©゙’ doubtnut

MATHS

BOOKS - PEARSON IIT JEE FOUNDATION

FORMULAE

Solved Example

1. Using the formula $A=\pi r^{2}$, find A when $\mathrm{r}=14$
cm (take $\pi=22 / 7$)

D Watch Video Solution
2. Using the formula $S=2(l b+b h+l h)$, find S when $\mathrm{l}=12 \mathrm{~cm}, \mathrm{~b}=8 \mathrm{~cm}$, and $\mathrm{h}=4 \mathrm{~cm}$.

- Watch Video Solution

3. Write the formula for finding the circumference (C) of a circle with radius r units.

What is the subject in this formula?
4. Make h the subject of the formula, where $\mathrm{V}=\mathrm{lbh}$, and find h , when $V=960 \mathrm{~cm}^{3}, l=20 \mathrm{~cm}$, and $b=12 \mathrm{~cm}$.

- Watch Video Solution

5. (a) In the formula $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$, make d as the subject.
(b) Find the value of d, when $S_{n}=240, n=10$, and $a=6$.
6. Make f as the subject of the formula

D Watch Video Solution
7. If $u=15 \mathrm{~cm}$ and $f=6 \mathrm{~cm}$, then find v.

D Watch Video Solution

8. If $f=3 \mathrm{~cm}$ and $\mathrm{v}=4 \mathrm{~cm}$, then find u .

- Watch Video Solution

9. Frame the formula Hypotenuse (h) of right triangle is the square root of sum of the squares of perpendicular sides a and b.

- Watch Video Solution

10. The slant height (I) of a cone is the square root of the sum of the squares of its radius (r) and its vertical height (h). If for a cone, $\mathrm{I}=17 \mathrm{~cm}$ and $r=15 \mathrm{~cm}$, then find h .

Very Shot Answer

1. An equation which is used frequendy to solve problems is called a formula.

- Watch Video Solution

2. The number of auxiliary formulae which can
be derived from $A=s^{2}$ is two.
3. Auxiliary formula of $A=\pi r^{2}$ is $r=\frac{A}{\pi}$.

D Watch Video Solution

4. If $h^{2}=a^{2}+b^{2}$, then $\mathrm{b}=\sqrt{h^{2}-a^{2}}$.

D Watch Video Solution

5. Thirty-six is divided into two parts such that one of the parts is twice the other. The two parts are
6. There are b boys and g girls in a class and the average of number of boys and the number of girls is 18 . Then $b+g=$

D Watch Video Solution

7. The number of variable present in RHS of A.

$$
2(l b+b h+l h) \text { is }
$$

\qquad

D Watch Video Solution

8. If the cost of two pens is rsx, then the cost of

 three pens is
D Watch Video Solution

9. In $A=\frac{x}{360^{\circ}} \times \pi r^{2}, x=60^{\circ}$, and $\mathrm{r}=6 \mathrm{~cm}$, then $A=$

10. the formulae obtained by transforming the

 subject in the given formula are called _-_-
. Watch Video Solution

11. The symbolic form of "total surface area (A) of a cube is six times the square of its side (s)"is \qquad .

- Watch Video Solution

12. The symbolic form of "area (A) of a rhombus is half of the product of its diagonals $\left(d_{1}, d_{2}\right)^{\prime \prime}$
is \qquad

D Watch Video Solution
13. The symbolic form of "simple interest I) is one hundeths of the product principle (I'), time period(T) in years, and rate of interest (R)" is \qquad -

Watch Video Solution

14. Relation P, S, C where P is the profit S is the price, and C is the cost price.

D Watch Video Solution

15. $P=\frac{36}{7} r$, where P is the perimeter of the semi-circular region and r is the radius of the semicircle. Find P when $r=7$

- Watch Video Solution

16. The number of aubiliar formulae that can be
divided from $S=\frac{(100-l)}{100} r$ is_
A. 4
B. 3
C. 2
D. 1

Answer: C
17. If $V=l b h$, then $b=$

> A. $\frac{v}{l h}$
> B. $\frac{l}{v h}$
> C. $\frac{h}{v l}$
> D. $l v h$

Answer: A

D Watch Video Solution
18. The symbolic form of "five times b is added in six times a to get the result c " is \qquad
A. $5 b+6 a=c$
B. $5 b-6 a=c$
C. $6 b+5 a=c$
D. $6 b-5 a=c$

