びdoubtnut

MATHS

BOOKS - DHANPAT RAI \& CO MATHS (HINGLISH)

CARTESIAN CO-ORDINATE SYSTEM

Illustration

1. If the point $P(x, y)$ be equidistant from the points $A(a+b$, $\mathrm{b}-\mathrm{a})$ and $\mathrm{B}(\mathrm{a}-\mathrm{b}, \mathrm{a}+\mathrm{b})$, then prove that $b x=a y$
A. $a x=b y$
B. $b x=a y$
C. $a x+b y=0$
D. $b x+a y=0$

Answer: B

- Watch Video Solution

2. If P and Q are two points whose coordinates are $\left(a t^{2}, 2 a t\right) a n d\left(\frac{a}{t^{2}}, \frac{2 a}{t}\right)$ respectively and S is the point
$(a, 0)$. Show that $\frac{1}{S P}+\frac{1}{s Q}$ is independent of t .
A. a
B. 4 a
C. 2 a
D. $\frac{2}{a}$

(Watch Video Solution

3. A triangle with vertices $(4,0),(-1,-1),(3,5)$, is
A. isoceles and right angles
B. isoscles but not right angled
C. right angled but not isosceles
D. neither right angeld nor isosceles

Answer: A

4. If the coordinates of t ideas AB and AC of a $A B C$ are $(3,5)$ and $(-3,-3)$ respectively, then write the length of side $B C$.
A. 10
B. 15
C. 20
D. 30

Answer: C

- Watch Video Solution

5. If 'alpha' be the angle subtended by the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ at origin O , Show that
$O P . O Q \cdot \cos \alpha=x_{1} x_{2}+y_{1} y_{2}$.
A. $x_{1} x_{2}+y_{1} y_{2}$
B. $x_{1} y_{2}+x_{2} y_{1}$
C. $\left|x_{1} y_{2}-x_{2} y_{1}\right|$
D. none of these

Answer: A

(Watch Video Solution

6. If points $O(0,0) A(3, \sqrt{3})$ and $B(3, a)$ are the vertices of an equilaterla triangle then $a=$
A. 2
B. -3
C. -4

D. none of these

Answer: D

- Watch Video Solution

7. If the points $\mathrm{A}(1,1), \mathrm{B}(-1,-1)$ and $C(-\sqrt{3}, \sqrt{3})$ are the vertices of a triangle is
A. right-angled
B. isoscles but not right angled
C. equilateral
D. name of these
8. If O is the origin and $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ are two points then $P O \times O Q \sin \angle P O Q=$
A. $x_{1} y_{2}+x_{1} y_{2}$
B. $x_{1} y_{2}+x_{2} y_{1}$
C. $\left|x_{1} y_{2}-x_{2} y_{1}\right|$
D. none of these

Answer: C

- Watch Video Solution

9. If the coordinates of two points A and B are $(3,4)$ and $(5,-2)$, respectively, find the coordinates of any point P if $P A=P B$ Area of $P A B$ is 10 sq. units.
A. $(2,7)$
B. $(7,2)$
C. $(1,0)$
D. $(0,1)$

Answer: B

- Watch Video Solution

10. The area of the quadrilateral whose vertices are
$(1,2)(6,2),(5,3)$ and $(3,4)$, is
A. $\frac{3}{2}$ sq. unirts
B. $\frac{11}{2}$ sq. unirts
C. $\frac{1}{2}$ sq. unirts
D. none of these

Answer: B

- Watch Video Solution

11. If two vertices of an equilaterla triangle have integral coordinates, then the third vetex will have
A. integral coodinates which are rtional
B. coordinates which are rational
C. at least one coordinate irrational

D. coordinates which are irrational

Answer: C

- Watch Video Solution

12. If points $\left(a^{2}, 0\right),\left(0, b^{2}\right)$ and $(1,1)$ are collinear, then
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=1$
B. $\frac{1}{a}+\frac{1}{b}=1$
C. $a^{2}+b^{2}=1$
D. none of these

Answer: A

13. If the points $A(\lambda, 2 \lambda), B(3 \lambda, 3 \lambda)$ and $C(3,1)$ are collinear, then $\lambda=$
A. $1 / 3$
B. $1 / 3$
C. $2 / 3$
D. $2 / 3$

