

MATHS

BOOKS - PEARSON IIT JEE FOUNDATION

TRIGONOMETRY

Example

1. Convert 45° into circular measure.

Watch Video Solution

2. Convert 150^g into sexagesimal measure.

3. What is the sexagesimal measure of angle measuring $\frac{\pi^c}{3}$?

Watch Video Solution

4. If $\sin \theta = \frac{3}{5}$, then find the value of $\tan \theta$ and $\sec \theta$.

Watch Video Solution

5. Find the value of $\tan 45^{\circ} + 2\cos 60^{\circ} - \sec 60^{\circ}$.

A. 1

B. 2

C.0

D. none

Answer: C

- **6.** Using the trignomertric table, evaluate
- (a) $\sin^2 30^\circ + \cos^2 30^\circ$
- (b) $\sec^2 60^\circ \, \, \tan^2 60^\circ$.
 - Watch Video Solution

- 7. Find the value of $\frac{\tan 60^{\circ} \tan 30^{\circ}}{1 + \tan 60^{\circ} \tan 30^{\circ}} \text{ and } \tan 30^{\circ}. \text{ what do you observe?}$
 - Watch Video Solution

- **8.** Find the value of $\sin 75^{\circ}$.
 - Watch Video Solution

- **9.** Find the value of $\tan 15^{\,\circ}$.
 - Watch Video Solution

attii video Solution

10. Eliminate θ from the equations $x = p \sin \theta$ and $y = q \cos \theta$.

11. Find the relation obtained by eliminating heta from the equations $x=r\cos\theta+s\sin\theta$ and $y=r\sin\theta-s\cos\theta$.

12. Eliminate θ from the equations

$$y = \csc\theta + \cot\theta.$$

 $x = \csc\theta + \cot\theta$

 θ from the equation $m = \tan \theta + \cot \theta$ and $n = \tan \theta - \cot \theta$.

Watch Video Solution

14. If $\cos(A+B)=\frac{1}{2}$ and $B=\sqrt{2}$, then find A and B.

Watch Video Solution

15. Find the length of the chord which substends an angle of 120° at the centre 'O' and which is at a distance of 5 m from the centre.

Watch Video Solution

16. Evaluate: $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$.

18. Find the value of $\sin^2 135^\circ + \sec^2 135^\circ$.

 $\cos A = \frac{5}{13}$ and A is not in first quardrant, then find the value of

20. if ABCD is a cyclic quadrilateral, then find the value of cosA cosB - cos C

If

 $\sin A$

tan

19.

cos D.

Watch Video Solution

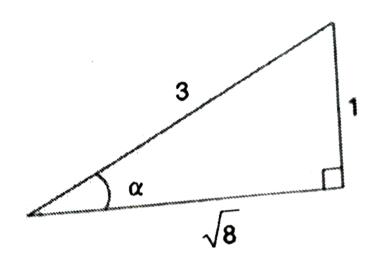
21. if $\cot 15^\circ = m$, then find $\frac{\cot 195^\circ + \cot 345^\circ}{\tan 15^\circ - \cot 105^\circ}$

Watch Video Solution

22. If $\sin \theta$ and $\cos \theta$ are the roots of the equation $mx^2 + nx + 1 = 0$, then find the relation between m and n.

A.
$$n^2+m^2=4m$$

$$\mathsf{B.}\,n^2-m^2=2m$$


$$\mathsf{C.}\,n^2-m^2=5m$$

$$\mathsf{D.}\, n^2 + m^3 = 3m$$

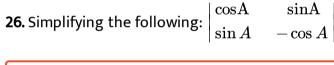
Answer: B

23. If $\sin \alpha = \frac{1}{3}$ and $\cos \beta = \frac{4}{5}$, then find $\sin(\alpha + \beta)$.

24. Express the following as a single trignometric ratio:

$$\sqrt{3}\cos\theta - \sin\theta$$

 $\sin \theta - \cos \theta$.