Answer: A

(
19. The subject of the formulae , $A=2 h(l+b)$
is
A. I
B. b
C. h
D. A

Answer: D

- Watch Video Solution

20. A variable standing alone on the left side of an equation is called

A. the formula

B. the subject of the formula
C. the transposition
D. None of these.

Answer: B

(

Short Answer Type Questions

1. If $V=s^{3}$ and $V=216 \mathrm{~cm}^{3}$, then find the value of s in cm .

- Watch Video Solution

$$
\begin{aligned}
& \text { 2. the formula } \\
& \angle P+\angle Q+\angle R+\angle S=360^{\circ}, \\
& \angle P=100^{\circ}, \angle Q=100^{\circ}, \text { and } \angle R=100^{\circ},
\end{aligned}
$$

then find $\angle S$.
3. If $P=\pi r+2 r$ and $\mathrm{P}=36 \mathrm{~cm}$, then find the value of r (in cm).

D Watch Video Solution

4. If $A=c(a-b)$, then make 'a' the subject of the formula.
5. If $h=\frac{V}{A}, h=5$, and $\mathrm{V}=60 \mathrm{~cm}^{3}$, then find the value of $\mathrm{A}\left(\mathrm{incm}{ }^{2}\right)$.

D Watch Video Solution

6. The sum of the interior angles in a6-sided figure is 720° and the six angles are x, y, z, z, y, and x. Express the relation among x, y, and z by making z as the subject.
7. If $k=a+b c$, then make ' c ' as the subject of the formula.

- Watch Video Solution

8. The compound interest on a sum of rsp, for T
years at $R \%$ per annum is given by
$l=\left[\left(1+\frac{R}{100}\right)^{T}-1\right]$. Make R as the
subject of the formula .
9. In the previous question if $\mathrm{I}=662, \mathrm{P}=2000$, and $T=3$, then find the value of R.

D Watch Video Solution

10. Let C denote the temperature of a body in
degree Celsius Let F denote its temperature in
degree Fahrenheit. The realtion between C and
F is given by $\frac{C}{100}=\frac{F-32}{180}$. If $\mathrm{F}=2.2 \mathrm{C}$, then find the value of C.

Essay Type Questions

1. Write all the possible related auxiliary formulae from $\mathrm{A}=\pi\left(R^{2}-r^{2}\right)$.

D Watch Video Solution

2. Make g the subject of the formula
$C=\frac{1008}{100+g}$ Find $g($ in $\%)$, when $\mathrm{C}=$ rs 400 and
S=rs450.
3. Make r the subject of the formula $V=\frac{\pi r^{2} h}{3}$
. Find r , when $\mathrm{V}=27 \pi \mathrm{~cm}^{3}$ and $\mathrm{h}=4 \mathrm{~cm}$.

- Watch Video Solution

4. Make 'a' the subject of the formula
$A=\frac{\sqrt{3} a^{2}}{4}$. Finda, when $\mathrm{A}=64 \sqrt{3} \mathrm{~cm}^{2}$.

- Watch Video Solution

5. Make y the subject in $\frac{x+y}{x-y}=\frac{a+b}{a-b}$
6. Frame the formula from the following table.

Make y the subject of the formula.
$\begin{array}{llllll}X & 1 & 2 & 5 & 7 & 8\end{array}$
$\begin{array}{llllll}Y & 1 & 4 & 25 & 49 & 64\end{array}$

- Watch Video Solution

7. From the formula from the following table.

Make a the subject of the formula.

$$
\begin{array}{lllllll}
a & 25^{\circ} & 34^{\circ} & 75^{\circ} & 4^{\circ} & 89^{\circ} & 85^{\circ} \\
b & 65^{\circ} & 56^{\circ} & 15^{\circ} & 86^{\circ} & 1^{\circ} & 5^{\circ}
\end{array}
$$

8. Frame the formula from the following table.

Make Z the subject of the formula.
$\begin{array}{llllll}X & 1 & 2 & 1 & 2 & 3\end{array}$
$\begin{array}{llllll}Y & 1 & 2 & 2 & 1 & 4\end{array}$
$\begin{array}{llllll}Z & 2 \sqrt{2} & \sqrt{2} & \sqrt{5} & \sqrt{5} & 5\end{array}$

D Watch Video Solution

9. If $(x+a)^{2}=x^{2}+1+\frac{1}{4 x^{2}}$, then find a.

- Watch Video Solution

10. A number x divided by 10 and 7 is added to
the quotient and then the sum is multiplied by
3 to give the result N . Frame the formula by making x as the subject.

