

MATHS

BOOKS - DHANPAT RAI & CO MATHS (HINGLISH)

HYPERBOLA

Illustration

1. The equation of the hyperbola whose focus is (1,2), directrix is the line x+y+1=0 and eccentricity 3/2, is

A.
$$x^2 + y^2 + 18xy + 34x + 50y - 31 = 0$$

B.
$$x^2 + y^2 - 18xy - 2x - 14y + 31 = 0$$

C.
$$x^2 + y^2 + 18xy + 34x + 50y + 49 = 0$$

D.
$$x^2 + y^2 - 18xy + 34x + 50y - 31 = 0$$

Answer: A

Watch Video Solution

2. If e and e' the eccentricities of a hyperbola and its conjugate,than $\frac{1}{e^2}+\frac{1}{e'^2}=.$

A. 0

$$\mathsf{C.}\,2$$

Watch Video Solution

3. The eccentricity of the conjugate hyperbola of the hyperbola $x^2-3y^2=1$ is

B.
$$\frac{2}{\sqrt{3}}$$

C. 4

 $\operatorname{D.}\frac{4}{3}$

Answer: A

Watch Video Solution

4. The eccentricity of the hyperbola $-\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is given by

A.
$$\sqrt{rac{a^2+b^2}{a^2}}$$

B.
$$\sqrt{rac{a^2-b^2}{a^2}}$$

C.
$$\sqrt{rac{b^2-a^2}{a^2}}$$

D.
$$\sqrt{rac{a^2+b^2}{b^2}}$$

Answer: D

Watch Video Solution

5. The equation $16x^2 - 3y^2 - 3y^2 - 32x + 12y - 44 = 0$

represents a hyperbola.

A. the length of whose transverse axis is $4\sqrt{3}$

B. the length of whose conjugate axis is 4

C. whose centre is (-1, 2)

D. whose eccentricity is
$$\sqrt{\frac{19}{3}}$$

Answer: D

Watch Video Solution

6. If e and e' be the eccentricities of two conics S=0 and S'=0 and if $e^2+e'^2=3$, then both S and S' can be

A. hyperbolas

 $B.\ ellipses$

 $\mathsf{C}.\ parabolas$

D. none of these

Answer: A

Watch Video Solution

7. If e_1 is the eccentricity of the ellipse $\frac{x^2}{16}+\frac{y^2}{25}=1$ and e_2 is the eccentricity of the hyperbola passing through the foci of the ellipse and $e_1e_2=1$, then equation of the hyperbola is

A.
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

B.
$$\frac{x^2}{16} - \frac{y^2}{9} = -1$$

C.
$$rac{x^2}{9}-rac{y^2}{25}=1$$

D. none of these

Answer: B

Watch Video Solution

8. For hyperbola $x^2 \sec^2 \alpha - y \cos ec^2 \alpha = 1$, which of the following remains constant with change in 'lpha'

A. abscissae of vertex

B. abscissae of foci

C. eccentricity

D. directrix

Answer:

Watch Video Solution

9. The equation of the transvers and conjugate axes of a hyperbola are, respectively, x+2y-3=0 and 2x-y+4=0 , and their respective lengths are $\sqrt{2}$ and $2\sqrt{3}$. The equation of the hyperbola is

A.
$$\frac{2}{5}(x+2y-3)^2 - \frac{3}{5}(2x-y+4)^2 = 1$$

B.
$$\frac{2}{5}(2x-y+4)^2 - \frac{3}{5}(x+2y-3)^2 = 1$$

C.
$$2(2x - y + 4)^2 - 3(x + 2y - 3)^2 = 1$$

D.
$$2(x+2y-3)^2-3(2x-2y+4)^2=1$$

Watch Video Solution

10. Find the equation of the hyperbola, the length of whose latusrectum is 8 and eccentricity is $3/\sqrt{5}$.

A.
$$5x^2 - 4y^2 = 100$$

B.
$$4x^2 - 5y^2 = 100$$

$$\mathsf{C.} - 4x^2 + 5y^2 = 100$$

$$\mathsf{D.} - 5x^2 + 4y^2 = 100$$

Watch Video Solution

11. The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$. Find the equation of the hyperbola, if its eccentricity is 2.