Answer: B

- Watch Video Solution

14. If area of the triangle formed by
$(0,0),\left(a^{x^{2}}, 0\right),\left(0, a^{6 x}\right)$ is $\frac{1}{2 a^{5}}$ sq. units then $x=$
A. 1,5
B. $-1,5$
C. $1,-5$
D. $-1,-5$

Answer: D

- Watch Video Solution

15. The area of a triangle with vertices $(a, b+c),(b, c+a)$ and
$(c, a+b)$ is
A. 0
B. $a+b+c$
C. $a b+b c+c a$

D. none of these

Answer: A

- Watch Video Solution

16. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertices of a right angled triangle with $A C$ as its hypotenuse. If the area of the triangle is 1 , then the set of values which k can take is given by
A. $\{1,3\}$
B. $\{0,2\}$
C. $\{-1,3\}$
D. $\{-3,-2\}$

(Watch Video Solution

17. If the point $x_{1}+t\left(x_{2}-x_{1}\right), y_{1}+t\left(y_{2}-y_{1}\right)$ divides the join of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ internally then locus of t is
A. $t<0$
B. $0<t<1$
C. $t<1$
D. $t=1$

Answer: B
18. If $P(1,2) Q(4,6), R(5,7)$, and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then $a=2, b=4$
$a=3, b=4 a=2, b=3$ (d) $a=1$ or $b=-1$
A. $a=2, b=4$
B. $a=3, b=4$
C. $a=2, b=4$
D. $a=3, b=5$

Answer: C

- Watch Video Solution

19. If $(1, a),(2, b),\left(c^{2},-3\right)$ are vertices of a triangle then the condition for its centroid to lie on x-axis is
A. $a=3$
B. $b=3$
C. $a+b=3$
D. $a+b=3$

Answer: C

(Watch Video Solution

20. If the vertices of a triangle are at
$O(0,0), A(a, 0)$ and $B(0, a)$. Then, the distance between its circumcentre and orthocentre is
A. $\sqrt{a^{1}+b^{2}}$
B. $\frac{1}{2} \sqrt{a^{1}+b^{2}}$

> C. $\sqrt{\frac{a^{1}+b^{2}}{2}}$
> D. $\frac{1}{4} \sqrt{a^{1}+b^{2}}$

Answer: B

- Watch Video Solution

21. Find the incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$
A. $(1, \sqrt{3} / 2)$
B. $(2 / 3,1, \sqrt{3})$
C. $(2 / 3, \sqrt{3} / 2)$
D. $(1 / 1, \sqrt{3})$

(D) Watch Video Solution

22. If the centroid and circumentre of a triangle are $(3,3)$ and $(6,2)$ respectively, then the orthocentre, is
A. $(-3,5)$
B. $(-3,1)$
C. $(3,-1)$
D. $(9,5)$

Answer: A

23. Write the coordinates of the incentre of the triangle having its vertices at (0,0), (5,0) and (0,12).
A. $(3,3)$
B. $(2,2)$
C. (7,7)
D. $(9,9)$

Answer: B

- Watch Video Solution

24. The circumcentre of the triangle formed by $(0,0),(2,-1)$ and $(-1,3)$ is $\left(\frac{5}{2}, \frac{5}{2}\right)$. Then the
orthocentre is
A. $(-4,-3)$
B. $(4,3)$
C. $(-4,3)$
D. none of these

Answer: A

(Watch Video Solution

25. Orthocentre of triangle whose vertices are $(0,0),(3,4),(4,0)$ is
A. $(3,5 / 2)$
B. $(3,12)$
C. $(3,3 / 4)$
D. $(3,9)$

Answer: C

(Watch Video Solution

26. At what point should the origin be shifted if the coordinates of a point $(4,5)$ become $(-3,9)$?
A. $(-7,4)$
B. $(7,-4)$
C. $(1,14)$
D. $(-4,7)$

- Watch Video Solution

27. Shift the origin to a suitable point so that the equation $y^{2}+4 y+8 x-2=0$ will not contain a term in y and the constant term.
A. $\left(\frac{3}{4},-2\right)$
B. $\left(-\frac{3}{4}, 2\right)$
C. $\left(2,-\frac{3}{4}\right)$
D. $\left(-2, \frac{3}{4}\right)$