- Watch Video Solution

11. If $A=c\left(a^{2}+b^{2}\right)$, then make a the subject of the formula.
12. The following table shows the relation between a and b .
$\begin{array}{llllll}a & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllll}b & 2 & 5 & 12 & 20 & 30\end{array}$
Express the relation between a and b with b as
the subject.

D Watch Video Solution

13. If $\frac{x+y}{z}=\frac{a+b}{c}$, then make y the subject of the formula.
14. If $d=u t+\frac{1}{2} a t^{2}, u=20, a=10$, and $d=50 t$, then find t.

D Watch Video Solution

15. Find the relation between and x and y from
the data given in the following table.
$\begin{array}{lllll}x & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllll}y & 5 & 10 & 17 & 26\end{array}$

D Watch Video Solution

1. The symbolic form of "the sum of four angles
in a quadrilateral PQRS is 360° ' is
A. $\angle P+\angle Q+\angle R+\angle S=180^{\circ}$
B. $\angle P+\angle Q+\angle R+\angle S=360^{\circ}$
C. $\angle P+\angle Q+\angle R+\angle S=90^{\circ}$
D. $\angle P+\angle Q+\angle R+\angle S=100^{\circ}$

Answer: B
2. The symbolic form of "time taken (0 for a
journey is the quotient of distance covered (d)
and average spped (s)" is

$$
\begin{aligned}
& \text { A. } t=\frac{d}{s} \\
& \text { B. } d=\frac{t}{s} \\
& \text { C. } \frac{s}{d} \\
& \text { D. } t=d+s
\end{aligned}
$$

Answer: A
3. The symbolic form of "area of a sector (A) is half of the product length of the are (I) and radius (r) " is
A. $A=I r$

$$
\begin{aligned}
& \text { B. } A=\frac{r}{l} \\
& \text { C. } A=\frac{l r}{2} \\
& \text { D. } A=\frac{l+r}{2}
\end{aligned}
$$

Answer: C

4. The symbolic form of volume (v) of a cube is cube of its length (s)" is

$$
\text { A. } V=3 s
$$

B. $V=\frac{s}{3}$
C. $V=s$
D. $V=s^{3}$

Answer: D

5. The symbolic form of "area (A) of a trapezium is half of the product of distance between the paralel side (h) and sum of the lengths of parallel sides (a,b)" is

$$
\begin{aligned}
& \text { A. } A=\frac{h}{2}(a+b) \\
& \text { B. } A=\frac{h}{2}(a-b) \\
& \text { C. } A=\frac{h a b}{2} \\
& \text { D. } A=h a b
\end{aligned}
$$

Answer: A
6. The number of auxiliary formulae that can be
derived from $P=\frac{x}{360^{\circ}}(2 \pi r)$
A. 1
B. 2
C. 3
D. 4

Answer: B
7. If $A=\frac{S}{N}$, then $\mathrm{N}=$
A. $\frac{S}{A}$
B. $\frac{A}{S}$
C. $S A$
D. $S+A$

Answer: A

D Watch Video Solution
8. The symbolic form of " 6 less than twice p is equal to 3 more than q " is

$$
\text { A. } 2 p+6=q-3
$$

B. $6<2 p$
C. $2 p-6=q+3$
D. $3>q$

Answer: C
(Watch Video Solution
9. The subject of the folulae, $s=u t+\frac{a t^{2}}{2}$ is
A. s
B. u
C.t
D. a

Answer: A

10. the formulae obtained by transforming the

 subject in the given formula are called \qquadA. the subject of the formula
B. the trasnposition
C. an auxiliary formula
D. None of these.

