

MATHS

BOOKS - DHANPAT RAI & CO MATHS (HINGLISH)

FUNCTIONS

1. Let $A = \{1, 2, 3\}, B = \{2, 3, 4\}$ be two sets, which one of the following subsets of $A \times B$ defines a funciton from A to B?

$$\begin{array}{l} \mathsf{A}.\ f_1=\{(1,2),(2,3),(3,4)\}\\\\ \mathsf{B}.\ f_2=\{(1,2),(1,3),(2,3),(3,4)\}\\\\ \mathsf{C}.\ f_3=\{(1,3),(2,4),\}\\\\ \mathsf{D}.\ f_4=\{(1,4),(2,4),(3,4),(2,3)\}\end{array}$$

Answer: A

2. If $A = \{1, 2, 3, 4\}$, then which of the following are functions from A to itself?

A.
$$f_1 = \{(x, y), : y = x + 1\}$$

B. $f_2 = \{(x, y), x + y > 4\}$
C. $f_3 = \{(x, y) : y < x\}$
D. $f_4 = \{(x, y) : x + y = 5\}$

Answer: D

Watch Video Solution

3. If a function $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ is described by $g(x) = \alpha x + \beta$, then the values of α and β are

A. (2, -1)

B.(2,1)

C.(1,2)

D. (1, -2)

Answer: A

Watch Video Solution

4. Given
$$A = \left\{x : \frac{\pi}{6} \le x \le \frac{\pi}{3}\right\}$$
 and $f(x) = \cos x - x(1+x)$. Find $f(A)$.

A.
$$[\pi/6, \pi/3]$$

B. $[-\pi/3, \pi-6]$
C. $\left[\frac{1}{2} - \frac{\pi}{3}\left(1 + \frac{\pi}{3}\right), \frac{\sqrt{3}}{2} - \frac{\pi}{6}\left(1 + \frac{\pi}{6}\right)\right]$
D. $\left[\frac{1}{2} + \frac{\pi}{3}\left(1 - \frac{\pi}{3}\right), \frac{\sqrt{3}}{2} + \frac{\pi}{6}\left(1 - \frac{\pi}{6}\right)\right]$

Answer: C

г

5. If
$$f(x) = \cos(\log x)$$
, then $f(x)f(y) - \frac{1}{2}\left[f\left(\frac{x}{y}\right) + f(xy)\right] =$

A. 0

B.
$$\frac{1}{2}f(x)f(y)$$

 $\mathsf{C}. f(x+y)$

D. none of these

Answer: A

Watch Video Solution

6. Let a, b, c be rational numbers and $f \colon Z o Z$ be a function given by

 $f(x) = ax^2 + bx + c$. Then, a + b is

A. a negative integer

B. an integer

C. non-integral rational number

D. none of these

Answer: B

7. If
$$f\colon Z o Z$$
 be given by $f(x)=x^2+ax+b$, Then,

 $\mathsf{A}.\, a \in Z \, \text{ and } \, b \in Q-Z$

 $\texttt{B.}\,a,\,b,\,\,\in Z$

 $\mathsf{C}.\,b\in Z\,\, ext{and}\,\,a\in Q-Z$

D. $a, b \in Q-Z$

Answer: B

8. Find the image of interval $\left[\,-1,3
ight]$ under the mapping specified by the

function $f(x) = 4x^3 - 12x$.

A.[8,72]

B.[-8,72]

C. [0, 8]

D. [8, -72]

Answer: B

Watch Video Solution

9. If
$$f(x)=ax^2+bx+c$$
 and $g(x)=px^2+qx$ with $g(1)=f(1)$, $g(2)-f(2)=1,g(3)-f(3)=4$ then $g(4)-f(4)$ is

A. 0

B. 5

C. 6

D. none of these

Answer: D

10. For which Domain, the functions $f(x)=2x^2-1$ and g(x)=1-3x are equal to

A. [2, -1/2]B. $\{-2, 1/2\}$ C. [1, 2]D. [-2, -1/2]

Answer: B

11. If function f and g given by

 $f(x) = \log(x-1) - \log(x-2) ext{ and } g(x) = \logigg(rac{x-1}{x-2}igg)$ are equal

then x lies in the interval.

A. [1,2]

B. $[2,\infty]$

 $\mathsf{C}.\left[2,\infty\right]$

D. $[-\infty,\infty]$

Answer: C

Watch Video Solution

12. If $A = \{1, 2, 3\}, \ B = \{x, y\}$, then the number of functions that can be defined from A into B is 12 b. 8 c. 6 d. 3

A. 12

B. 8

C. 6

D. 3

Answer: B

Watch Video Solution

13. Let A be a set containing 10 distinct elements, then the total number

of distinct functions from \boldsymbol{A} to \boldsymbol{A} is

A. 10!

 $B.\,10^{10}$

 $\mathsf{C.}\,2^{10}$

 $\mathsf{D.}\,2^{10}-1$

Answer: B

14. If $P = (a, b, c) \,$ and $\, Q = (1, 2)$, then the total number of relations P

to Q are not functions is

A. 56

B. 8

C. 9

D. 55

Answer: A

Watch Video Solution

15. A mapping $f: X \to Y$ is one-one, if

A.
$$f(x_1)
eq f(x_2)$$
 for all $x_1, x_2 \in X$

B.
$$f(x_1)=f(x_2) \Rightarrow x_1=x_2$$
 for all $x_1,x_2\in X$

C.
$$x_1=x_2 \Rightarrow f(x_1)=f(x_2)$$
 for all $x_1,x_2\in X$

D. none of these

Answer: B

16. Which of the following functions is one-one?

A.
$$fR o R$$
 is given by $f(x) = 2x^1 + 1 ext{For all} \;\; x \in R$

$${\tt B}.\,g{:}\,Z \to Z \;\; {\rm given} \; {\rm by} g(x) = x^4 {\rm For} \; {\rm all} \;\; x \in Z$$

 $\mathsf{C}.\,h\!:\!R o R\;\; ext{given }\mathrm{h}(x)=x^3+4 ext{For all}\;\;x\in R$

$$extsf{D}. \, \phi \colon C o C \; extsf{ given by } \; \phi(z) = z^3 + 4 extsf{For all } \; z \in C \; .$$

Answer: C

Watch Video Solution

17. Which one of the following functions is one-one?

A.
$$f \colon R o R$$
 given by $f(x) | x - 1 | ext{for all} \ x \in R$

B. $g \colon [\, -\pi/2, \pi/2] \in R$ is given by:

$$g(x) = |{
m sin}\,x|{
m for \ all} \;\; x \in [\,-\pi\,/\,2,\pi\,/\,2]$$

C. $h \colon [\, -\pi/2, \pi/2] \in R$ is given by

 $h=(x)=\sin x \;\; {
m for \; all } \;\; x\in [\, -\pi/2,\pi/2]$

 $\mathsf{D}.\,\phi\!:\!R\to R \text{given by} f(x)=x^2-4\text{for all } \mathrm{x} \quad \in R$

Answer: C

Watch Video Solution

18. Which one of the following functions is not one-one?

A.
$$f \colon (-1,\infty) o R \;\; ext{given by} \;\; f(x) = x^2 + 2x$$

 ${\tt B}.\,g\!:\!(1,\infty)\to R \;\; {\rm given \, by} \;\; g(x)=e^{x^3-3x+2}$

C.
$$h\!:\!R o Rgiven by h(x)=2^{x^{x-1}}$$

 $\mathsf{D}.\,\phi,(\,-\infty,0) o R$ given by $\phi(x)=rac{x^2}{x^2+1}$

Answer: C

19. If $f\!:\!R o R$ is given by

$$f(x) = x^3 + (a+2)x^2 + 3ax + 5a$$

Watch Video Solution

20. Set A has three elements and set B has four elements. The number of

injections that can be defined from A to B is

A. 144

B. 12

C. 24

D. 64

Answer: C

21. Which of the following functions is a surjection?

A. $f \colon R \to R$ given by $f(x) = x^3 + 2$ for all $x \in R$ B. $g \colon R \to R$ given by $g(x) = x^2 + 2$ for all $x \in R$ C. $h \colon Z \to Z$ given by h(x) = 3x + 2for all $x \in Z$ D. $\phi \colon R \to R$ given by $f(x) = x^2 - 3x + 2$ for all $x \in R$