Answer: A
28. The coordinates of the point where origin is shifted is
$(-1,2)$ so that the equation $2 x^{2}+y^{2}-4 x+4 y=0$ become?
A. $X^{2}+2 Y^{2}=6$
B. $2 X^{2}+y^{2}=6$
C. $2 X^{2}+Y^{2}=4$
D. $X^{2}+2 Y^{2}=4$

Answer: B
(D) Watch Video Solution
29. If the axes be turned through an angle $\tan ^{-1} 2$ (in anticlockwise direction), what does the equatio $4 x y-3 x^{2}=a^{2}$ become ?
A. $X^{2}+4 Y^{2}=a^{2}$
B. $X^{2}-4 Y^{2}=4 a^{2}$
C. $X^{2}-4 Y^{2}=a^{2}$
D. $X^{2}+4 Y^{2}=4 a^{2}$

Answer: C

- Watch Video Solution

30. If (x, y) and (X, Y) be the coordinates of the same point referred to two sets of rectangular axes with the same
origin and if ax+by becomes $\mathrm{pX}+\mathrm{qY}$, where a, b are independent of x, y, then
A. $a^{2}-b^{2}=p^{2}-q^{2}$
B. $a^{2}+b^{2}=p^{2}+q^{2}$
C. $a^{2}+p^{2}=b^{2}+q^{2}$
D. $a^{2} b^{2}=p^{2} q^{2}$

Answer: B

- Watch Video Solution

31. The angle through which the axes must be rotated, without translation, in anit-closwise sence so that the
exprssion $a x^{2}+h x y-b y^{2}+2 g x+2 f y+c$ does not contain the mixed product $x y$, is given by
A. $\tan ^{-1}\left(\frac{2 h}{a-b}\right)$
B. $\frac{1}{2} \tan ^{-1}\left(\frac{2 h}{b-a}\right)$
C. $\frac{1}{2} \tan ^{-1}\left(\frac{2 h}{a-b}\right)$
D. $\frac{1}{2} \tan ^{-1}\left(\frac{h}{a-b}\right)$

Answer: C

- Watch Video Solution

Section I Solved Mcqs

1. If t_{1}, t_{2} and t_{3} are distinct, the points $\left(t_{1} 2 a t_{1}+a t_{1}^{3}\right),\left(t_{2}, 2 a t_{2}+a t_{2}^{3}\right)$ and $\left(t_{3}, 2 a t_{3}+a t_{3}^{3}\right)$
A. $t_{1} t_{2} t_{3}=1$
B. $t_{1}+t_{2}+t_{3}=t_{1} t_{2} t_{3}$
C. $t_{1}+t_{2}+t_{3}=0$
D. $t_{1}+t_{2}+t_{3}=-1$

Answer: C

(Watch Video Solution

2. If the vertices of a triangle $P Q R$ are rational points, then which of the following points of this triangle may not be
(a) Centroid (b) Incenter
(c) Circumcenter (d) Orthocenter
A. centroid
B. incentre
C. circumentre
D. orthoentre

Answer: B

- Watch Video Solution

3. If all the vertices of a triangle have integral coordinates, then the triangle may be
A. right-angled
B. equilateral
C. isoosceles
D. none of these

Answer: B

D Watch Video Solution

4. If a vertex of a triangle is $(1,1)$ and the midpoints of two sides of the triangle through this vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is
A. $\left(\frac{1}{3}, \frac{7}{3}\right)$
B. $\left(1, \frac{7}{3}\right)$
C. $\left(-\frac{1}{3}, \frac{7}{3}\right)$
D. $\left(-1, \frac{7}{3}\right)$

Answer: B

- Watch Video Solution

5. One possible condition for the three points $(a, b),(b, a)$ and $\left(a^{2}, b^{2}\right)$ to be collinear is
A. $a-b=2$
B. $a+b=2$
C. $a=1+b$
D. $a=1-b$
6. Let $A(a, b)$ be a fixed point and O be the origin of coordionates. If A_{1} is the mid-point of OA, A_{2} is the midpoind of $A A_{1}, A_{3}$ is the mid-point of $A A_{2}$ and so on. Then the coordinates of A_{n} are
A. $\left(a\left(1-2^{-n}\right), b\left(1-2^{-n}\right)\right)$
B. $\left(a\left(2^{n-1}-1\right), b\left(2^{-n}-1\right)\right)$
C. $\left(a\left(1-2^{(n-1)}\right), b\left(1-2^{(n-1)}\right)\right)$
D. none of these