A.
$$3x^2 - y^2 = 6$$

B.
$$3x^2 - y^2 = 12$$

C.
$$x^2 - 3y^2 = 12$$

D. none of these

Watch Video Solution

12. Find the equation of the hyperbola whose conjugate axis is 5 and the distance between the foci is 13.

$$A. 25x^2 - 144y^2 = 900$$

$$B. -25x^2 + 144y^2 = 900$$

$$\mathsf{C.}\,144x^2-25y^2=900$$

$$\mathsf{D.} - 144x^2 + 25y^2 = 900$$

Answer: A

Watch Video Solution

13. Find the equation of the hyperbola whose foci are (8,3) and (0,3) and eccentricity $=\frac{4}{3}$.

A.
$$49x^2 - 3y^2 = 147$$

B.
$$7x^2 - 9y^2 = 63$$

C.
$$7(x-4)^2 - 9(y-3)^2 = 63$$

D.
$$7(x+4)^2 - 9(y+3)^2 = 63$$

Answer: C

14. Prove that the locus of the center of the circle which touches the given circle externally and the given line is a parabola.

A. a circle

B. an ellipse

C. a hyperbola

D. a pair of straight lines

Answer:

15. The eccentricity of the hyperbola

$$9x^2-16y^2+72x-32y-16=0$$
, is

- $\text{A.}\ \frac{5}{4}$
- $\mathsf{B.}\;\frac{4}{5}$
- c. $\frac{9}{16}$
- D. $\frac{16}{9}$

Answer: A

16. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is:

$$\mathsf{A.}\ \frac{4}{3}$$

B.
$$\frac{4}{\sqrt{3}}$$

c.
$$\frac{2}{\sqrt{3}}$$

D.
$$\sqrt{3}$$

Answer: C

17. Let a and b respectively be the semi-transverse and semi-conjugate axes of a hyperbola whose eccentricity satisfies the equation $9e^2-18e+5=0$. If S(5,0) is a focus and 5x=9 is the corresponding directrix of this hyperbola, then a^2-b^2 is equal to

$$A. - 7$$

$$B. - 5$$

$$\mathsf{C.}\ 5$$

Answer:

18. The equation of the hyperbola whose foci are (-2,

0) and (2,0) and eccentricity is 2 is given by

A.
$$3x^2 - y^2 = 3$$

B.
$$-x^2 + 3y^2 = 3$$

C.
$$-3x^2 + y^2 = 3$$

D.
$$x^2 - 3y^2 = 3$$

Answer:

19. If the chord joining the points $(a\sec\theta_1, b\tan\theta_1)$

and $(a\sec\theta_2,b\tan\theta_2)$ on the hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ is a focal chord, then prove that $an\Big(rac{ heta_1}{2}\Big) an\Big(rac{ heta_2}{2}\Big)+rac{ke-1}{ke+1}=0$, where

$$k = \pm 1$$

A.
$$\frac{1-e}{1+e}$$

B.
$$\frac{e-1}{e+1}$$

$$C. \frac{e+1}{e-1}$$

D.
$$\frac{1+e}{1-e}$$

Answer:

20. If the line lx+my+n=0 touches the hyperbola $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$. Then

A.
$$a^2 l^2 + b^2 m^2 = n^2$$

B.
$$a^2l^2 - b^2m^2 = n^2$$

C.
$$a^2m^2 - b^2n^2 = l^2$$

D.
$$a^2n^2 - b^2l^2 = m^2$$

Answer: B

21. If the straight line $x\cos lpha + y\sin lpha = p$ touches

the curve
$$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$$
 , then p^2

A.
$$a^2\cos^2lpha-b^2\sin^2lpha=p^2$$

B.
$$a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p$$

C.
$$a^2\cos^2lpha+b^2\sin^2lpha=p^2$$

D.
$$a^2\cos^2lpha+b^2\sin^2lpha=p$$

Answer: C

22. If the line $y=3x+\lambda$ touches the hyperbola

$$9x^2-5y^2=45$$
, then λ =

A.
$$\pm 3\sqrt{6}$$

$$B.\pm 6$$

$$\mathrm{C.}\pm3$$

D.
$$\pm 4$$

Answer: B

23. If the line $y=2x+\lambda$ be a tangent to the hyperbola $36x^2-25y^2=3600$, then λ is equal to

- **A.** 16
- B.-16
- $\mathrm{C.}\pm16$
- D. none of these

Answer: C

24. The locus a point $P(\alpha,\beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is

A. a hyperbola

B. a parabola

C. a circle

D. an ellipse

Answer: A

25. If the line $2x+\sqrt{6}y=2$ touches the hyperbola

 $x^2-2y^2=4$, then the point of contact is

A.
$$\left(-2,\sqrt{6}\right)$$

B.
$$\left(-5, 2\sqrt{6}\right)$$

$$\mathsf{C.}\left(\frac{1}{2},\,\frac{1}{\sqrt{6}}\right)$$

D.
$$(4, -\sqrt{6})$$

Answer: D

26. The line 2x+y=1 is tangent to the hyperbla $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.$ If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