Answer: A

Watch Video Solution

22. Let E = (1, 2, 3, 4) and F - (1, 2). Then the number of onto functions from E to F is:

A. 14

B. 16

C. 12

D. 8

Answer: A

23. Let $A = \{1, 2, ..., n\}$ and $B = \{a, b\}$. Then number of subjections from A into B is nP2 (b) $2^n - 2$ (c) $2^n - 1$ (d) nC2

- A. $(n)P_2$
- B. $2^{n} 2$
- $C. 2^n 1$

D. none of these

Answer: B

24. If $X = \{1, 2, 3, 4\}$, then one-one onto mappings $f \colon X o X$ such

that f(1)=1, f(2)
eq 2f(4)
eq 4 are given by

A. {(1,1),(2,3),(3,4),(4,2)}

B. {(1,1),(2,4),(3,3),(4,2)}

C. {(1,1),(2,4),(3,2),(4,3)}

D. none of these

Answer: D

Watch Video Solution

25. The function of $f \colon R o R$ defined by

 $f(x)=2^x+x^{\,|\,x\,|}$, is

A. one-one and onto

B. many-one and onto

C. one-one and into

D. many-one and into

Answer: C

26. The total number of onto functions from the set {1,2,3,4} to the set

(3,4,7) is

A. 18

B. 36

C. 64

D. none of these

Answer: B

Watch Video Solution

27. $f \colon R o R$ given by $f(x) = x + \sqrt{x}^2$, is

A. injective

B. surjective

C. bijective

D. none of these

Answer: D

Watch Video Solution

28. The set of parameter 'a' for which the functions $f\colon R o R$ defined by $f(x)=ax+\sin x$ is bijective, is

A. [-1,1]

B. R-[-1,1]

C. R-[-1,1]

D. [-1,1]

Answer: C

29. Let f be an injective map. with domain (x, y, z and range (1, 2, 3), such that exactly one following statements is correct and the remaining are false : f(x) = 1, $f(y) \neq 1$, $f(z) \neq 2$ The value of $f^{-1}(1)$ is

A. x

В. у

C. z

D. none of these

Answer: B

Watch Video Solution

30. If
$$f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$$
 and $g\left(\frac{5}{4}\right) = 1$, then $(gof)(x)$ is _____

A. a polynomial of first degree in sin x and cos x

B. a constant function

C. a polynomial of second degree in sin x and cos x

D. none of these

Answer: B

31. If
$$g(x) = x^2 + x - 2$$
 and $\frac{1}{2}g(f(x)) = 2x^2 - 5x + 2$, then $f(x)$ is
A. $2x - 3$
B. $2x + 3$
C. $2x^2 + 3x + 1$
D. $2x^2 - 3x - 1$

Answer: A

32. If $f(x) = \sin^2 x$ and the composite functions $g\{f(x)\} = |\sin x|,$ then the function g(x) =

A.
$$\sqrt{x-1}$$

B. \sqrt{x}
C. $\sqrt{x+1}$

D. $-\sqrt{x}$

Answer: B

Watch Video Solution

33. If
$$f\!:\!R o R$$
 is given by $f(x)=3x-5$ then $f^{-1}(x)$

A. is given by
$$rac{1}{3x-5}$$

B. is given by $rac{x+5}{3}$

C. does not exist because f is not one-one

D. does not exist because is not onto

Answer: B

34. Let
$$f\!:\![4,\infty) o [4,\infty)$$
 be defined by $f(x)=5^{x^{(x-4)}}.$ Then $f^{-1}(x)$ is

A.
$$2-\sqrt{4-\log sx}$$

B. $2+\sqrt{4+\log sx}$
C. $\left(rac{1}{5}
ight)^{x^{x+4}}$

D. not defined

Answer: B

Watch Video Solution

35.
$$f(x) = rac{1-x}{1+x}, x = -1$$
 then $f^{-1}(x)$ relation to

A. f(x)

B.
$$rac{1}{f(x)}$$

C. $-f(x)$
D. $-rac{1}{f(x)}$

Answer: A

Watch Video Solution

Section I Solved Mcqs

1. Let
$$A=\{x\in R\colon -1\leq x\leq 1\}=B$$
 and $c=\{x\in R\colon x\geq 0\}$ and let

$$S = ig\{(x,y) \in A imes B \colon x^2 + y^2 = 1ig\} ext{ and } S_0 = ig\{(x,y) \in A imes C \colon x^2 + y^2 \}$$

The

A. S defines a function from A to B

B. S_0 defines a function from A to C

C. S_0 defines a function from A to b

D. S defines a function from A to c

Answer: B

2.
$$f \colon R o R$$
given by $f(x) = 2x + |\cos x|, ext{ is }$

A. one-one and into

B. one-one and onto

C. many-one and into

D. many-one and onto

Answer: B

3. The function $f\colon N o N$ given by $f(n)=n-{(\,-1)}^n$ is

A. one-one and into

B. one-one and onto

C. many-one and into

D. many-one and onto

Answer: A

Watch Video Solution

4. If
$$f: A \to B$$
 given by $3^{f(x)} + 2^{-x} = 4$ is a bijection, then

A.
$$A = (x \in R \colon -1 < x < \infty), B = (x \in R \colon 2 < x < 4)$$

B.
$$A = (x \in R \colon -3 < x < \infty), B = (x \in R \colon 0 < x < 4)$$

C.
$$A = (x \in R \colon -2 < x < \infty), B = (x \in R \colon 0 < x < 4)$$

D. None of these

Answer: D

5. Let $A=\{x\!:\!0\le x<\pi/2\}\,$ and $f\!:\!R o A$ be an onto function given by $f(x)= an^{-1}ig(x^2+x+\lambdaig)$, where λ is a constant. Then,

A. $\lambda > 0$

B. $\lambda \geq 1/4$

 $\mathsf{C.}\,\lambda < 1/4$

 $\mathsf{D}.\, 0 \leq \lambda \leq 1$

Answer: B

Watch Video Solution

6. Let $f(x) = x^2$ and $g(x) = 2^x$. Then the solution set of the equation fog(x) = gof(x) is R (b) {0} (c) {0, 2} (d) none of these

A. R

B. {0}

C. {0,2}

D. None of these

Answer: C

Watch Video Solution

7.
$$f(x) = \log_{x^2} 25$$
 and $g(x) = \log_x 5$. Then f(x)=g(x) holds for x

belonging to

A. R

B. $\{x \colon 0 < x < \infty, x
eq 1\}$

 $\mathsf{C}.\,\phi$

D. None of these

Answer: B

8. If
$$g(f(x)) = |\sin x|$$
 and $f(g(x)) = \left(\sin \left(\sqrt{x}
ight)
ight)^2$ then

A.
$$f(x)=\sin^2 x, g(x)=\sqrt{x}$$

$$\texttt{B.}\, f(x) = \sin x, g(x) = |x|$$

C.
$$f(x)=x^2, g(x)=\sin\sqrt{x}$$

D. f and g cannot be determined

Answer: A

9. The inverse of the function
$$f: R \to \{x \in R : x < 1\}$$
given by $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$, is