25. If $A+B=90^{\circ}$, then prove that

 $\sin^2 A + \sin^2 B = 1$

 $\tan^2 A + \cot^2 B = 0.$

27. Find the value of $\sin 65^{\circ} 28'$.

28. Find the area of the right angle traingle with one of the acute angle being 65° and hypotenuse 6 cm.

29. Find the length of the chord which substends an angle of 110° at the centre of the circle of radius 7 cm.

Watch Video Solution

30. From a point on the ground which is at a distance of 50 m from the foot of the towe, the angle of elevation of the top of the tower is observed to be 30° . Find the height of the tower.

Watch Video Solution

31. The angle of elevation of the top of a tower at a point on the line through the foot of the tower is 45° . After walking a distance towards the foot of the tower along the same horizontal line elevation of the top of the tower changes to 60° . Find the height of tower.

32. From the top of a building 100 m high, the angles of depression of the bottom and the top of an another building just oppositeto it are observed to be 60° and 45° respectively. Find the height of the building.

Very Short Answer Type Questions

- **1.** If $\sin\theta=\frac{1}{2}where0^\circ\leq\theta\leq180^\circ$, then the possibel value of θare
 - Watch Video Solution

- **2.** $\cot \theta$ in terms of $\sin \theta = (0 \le \theta \le 90^{\circ})$.
 - Watch Video Solution

3. If A and B are two complementery angle, then $\sin A \cdot \cos B + \cos A \cdot \sin B$ =_____.

4. If the angle of a sector is 45° and the radius of the sector is 28 cm then the length of the arc is _____.

5. If ABCD is a cyclic quadrilateral, then an A + an C=_____.

6. $\frac{1-\cos 2\theta}{2}$ =_____ (in terms of $\sin \theta$).

 $7.\cos 1^{\circ} \cdot \cos 2^{\circ} \cdot \cos 3^{\circ} \cdot \cdot \cdot \cos 120^{\circ} =$ ____.

8. The $\frac{3\pi}{2}$ is equivalent to ______in centesimal system.

9. If
$$A+B=360^\circ$$
, then $\frac{\tan A+\tan B}{1-\tan A\tan B}$ =_____.

10. If
$$an heta + \cot heta = 2$$
, $an^{10} heta + \cot^{10} heta =$ ______

(Where
$$0 < \theta < 90^{\circ}$$
).

11. Write an equation eliminating theta from the equations a = d $\sin \theta$ and $c = d \cos \theta$.

12. Convert 250^g into other two measures.

13.

14. If
$$\theta + \cos \theta = 1$$
 and $0^\circ \le \theta \le 90^\circ$, then the possible value of θ are _____.

 $\sin(180 + \theta) + \cos(270 + \theta) + \cos(90 + \theta) + \sin \cdot (360 + \theta)$

15. Evaluate $\sin^2 45^\circ + \cos^2 60^\circ + \cos ec^2 30^\circ$.

Watch Video Solution

16. If A,B,C and D are the angles of cyclic quadrilateral, prove that:

- i) $\cos A + \cos B + \cos C + \cos D$
- ii) $\cos(180^\circ-A)+\cos(180^\circ+B)+\cos(180^\circ+C)-\sin(90^\circ)$
 - Watch Video Solution

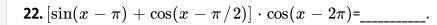
17. $\cos ec(7\pi + \theta) \cdot (8\pi + \theta) =$.

Watch Video Solution

18. $\theta_1 = \frac{7}{25}$ and $\theta_2 = \frac{24}{25}$, then find the relation between θ_1 and θ_2 . If

Watch Video Solution

19. Find the value of $\tan 1140^{\circ}$.



20. If $\sin(A+B)=\cos(A-B)=rac{\sqrt{3}}{2},$ then $\cot 2A$ =_____.

21. If ΔABC is an isosceles traingle and right angled at B, then $\frac{\tan A + \tan C}{\cot A + \cot C} = -----$

23. $tan(A +$	$B)\tan(A -$	B)=
---------------	--------------	-----

24. The angle of a quadrilateral are in the ratio 1:2:3:4. Then the smallest angle in the centesimal system is _____.

25. If
$$tan(A + B)tan(A - B) =$$
______.

26.
$$[\sin \beta + \sin(180 - \beta) + \sin(180 + \beta)] \cos ec\beta =$$
____.