Answer: C

-

11. The cost price C is given by the formula $C=$ 100 s
$\frac{100 s}{100+g}$, where $\mathrm{S}=$ selling price and g=gain in
\%. Make S the subject of the formula. Find S , if
$C=r s 800$ and $\mathrm{g}=20$. The following steps are involved in solving the above problem. Arrange them in sequential order.
(A) $\Rightarrow 100 S=C(100+g)$
(B) $S=\frac{(100+g) C}{100}$
(C) Given $C=\frac{100 S}{100+g}$
(D) $\therefore S=\frac{(100+20) \times 800}{100}=r s 960$
A. ABCD
B. BCAD

C. CADB

D. CABD

Answer: D

- Watch Video Solution

12. In the formulae $S_{n}=\frac{n}{2}\{2 a+(n-1) d\}$ make d as the subject

The following steps are involved in solving the above problem. Arrange them in sequential
order.
(A) $(n-1) d=\frac{2 S_{n}}{n}-2 a$
(B)

Given,
$S_{n}=\frac{n}{2}[2 a+(n-1) d] \Rightarrow n[2 a+(n-1) d]$
$=2 S_{n}$
(C) $\Rightarrow d=\frac{2}{n-1}\left[\frac{S_{n}}{n}-a\right]$
(D) $2 a+(n-1) d=\frac{2 S_{n}}{n}$
A. DBAC
B. BDAC
C. ABDC
D. BDCA

Answer: B

- Watch Video Solution

13. The compound interest on a certain sum is
given by C. $I .=P\left(1+\frac{R}{100}\right)^{n}-P$. Find C.I.
when $P=r s 1000, R=10 \%$ P.a., and $\mathrm{n}=2$.

The following steps are involved in solving the above problem. Arrange them in sequential order.
(A) $\therefore C . I .=r s 210$
(B) $1000\left(\frac{11}{10}\right)\left(\frac{11}{10}\right)-1000=1210-100$
$C l=P\left(1+\frac{R}{100}\right)^{n}-P, P=r s 1000$, $R=10 \%$ p.a., and $n=2$
(D) C.I. $=1000+\left(1+\frac{10}{100}\right)^{2}-1000$
A. BCDA
B. DCBA
C. CDBA
D. BDCA

Answer: C
14. The focal length of a less is given by the formula $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$. Make f as the subject of the formula.
if $u=20 \mathrm{~cm}$ and $\mathrm{v}=30$, then find f .
The following steps are involved in solving the above problem. Arrange them in sequential order.
(A) Given $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$
(B) $\Rightarrow f=\frac{u v}{u+v}$
(C) $f=\frac{20 \times 30}{20+30}=\frac{600}{50}=12 \mathrm{~cm}$.
(D) $\Rightarrow \frac{1}{f}=\frac{v+u}{u v}$
A. ADBC

B. BADC

C. ACDB

D. DBAC

Answer: A

Watch Video Solution

15. Match the following Column A to Column B

Column A
15. Changing a term from one side of an equation to the other side
16. Coefficient of the subject of a formula
(b) Transposition
17. In a formula, a variable which is expressed in terms of other variables
18. The circumference (C) of a circle is π times its diameter (d).

Column B

(a) Subject
(c) $C=\pi d$
(d) 1

16. Match the following Column A to Column B

```
    Column A
19. A symbol that occurs
alone on LHS of the
equality
20. The symbolic form of "The sum of the angles of \(\triangle A B C\) is \(180^{\circ}\)."
```

21. The symbolic form of "Perimeter (P) of $\triangle A B C$ is the sum of its sides."
22. An equation based on a rule
(c) $P=A B+$
$B C+A C$
(d) $\angle A+\angle B+$ $\angle C=180^{\circ}$

Column B

```
(a) Formula
(b) Subject
```


D Watch Video Solution

Level 2

1. If $A=2 \pi r$, then $\mathrm{r}=$
A. $2 \pi A$
B. $\frac{2 \pi}{A}$
C. $\frac{2 A}{\pi}$
D. $\frac{A}{2 \pi}$

Answer: D

D Watch Video Solution

2. In $A=2 h(l+b)$, if $A=54 m^{2}$, I=5m, and $b=4 m$, then find h.
A. 6 m
B. 4 m
C. 3 m
D. 2 m

Answer: C

3. If $A=2(l b+b h+l h)$, then which of the

 following is/are true?> A. $l=\frac{A-2 b h}{2(b+h)}$
> B. $b=\frac{A-2 h}{2(l+b)}$
> C. $h=\frac{A-2 l b}{2(l+b)}$

