polynomial
$f(x)=a x^{2}+b x+c$ is divided by $x, x-2$ and
x +3 remainders obtained are 7, 9 and 49 respectively. Find the value of $3 a+5 b+2 c$.
A. -2
B. 2
C. 5
D. -5

Answer: A

- Watch Video Solution

23. If $f(x+1)=2 x^{2}+7 x+5$, then one of
the factors of $f(x)$ is
A. $2 x+3$
B. $2 x^{2}+3$
C. $3 x+2$
D. $2 x+1$

Answer: A

D Watch Video Solution

24. If $(x-p)$ and $(x-q)$ are the factors of $x^{2}+p x+q$, then the values of p and q are respectively
A. $1,-2$
B. $2,-3$
C. $\frac{-1}{3}, \frac{-2}{3}$
D. $-2,1$

Answer: A

- Watch Video Solution

25. Let $f\left(x-\frac{1}{x}\right)=x^{2}+\frac{1}{x 2}$, find the remainder when $f(x)$ is divided by $x-3$.
A. $\frac{82}{9}$
B. $\frac{8}{3}$
C. 10
D. 11

Answer: D

D Watch Video Solution

26. If $(x-2)^{2}$ is a factor of
$f(x)=x^{3}+p x+q$, then find the remainder
when $d f(x)$ is divided by $x-1$.
A. 4
B. -4
C. -5
D. 5

Answer: D

- Watch Video Solution

27. A quadratic polynomial in x leaves
remainders 4,4 and 0 , respectively when
divided by $(x-1),(x-2)$ and $(x-3)^{\prime}$. Find the quadratic polynomial.

$$
\begin{aligned}
& \text { A. }-2 x^{2}+6 x+3 \\
& \text { B. }-2 x^{2}+6 x \\
& \text { C. }-2 x^{2}+6 x+5 \\
& \text { D. }-2 x^{2}+6 x-5
\end{aligned}
$$

Answer: B

D Watch Video Solution

28. If $f(x+3)=x^{2}+x-6$, then one of the
factors of $f(x)$ is \qquad
A. $x-3$
B. $x-4$
C. $x-5$
D. $x-6$

Answer: C
(Watch Video Solution
29. If $(x-1)^{2}$ is a factor of
$f(x)=x^{3}+b x+c$, then find the remainder when $f(x)$ is divided by $(x-2)$.
A. 2
B. -3
C. 4
D. -4

Answer: C

30. For what values of m and n, the expression

$2 x^{2}-(m+n) x+2 n$ is exactly divisible by
$(x-1)$ and $(x-2) ?$
A. $m=5, n=2$
B. $m=3, n=4$
C. $m=4, n=2$
D. $m=2, n=4$

Answer: C

D Watch Video Solution

1. The ratio of the remainders when the expression $x^{2}+b x+c$ is divided by
$(x-3)$ and $(x-2)$ respec-tively is $4: 5$. Find
b and c , if $(x-1)$ is a factor of the given expression.
A. $b=\frac{-11}{3}, c=\frac{14}{3}$
B. $b=\frac{-11}{3}, c=\frac{11}{3}$
C. $b=\frac{-14}{3}, c=\frac{11}{3}$
D. None of these.

Answer: B

D Watch Video Solution

$\begin{array}{lcc}\text { 2. } & \text { If } & \text { the }\end{array}$ polynomals,$~=x^{2}+10 x+1$
have a common factor, then $(k-l)^{2}$ isequal
to
A. $9 l-10 k$
B. $10 l-9 k$
C. Both (a) and (b)

D. None of these.

Answer: A

- Watch Video Solution

3. When $f(x)$ is divided by $(x-2)$, the qoutient is $\mathrm{Q}(\mathrm{x})$ and the remainder is zero.

And when $f(x)$ is divided by $[Q(x)-1]$, the qoutient is $(x-2)$ and the remainder is $\mathrm{R}(\mathrm{x})$.

Find the remainder $R(x)$.
A. $x+2$

$$
\text { B. }-x+2
$$

C. $x-2$
D. Cannot be determined

Answer: C

D Watch Video Solution

4. Find the values of m and n, if $(x-m)$ and $(x-n)$ are the factors of the expression $x^{2}+m x-n$.
A. $m=-1, n=-2$
B. $m=0, n n=1$
C. $m=\frac{-1}{2}, n=\frac{1}{2}$
D. $m=-1, n=2$

Answer: D

D Watch Video Solution

5. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}$, find the remainder when $f(x)$ is divided by $2 x+1$.
A. $\frac{-97}{36}$
B. $\frac{97}{36}$
C. $\frac{-99}{36}$
D. $\frac{99}{36}$