27. Express $\frac{\tan \theta + 1}{\tan \theta - 1}$ as a single trignometric ratio.

28. If $\cos ec\theta + \cot \theta = 3$, then find $\cos \theta$.

29. The top of a building from a fixed point is observed at an angle of elevation 60° and the distance from the foot of the building to the point is 100 m, then the height of the building is _____.

30. If
$$\cot \theta = \frac{4}{3}$$
 where $180 < \theta < 270$, then $\sin \theta + \cos \theta$

Short Answer Type Questions

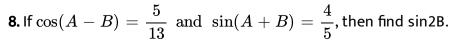
1. If the tip of the pendulum of a clock travels 13.2cm in one oscillation and the length of the pendulum is 6.3 cm, then the angle covered by the pendulum during this half oscillation in radian system is _____.

2. If
$$\cos ec\theta$$
, $\sec \theta$ and $\cot \theta$ are in HP, then $\frac{\sin \theta + \tan \theta}{\cos \theta} =$ _____.

 $3. \cot \frac{\pi}{18} \cdot \cot \frac{\pi}{9} \cdot \cot \frac{4\pi}{4} \cdot \cot \frac{4\pi}{18} \cdot \cot \frac{7\pi}{18} = \dots$

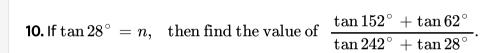
4. If
$$\cot \theta = \frac{4}{3}$$
 and θ is acute, then find the value of $\frac{\tan \theta + \cot \theta}{\sec \theta + \cos ec\theta}$

5. Simplify $\sin(A+45^{\circ})\sin(A-45^{\circ})$.


6. Eliminate
$$heta$$
 from the following equations:

 $x = a \sin \theta, y = b \cos \theta \text{ and } z = a \sin^2 \theta + b \cos^2 \theta.$

7. If
$$\sin A = \frac{3}{4}$$
 and A is not in the first quadrant, then find $\frac{\cos A + \cos 2A}{\tan A + \sec A}$.



atti video solution

9. If $\cos ec\theta - \cot \theta = 2$, find the value of $\cos ec^2\theta + \cot^2\theta$.

11. If $3 \sin A + 4 \cos A = 4$, then find $4 \sin A - 3 \cos A$.

12. A ladder of length 50 m rests against a vertical wall, at a height of 30 m from the ground. Find the inclination of the ladder with the horizontal.

Also find the distance between the foot of the ladder and the wall.

13. Eliminate θ from the following equations:

$$x \sin \alpha + y \cos \alpha = p$$
 and $x \cos \alpha - y \sin \alpha = q$

Watch Video Solution

Essay Type Questions

1. The angle of depression of the top of the tower from the top of a building is 30° and angle of elevation of the top of the tower from the bottom of the building is 45° and if the height of the tower is 20 m, then find the height of the building.

View Text Solution

2. A vertiacal pole is 60 m high, The angle of depression of two points P and Q on the ground are 30° and 45° respectively. If the points P and Q

lie on either side of the pole, then find the distance PQ.

Watch Video Solution

Level 1

- 1. If $\sin x^{\circ} = \sin \alpha$, then α is
 - A. $\frac{180}{\pi}$
 - $\mathrm{B.}~\frac{\pi}{270}$
 - $\mathsf{C.}\,\frac{270}{\pi}$
 - D. $\frac{\pi}{180}$

Answer: D

Watch Video Solution

2. If ina triangle ABC, A and B are complementary, then tan C is

B. 0

C. 1

D. $\sqrt{3}$

Answer: A

Watch Video Solution

3. If $\alpha = \frac{4}{5}$ and $\alpha = \frac{4}{5}$, then which of the following is true?

A. $\alpha < \beta$

B. $\alpha l > eta$

 $\mathsf{C}.\,\alpha=\beta$

D. None of these

Answer: B

View Text Solution

4. $\sin^2 20 + \sin^2 70$ is equal to _____.