Answer: A

7. The points $A(0,0), B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right-angled triangle if

$$
\begin{aligned}
& \text { A. } \frac{\sin (\alpha-\beta)}{2}=\frac{1}{\sqrt{2}} \\
& \text { B. } \frac{\cos (\alpha-\beta)}{2}=-\frac{1}{\sqrt{2}} \\
& \text { C. } \frac{\cos (\alpha-\beta)}{2}=\frac{1}{\sqrt{2}} \\
& \text { D. } \frac{\sin (\alpha-\beta)}{2}=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

8. If O is the orthocentre of triangle $A B C$ whose vertices are at $A\left(a t_{1}^{2}, 2 a t_{1}, B\left(a t_{2}^{2}, 2 a t_{2}\right)\right.$ and $C\left(a t_{3}^{2}, 2 a t_{3}\right)$ then the coordinates of the orthocentreof $\Delta O^{\prime} B C$ are
A. $\left(a\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right), 2 a\left(t_{1}+t_{2}+t_{3}\right)\right)$
B. $(-a, 0)$
C. $\left(a t_{1}^{2}, 2 a t_{1}\right)$
D. $(0, a)$

Answer: C

- Watch Video Solution

9. If Δ_{1} is the area of the triangle formed by the centroid and two vertices of a triangle Δ_{2} is the area of the triangle formed by the mid- point of the sides of the same triangle, then $\Delta_{1}: \Delta_{2}=$
A. 3:4
B. $4: 1$
C. $4: 3$
D. $2: 1$

Answer: C
(Watch Video Solution
10. The number of point requdistant to three given distinct non-colliear points, is
A. 0
B. 1
C. 2
D. Infinite

(D) Watch Video Solution

11. The area of the triangle formed by theorigin, the point
$P(x, y)$ and its reflection in X-axis is
A. $x y$
B. $2|x y|$
C. $\frac{1}{2}|x y|$
D. $|x y|$

Answer: D
12. Q, R and S are the points on line joining the points
$P(a, x)$ and $T(b, y)$ such that $P Q=Q R=R S=S T$
then $\left(\frac{5 a+3 b}{8}, \frac{5 x+3 y}{8}\right)$ is the mid point of
A. PQ
B. $Q R$
C. RS
D. ST

Answer: B
13. The angle through which the coordinates axes be rotated so that $x y$-term in the equation $5 x^{2}+4 \sqrt{3} x y+9 y^{2}=0$ may beb missing, is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $2 \pi / 3$

Answer: C

- Watch Video Solution

14. If the axes are rotated through an angle of 30° in the anti clockwise direction, then coordinates of point
$(4,-2 \sqrt{3})$ with respect to new axes are
A. $(2,3)$
B. $(2, \sqrt{3})$
C. $(\sqrt{3}, 2)$
D. $(\sqrt{3}, 5)$

Answer: D

(Watch Video Solution

15. If the axes are rotated through an angle of 45° in the clockwise direction, the coordinates of a point in the new systeme are $(0,-2)$ then its original coordinates are
B. $(-\sqrt{2}, \sqrt{2})$
C. $(\sqrt{2},-\sqrt{2})$
D. $(-\sqrt{2},-\sqrt{2})$

Answer: D

D Watch Video Solution
16. To remvoe the first dgree terms in the equation $4 x^{2}+9 y^{2}-8 x+36 y+4=0$, the origin in shifted to the point
A. $(1,2)$
B. $(1,-2)$
C. $(2,1)$
D. $(-2,1)$

Answer: B

(Watch Video Solution

17. By shifting origin to $(-1,2)$ the equation
$y^{2}+8 x-4 y+12=0$ changes as $Y^{2}=4 a X$ then $a=$
A. 1
B. 2
C. -2
D. -1
18. If α, β, γ are the real roots of the equation $x^{3}-3 a x^{2}+3 b x-1=0$ then the centroid of the triangle with vertices $\left(\alpha, \frac{1}{\alpha}\right)\left(\beta, \frac{1}{\beta}\right)$ and $\left(\gamma, \frac{1}{\gamma}\right)$ is at the point
A. (a, b)
B. $\left(\frac{a}{3}, \frac{b}{3}\right)$
C. $(a+b, a-b)$
D. $(3 a, 3 b)$