D. None of these

Answer: D

D Watch Video Solution

4. The length of an are of a circle is given by the
formula $l=\frac{x}{360^{\circ}} \times 2 \pi r$.
Make r as the subject of the formula.

$$
\begin{aligned}
& \text { A. } r=\frac{720^{\circ} \pi x}{l} \\
& \text { B. } r=\frac{180^{\circ} l}{\pi x} \\
& \text { C. } r=\frac{720^{\circ} l}{\pi x} \\
& \text { D. } r=\frac{180^{\circ} l}{x}
\end{aligned}
$$

Answer: B

D Watch Video Solution

5. The length of an are of a circle is given by the
formula $l=\frac{x}{360^{\circ}} \times 2 \pi r$.
If $x=60^{\circ}$ and $\mathrm{r}=3 \mathrm{~cm}$, then find I .
A. 22 cm

B. $2 \pi \mathrm{~cm}$

C. $\pi c m$
D. 11 cm

Answer: C

D Watch Video Solution

6. The length of an are of a circle is given by the
formula $l=\frac{x}{360^{\circ}} \times 2 \pi r$.
If $I=4 \pi \mathrm{~cm}$ and $\mathrm{r}=18 \mathrm{~cm}$, then find x .
A. 60°
B. 90°
C. 80°
D. 40°

Answer: D

D Watch Video Solution

7. The number of variables in the formula $S=u t+$ $\frac{a t^{2}}{2}$ is ..
A. 4
B. 3
C. 2
D. 1

Answer: A

D Watch Video Solution
8. The number of all possible squares in $n \times n$ network is equal to $1^{2}+2^{2}+3^{2}+\ldots+n^{2}$.

Find the number of possible squares in 7×7 network.
A. 103
B. 91
C. 120
D. 140

Answer: D

D Watch Video Solution

9. Write the relation between H and m from the

 given table.Number of $\operatorname{hours}(H) \quad 1 \begin{array}{llllll} & 1 & 3 & 5 & 6 & 10\end{array}$
Number of minutes $(m) \quad 60 \quad 180 \quad 300 \quad 360 \quad 600$

$$
\begin{aligned}
& \text { A. } H=60 m \\
& \text { В. } m=60 H \\
& \text { C. } H+m=1 \\
& \text { D. } m=30 H
\end{aligned}
$$

Answer: B
10. Simple interest on a certain sum is given by $l=\frac{P T R}{100}$. Make T as the subject of the formula. Find T when $P=r s 1000, R=10 \%$ p.a., and I=rs 300.

$$
\begin{aligned}
& \text { A. } T=\frac{100 l}{P R}, 6 \text { years } \\
& \text { B. } T=\frac{100 l}{P R}, 3 \text { years } \\
& \text { C. } T=\frac{100 P}{I R}, 4 \text { years } \\
& \text { D. } T=\frac{100 R}{P l}: 5 \text { years. }
\end{aligned}
$$

Answer: B

11. If $A=S^{2}$ and $A=324 \mathrm{~cm}^{2}$, then find the value of S (in cm).
A. 162
B. $(324)^{2}$
C. 18
D. 16

Answer: C

D Watch Video Solution
12. In the formula $\angle A+\angle B+\angle C=180^{\circ}$, if
$\angle A=90^{\circ}$ and $\angle B=55^{\circ}$, then $\angle C=$
A. 45°
B. 45°
C. 25°
D. 35°

Answer: D
(Watch Video Solution
13. If $A=\frac{d_{1} d_{2}}{2}, d_{1}=6 \mathrm{~cm}$, and $d_{2}=8 \mathrm{~cm}$, then find the value of A (in cm^{2}).
A. 12
B. 18
C. 36
D. 24

Answer: D

- Watch Video Solution

14. If $A=2 h(l+b)$, then $\mathrm{b}=$
A. $2 A h-1$
B. $\left(\frac{A}{2 h}\right)-1$
C. $2 A l-h$
D. $\frac{A}{2 l}-h$

Answer: B
15. If $S=(n-2) 180^{\circ}$ and $S=540^{\circ}$, then find n.
A. 4
B. 3
C. 5
D. 7

Answer: C

- Watch Video Solution

16. The sum of four angles of a quadrillateral is
360° from the following figure, express the relation between x and y by making x as the subject.