A. 1

B. -1

C. 0

D. 2

Answer: A

Watch Video Solution

5. $\cos 50^{\circ} 50^{\circ} \cos 9^{\circ} 10^{\prime} - \sin 50^{\circ} 50^{\prime} \sin 9^{\circ} 10^{\prime} =$ _____.

A. 0

 $\mathsf{B.}\;\frac{1}{2}$

C. 1

D.
$$\frac{\sqrt{3}}{2}$$

Answer: B

Watch Video Solution

- **6.** Write the value of $\sin\theta\cos(90^\circ\,-\,\theta) + \cos\theta\sin(90^\circ\,-\,\theta)$.
 - A. -1
 - B. 2
 - C. 0
 - D. 1

Answer: D

7. A wheel makes 20 revolutions per hour. The radians turns through 25

minutes is _____.

A.
$$\frac{50\pi^c}{7}$$

B.
$$\frac{250\pi^c}{3}$$

C.
$$\frac{150\pi^c}{7}$$

D.
$$\frac{50\pi^c}{3}$$

Answer: D

Watch Video Solution

 $8. \frac{\sin^4 \theta - \cos^4 \theta}{\sin^2 - \cos^2 \theta} = \underline{\hspace{1cm}}.$

A. -1

B. 2

C. 0

Answer: D

Watch Video Solution

- **9.** Simplified expression of $(\sec \theta + \tan \theta)(1 \sin \theta)$ is _____.
 - A. $\sin^2 \theta$
 - B. $\cos^2 \theta$
 - $\mathsf{C}. an^2 heta$
 - D. $\tan^2 \theta$

Answer: D

Watch Video Solution

10. If $a = \sec \theta - \tan \theta$ and $b = \sec \theta + \tan \theta$, then

A.
$$a=b$$

 $\mathsf{B.}\,\frac{1}{a}=\frac{-1}{b}.$

$$\mathsf{C.}\,a = \frac{1}{b}.$$

D.
$$a-b=1$$

Answer: C

Watch Video Solution

11. If
$$\sec \alpha + \tan \alpha = m$$
, then $\sec^4 \alpha - \tan^4 \alpha - 2\sec \alpha \tan \alpha$

A.
$$m^2$$

$$\mathsf{B.}-m^2$$

C.
$$\frac{1}{m^2}$$

D. $\frac{-1}{m^2}$

Answer: C

12. If
$$\sin^4 A - \cos^4 A = 1$$
, $then(A/2)$ is ____. $(0 < A \le 90^\circ)$.

- A. 45°
- B. 60°
- C. 30°
- D. 40°

Answer: A

- **13.** The value of $\tan 15^{\circ} \tan 20^{\circ} \tan 70^{\circ} \tan 75$ is
 - A. -1
 - B. 2
 - C. 0

Answer: D

Watch Video Solution

14. In a
$$\triangle ABC$$
, $an\left(\frac{A+C}{2}\right)$ = _____.

Watch Video Solution

15. If
$$an(A-30^\circ)=2-\sqrt{3}$$
, then find A.

A.
$$\frac{\pi^c}{2}$$

$$\frac{2}{c}$$

B.
$$\frac{\pi^c}{4}$$

C.
$$\frac{\pi^c}{6}$$

D.
$$\frac{\pi^c}{3}$$

Answer: B

16. If
$$\sin^4 \theta - \cos^4 = k^4$$
, $then \sin^2 \theta - \cos^2 \theta$ is _____.

A.
$$K^4$$

$$\mathsf{B.}\,K^3$$

$$\mathsf{C}.\,K^2$$

D.
$$K$$

Answer: A

17.
$$\frac{\tan^3 \theta - 1}{\tan \theta - 1} =$$
______.

A.
$$\sec^2 heta + an heta$$

$$\mathsf{B.}\sec^2 heta- an heta$$

D.
$$\tan \theta - \sec^2 \theta$$

Answer: A

Watch Video Solution

- **18.** For all values of $heta, 1+\cos heta$ can be_____.
 - A. positive
 - B. negative
 - C. non-positive
 - D. non-negative

Answer: D

19. If $\sin 3\theta = \cos(\theta - 6^\circ)$, where 3θ and $(\theta - 6^\circ)$ are acute angle then the value of θ is _____.