A.
$$\frac{1}{2}\log\frac{1+x}{1-x}$$

B.
$$\frac{1}{2}\log\frac{2+x}{2-x}$$

C.
$$\frac{1}{2}\log\frac{1-x}{1+x}$$

D. None of these

Answer: A

10. Let $A=(x\in R\colon x\ge 1).$ The inverse of the function of $f\colon A o A$ given by $f(x)=2^{x^{(x-1)}}.$ Is

A.
$$\left(\frac{1}{2}\right)^{x^{(x-1)}}$$

B. $\frac{1}{2}\left\{1 + \sqrt{1 + 4\log_2 x}\right\}$
C. $\frac{1}{2}\left\{1 - \sqrt{1 + 4\log_2 x}\right\}$

D. None of these

Answer: B

11. Let
$$f(x) = \frac{1}{1-x}$$
. Then (fp (fof)) (x)

A. x for all ξnR

- B. x for all $x \in R [1]$
- C. x for all ximnR [0, 1]

D. None of these

Answer: C

Watch Video Solution

12. Let
$$A = \left\{ x \in R \colon x \geq rac{1}{2}
ight\}$$
 and $B = \left\{ x \in R \colon x \geq rac{3}{4}
ight\}$. If

 $f\colon A o B$ is defined as $f(x)=x^2-x=1,\,$ then the solution set of the equation $f(x)=f^{-1}(x)$ is

A. {1}

B. {2}

C. {1//2}

D. None of these

Answer: A

13. Let the function $f\!:\!R-(-b) o r-(-1)$ is defined by $rac{x+a}{x+b}=rac{y+a}{y+b}$, then

A. f is one-one but not onto

B. f is onto but not one-one

C. f is both one-one and onto

D. None of these

Answer: C

14. if
$$f:[1,\infty) \to [2,\infty)$$
 is given by $f(x)=x+rac{1}{x}$ then $f^{-1}(x)$ equals to : a) $rac{x+\sqrt{x^2-4}}{2}$ b) $rac{x}{1+x^2}$ c) $rac{x-\sqrt{x^2-4}}{2}$ d) $1+\sqrt{x^2-4}$

A.
$$\frac{x + \sqrt{x^2 - 4}}{2}$$

B. $\frac{x}{1 + x^2}$
C. $\frac{x - \sqrt{x^2 - 4}}{2}$
D. $1 + \sqrt{x^2 - 4}$

Answer: A

Watch Video Solution

15. Let g(x) = 1 = x - [x] and $f(x) = \{-1, x < 0, 0, x = 0 \text{ and } 1, x > 0,$

then for all $x,\,f(g(x))$ is equal to (i) x (ii) 1 (iii) f(x) (iv) g(x)

А. х

B. 1

C. f(x)

D. g(x)

Answer: B

16. Let
$$f(x) = \frac{\alpha x}{(x+1)}, x \neq -1$$
. The for what value of α is $f(f(x)) = x$? $\sqrt{2}$ (b) $-\sqrt{2}$ (c) 1 (d) -1
A. $\sqrt{2}$
B. $-\sqrt{2}$
C. 1
D. -1

Answer: D

17. Let the funciton $f\!:\!R o R$ be defined by $f(x)=2x+\sin x.$ Then, f is

A. one-to-one and into

- B. one-to-one but not onto
- C. onto but not one-to-one
- D. neither one-to-one nor onto

Answer: A

Watch Video Solution

18. Suppose $f(x) = (x+1)^2 f$ or $x \ge -1$. If g(x) is the function whose graph is the reflection of the graph of f(x) with respect to the line y = x, then g(x) equal.

$$egin{aligned} \mathsf{A}&-\sqrt{x}-1, x\geq 0 \ & \mathsf{B}&rac{1}{\left(x+1
ight)^2}, x> \ -1 \ & \mathsf{C}&\sqrt{x+1}, x\geq \ -1 \ & \mathsf{D}&\sqrt{x}-1, x\geq 0 \end{aligned}$$

Answer: D

19. Let $f\colon R o R$ be a function defined by $f(x)=\ \mid x]$ for all $x\in R$ and

let $A=[0,1), ext{ then } f^{-1}(A)$ equals

A. (-1,1)

B. (0,1)

C. (-1,0)

D. None of these

Answer: A

20. The function
$$f:(-\infty, -1)0, e^5$$
 defined by $f(x) = e^x \hat{\ } (3 - 3x + 2)$ is many one and onto many one and into one-

Ż

one and onto one-one and into

A. one-one and into

B. one-one and into

C. many-one and into

D. many-one and onto

Answer: B

Watch Video Solution

21. If $f: R \to R, g: R$ and $h: R \to R$ be three functions are given by

$$f(x) = x^2 - 1, g(x) = \sqrt{x^2 + 1} \, \, ext{and} \, \, h(x) = \left\{egin{array}{cc} 0 & x \leq 0 \ x & x > 0 \end{array}
ight.$$

Then the composite functions (ho fog) (x)) is given by

$$\begin{array}{cccc} \mathsf{A.} \left\{ \begin{array}{ccc} -x^2 & x < 0 \\ 0 & x = 0 \\ x^2 & x > 0 \end{array} \right. \\ \mathsf{B.} \left\{ \begin{array}{cccc} x^2 & x \neq 0 \\ 0 & x = 0 \\ 0 & x = 0 \end{array} \right. \\ \mathsf{C.} \left\{ \begin{array}{cccc} x^2 & x > 0 \\ 0 & x \leq 0 \end{array} \right. \end{array} \end{array}$$

D. None of these

Answer: B

22. The distinct linear functions which map [-1,1] onto [0,2] are

A.
$$f(x) = x + 1, g(x) = -x + 1$$

B.
$$f(x) = x - 1, g(x) = x + 1$$

C.
$$f(x) = -x - 1, g(x) = x + 1$$

D. None of these

Answer: A

23. The values of a and b for which the map $f\colon R o R$, given by f(x)=ax+b $(a,b\in R)$ is a bijection with fof as indentity function, are

A. $a=1,b\in R$ B. (a=1,b=0) or $\ , (a=-1,b\in R)$ C. $a=\pm 1,b\in R$

D.
$$a=\pm 1, b=0$$

Answer: B

> Watch Video Solution

24. The value of parameter lpha, for which the function f(x)=1+lpha x, lpha
eq 0 is the inverse of itself

A.-2

 $\mathsf{B.}-1$

C. 1

Answer: B

25. Let $f\colon (2,\infty) o X$ be defined by f(x)= $4x-x^2$. Then f is invertible, if X= A. $[2,\infty]$

- $\mathsf{B.}\,(\,-\infty,\,2]$
- $\mathsf{C.}\,(\,-\infty,4]$
- $\mathsf{D}.\left[4,\infty\right)$

Answer: C

26. If $f: R \to S$ defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$ is onto , then the interval of S is :

A. [0,1]

B. [-1,1]

C. [0,3]

D. [-1,3]

Answer: D

27. If
$$f(x) = \begin{cases} |x| & x \leq 1 \\ 2 - x & x > 1 \end{cases}$$
, then fof (x) is equal to
A. $f(x) = \begin{cases} 2 - x & x < -1 \\ |x| & -1 \leq x \leq 1 \\ |2 - x| & x > 1 \end{cases}$
B. $f(x) = \begin{cases} |x| & x < -1 \\ 2 - |x| & -1 \leq x \leq 1 \\ |2 - x| & x > 1 \end{cases}$

$$\mathsf{C}.\,f(x) = \left\{egin{array}{ccc} |2-x| & x < -1 \ |x| & -1 \leq x \leq 1 \ 2-|x| & x > 1 \end{array}
ight.$$