Answer: A

19. Line joining $A(b \cos \alpha, b \sin \alpha)$ and $B(a \cos \beta, a \sin \beta)$, is produced to the point $M(x, y)$ such that $A M: M B=b: a$ then $x \cos \left(\frac{\alpha+\beta}{2}\right)+y \sin \left(\frac{\alpha+\beta}{2}\right)=$
A. (-1)
B. 0
C. 1
D. $a^{2}+b^{2}$

Answer: B
20. Find the incentre of the triangle with vertices
$(1, \sqrt{3}),(0,0)$ and $(2,0)$
A. $\left(1, \frac{\sqrt{3}}{2}\right)$
B. $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: D

- Watch Video Solution

21. If the circumcenter of an acute-angled triangle lies at the origin and the centroid is the middle point of the line
joining the points $\left(a^{2}+1, a^{2}+1\right)$ and $(2 a,-2 a)$, then find the orthocentre.

$$
\begin{aligned}
& \text { A. } y=\left(a^{2}+1\right) x \\
& \text { B. } y=2 a x \\
& \text { C. } x=y=0 \\
& \text { D. }(a-1)^{2} x-(a+1)^{2} y=0
\end{aligned}
$$

Answer: D

- Watch Video Solution

22. The x-coordiante of the incentre of the triangle that has the coordiantes of mid points of its sides as $(0,1),(1,1)$ and $(1,0)$ is:
A. $2+\sqrt{2}$
B. $1+\sqrt{2}$
C. $2-\sqrt{2}$
D. $1-\sqrt{2}$

Answer: C

(Watch Video Solution

23. $O P Q R$ is a square and M, N are the middle points of the sides $P Q$ and $Q R$, respectively. Then the ratio of the area of the square to that of triangle $O M N$ is
A. $4: 1$
B. 2:1
C. $8: 3$
D. $4: 3$

Answer: C

- Watch Video Solution

24. Let $O(0,0), P(3,4)$ and $Q(6,0)$ be the vertices of triangle $O P Q$. The point R inside the triangle $O P Q$ is such that the triangles $O P R, P Q R, O Q R$ are of equal area. The coordinates of R are
A. $\left(\frac{4}{3}, 3\right)$
B. $\left(3, \frac{2}{3}\right)$
C. $\left(3, \frac{4}{3}\right)$
D. $\left(\frac{4}{3}, \frac{2}{3}\right)$

Answer: C

- Watch Video Solution

25. Consider three points $P=(-\sin (\beta-\alpha),-\cos \beta)$,
$Q=(\cos (\beta-\alpha), \sin \beta)$, and
$R=((\cos (\beta-\alpha+\theta), \sin (\beta-\theta))$,
where
$0<\alpha, \beta, \theta<\frac{\pi}{4}$. Then
A. P lies on the line segmennt RQ
B. Q lies on the line segmet $P R$
C. R lies on the line segment QP
D. P,Q,R are non-colinear

- Watch Video Solution

26. A triangle are $(6,0) \cdot(0,6)$ and $(6,6)$. If distance between circumcenter and orthocenter and distance between circumcenter and centroid are λ and u unit respectively, then (λ, u) lies on:
A. $y=3 x$
B. $x=3 y$
C. $y=2 x$
D. $x=2 y$

Watch Video Solution

27. The x-coordiante of the incentre of the triangle that has the coordiantes of mid points of its sides as $(0,1),(1,1)$ and $(1,0)$ is:
A. $2+\sqrt{2}$
B. $2-\sqrt{2}$
C. $1+\sqrt{2}$
D. $1-\sqrt{2}$

Answer: B
(Watch Video Solution
28.
$A(5,12), B(-13 \cos \theta, 13 \sin \theta)$ and $-C(13 \sin \theta, 13 \cos \theta)$
are angular points of ABC where $\theta \in R$. The locus of orthocentre of DeltaABC is
A. $x-y=7$
B. $x-y-7=0$
C. $x+y-7=0$
D. $x+y+7=0$