A.
$$42^{\circ}$$

B. 24°

C. 12°

D. 26°

Answer: B

20.
$$(\cos ecA - \sin A)(\sec A - \cos A)(\tan A + \cot A) =$$
_____.

- A. -1
- B. 2
- C. 0
 - D. 1

Answer: D

Watch Video Solution

21. If $x=a(\cos ec\theta+\cot\theta)$ and $y=b(\cot\theta-\cos ec\theta)$, then

$$A. xy - ab = 0$$

$$B. xy + ab = 0$$

$$\mathsf{C.}\,\frac{x}{a}+\frac{y}{b}=1$$

D.
$$x^2y^2=ab$$

Answer: B

Watch Video Solution

22. The value of $\frac{\cos^4x+\cos^2x\sin^2x+\sin^2x}{\cos^2x+\sin^2x\cos^2x+\sin^4x}$ is _____.

A. 2

- B. 1
- C. 3
- D. 0

Answer: B

Watch Video Solution

- 23. $\dfrac{1}{1+\sin heta}+\dfrac{1}{1-\sin heta}$ is equal to ______.
 - A. $2\sec^2\theta$
 - B. $2\cos^2\theta$
 - C. 0
 - D. 1

Answer: A

24. if
$$\tan(\alpha + \beta) = \frac{1}{2}$$
 and $\tan \alpha = \frac{1}{3}$, then $\tan \beta =$ _____.

A.
$$\frac{1}{6}$$

$$\mathsf{B.}\;\frac{1}{7}$$

D.
$$\frac{7}{6}$$

Answer: B

25.

Watch Video Solution

The

A. 0

B. 1

C. -1

D. undefined

 $\sin 0^{\circ} + \log \sin 1^{\circ} + \log \sin 2^{\circ} + \cdots + \log \sin 90^{\circ}$ is _____.

of

log

value

Answer: D

Watch Video Solution

26. Which of the following is not possible?

A.
$$\sin heta = rac{3}{5}$$

$$\mathsf{B.sec}\,\theta=100$$

$$\mathsf{C}.\cos ec\theta = 0.14$$

D. None of these

Answer: B

Watch Video Solution

27.
$$\sin^2 20^\circ + \cos^2 160^\circ - \tan^2 45^\circ$$
 = _____

A. 2

B. 0

C. 1

D. -2

Answer: D

Watch Video Solution

28.
$$\frac{\sin\theta + \cos\theta}{\sin\theta - \cos\theta} + \frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} = \underline{\hspace{1cm}}.$$

A.
$$\dfrac{2}{1-2\sin^2{ heta}}$$

B.
$$\dfrac{2}{2\sin^2\theta-1}$$

C. Both (a) and (b)

D. None of these

Answer: B

29. The length of the side (in cm) of an equilateral triangle inscribed in a circle of radius 8 cm is

- A. $16\sqrt{3}$
- $\mathrm{B.}\ 12\sqrt{3}$
- $\mathsf{C.}\,8\sqrt{3}$
- D. $10\sqrt{3}$

Answer: B

Watch Video Solution

30. Which among the following is true?

- A. $\sin 1^\circ > \sin 1^c$
- B. $\sin 1^\circ < \sin 1^c$
- C. $\sin 1^\circ = \sin 1^c$
- D. None of these

Answer: B

Watch Video Solution

Level 2

1. If
$$2\sin\alpha+3\cos\alpha=2$$
, then $3\sin\alpha-2\cos\alpha$ =____.

A.
$$\pm 3$$

B.
$$\pm 2$$

D.
$$\pm 2$$

C. 0

Answer: B

A.
$$60^{\circ}$$

B.
$$45\,^\circ$$

$$\text{C.}\,0^\circ$$

D.
$$30^{\circ}$$

Answer: D

Watch Video Solution

3. $\cot A = \frac{5}{12} \ \text{and} \ A \ \text{ is not in the first quardant, then } \ \frac{\sin A - \cos A}{1 + \cot A}$