Answer: A

D Watch Video Solution

6. A polynomial $f(x)$ leaves remainders 10 and
$(x-3)$ and $(x-5)$ Find the remainder when $f(x)$ is divided by $(x-3)$ and $(x-5)$.
A. $2 x+6$
B. $2 x-4$
C. $2 x+4$
D. $2 x-6$

Answer: C
(Watch Video Solution
7. If $f(x+3)=x^{2}-7 x+2$, then find the remainder when $f(x)$ is divided by $(x+1)$.
A. 8
B. -4
C. 20
D. 46

Answer: D
(Watch Video Solution
8. A polynomial $f(x)$ when divided by
$(x-5)$ and $(x-7)$ leaves remainders 6 and
16 , respectively. Find the remainder when $f(x)$
is divided by $(x-5)(x-7)$.
A. $5 x+7$
B. $5 x-7$
C. $5 x+19$
D. $5 x-19$

Answer: A
9. A polynomial $p(x)$ leaves remainders 75 and

15 , respectively , when divided by
$(x-1)$ and $(x+2)$. Then the remainder
when $f(x)$ is divided by $(x-1)(x+2)$ is
A. $5(4 x+11)$
B. $5(4 x-11)$
C. $5(3 x+11)$
D. $5(3 x-11)$

Answer: A

D Watch Video Solution

10. The leading coefficient of a polynomial $f(x)$ of degree 3 is 2006 . Suppose that
$f(1)=5, f(2)=7$ and $f(c)=9$. Then find $f(x)$.
A. $2006(x-1)(x-2)(x-3)+2 x+3$
B. $2006(x-1)(x-2)(x-3)+2 x+1$
C. $2006(x-1)(x-2)(x-3)+2 x-1$

$$
\text { D. } 2006(x-2)(x-3)(x-1)-(2 x-3)
$$

Answer: A

D Watch Video Solution

11. The ratio of the remainders when the expression $x^{2}+a x+b$ is divided by
$(x-2)$ and $(x-1)$, respectively is $4: 3$.
Find a and b if $(x+1)$ is a factor of the expression.

$$
\text { A. } 9,-10
$$

B. $-9,10$
C. 9,10
D. $-9,-10$

Answer: D

D Watch Video Solution

12. If $x^{3}-a x^{2}+b x-6$ is exactly divisible by
$x^{2}-5 x+6$,then $\frac{a}{b}$ is
A. $\frac{6}{11}$
B. $\frac{-6}{11}$
C. $\frac{1}{3}$
D. $-\frac{1}{3}$

Answer: A

D Watch Video Solution

13.

$f(x)=x^{2}+5 x+a$ and $g(x)=x^{2}+6 x+b$
have a common factor, then which of the followings is true?

> A. $(a-b)^{2}+5(a-b)+b=0$
> B. $(a+b)^{2}+5(a+b)+a=0$
> C. $(a+b)^{2}+6(a+b)+b=0$
> D. $(a-b)^{2}+6(a-b)+b=0$

Answer: D

D Watch Video Solution

14. If $a x^{4}+b x^{3}+c x^{2}+d x$ is exactly divisible by $x^{2}-4$ then $\frac{a}{c}$ is
A. $\frac{1}{4}$
B. $\frac{-1}{4}$
C. $\frac{-1}{8}$
D. $\frac{1}{8}$

Answer: B

D Watch Video Solution

15. If $x^{2}+x+1$ is a factor of $x^{4}+a x^{2}+b$,
then the values of a and b, respectively are
A. 2,4
B. 2 , 1
C. 1,1
D. 1,2

Answer: C

D Watch Video Solution

16. If $(x+1)$ and $(x-1)$ are the factors of $x^{3}+a x^{2}-b x-2$, then find the other factor of the given polynomial.

The following are the steps involved in solving
the problem given above. Arrange them in the sequential order.
(A) Put $x=-1$ in the given polynomial and obtain the equations in a and b.
(B) Substitute a and b in the given polynomial.
(C) Factorize the polynomial.
(D) Solve the equations in a and b.
A. ADCB
B. ADBC
C. ABCD

D. ABDC

Answer: B

D Watch Video Solution

17. The following are the steps involved in
finding the value of a when $x-2$ is a factor of
$3 x^{2}-7 x+a$. Arrange them in sequential order.
(A) $12-14+a=0 \Rightarrow a=2$
(B)

By
factor
theorem
$f(2)=0 \Rightarrow 3(2)^{2}-7(2)+a=0$
(C) Let $f(x)=3 x^{2}-7 x+a$
A. CBA
B. BCA
C. CAB
D. BAC

Answer: A
(Watch Video Solution
18. If $p x^{3}+q x^{2}+r x+s$ is exactly divisible by
$x^{2}-1$, then which of the following is /are necessarily true?
(A) $p=r$
)B) $q=s$
(C) $p=-r$
(D) $q=-s$
A. Both (A) and (B)
B. Both (C) and (D)
C. Both (A) and (B)