A. $x=180^{\circ}-y$
B. $y=180^{\circ}-x$

$$
\text { C. } x=180^{\circ}+y
$$

$$
\text { D. } y=180^{\circ}+x
$$

Answer: A

- Watch Video Solution

17. If $M=a+\frac{b}{c}$, then $\mathrm{b}=$
A. $M c-a$
B. $M-a c$
C. $\frac{(M-a)}{c}$
D. $(M-a) c$

Answer: D

D Watch Video Solution

Level 3

1. If $V=l b h$, then $\mathrm{h}=$
A. $\frac{v}{l b}$
B. $\frac{v}{b h}$
C. $\frac{v}{l h}$
D. $\frac{l b}{v}$

D Watch Video Solution

2. In $A=s^{2}-(s-2 w)^{2}$, if $\mathrm{w}=1 \mathrm{~m}$ and $\mathrm{s}=6 \mathrm{~m}$, then find $A\left(\mathrm{in} m^{2}\right)$.
A. 20
B. 10
C. 15
D. 16

Answer: A

- Watch Video Solution

3. Frame the formula: volume (v) of a cuboid is the product of its length (I), breadth (b), and height (h).

$$
\begin{aligned}
& \text { A. } v=l b h \\
& \text { B. } v=l+b+h \\
& \text { C. } v=\frac{l b}{h} \\
& \text { D. } v=h(l+b)
\end{aligned}
$$

Answer: A

D Watch Video Solution

4. If $S=\frac{(100+g) C}{100}$, then which of the following is/ are true?

$$
\begin{aligned}
& \text { A. } C=\frac{100 S}{(100+g)} \\
& \text { B. } g=\frac{100(S-C)}{C}
\end{aligned}
$$

C. Both a and b
D. None of these.

Answer: C

D Watch Video Solution

5. The number of auxiliary formulae that can be derive from the formula $D=\left[\frac{n(n-1)}{2}\right]-n$
A. 1
B. 2
C. 3
D. 4

D Watch Video Solution

6. The number of diagonals of a convex polygon
of sides n is equal to $\frac{n(n-3)}{2}$. Find the number of diagonals is hexagon.
A. 9
B. 6
C. 10
D. 8

D Watch Video Solution

7. Write the relation between x and y from the given table.
$\begin{array}{lllllll}x & 26^{\circ} & 34^{\circ} & 75^{\circ} & 30^{\circ} & 82^{\circ} & 10^{\circ}\end{array}$
$y \quad 64^{\circ} 56^{\circ} \quad 15^{\circ} \quad 60^{\circ} \quad 8^{\circ} \quad 80^{\circ}$

$$
\begin{aligned}
& \text { А. } x=y-45^{\circ} \\
& \text { В. } x=y+54^{\circ} \\
& \text { С. } x=90^{\circ}-y
\end{aligned}
$$

D. $x+y=100^{\circ}$

Answer: C

- Watch Video Solution

8. The area of four walls of room is given by
$A=2 h(I+b)$. Make I as the subject of the formula.
Find I when $A=100 \mathrm{~m}^{2}, \mathrm{~h}=5 \mathrm{~m}$, and $\mathrm{b}=4 \mathrm{~m}$.

$$
\begin{aligned}
& \text { A. } l=\frac{A}{2 h}=b, 6 m \\
& \text { B. } l=\frac{A}{2 h}-h, 5 m \\
& \text { C. } l=\frac{A}{2 b}-h, 4 m \\
& \text { D. } l=\frac{A}{2 b}-h, 8 m
\end{aligned}
$$

Answer: A

D Watch Video Solution

9. If $A=\frac{d}{2}(a+b)$, then which of the following is/are true?
A. $d=\frac{2 A}{a+b}$
B. $a=\left(\frac{2 A}{d}\right)-b$
C. Both a and b
D. None of these

Answer: C

- Watch Video Solution

10. The following table shows the relation between the angles x and y.

$$
\begin{array}{lllllll}
X & 90^{\circ} & 100^{\circ} & 110^{\circ} & 120^{\circ} & 130^{\circ} & 140^{\circ} \\
Y & 90^{\circ} & 80^{\circ} & 70^{\circ} & 60^{\circ} & 50^{\circ} & 40^{\circ}
\end{array}
$$

Express the relation between x and y with x as
the subject.