A.
$$rac{-74}{25}$$

$$\mathsf{B.}\;\frac{-84}{221}$$

$$\mathsf{C.}\,\frac{-\,87}{223}$$

D. None of these

Answer: C

Watch Video Solution

- **4.** If $rac{1+\sinlpha}{1-\sinlpha}=rac{m^2}{n^2},$ then \sinlpha is ______.
 - A. $rac{m^2+n^2}{m^2-n^2}$
 - B. $rac{m^2-n^2}{m^2+n^2}$
 - C. $rac{m^2+n^2}{n^2-m^2}$
 - D. $rac{n^2-m^2}{m^2+n^2}$

Answer: C

- **5.** If $\sin \theta \cos \theta = \frac{3}{5}$, then $\sin \theta \cos \theta =$ _____.
 - A. $\frac{16}{25}$

 $\mathsf{C.}\ \frac{9}{25}$

D. $\frac{8}{25}$

If ABCD is a cyclic quadrilateral, then the value $\cos^2 A - \cos^2 B - \cos^2 C + \cos^2 D$ is _____.

A. 0

B. 1

C. -1

D. 2

Answer: B

7. The length of minute hand of a wall clock is 12 cm. find the distance covered by the tip of the minutes hand in 25 minutes.

- A. $\frac{220}{7}$ cm
- B. $\frac{110}{7}$ cm
- $\mathsf{C.}\ \frac{120}{7}\mathsf{cm}$
- D. $\frac{240}{7}$ cm

Answer: A

- **8.** The value of $\sin^2 2^\circ + \sin^2 4 + \sin^2 6^\circ + ... + \sin^2 90^\circ$ is
 - A. 22
 - B. 23
 - C. 44

Answer: B

Watch Video Solution

- **9.** A straight highway leads to the foot of a tower of height 50 m. From the top of tower, the angles of depression of two cars standing on the highway are 30° and 60° respectively. What is the distance between the two cars and how far is each car from the tower?
 - A. $\frac{100}{\sqrt{3}}$
 - $\mathrm{B.}\,50\sqrt{3}$
 - c. $\frac{50}{\sqrt{3}}$
 - D. $100\sqrt{3}$

Answer: D

10. The angle of elevation of the top of a hill from the foot of a tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30° . If the tower is 50 m high, then what is the height of the hill?

- A. 180 m
- B. 150 m
- C. 100 m
- D. 120 m

Answer: D

- 11. $\tan 38^{\circ} \cot 22^{\circ} =$.
 - A. $\frac{1}{2}$ cos $ec38^{\circ}$ sec 22°
 - B. $2\sin 22^{\circ}\cos 38^{\circ}$

 $\mathrm{C.}-\frac{1}{2}\mathrm{cos}\,ec22^{\circ}\mathrm{sec}\,38^{\circ}$

D. None of these

Answer: D

Watch Video Solution

12.
$$\frac{1-\cos\theta}{\sin\theta} + \frac{\sin\theta}{1-\cos\theta} =$$
_____.

A.
$$2\sin\theta$$

$$\mathrm{B.}\,2\cos\theta$$

C.
$$2\cos ec\theta$$

D.
$$2\sec\theta$$

Answer: C

13.
$$\sqrt{-4 + \sqrt{8 + 16\cos ec^4\alpha + \sin^4\alpha}} =$$
______.

A.
$$\cos ec\alpha - \sin \alpha$$

B.
$$2\cos eclpha+\sinlpha$$

C.
$$2\cos eclpha-\sinlpha$$

D.
$$\cos ec\alpha - \sin \alpha$$

Answer: C

14. The angle of depression of the top and the bottom of a 7 m tall building from the top of a tower ar 45° and 60° respectively. Find the height of the tower in metres.