D. None of these

Answer: A

Watch Video Solution

28. Let $A=\{x-1\leq x\leq 1\}$ and $f\!:\!A o A$ such that f(x)=x|x|

then f is:

A. injective but not surjective

B. surjective but not injective

C. bijective

D. None of these

Answer: C

29. If
$$f: \overrightarrow{R-1, 1}$$
 is defined by $f(x) = -\frac{x|x|}{1+x^2}$, then $f^{-1}(x)$ equals
 $\sqrt{\frac{|x|}{1-|x|}}$ (b) $-sgn(x)\sqrt{\frac{|x|}{1-|x|}} - \sqrt{\frac{x}{1-x}}$ (d) none of these
A. $\sqrt{\frac{x}{1-|x|}}$
B. $-sign(x)\sqrt{\frac{|x|}{1-|x|}}$
C. $\sqrt{\frac{x}{1-x}}$

D. None of these

Answer: B

Watch Video Solution

30. let $f\!:\!R o R$ be given by $f(x)=\left[x
ight]^2+\left[x+1
ight]-3,$ where $\left[x
ight]$

denotes the greatest integer less than or equal to x. Then, f(x) is

A. many-one and onto

B. many-one and into

C. one-one and into

D. one-one and onto

Answer: B

Watch Video Solution

31. Let M be the set of all 2 imes 2 matrices with entries from the set R of real numbers. Then, the function $f\colon M o R$ defined by f(A)-|A| for every $A\in M,$ is

A. one-one and into

B. neither one-one nor onto

C. one-one but-not onto

D. onto but not one-one

Answer: D

32. The function $f \colon [0,\infty] o R$ given by f(x)=(x)/(x+1)` is

A. one-one and into

B. one-one but not onto

C. onto but not one-one

D. neither one-one nor onto

Answer: B

Watch Video Solution

33. Two functions $f: R \to R$ and $g: R \to R$ are defined as follows:

$$f(x)=\left\{egin{array}{ccc} 0 & x\in Q \ 1 & x
eq Q \end{array}, g(x)=\left\{egin{array}{ccc} -1 & x\in Q \ 0 & x\in Q \end{array}
ight.$$

Then, fof (e)+fog(π)

 $\mathsf{A.}-1$

B. 0

C. 1

D. 2

Answer: A

Watch Video Solution

34. The range of the function $f(x) = 7 - x p_{x-3}$, is

A. {1,2,3,4,5}

B. {1,2,3,4,5,6}

C. {1,2,3,4}

D. {1,2,3}

Answer: D

35. A function f from the set of natural number to integers defined by

 $f(n) = egin{cases} & rac{n-1}{2} & ext{when n is odd} \ & -rac{n}{2} & ext{when n is even} \end{cases}$

A. neither one-one nor onto

B. one-one but not onto

C. one but not one-one

D. one-one and onto both

Answer: D

Watch Video Solution

36. Let $f: (-1, 1)\overrightarrow{B}$ be a function defined by $f(x) = \frac{\tan^{-1}(2x)}{1-x^2}$. Then f is both one-one and onto when B is the interval. $\left[0, \frac{\pi}{2}\right)$ (b) $\left(0, \frac{\pi}{2}\right)$ $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (d) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ A. $\left(-\pi/2, \pi/2\right)$

B. $[-\pi/2, \pi/2]$

C. $[0, \pi/2]$

D. $(0, \pi/2)$

Answer: A

Watch Video Solution

37. Let $f: N\overrightarrow{Y}$ be a function defined as f(x) = 4x + 3, where $Y = \{y \in N : y = 4x + 3 \text{ for some } x \in N\}$. Show that f is invertible and its inverse is (1) $g(y) = \frac{3y+4}{3}$ (2) $g(y) = 4 + \frac{y+3}{4}$ (3) $g(y) = \frac{y+3}{4}$ (4) $g(y) = \frac{y-3}{4}$ A. $g(y) = \frac{y+3}{4}$ B. $g(y) = \frac{y-3}{4}$ C. $g(y) = \frac{3y+4}{3}$ D. $g(y) = 4 + \frac{y+3}{4}$

Answer: B

38. If $f(x) = \{x, \text{ when } x \text{ is rational and } 0, \text{ when } x \text{ is irrational}$ $g(x) = \{0, \text{ when } x \text{ is rational and } x, \text{ when } x \text{ is irrational then } (f - g) \text{ is }$

A. one-one and into

B. neither one-one nor onto

C. many-one and onto

D. one-one and onto

Answer: D

Watch Video Solution

39. If X and Y are two non-empty sets where $f: X \to Y$, is function is defined such that $f(c) = \{f(x): x \in C\}$ for $C \subseteq X$ and $f^{-1}(D) = \{x: f(x) \in D\}$ for $D \subseteq Y$, for any $A \subseteq Y$ and $B \subseteq Y$, then

A.
$$f^{-1}(f(A)) = A$$

B. $f^{-1}(f(A)) = A$ only if $f(X) = Y$
C. $f(f^{-1}(B)) = B$ only if $B \subseteq f(X)$
D. $f(f^{-1}(B)) = B$

Answer: C

Watch Video Solution

40. For real x, let $f(x) = x^3 + 5x + 1$, then (1) f is oneone but not onto R (2) f is onto R but not oneone (3) f is oneone and onto R (4) f is neither oneone nor onto R

A. f is one-one but not onto

B. f is onto but not one-one

C. f is one-one and onto R

D. is niether one-one nor onto R

Answer: C

41. Let $f\colon (0,1) o R$ be defined by $f(x) = \displaystyle \frac{b-x}{1-bx}$, where b is constant such that 0 < b < 1 .then ,

A. f is not invertible on (0,1)

B.
$$f \neq f^{-1}on(0,1)$$
 and $f'(b) = rac{1}{f'(0)}$
C. $f = f^{-1}on(0,1)$ and $f'(b) = rac{1}{f'(0)}$

D. f^{-1} is differentiable on (0,1)

Answer: A

42. The function $f\colon [0,3] o [1,29],$ defined by $f(x) = 2x^3 - 15x^2 + 36x + 1$ is

A. one-one and onto

B. onto but not one-one

C. one-one but not onto

D. neither one-one nor onto

Answer: B

Watch Video Solution

43. For a real number x, let [x] denote the greatest integer less than or equal to x. Let f: $R \to R$ be defined as $f(x) = 2x + [x] + \sin x \cos x$ then f is

A. one-one but not onto

B. onto but not one-one

C. both one-one and onto

D. neither one-one nor onto

Answer: C

44. If P(S) denotes the set of all subsets of a given set S, then the number of one-to-one functions from the set $S=\{1,2,3\}$ to the set P(S) is

A. 8

B. 320

C. 336

D. 24

Answer: C

45. $f: \{1, 2, 3, 4\} \rightarrow \{1, 4, 9, 16\}$ and $g: \{1, 4, 9, 16\} \rightarrow \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}\}$ are two bijective functions such that $x_1 > x_2 \Rightarrow f(x_1) < f(x_2), g(x_1) > g(x_2)$ then $f^{-1}\left(g^{-1}\left(\frac{1}{2}\right)\right)$ is equal to A. 1 B. 4 C. 16 D. 2

Answer: D

Watch Video Solution

46. In the above example $(gof)^{-1}\left(rac{1}{4}\right)$ is equa to

A. 16

 $\mathsf{B}.\,\frac{1}{4}$

C. 4

D.
$$\frac{1}{16}$$

Answer: C

47. If a real polynomial of degree n satisfies the relation f(x) = f(x)f''(x) for all $x \in R$ Then fR o R

A. an onto function

B. an into function

C. always a one function

D. always a many one function.

Answer: A

48. If the function, $f\colon [1,\infty] o [1,\infty]$ is defined by $f(x)=3^{x\,(\,x\,-\,1\,)}$, then

 $f^{\,-1}(x)$ is

A.
$$\left(\frac{1}{3}\right)^{x^{(x-1)}}$$

B. $\frac{1}{2}\left\{1 - \sqrt{1 + 4\log_3 x}\right\}$
C. $\frac{1}{2}\left\{1 + \sqrt{1 + 4\log_3 x}\right\}$

D. not defined

Answer: C

Watch Video Solution

49. The function
$$f\!:\!R o \left[\,-rac{1}{2},rac{1}{2}
ight]$$
 defined as $f(x)=rac{x}{1+x^2}$ is

A. surejective but not injective

B. neither injective nor surjective

C. invertible

D. injective but not surjective

Answer: A

Watch Video Solution

Section li Assertion Reason Type

1. Statement-1: If A and B are two sets having 3 and 5 elements respectively, then the total number of functions that can be defined from A to B is 5^3 .