D. Both (B) and (C)

Answer: B

D Watch Video Solution

19. Which of the following is a factor of $x^{3}+3 p x^{2}-3 p q x-q^{3}$? (where p and q are constants)
A. $x+p$
B. $x+q$
C. $x-p$
D. $x-q$

Answer: D

D Watch Video Solution

20. If $(x-k)$ is a common factor of $x^{2}+3 x+a$ and $x^{2}+4 x+b$, then find the value of k in terms of a and b.
A. $a+b$
B. $a-b$
C. $2 a+3 b$
D. $2 \mathrm{a}-3 \mathrm{~b}$

Answer: B

- Watch Video Solution

Level 3

1. Find the remainder when x^{33} is divided by
$x^{2}-3 x-4$.

$$
\begin{aligned}
& \text { A. }\left(\frac{4^{33}-1}{5}\right) x+\left(\frac{4^{33}-4}{5}\right) \\
& \text { B. }\left(\frac{4^{33}+1}{5}\right) x+\left(\frac{4^{33}-4}{5}\right) \\
& \text { C. }\left(\frac{4^{33}-1}{5}\right) x+\left(\frac{4^{33}+4}{5}\right) \\
& \text { D. }\left(\frac{4^{33}-4}{5}\right) x+\left(\frac{4^{33}-4}{5}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

2. If $6 x^{2}=3 x-1$ is a factor of $a x^{3}+b x-1$ (where a, b are integers), then find the value
of b.
A. 1
B. 3
C. -5
D. -7

Answer: C

D View Text Solution
3. If the polynomials
$f(x)=x^{2}+6 x+p$ and $g(x)=x^{2}+7 x+q$
have a common factor, then which of the following is true?
A. $p^{2}+q^{2}+2 p q+6 p-7 q=0$
B. $p^{2}+q^{2}-2 p q+7 p-6=0$
C. $p^{2}+q^{2}-2 p q+6 p-7 p=0$
D. $p^{2}+q^{2}-2 p q+7 p-6 q=0$

Answer: B
4. A polynomial of degree 2 in x, when divided by $\quad(x+1),(x+2)$ and $(x+3), \quad$ leaves remainders 1 , 4 and 3 respectively. Find the polynomial.

$$
\begin{aligned}
& \text { A. } \frac{1}{2}\left(x^{2}+9 x+6\right) \\
& \text { B. } \frac{1}{2}\left(x^{2}-9 x+6\right) \\
& \text { C. } \frac{-1}{2}\left(x^{2}-9 x+6\right) \\
& \text { D. } \frac{-1}{2}\left(x^{2}+9 x+6\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

5. When a third degree polynomial $f(x)$ is divided by $(x-3)$, the quotient is $Q(x)$ and the remainder is zero . Also when $f(x)$ is divided by $[Q(x)+x+1]$, the quotient is ($x-4$) and remainder is $\mathrm{R}(\mathrm{x})$. Find the remainder $R(x)$.
A. $Q(x)+3 x+4+x^{2}$

$$
\text { B. } Q(x)+4 x+4-x^{2}
$$

C. $Q(x)+3 x+4-x^{2}$
D. Cannot be determined

Answer: C

D Watch Video Solution

6. If the expression $x^{2}+3 x-3$, is divided by
$(x-p)$, then it leaves remainder 1 . Find the
value of p.
A. 1
B. -3
C. -4
D. either (a) or (c)

Answer: D

- Watch Video Solution

7. If $a x^{3}-5 x^{2}+x+\mathrm{p}$ is divisible by $x^{2}-3 x+2$, then find the values of a and p .
A. $a=2, p=2$
B. $a=2, p=3$
C. $a=1, p=3$
D. $a=1, p=2$

Answer: A

D Watch Video Solution

8. Which of the following should be added to
$9 x^{3}+6 x^{2}+x+2$, so that the sum is divisible by $(3 x+1)$?
A. -4
B. -3
C. -2
D. -1

Answer: C

D Watch Video Solution

9. If the expression $6 x^{2}+13 x+k$ is divisible by $2 x+3$. Then which of the following is the factor of the expression?
A. $3 x+1$
B. $3 x+4$
C. $3 x+2$
D. $3 x+5$

Answer: C

D Watch Video Solution

10. Given $a x^{2}+b x+c$ is a quadratic polynomial in x and leaves remainders 6,11 and 18 , respectively, when divided by
$(x+1),(x+2)$ and $(x+3)$. Find the value of $a+b+c$.
A. 1
B. 2
C. 3
D. 4

Answer: B
(Watch Video Solution