A.
$$7(3+\sqrt{3})$$

B.
$$\frac{7}{2}(3-\sqrt{3})$$

$$\mathsf{C.}\ \frac{7}{2}\big(3+\sqrt{3}\big)$$

D.
$$7(3 - \sqrt{3})$$

Answer: A

Watch Video Solution

- **15.** If $an 86^\circ=m,$ $then rac{ an 176^\circ+\cot 4^\circ}{m+ an 4^\circ}$ is _____.
 - A. $rac{m^2-1}{m^2+1}$
 - B. $rac{m^2+1}{1-m^2}$
 - C. $rac{1-m^2}{1+m^2}$
 - D. $rac{m^2+1}{m^2-1}$

Answer: A

16. The following sentences are the steps involved in proving the result

$$\frac{\cos x}{1-\tan x}+\frac{\sin x}{1-\cot x}=\cos x+\sin x.$$
 Arrange them in sequential order from first to last.

A.
$$\frac{\cos^2 x}{\cos x - \sin x} + \frac{\sin^2 x}{\sin x - \cos x}$$

B.
$$\frac{\cos^2 x - \sin^2 x}{\cos x - \sin x}$$

$$\mathsf{C.}\,\frac{\cos x}{1-\frac{\sin x}{\cos x}}+\frac{\sin x}{1-\frac{\sin x}{\sin x}}$$

- (C), (A) and (B)
 - (C), (B) and (A)

Answer: B

Watch Video Solution

17. The following sentences are the steps involved in eliminating θ from the equations $x=y\tan\theta$ and $a=b\sec\theta$. Arrange them in sequential

order from first to last.

A. Substract
$$\left(\frac{x}{y}\right)^2 \operatorname{from}\left(\frac{a}{b}\right)^2$$

$$\mathsf{B.}\left(\frac{x}{y}\right)^2 - \left(\frac{a}{b}\right)^2 = 1$$

C. Taking squares on both the sides

D. Find
$$\left(\frac{x}{y}\right)$$
 and $\left(\frac{a}{b}\right)$

Answer: D

1. There is a small island in the middle of a 100m wide river and a tall tree stands on the island. P and Q are points directly opposite to each other on two banks and in line with the tree. If the angles of elevation of the top of the tree from P and Q are respectively 30o and 45o, find the height of the tree.

A.
$$50(\sqrt{3}-1)$$

B.
$$50\left(\sqrt{3}+1\right)$$

c.
$$100(\sqrt{3}+1)$$

D.
$$100(\sqrt{3}-1)$$

Answer: D

Watch Video Solution

2. A ballon is connected to a metrorological ground station by a cable of length 215 m inclined at 60° to the horizontal. Determine the height of the ballon from the ground. Assume that there is no slack in the cable.

A.
$$107.5\sqrt{3}$$
 m

- B. $100\sqrt{3}$ m
- $\mathrm{C.}\,215\sqrt{3}\mathrm{m}$
- D. $215/\sqrt{3}$ m

Answer: C

Watch Video Solution

- 3. $\sin 2A = 2\sin A\cos A \ ext{and} \ \sin 20^\circ = K, \ ext{ then the value of } \cos 20^\circ \cos 80^\circ$
- - A. K

 - $\mathsf{B.}-\sqrt{1-k^2}$ $\mathsf{C.}\,\frac{\sqrt{1-k^2}}{8}$
 - $\mathsf{D.} \frac{\sqrt{1-k^2}}{8}$

If

Answer: B

Watch Video Solution

- **4.** If $\sqrt{2}\cos\theta-\sqrt{6}\sin\theta=2\sqrt{2}$, then the value of θ can be _____.
 - A. 0°
 - B. -45°
 - C. 30°
 - D. -60°

Answer: B

Watch Video Solution

5. A circus artist is climbing from the ground along a rope stretched from the top of a vertical pole and tied at the ground. The height of the pole is

12 m and the angle made by the rope with ground level is 30o . Calculate the distance covered by the artist in climbing to the top of the pole.