Statement-2: A function from set A to set B relates elements of set A to elements of set B.

A. 1 B. 2 C. 3

D. 4

2. Statement-1: If two sets X and Y contain 3 and 5 elements respectively, then $.^5 C_3 \times 3!$ one-one functions can be defined from X to Y. Statement:2: A one-one function from X to Y relates different element of set X to different elements of set Y.

A. 1 B. 2 C. 3

D. 4

Answer: A

3. Statement-1: Let A and B be two sets having m and n elements

respectively such that m < n. Then,

Number of surjections from A to B $= \sum_{r=1}^{n} {}^{n}C_{r}(-1)^{n-r}r^{m}$

Statement-2: If $f \colon A \to B$ is a surjection, then every element in B has a pre-image in A.

A. 1

B. 2

C. 3

D. 4

Answer: D

Watch Video Solution

4. Statement-1: The function $f\!:\!R o R$ defined by $f(x)=x^3+4x-5$ is

a bijection.

Statement-2: Every odd degree has at least one real root.

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

5. Statement-1: If $f\colon R o R$ and $g\colon R o R$ be two functions such that $f(x)=x^2$ and $g(x)=x^3$, then fog (x)=gof (x).

Statement-2: The composition of functions is commulative.

A. 1

B. 2

C. 3

D. 4

Answer: C

6. Let $f\colon A o A$ and $g\colon A o A$ be two functions such that fog(x)=gof (x)=x for all $x\in A$

Statement-1:

 $\{x\in A\!:\!f(x)=g(x)\}=\{x\in A\!:\!f(x)=x\}=\{x\in A\!:\!g(x)=x\}$

Statement-2: $f \colon A \to A$ is bijection.

A. 1

B. 2

C. 3

D. 4

Answer: A

7. Let
$$f\colon [-1,\infty]\in [-1,\infty]$$
 be a function given $f(x)=(x+1)^2-1, x\geq -1$

Statement-1: The set $\left[x\!:\!f(x)=f^{\,-1}(x)
ight]=\{0,1\}$

Statement-2: f is a bijection.

A. 1 B. 2 C. 3 D. 4

Answer: A

Watch Video Solution

8. Statement-1: The funciton $f\colon N o N$ given by $f(n)=n-{(-1)}^n$ for all $n\in N$ is invertible.

Statement-2: The successor and prodecessor of an even natural number are odd natural numbers and that of an odd natural number are even natural number.

В		2
_	•	_

C. 3

D. 4

Answer: A

View Text Solution

9. The image of [-1,3] under f is not the interval [f(-1), f(3)]

Statement-2: f is not an injective map.

A. 1

B. 2

C. 3

D. 4

Answer: A

View Text Solution

10. Let f be a function defined by

 $f(x) = (x-1)^2 + x, (x \ge 1).$

Statement-1: The set $ig[x\!:\!f(x)=f^{\,-1}(x)ig]=\{1,2\}$

Statement-2: f is a bijectioon and $f^{-1}(x) = 1 + \sqrt{x-1}, x \geq 1$

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

Exercise

1. If
$$f(x)=(a-x^n)^{rac{1}{n}}$$
 then $fof(x)$ is (A) x (B) a-x (C) x^2 (D) $-rac{1}{x^n}$

Α.	а
----	---

B. x

 $\mathsf{C}.\, x^n$

 $\mathsf{D}.\,a^n$

Answer: B

Watch Video Solution

2. Let f(x) be defined on [-2,2] and is given by

$$f(x) = \left\{egin{array}{ccc} -1 & -2 \leq x \leq 0 \ x-1 & 0 < x \leq 2 \end{array}
ight.$$

and g(x) = f(|x|) + |f(x)|. Then g(x) is equal to

$$\begin{array}{l} \mathsf{A.} \left\{ \begin{array}{ccc} -x & -2 \leq x < 0 \\ 0 & 0 \leq x < 1 \\ x - 1 & 1 \leq x \leq 2 \\ \mathsf{B.} \left\{ \begin{array}{ccc} -x & -2 \leq x < 0 \\ 0 & 0 \leq x < 1 \\ 2(x - 1) & 1 \leq x \leq 2 \end{array} \right. \\ \mathsf{C.} \left\{ \begin{array}{ccc} -x & -2 \leq x < 0 \\ x - 1 & 0 \leq x \leq 2 \end{array} \right. \end{array} \right. \end{array}$$

D. none of these

Answer: B

3. Which of the following functions from Z to itself are bijections? a

A.
$$f(x) = x^3$$

B.
$$f(x) = x + 2$$

$$\mathsf{C}.\,f(x)=2x+1$$

$$\mathsf{D}.\,f(x)=x^2+x$$

Answer: B

4. Which of the following functions from A= $\{x: -1 \le x \le 1\}$ to itself are bijections.?

A.
$$f(x)=rac{|x|}{2}$$

B. $g(x)=\sin\Bigl(rac{\pi x}{2}\Bigr)$
C. $h(x)=|x|$
D. $k(x)=x^2$

Answer: B

Watch Video Solution

5. If $f\!:\!R o R$ be a mapping defined by $f(x)=x^3+5$, then $f^{-1}(\mathsf{x})$ is equal to

A. $(x+5)^{1/3}$ B. $(x-5)^{1/3}$ C. $(5-x)^{1/3}$ D. 5-x

Answer: B

6. Let f: A o B and g: B o C be bijection, then $(fog)^{-1}$ =

A.
$$f^{-1} og^{-1}$$

B. fog

C. $g^{-1} o f^{-1}$

D. gof

Answer: C

7. Let
$$f\colon R o R, g\colon R o R$$
 be two functions given by $f(x)=2x-3, g(x)=x^3+5.$ Then $(fog)^{-1}$ is equal to

A.
$$\left(rac{x+7}{2}
ight)^{1/3}$$

B. $\left(x-rac{7}{2}
ight)^{1/3}$

$$\begin{array}{l} \mathsf{C.} \left(\frac{x-2}{7} \right)^{1/3} \\ \mathsf{D.} \left(\frac{x-7}{2} \right)^{1/3} \end{array}$$

Answer: D

Watch Video Solution

8. Let $f \colon R o R$ be a function defined b f(x)=cos(5x+2). Then,f is

A. injective

B. surjective

C. bijective

D. none of these

Answer: D

9. Let $f\!:\!N o N$ be defined by $f(x)=x^2+x+1, x\in N.$ Then is f is

A. one-one onto

B. many one onto

C. one-one but not onto

D. none of these

Answer: C

Watch Video Solution

10. Let $A = \{-1 \leq x \leq 1\}$ and $f \colon A o A$ such that f(x) = x |x| then

f is:

A. a bijection

B. injective but not surjective

C. surjective but not injective

D. neither injective nor surjective

Answer: A

11. If
$$f(x) = rac{3x+2}{5x-3}$$
, then
A. $f^{-1}(x) = f(x)$
B. $f^{-1}(x) = -f(x)$
C. $(fof)(x) = -x$
D. $f^{-1}(x) = -rac{1}{19}f(x)$

Answer: A

12. If
$$f(x) = 2^x$$
, then $f(0), f(1), f(2)$...are in

B. GP

C. HP

D. arbitrary

Answer: B

Watch Video Solution

13. If the function $f\colon R\overrightarrow{A}$ given by $f(x)=rac{x^2}{x^2+1}$ is surjection, then find $A\cdot$

A. R

B. [0,1]

C. [0,1]

D. [0,1]

Answer: D

14. Which of the following functions is the inverse of itself?

$$f(x) = \frac{1-x}{1+x}$$
 (b) $f(x) = 5^{\log x} f(x) = 2^{x(x-1)}$ (d) None of these
A. $f(x) = \frac{1-x}{1+x}$
B. $g(x) = 5^{\log x}$
C. $h(x) = 2^{x(x-1)}$

D. none of these

Answer: A

15. If
$$f(x) = rac{x-1}{x+1}$$
 then $f(2x)$ is equal to
A. $rac{f(x)+1}{f(x)+3}$
B. $rac{3f(x)+1}{f(x)+3}$
C. $rac{f(x)+3}{f(x)+1}$

D.
$$rac{f(x)+3}{3f(x)+1}$$

Answer: B

Watch Video Solution

16. If
$$f(x) = \log\left(\frac{1+x}{1-x}\right) and g(x) = \left(\frac{3x+x^3}{1+3x^2}\right)$$
, then $f(g(x))$ is equal to $f(3x)$ (b) $\{f(x)\}^3$ (c) $3f(x)$ (d) $-f(x)$

- A. -f(x)B. 3f(x)C. $\left[f(x)
 ight]^3$
- D. none of these

Answer: B

17. If
$$f(x) = a^x$$
, which of the following equalities do not hold ? (i)
 $f(x+2) - 2f(x+1) + f(x) = (a-1)^2 f(x)$ (ii) $f(-x)f(x) - 1 = 0$
(iii) $f(x+y) = f(x)f(y)$ (iv)
 $f(x+3) - 2f(x+2) + f(x+1) = (a-2)^2 f(x+1)$
A. $f(x+2) - 2f(x+1) + f(x) = (a-1)^2 f(x)$
B. $f(-x)f(x) - 1 = 0$
C. $f(x+y) = f(x)f(y)$
D. $f(x+3) - 2(x+2) + f(x+1) = (a-2)^2 f(x+1)$

Answer: D

Watch Video Solution

18. The interval in which the function $y = f(x) = \frac{x-1}{x^2 - 3x + 3}$ transforms the real line is

A.
$$(0,\infty)$$

B. $(-\infty,\infty)$ C. [0,1]

 ${\sf D}.\,[\,-1/3,1]$

Answer: D

19.

$$f(x) = px + q$$
 and $g(x) = mx + n$. Then $f(f(x)) = g(f(x))$ is

Let

equivalent to

A.
$$fig(x^2ig) = [f(x)]^2$$

B. $f(|X|) = |f(x)|$

$$\mathsf{C.}\,f(x+y)=f(x)+f(y)$$

D. none of these

Answer: D

20. If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to

A.
$$f(a) = g(c)$$

 $\mathsf{B.}\,f(b)=g(b)$

$$\mathsf{C}.\,f(d)=g(b)$$

$$\mathsf{D}.\,f(c)=g(a)$$

Answer: C

Watch Video Solution

21. Which of the following functions is not an are not an insjective map(s)

?

A.
$$f(x)=|x+1|,x\in [-1,\infty]$$

B.
$$g(x)=x+rac{1}{x}, x\in (0,\infty)$$

C.
$$h(x)=x^2+4x-5, x\in(0,\infty)$$

D.
$$k(x)=e^{-x}, x\in [0,\infty]$$

Answer: B

Watch Video Solution

22. If f(x) is defined on [0,1] by the rule $f(x)=\{x, ext{ if } x ext{ is rational },$

 $1-x, ext{ if } x ext{ is rational ' then for all } x \in [0,1]$,f(f(x)) is

A. constant

B. 1+x

C. x

D. none of these

Answer: C

23. Let f(x)=x and g(x)=|x| for all $x \in R$. Then the function $\phi(x)$ satisfying $\{\phi(x) - f(x)\}^2 + \{\phi(x) - g(x)\}^2$ =0 is

A.
$$\phi(x)=x, x\in [0,\infty]$$

B.
$$\phi(x)=x, x\in R$$

$$\mathsf{C}.\,\phi(x)=\,-\,x,x\in(\,-\infty,0)$$

D.
$$\phi(x)=\,-x+|x|,x\in R$$

Answer: A

Watch Video Solution

24. Let
$$f(x)=rac{ax+b}{cx+d}.$$
 Then the $fof(x)=x,$ provided that $:$ $(a
eq 0, b
eq 0, c
eq 0, d
eq 0)$

A. d = -a

B. d=a

C. a = b = c = d = 1

D. a = b = 1

Answer: A

Watch Video Solution

25. If $f(x) = (ax^2 + b)^3$, then the function g satisfying f(g(x))=g(f(x)) is given by

$$\begin{array}{l} \mathsf{A}.\,g(x) = \left(\frac{b-x^{1/3}}{a}\right)^{1/2}\\ \mathsf{B}.\,g(x) = \frac{1}{(ax^2+b)^3}\\ \mathsf{C}.\,g(x) = \left(ax^2+b\right)^{1/3}\\ \mathsf{D}.\,g(x) = \left(\frac{x^{1/3}-b}{a}\right)^{1/2} \end{array}$$

Answer: D

26. If a funciton $f\colon [2,\infty] o B$ defined by $f(x)=x^2-4x+5$ is a bijection, then B=

A. R

 $\mathsf{B}.\left[1,\infty
ight]$

 $\mathsf{C}.\left[4,\infty
ight]$

 $\mathsf{D}.\,[5,\infty]$

Answer: B

Watch Video Solution

27. The function $f\!:\!R o R$ is defined by f(x)=(x-1)(x-2)(x-3)

is

A. one-one but not onto

B. onto but not one-one

C. both one and onto

D. neither one-one nor onto

Answer: B

28. Let
$$A = \{x, y, z\} = B = \{u, v, w)$$
 and $f: A \to B$ be defined by f $(x) = u, f(y) = v, f(z) = w$. Then, f is

A. surjective but not injective

B. injective but not surjective

C. bijective

D. none of these

Answer: C

29. If $f\colon R o R$ be defined by $f(x)=x^2+1$, then find $f^{-1}(17)$ and $f^{-1}(-3).$

A. ϕ , [4, -4]

B. $[3-,3],\phi$

C. $[4, -4], \phi$

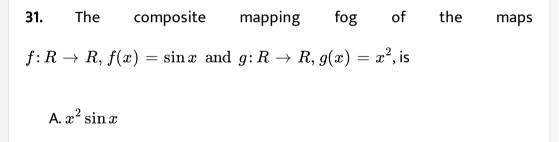
D.
$$[4, -4], [2, -2]$$

Answer: C

Watch Video Solution

30. The function $f: N \overset{\longrightarrow}{N} (N$ is the set of natural numbers) defined by f(n) = 2n + 3is (a) surjective only (b) injective only (c) bijective (d) none of these