$$
\begin{aligned}
& \text { А. } y=180^{\circ}-x \\
& \text { В. } x=180^{\circ}-y
\end{aligned}
$$

$$
\text { C. } y=180^{\circ}+x
$$

$$
\text { D. } x=180^{\circ}+y
$$

Answer: B

D Watch Video Solution

11. If $\frac{a+b}{c+d}=\frac{x}{y}$, then $\mathrm{y}=$
A. $y=x(a+b)(c+d)$
B. $y=\frac{x}{(a+b)(c+d)}$
C. $y=\frac{x(c+d)}{a+b}$

$$
\text { D. } y=\frac{x(a+b)}{c+d}
$$

Answer: C

D Watch Video Solution

Test 1

1. If $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$, then make v as the subject of the formula.

$$
\text { A. } \frac{1}{v}=\frac{1}{f}-\frac{1}{u}
$$

> B. $\frac{1}{v}=\frac{u-f}{f u}$
> C. $v=\frac{f u}{u-f}$
> D. $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$

Answer: C

D Watch Video Solution

2. The sum of the digits of a two-digit number is
3. if 9 is subtracted from the number, then the digits interchagne their places. Find the number. The following steps are involved in
solving the above problem. Arrange them in
sequential order
(A) Let the units digit be x. therefore, the tens digit is (11-x).
\therefore The number is $10(11-x)+x=110-9 x$.
(B)

Given
that
$110-9 x-9=9 x+11 \Rightarrow x=5$.
(C) Units digit is S and tens digit is 6 and the required number is 65 .
(D) The number formed by interchanging the digits is $10 x+(11-x)=9 x+11$.
B. ABDC

C. $A B C D$

D. BADC

Answer: A

D Watch Video Solution

3. If $A=c(a-b)$, then a
A. $\left(\frac{A}{c}\right)-b$
B. $\left(\frac{A}{c}\right)+b$
C. $\left(\frac{A}{b}\right)-c$
D. $\left(\frac{A}{b}\right)+c$

Answer: B

D Watch Video Solution

4. The sum of the interior angles in a 6 -sided polygon is 720° and the six angles are x, y, z, z, y. and x . express the relation among x, y, and z by making z as the subject.

$$
\text { А. } z=3606(\circ)-x+y
$$

$$
\text { B. } z=360^{\circ}-(x+y)
$$

C. $z=360^{\circ}+x-y$
D. $z=36^{\circ}+x+y$

Answer: B

D Watch Video Solution

5. If $k=a+b c$, then $\mathrm{c}=$
A. $\frac{b+a}{b}$
B. $\frac{k+b}{a}$

> C. $\frac{k-a}{b}$
> D. $\frac{k-b}{a}$

Answer: C

D Watch Video Solution

6. If $A=c\left(a^{2}+b^{2}\right)$, then which of the following is/are true?

$$
\begin{aligned}
& \text { A. } c=\frac{A}{a^{2}-b^{2}} \\
& \text { B. } a=\sqrt{\frac{A}{c}+b^{2}}
\end{aligned}
$$

C. Both a and b

D. None of these.

Answer: D

D Watch Video Solution

7. The following table shows the relation between a and b .
$\begin{array}{llllll}a & 1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllll}b & 2 & 5 & 12 & 20 & 30\end{array}$
Express the relation between a and b with b as
the subject.
A. $b=2 a$
B. $b=3 a$
C. $b=(a+b)^{2}$
D. $b=a(a+1)$

Answer: D

D Watch Video Solution

$$
\begin{aligned}
& \text { 8. If } \frac{x+y}{z}=\frac{a+b}{c} \text {, then } \mathrm{y}= \\
& \text { A. } \frac{(a+b) z}{c}-x
\end{aligned}
$$

B. $\frac{(a+b) z-x}{c}$
C. $\frac{(a+b) z}{c}+x$
D. $\frac{(a+b) z+x}{c}$

Answer: A

D Watch Video Solution

9. One-fifth of a number is 5 more than onetenth of the number. Find the number
A. 50
B. 75
C. 25
D. 100

Answer: A

D Watch Video Solution

10. If twice a number is added to half the number, then the result is 250 . Find one-tenth of the number.
A. 20
B. 10
C. 50
D. 25

Answer: B

Watch Video Solution
11. Which of the following is a solution of
$2 x-5>4 x-3 ?$
A. 0

B. 1
C. -1

D. -2

Answer: D

D Watch Video Solution

Column A

$$
\text { If } \frac{x}{10}+\frac{x}{15}+\frac{x}{30}=3,
$$

Column B
(a) 10
12. then $x=$

Column A
If $2 / 3$ of a certain
number exceeds its
one-sixth by 10 , then the number is \qquad .