Answer: A
29. Let k be an integer such that the triangle with vertices
$(k,-3 k),(5, k)$ and $(-k, 2)$ has area $28 s q$. units. Then the orthocenter of this triangle is at the point :
A. $\left(2,-\frac{1}{2}\right)$
B. $\left(1, \frac{3}{4}\right)$
C. $\left(1,-\frac{3}{4}\right)$
D. $\left(2, \frac{1}{2}\right)$

Answer: D

- Watch Video Solution

1. Statement-1 : The points $a(3,4), B(2,7), C(4,4)$ dn $D(3,5)$ are such that are of them lies inside the triangle formed by other the points

Statement-2 : Centroid of a triangle always lies inside the triangle
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 not a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: A

2. Statement-1: The orthocentre of the triangle having its verticews at $A(2,0), B(4,0)$ and $C(4,6)$ is at the point $o(4,0)$

Statement-2 : Orthocentre of a right triangle is at the vertex forming a right angle
A. Statement-1 is True, Statement-2 is True, Statement-2
is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2
not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True
3. Statement-1: Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{1}$ and y_{3} be integers and $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ be three noncollinear points. Then $\triangle A B C$ is not equilateral.

Statement-2: Area of an equlateral trinalge is $\frac{\sqrt{3}}{4}(\text { Side })^{2}$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2
not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

- Watch Video Solution

4. Statement-1: If the circumcentre of a triangle lies at origin and centroid is the middle point of the line joining the points (2,3) and (4,7), then its orthocentre satisfies the relation $5 x-3 y=0$

Statement-2: The circumcentre, centroid and the orthocentre of a triangle is on the same line and centroid divides the lines segment joining circumcentre in the ratio 1: 2
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: A

Watch Video Solution

5. Statement-1 : The points $A(-2,2), B(2,-2)$ and $C(1,1)$ are the vertices of an obtuse angled isoscles triangle.

Statement-2: Every abtuse angle tirangle is isosceles.
A. Statement-1 is True, Statement-2 is True, Statement-2
B. Statement-1 is True, Statement-2 is True, Statement-2 not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: C

- Watch Video Solution

6. Statement-1: The quadrilaterial whoe vertices (in order)
are $A(1,0), B(0,3), C(-2,0)$ and $D(0,2)$ cannot be convex.

Statement-2: A quadriilateral ABCD (in oder is) is convex iff when any diagonla is taken then the remaining vertices must be on the opposite sides of it.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False.
D. Statement- 1 is False, Statement- 2 is True

Answer: A

D Watch Video Solution

1. If the vertices of a triangle are at $O(0,0), A(a, 0)$ and $B(0, a)$. Then, the distance between its circumcenter and orthocenter is
A. $\frac{a}{2}$
B. $\frac{a}{\sqrt{2}}$
C. $\sqrt{2} a$
D. $\frac{a}{4}$

Answer: B

- Watch Video Solution

2. The angles A, B and C of a $\triangle A B C$ are in A.P. If
$A B=6, B C=7$,then $A C=$
A. 5
B. 7
C. 8
D. none of these

Answer: D

(Watch Video Solution

3. If the distance between the points
$P\left(a \cos 48^{\circ}, 0\right)$ and $Q\left(0, a \cos 12^{\circ}\right)$ is d, then $d^{2}-a^{2}=$
A. $\frac{a^{2}}{4}(\sqrt{5}-1)$
B. $\frac{a^{2}}{4}(\sqrt{5}+1)$
C. $\frac{a^{2}}{8}(\sqrt{5}-1)$
D. $\frac{a^{2}}{8}(\sqrt{5}+1)$

Answer: D

- Watch Video Solution

4. If the centroid of the triangle formed by the points
$(a, b),(b, c)$ and (c, a) is at the origin, then
A. 0
B. $a b c$
C. $3 a b c$
D. $-3 a b c$
5. Write the coordinates of the orthocentre of the triangle formed by points (8,0), (4,6) and (0,0)
A. $(0,0)$
B. $(8,0)$
C. $(4,6)$
D. none of these

Answer: A

- Watch Video Solution

6. If the coordinates of two vertices of an equilateral triangle are $(2,4)$ and $(2,6)$, then the coordinates of its third vertex are
A. $(\sqrt{3}, 5)$
B. $(2 \sqrt{3}, 5)$
C. $(2+\sqrt{3}, 5)$
D. $(2,5)$