A. surjective


B. injective

C. bijective

D. none of these

Answer: B

 $\mathsf{B}.\left(\sin x\right)^2$

 $C.\sin x^2$

D.
$$\frac{\sin x}{x^2}$$

Answer: C

32. Let $f \colon R o R$ be defined by f(x)=3x-4. Then, f^{-1} (x) is

A.
$$\frac{x+4}{3}$$

B. $\frac{x}{3}-4$

$$C.3x + 4$$

D. none of these

Answer: A

Watch Video Solution

33. $f: R \to R$ is a function defined by f(x)=10x - 7, if $g = f^{-1}$ then g(x)=

A.
$$\frac{1}{10x - 7}$$

B. $\frac{1}{10x + 7}$
C. $\frac{x + 7}{10}$
D. $\frac{x - 7}{10}$

Answer: C

34. Let
$$A = \{x \in R : x \le 1\}$$
 and $f: A \to A$ be defined as $f(x) = x(2-x)$. Then , $f^{-1}(x)$ is
A. $1 + \sqrt{1-x}$
B. $1 - \sqrt{1-x}$
C. $\sqrt{1-x}$
D. $1 \pm \sqrt{1-x}$

Answer: B

35. If $f(x)=x^n, n\in N ext{ and } gof(x)=ng(x)$ then g(x) can be

A. n|x|

B. $3x^{1/3}$

 $\mathsf{C.}\, e^x$

 $\mathsf{D}.\log|x|$

Answer: D

Watch Video Solution

36. If the function $f\colon R o R$ be such that $f(x)=x-[x],\,$ where [x] denotes the greatest integer less than or equal to $x,\,$ then $f^{-1}(x)$ is

A.
$$\frac{1}{x - [x]}$$

B. $[x] - x$

C. not defined

D. none of these

Answer: C

37. $f \colon R o R$ given by f(x)=5-3 sin x, is

A. one-one

B. onto

C. one-one and onto

D. none of these

Answer: D

Watch Video Solution

38. Let $f\colon A o B$ be a function defined by $f(x)\sqrt{3}\sin x + \cos x + 4.$ If f

is invertible, then

A.
$$A = [\,-2\pi/3,\pi/3], B = [2,6]$$

B.
$$A = [\pi/6, 5\pi/6], B = [-2, 2]$$

C. $A = [-\pi/2, \pi/2], B = [2, 6]$

D.
$$A = [\,-\pi/3,\pi/3], B = [2,6]$$

Answer: A

Watch Video Solution

39. Let $f\colon A o B; g\colon B o A$ be two functions such that $gof=I_A.$ Then;

f is an injection and g is a surjection.

A. f is an injection and g is a surjection

B. f is a surjection and g is an injection

C. f and g both are injections

D. f and g both are surjections

Answer: A

40. Let $f \colon A o B; g \colon B o A$ be two functions such that $fog = I_B$. Then;

f is a surjection and g is an injection.

A. f and g both are injections

B. f and both are surjections

C. f is and injection and g is a surjection

D. f is a injections and g is a surjection

Answer: D

Watch Video Solution

41. If $f: A\overrightarrow{B} andg: B\overrightarrow{C}$ are one-one functions, show that gof is one-one

function.

A. f is onto

B.g is onto

C. f and g both are onto

D. none of these

Answer: B

42. If functions $f\colon A o B$ and $g\colon B o A$ satisfy $gof=I_A,$ then show

that f is one-one and g is onto.

A. f is one-one

B.g is one-one

C. f and g both are one-one

D. none of these

Answer: A

43. Let $f: A \to B$ and $g: B \to C$ be two functions. Then; if gof is onto then g is onto; if gof is one one then f is one-one and if gof is onto and g is one one then f is onto and if gof is one one and f is onto then g is one one.

A. f is one-one

B.g is one-one

C. f and g both are one-one

D. none of these

Answer: B

Watch Video Solution

44. If $f: A\overrightarrow{B} andg: B\overrightarrow{C}$ are one-one functions, show that gof is one-one

function.

A. one-one

B. onto

C. one-one and onto

D. none of these

Answer: A

Watch Video Solution

45. Let [x] denote the greatest integer less than or equal to x. If $f(x) = \sin^{-1}x, g(x) = \left[x^2\right]$ and $h(x) = 2x, -\frac{1}{2} \le x \le \frac{1}{2}$, then

- A. $fogoh(x)=\pi/2$
- B. fogoh(x)= π
- C. hofog=hogof
- D. $hofog \neq fogof$

Answer: C

46. If $f(x) = \sin^2 x, g(x) = \sqrt{x}$ and $h(x) = \cos^{-1} x, 0 \le x \le 1$, then

A. hogof=fogoh

B. gofoh=fohog

C. fohog=hogof

D. none of these

Answer: D

Watch Video Solution

47. If
$$f(x) = \left(25 - x^4\right)^{1/4}$$
 for $0 < x < \sqrt{5}$, then $f\left(f\left(\frac{1}{2}\right)\right) =$

A.
$$2^{-4}$$

- $\mathsf{B.}\,2^{\,-\,3}$
- $C.2^{-2}$

D. 2^{-1}

Answer: D

48. If $X=\{1,2,3,4\}$, then one-one onto mappings $f\colon X o X$ such that $f(1)=1,\,f(2)
eq 2f(4)
eq 4$ are given by

A.
$$f = \{(1, 1), (2, 3), (3, 4), (4, 2)\}$$

 $\mathsf{B}.\,f=\{(1,2),\,(2,4),\,(3,3),\,(4,2)\}$

C.
$$f = \{(1,2), (2,4), (3,2), (4,3)\}$$

D. none of these

Answer: A

1. The number of bijective functions from set A to itself when A contains

106 elements is

A. 106

 $B.(106)^2$

C. 106!

D. 2^{106}

Answer: C

Watch Video Solution

2. If $f(x) = |\sin x|$ then domain of f for the existence of inverse of

A. $[0,\pi]$

B. $[0, \pi/2]$

C. $[-\pi/4, \pi/4]$

D. none of these

Answer: B

3. The functions
$$f:\left[-rac{1}{2},rac{1}{2}
ight] o \left[-rac{\pi}{2},rac{\pi}{2}
ight]$$
 defined by $f(x)=\sin^{-1}ig(3x-4x^3ig)$ is

A. bijection

B. injection but not a surjection

C. surjection but not and injection

D. neither an injection nor a surjection

Answer: A

A. f is a bijection

B. f is an injection only

C. f is surjection on only

D. f is niether an injection nor a surjection

Answer: D

Watch Video Solution

5. If $f\colon (e,\infty) o R\&f(x) = \log[\log(\log x)], ext{ then f is -}$

A. f is one-one but not onto

B. f is but not one-one

C. f is both one-one and onto

D. f is niether one-one nor onto

Answer: C

6. Let $f: R - \{n\} \to R$ be a function defined by $f(x) = \frac{x - m}{x - n}$ such that $m \neq n$ 1) f is one one into function2) f is one one onto function3) f is many one into function4) f is many one onto function then