Test 2

1. Make I as the subject of the formula
$A=2(l b+b h+h l)$.

The following steps are involved in solving the above problem Arrange them in sequential order.

$$
\begin{aligned}
& \text { A. } l b+b h+h l=\frac{A}{2} \\
& \text { B. } l=\frac{A-2 b h}{2(b+h)} \\
& \text { C. } 2(l b+b h+h l)=A \\
& \text { D. } l(b+h)=\frac{A}{2}-b h
\end{aligned}
$$

Answer: C
2. The sum of the digits of a two-digit number is
12. if 18 is subtracted from the number, then the
digits interchange their places. Find the number. The following steps are involved in solving the above problem. Arrange them in sequential order.
(A) Units digits is 5 , tens digit is 7 , and the number is 75 .
(B)

Given
that
$120-9 x-18=9 x+12 \Rightarrow 90=18 x \Rightarrow x=5$
(C) The number formed by interchanging the digits is $10 x+(12-x)=9 x+12$.
(D) Let the digit in the units place be x. Then the digit in the tens place be $(12-x) . \therefore$ The number

$$
10(12-x)+x=120-10 x+x=120-9 x
$$

A. $A B C D$
B. DCBA
C. DBCA
D. DABC

Answer: B
3. If $A=2 h(l+b)$, then $\mathrm{b}=$
A. $2 A h-l$
B. $\left(\frac{A}{2 h}\right)-l$
C. $2 A l-h$
D. $\frac{A}{2 l}-h$

Answer: B

D Watch Video Solution

4. If $M=a+\frac{b}{c}$, then $\mathrm{b}=$
A. $M c-a$
B. $M-a c$
C. $\frac{(M-a)}{c}$
D. $(M-a) c$

Answer: D

(Watch Video Solution

5. If $A=\frac{d}{2}(a+b)$, then which of the following is/are true?

> A. $d=\frac{2 A}{a+b}$
> B. $a=\left(\frac{2 A}{d}\right)-b$
C. Both a and b

D. None of these

Answer: C

- Watch Video Solution

6. The following table shows the relation between the angles x and y.
$\begin{array}{ll}x & 90^{\circ}\end{array}$
100°
110°

| y | 90° | 80° | 70° | 60° | 50° |
| :--- | :--- | :--- | :--- | :--- | :--- | 40°

Then which of the following is true?
A. $x=y$
B. $x+y=180^{\circ}$
C. $x-y=20^{\circ}$
D. $x=2 y$.

Answer: B
7. If $\frac{a+b}{c+d}=\frac{x}{y}$, then $\mathrm{y}=$

$$
\begin{aligned}
& \text { A. } y=x(a+b)(c+d) \\
& \text { B. } y=\frac{x}{(a+b)(c+d)} \\
& \text { C. } y=\frac{x(c+d)}{a+b} \\
& \text { D. } y=\frac{(a+b)}{c+d}
\end{aligned}
$$

Answer: C

D Watch Video Solution
8. Two-thirds of a number is 32 less than three fifths of the number find the number.
A. 360
B. -480
C. -360
D. 480

Answer: B

(D)
9. If one third ofa number is subtracted from
three times the number, then the result is 800 , find the number.
A. 300
B. 400
C. 200
D. 600

Answer: A
10. Which of the following is a solution of $\frac{2 x-5}{3}>\frac{3 x+3}{4}$?
A. $x=-5$
B. $x=-2$
C. Both a and b
D. Neither a nor b

Answer: D

- Watch Video Solution

11. Match the following Column A to Column B

Column A

If $\frac{x}{10}+\frac{x}{15}+\frac{x}{30}=3$,
(a) 10
then $x=$
. If $1.5 t+2.5 t+3.5 t=$
$70+0.5 t$, then $t=$
If $2 / 3$ of a certain
(c) -5
number exceeds its one-sixth by 10 , then the number is \qquad ,
If $3 x+5>25-x, x \in$
(d) 5
Q then $x>$ \qquad .
(e) 15
(f) 25