Answer: C

- Watch Video Solution

7. If O is the origin $P(2,3)$ and $Q(4,5)$ are two, points, then
$O P \cdot O Q \cos \angle P O Q=$
A. 8
B. 15
C. 22
D. 23

Answer: D

- Watch Video Solution

8. If O is the origin and $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ are two points then $P O \times O Q \sin \angle P O Q=$
A. $x_{1} x_{2}+y_{1}+y_{2}$
B. $x_{1} y_{2}+x_{2}+y_{1}$
C. $\left|x_{1} y_{2}-x_{2} y_{1}\right|$

D. none of these

Answer: C

- Watch Video Solution

9. If $O(0,0), A(4,0)$ and $B(0,3)$ are the vertice of a triangle $O A B$, then the coordinates of the excentre oppsite to the vertex $\mathrm{O}(0,0)$

- Watch Video Solution

10. If $P(3,7)$ is a point on the line joining $A(1,1)$ and $B(6,16)$, then the harmonic conjugate Q of point P has the coordinates
A. $(9,29)$
B. $(-9,29)$
C. $(9,-29)$
D. $(-9,-29)$

Answer: D

- Watch Video Solution

11. The coordinates of the centrid of a triangle having its circumcentre and orthocenrtre at $(7 / 2,5 / 2)$ and $(2,1)$ respectively, are
A. $(3,2)$
B. $(13 / 6,3 / 2)$
C. $(5 / 2,3 / 2)$
D. $(3 / 2,5 / 2)$

Answer: A

- Watch Video Solution

12. The mid-point of the sides of a $\Delta A B C$ are $\mathrm{D}(6,1), \mathrm{E}(3,5)$ and $F(-1,-2)$ then the coordinates of the vertex opposite to D are
A. $(-4,2)$
B. $(-4,5)$
C. $(2,5)$
D. $(10,5)$

- Watch Video Solution

13. If the coordinates of orthocentre O^{\prime} are centroid G of a
$\Delta A B C$ are $(0,1)$ and $(2,3)$ respectively, then the coordinates of the circumcentre are
A. $(3,2)$
B. $(1,0)$
C. $(4,3)$
D. $(3,4)$

Answer: D
14. The ratio in which the y-axis divides the line segement joining $(3,6),(12,-3)$ is
A. 2: 1
B. $1: 2$
C. $3: 4$
D. none of these

Answer: A

(D) Watch Video Solution
15. If C and D are the points of internal and external division of line segment $A B$ in the same ratio, then $A C, A B, A D$ are in
A. AP
B. GP
C. HP
D. AGP

Answer: V

- Watch Video Solution

16. If the centroid of a triangle is $(1,4)$ and two of its vertices are $(4,-3)$ and $(-9,7)$, then the area of the
triangle is 183 sq. units (b) $\frac{183}{2}$ sq. units (c) 366 sq. units (d) 183
$\frac{183}{4}$ sq. units
A. $\frac{138}{2}$
B. $\frac{319}{2}$
C. $\frac{183}{2}$
D. $\frac{381}{2}$

Answer: V

D Watch Video Solution

17. A triangle with vertices $(4,0),(-1,-1),(3,5)$, is
A. isosceles and right angled
B. isoscles but not right angled
C. right angled but not isosceles
D. neither right angeld nor isosceles

Answer: A

D Watch Video Solution

18. The angle through which the coordinates axes be rotated so that $x y$-term in the equation $5 x^{2}+4 \sqrt{3} x y+9 y^{2}=0$ may beb missing, is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$

Answer: V

- Watch Video Solution

19. In order to make the first degree terms missing in the equation $2 x^{2}+7 y^{2}+8 x-14 y+15=1, \quad$ the \quad origin should be shifted to the point
A. $(-2,1)$
B. $(1,2)$
C. $(2,1)$
D. $(1,-2)$

- Watch Video Solution

20. When the origin is shifted to a suitable point, the equation $\quad 2 x^{2}+y^{2}-4 x+4 y=0 \quad$ transformed as
$2 x^{\wedge} 2+y^{\wedge} 2-8 x+8 y+18=0$. The point to which origin was shifted is
A. $(1,2)$
B. $(1,-2)$
C. $(-1,2)$
D. $(-1,-2)$