A. f is one-one onto

B. f is one-one into

C. f is many one onto

D. f is many one into

Answer: B

Watch Video Solution

7. The inverse of the function $f(x) = rac{e^x - e^{-x}}{e^x + e^{-x}} + 2$ is given by

A.
$$\log \left(rac{x-1}{x+1}
ight)^{-2}$$

B. $\log \left(rac{x-2}{x-1}
ight)^{1/2}$

C.
$$\log \left(rac{x}{2-x}
ight)^{1/2}$$

D. $\log \left(rac{x-1}{3-x}
ight)^{1/2}$

Answer: D

Watch Video Solution

8. Find the inverse of the function
$$: y = rac{10^x - 10^{-x}}{10^x + 10^{-x}} + 1$$

A.
$$\frac{1}{2}\log_{10}\left(\frac{x}{2-x}\right)$$

B. $\log_{10}\left(\frac{x}{2-x}\right)$
C. $\frac{1}{2}\log_{10}\left(\frac{x}{1-x}\right)$

D. none of these

Answer: A

9. Let
$$f\!\left(x+rac{1}{x}
ight)=x^2+rac{1}{x^2},\,(x
eq 0)$$
 then f(x) equals

A. x^2 – for all x

 $\mathsf{B.}\,x^2-2 \text{for all}|x|>2$

 $\mathsf{C.}\,x^2-2\text{for all}\;\;|x|<2$

D. none of these

Answer: B

Watch Video Solution

10. Let f:R o R, g:R o R be two functions given by $f(x)=2x-3, g(x)=x^3+5.$ Then $(fog)^{-1}$ is equal to

A.
$$\left(\frac{x-7}{2}\right)^{1/3}$$

B. $\left(\frac{x+7}{2}\right)^{1/3}$
C. $\left(\left(x-\frac{7}{2}\right)\right)^{1/3}$

$$\mathsf{D}.\left(\frac{x-2}{7}\right)^{1/3}$$

Answer: A

11. If $g(x) = 1 + \sqrt{x} \, ext{ and } \, f(g(x)) = 3 + 2\sqrt{x} + x$ then f(x) is equal to

A. $1+2x^2$

- $\mathsf{B.}\,2+x^2$
- $\mathsf{C.1} + x$

D. 2+x

Answer: B

12. If
$$f(x) = rac{1-x}{1+x}, x
eq 0, \ -1 \ ext{and} \ lpha = f(f(x)) + f\left(f\left(rac{1}{x}
ight)
ight)$$
, then

A. lpha>2B. lpha<-2C. |lpha|>2D. lpha=2

Answer: C

13. Let $f\colon R o R$ be a function defined by $f(x)=rac{x^2-8}{x^2+2}.$ Then f is

A. one-one but not onto

B. one-one and onto

C. one but not one-one

D. neither one-one nor onto

Answer: D

14. Let $f\colon (-\infty,2] o (-\infty,4]$ be a function defined by $f(x)=4x-x^2.$ Then, $f^{-1}(x)$ is

A. $2 - \sqrt{4 - x}$

 $\mathsf{B.}\,2+\sqrt{4-x}$

C. $2\pm\sqrt{4-x}$

D. not defined

Answer: A

15. The inverse of the function of
$$f: R \to R$$
 given by
 $f(x) = \log_a \left(x + \sqrt{x^2 + 1}\right) (a > 0, a \neq 1)$ is
A. $\frac{1}{2} \left(a^x + a^{-x}\right)$
B. $\frac{1}{2} \left(a^x - a^{-x}\right)$

$$\mathsf{C}.\,\frac{1}{2}\bigg(\frac{a^x+a(-x)}{a^x-a^{-x}}\bigg)$$

D. not defined

Answer: B

Watch Video Solution

16.
$$f\!:\!R o R$$
 is defined by f(x)= $rac{e^{x^2}-e^{-x^2}}{e^{x^2}+e^{-x^2}}$, is

A. one-one but not onto

B. many-one but onto

C. one-one and onto

D. neither one-one nor onto

Answer: A

17. If $f(x) = \log\left(\frac{1+x}{1-x}\right)$, then f $\left(\frac{2x}{1+x^2}\right)$ is equal to A. $\{f(x)\}^2$ B. $\{f(x)\}^4$ C. 2f(x)

 $\mathsf{D.}\, 3f(x)$

Answer: C

18. If
$$f(x) = \frac{2^x + 2^{-x}}{2}$$
, then $f(x + y)f(x - y)$ is equals to
A. $\frac{1}{2}\{f(2x) + f(2y)\}$
B. $\frac{1}{2}\{f(2x) - f(2y)\}$
C. $\frac{1}{4}\{f(2x) + f(2y)\}$
D. $\frac{1}{4}\{f(2x) - f(2y)\}$

Answer: A

19. The function $f\!:\!R o R$ given by $f(x)=x^2+x$ is

A. one-one nad onto

B. one-one and into

C. many-one and onto

D. many one and into

Answer: D

Watch Video Solution

20. Let $f\colon R o R$ and $g\colon R o R$ be given by $f(x)=3x^2+2$ and g(x)=3x-1 for all x o R. Then,

A.
$$fog(x) = 27x^2 - 18x + 5$$

B. $fog(x) = 27x^2 + 18x - 5$
C. $gof(x) = 9x^2 - 5$
D. $gof(x) = 9x^2 + 15$

Answer: A

21. The function of $f \colon R \to R$, defined by f(x) = [x], where [x] denotes

the greatest integer less than or equal to x, is

A. one-one

B. onto

C. one-one and onto

D. neither one-one nor onto

Answer: D

22. Let f(x) = x, g(x) = 1/x and h(x) = f(x)g(x). Then, h(x)=1, if

A. x is any rational number

B. x is a non-zero real number

C. x is a real number

D. x is a rationa number

Answer: B

Watch Video Solution

23. Let X and Y be subsets of R,the set of all real numbers. The function $f\colon X o Y$ defined by $f(x)=x^2$ for $x\in X$ is one-one but not onto if

A.
$$X=Y=R^+$$

B. $X = R, Y = R^+$

C.
$$X = R^+, Y = R$$

$$\mathsf{D}.\, X = Y = R$$

Answer: C

0	Watch	Video	Solution

24. If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x then $g^{-1}ig(f^{-1}(5)ig)$

A. 1

B.1/2

C.1/3

D. 1/4

Answer: C

25. If
$$f(x)=rac{\sin^4x+\cos^2x}{\sin^2x+\cos^4x}$$
 for $\ x\in R$, then f(2010)

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

26. The function $f\!:\!R o R$ is defined by $f(x)=\cos^2x+\sin^4x$ for $x\in R.$ Then f(R) is

A. [3/4, 1)

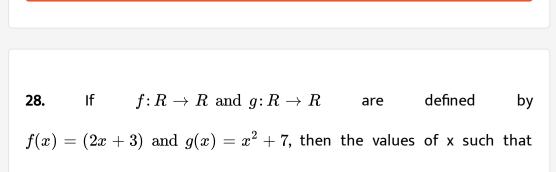
B.(3/4,1]

 $\mathsf{C}.\,[3/4,1]$

D. (3/4, 1)

Answer: C

27.
$$A=\{x\,/\,x\in R,\,x
eq 0,\,-4\leq x\leq 4\,$$
 and $\,f\!:\!A o R\,$ is defined by $f(x)=rac{|x|}{x}$ for $x\in A.$ Then the range of f is


$$\mathsf{B.}\left\{x\!:\!0\leq x\leq 4\right\}$$

C. {1}

D.
$$\{x\colon -4\leq x\leq 0\}$$

Watch Video Solution

Answer: A

g(f(x))=8 are

A. 1,2

B. -1, 2

C. -1, -2

D. 1, -2

Answer: C

Watch Video Solution

29. Let f(x) be defined on [-2,2] and is given by

$$f(x) = egin{cases} -1 & -2 \leq x \leq 0 \ x-1 & 0 < x \leq 2 \end{cases}$$

and g(x) = f(|x|) + |f(x)|. Then g(x) is equal to

A. $\{-1\}$

B. {0}

 $\mathsf{C}.\left\{\,-\,1/\,2\right\}$

Answer: C

30. The function $f \colon \mathbb{R} o \mathbb{R}$ defined by $f(x) = 6^x + 6^{\lfloor x
floor}$ is

A. one-one and onto

B. many one and onto

C. one-one and into

D. many one and into

Answer: D