- A. 24m
 - B. 6 m
 - C. 12 m
- D. None of these

Answer: C

- **6.** Find the value of $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \cdots + \sin^2 90^\circ$.
 - A. 8
 - B. 9
 - c. $\frac{17}{2}$
 - D. $\frac{19}{2}$

Answer: D

Watch Video Solution

- **7.** If $\sec \theta + \tan \theta = 2$, then find the value of $\sin \theta$.
 - $\mathrm{A.}\,\frac{3}{5}$
 - B. $\frac{2}{3}$
 - $\mathrm{C.}-\frac{3}{5}$
 - $\mathrm{D.}-\frac{2}{5}$

Answer: A

- **8.** If $\cos \theta + \left(\frac{1}{\sqrt{3}}\right) \sin \theta = \frac{2}{\sqrt{3}}$, then find θ in circular measure.
 - A. $\frac{\pi}{10}$

C.
$$\frac{\pi^c}{6}$$

D.
$$\frac{\pi^c}{3}$$

Answer: C

Watch Video Solution

$$9. \sqrt{\frac{1+\sin\theta}{1-\sin\theta}} = ...$$

A.
$$\sec heta + \tan heta$$

B.
$$\sec \theta - \cot \theta$$

C.
$$\cos ec heta + an heta$$

D.
$$\cos ec\theta - \tan \theta$$

Answer: A

10. If
$$\frac{\sin^2 \theta - 5\sin \theta + 3}{\cos^2 \theta}$$
=1, then θ can be _____.

A.
$$30^{\circ}$$

B.
$$45^{\circ}$$

C.
$$60^{\circ}$$

D.
$$0^{\circ}$$

Answer: A

Watch Video Solution

11. If $\cot \theta = \frac{24}{7}$ and θ is not in the first quadrant, then find the value

of
$$an heta-\sec heta$$

B.
$$\frac{4}{3}$$

C.
$$\frac{3}{2}$$

$$D. \frac{5}{4}$$

Answer: B

Watch Video Solution

- **12.** If $\sin 20^\circ = p$, then find the value of $\left(\frac{\sin 380^\circ \sin 340^\circ}{\cos 380^\circ + \cos 340^\circ}\right)$.
 - A. $\sqrt{1-P^2}$
 - B. $\sqrt{rac{1-p^2}{p}}$
 - C. $\frac{p}{\sqrt{1-p^2}}$
 - D. None of these

Answer: C

Watch Video Solution

13. Find the value $\tan\left(22\frac{1}{2}\right)$.

A.
$$\sqrt{2} - 1$$

B. $1 + \sqrt{2}$

 $C.2 + \sqrt{3}$

D. 2 - $\sqrt{3}$

Answer: A

Watch Video Solution

14. If the sun ray inclination increases from 45° to 60° the length of the shadow of a tower decreases by 50 m. Find the height of the tower (in m).

A.
$$50(\sqrt{3}-1)$$

B. $75(3-\sqrt{3})$

C. $100(\sqrt{3}+1)$

D. $25 ig(3+\sqrt{3}ig)$

Answer: D

15. The angles of depression of two points from the top of the tower are 30° and 60° . IF the height of the tower is 30 m, then find the maximum possible distance between the two points.

- A. $40\sqrt{3}$ m
- B. $30\sqrt{3}$ m
- C. $20\sqrt{3}$ m
- D. $10\sqrt{3}$ m

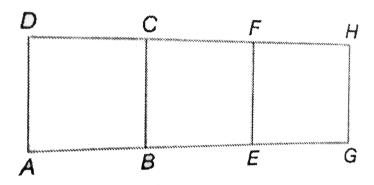
Answer: A

Watch Video Solution

16. From a point on the ground, the angle of elevation of an aeroplane flying at an altitude of 500m change from 45° to 30° in 5 seconds. Find the speed of the aeroplane (in kmph).

- A. 243.52 km/s
 - $\mathrm{B.}\ 253.52\ \mathrm{km/s}$
- $\mathsf{C.}\ 263.52\ \mathsf{km/s}$
- D. 273.52 km/s

Answer: C



- 17. From the top of a building, the angle of elevation and depression of top and bottom of a tower are 60° and 30° respectively. If the height of the building is 5 m, then find the height of the tower.
 - A. $10\sqrt{3}$ m
 - B. 15 m
 - C. $15\sqrt{3}$ m
 - D. 20 m

Watch Video Solution

18. If the figure given below (not to scale), ABCD, CBEF and EGHF are three congruent squares. Find $\angle FAE + \angle HAG$.

A. $30\,^\circ$

B. 45°

C. 60°

D. 90°