- Watch Video Solution

21. If by shifting the origin at $(1,1)$ the coordinates of a point P become $(\cos \theta, \cos \phi)$ then the original coordinates of P were
A. $\left(2 \cos ^{2} \theta / 2,2 \cos ^{2} \phi / 2\right)$
B. $\left(2 \sin ^{2} \theta / 2,2 \sin ^{2} \phi / 2\right)$
C. $(2 \cos \theta / 2,2 \cos \phi / 2)$
D. $(2 \sin \theta / 2,2 \sin \phi / 2)$

Answer: A
22. By rotating the coordinates axes through 30° in anticlockwise sense the eqution $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$ change to
A. $X^{2}-Y^{2}=3 a^{2}$
B. $X^{2}-Y^{2}=a^{2}$
C. $X^{2}-Y^{2}=2 a^{2}$
D. none of these

Answer: B

D Watch Video Solution

23. In a $\triangle A B C$ the sides $B C=5, C A=4$ and $A B=3$.

If $A(0,0)$ and the internal bisector of angle A meets BC in D
$\left(\frac{12}{7}, \frac{12}{7}\right)$ then incenter of $\triangle A B C$ is
A. $(2,2)$
B. $(2,3)$
C. $(3,2)$
D. $(1,1)$

Answer: D

- Watch Video Solution

24. The harmonic conjugate of $(4,-2)$ with respect to $(2,-4)$ and $(7,1)$ is
A. $(-8,-14)$
B. $(2,3)$
C. $(-2,-3)$
D. $(1,1)$

Answer: A

D Watch Video Solution

25. If the coordinates of the centroid and a vertex of an equilaterqal triangle are $(1,1)$ and $(1,2)$ respectively, then the coordinates of another vertex, are
A. $\left(\frac{2-\sqrt{3}}{2},-\frac{1}{2}\right)$
B. $\left(\frac{2+3 \sqrt{3}}{2},-\frac{1}{2}\right)$
C. $\left(\frac{2+\sqrt{3}}{2},-\frac{1}{2}\right)$

D. none of these

Answer: C

- Watch Video Solution

26. The transformed equation of $3 x^{2}+3 y^{2}+2 x y-2=0$
when the coordinats axes are rotated through an angle of 45°, is
A. $X^{2}+2 Y^{2}=1$
B. $2 X^{2}+Y^{2}=1$
C. $X^{2}+Y^{2}=1$
D. $X^{2}+3 Y^{2}=1$

- Watch Video Solution

27. The transformed equation of $x^{2}+6 x y+8 y^{2}=10$ when the axes are rotated through an angled $\pi / 4$ is
A. $15 x^{2}-14 x y+3 y^{2}=20$
B. $15 x^{2}+14 x y-3 y^{2}=20$
C. $15 x^{2}+14 x y+3 y^{2}=20$
D. $15 x^{2}-14 x y-3 y^{2}=20$

Answer: C
28.
$0 \leq \theta \leq \frac{\pi}{2}$ and $x=X \cos \theta+Y \sin \theta, y=X \sin \theta-Y \cos \theta$
such that $x^{2}+2 x y+y^{2}=a X^{2}+b Y^{2}$, where a and b are constant, then

$$
\begin{aligned}
& \text { A. } a=-1, b=3, \theta=\frac{\pi}{4} \\
& \text { B. } a=1, b=-3, \theta=\frac{\pi}{3} \\
& \text { C. } a=3, b=-1, \theta=\frac{\pi}{4} \\
& \text { D. } a=3, b=-1, \theta=\frac{\pi}{3}
\end{aligned}
$$

Answer: C
29. If $x=X \cos \theta-Y \sin \theta, y=X \sin \theta+Y \cos \theta$ and $x^{2}+4 x y+y^{2}=A X^{2}+B Y^{2}, 0 \leq \theta \leq \frac{\pi}{2}$, then
A. $\theta=\frac{\pi}{6}, A=3, B=-1$
B. $\theta=\frac{\pi}{4}, A=3, B=-1$
C. $\theta=\frac{\pi}{4}, A=-6, B=-1$
D. $\theta=\frac{\pi}{4}, A=-6, B=1$

Answer: B