A.
$$\sqrt{2}$$

$$C.\sqrt{3}$$

Answer: B

27. If 2x-y+1=0 is a tangent to hyperbola

$$rac{x^2}{a^2}+rac{y^2}{16}=$$
 1, then which of the following are sides of a right angled triangle ?

A. 2a, 4, 1

B. 2a, 8, 1

C. a, 4, 1

D. a, 4, 2

Answer:

28. The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. If the eccentricity of the hyperbola is 2, then the equation of the tangent of this hyperbola passing through the point (4,6) is

A.
$$2x - y - 2 = 0$$

B.
$$3x - 2y = 0$$

C.
$$2x - 3y + 10 = 0$$

D.
$$x - 2y + 8 = 0$$

Answer: A

29. The equation of the tangent to the hyperbola

 $2x^2-3y^2=6$ which is parallel to the line

$$y=3x+4$$
, is

A.
$$y = 3x + 5$$

B.
$$y = 3x - 5$$

C.
$$y = 3x + 5$$
 and $y = 3x - 5$

D. none of these

Answer: C

30. The equation of the tangent to the hyperbola

 $3x^2-y^2-3$ which is perpendicular to the line

$$x+3y-2=0$$
 is

A.
$$y=3x\pm\sqrt{6}$$

B.
$$y=3x\pm2\sqrt{3}$$

C.
$$y=3x\pm\sqrt{3}$$

D. none of these

Answer:

31. The equation of the tangent to the hyperbola

 $16x^2 - 9y^2 = 144$ at (5, 8/3), is

A.
$$10x + 3y = 18$$

B.
$$10x - 3y = 18$$

C.
$$10x - 3y = 9$$

D.
$$10x + 3y = 9$$

Answer:

32. The product of the perpendicular from two foci on any tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

A.
$$b^2$$

B.
$$2b^2$$

$$\mathsf{C.}\,a^2$$

D.
$$2a^2$$

Answer:

33. Let P(6,3) be a point on the hyperbola parabola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ If the normal at the point intersects the x-axis at (9,0), then the eccentricity of the hyperbola is

A.
$$\sqrt{\frac{5}{2}}$$

B.
$$\sqrt{\frac{3}{2}}$$

$$\mathsf{C}.\,\sqrt{2}$$

D.
$$\sqrt{3}$$

Answer:

34. A hyperbola passes through the point $P(\sqrt{2},\sqrt{3})$ and has foci at $(\pm 2,0)$. Then the tangent to this hyperbola at P also passes through the point

A.
$$(\sqrt{3}, \sqrt{2})$$

B.
$$(-\sqrt{2}, -\sqrt{3})$$

C.
$$(3\sqrt{2}, 2\sqrt{3})$$

D.
$$\left(2\sqrt{2}, 3\sqrt{3}\right)$$

Answer:

35. The line lx+my+n=0 will be a normal to the hyperbola $b^2x^2-a^2y^2=a^2b^2$ if

A.
$$rac{a^2}{l^2} + rac{b^2}{m^2} = rac{\left(a^2 + b^2
ight)^2}{n^2}$$

$$\mathsf{B.}\,\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{\left(a^2 - b^2\right)^2}{n^2}$$

C.
$$rac{a^2}{l^2} - rac{b^2}{m^2} = rac{\left(a^2 + b^2
ight)^2}{n^2}$$

D. none of these

Answer: C

36. If the normal at ' heta' on the hyperbola

$$rac{x^2}{a^2}-rac{y^2}{b^2}=1$$
 meets the transverse axis at G , and

 ${\cal A}$ and ${\cal A}$ ' are the vertices of the hyperbola , then

$$AC. A'G =$$

A.
$$a^2 (e^2 \sec^2 \theta - 1)$$

B.
$$a^2 (e^4 \sec^2 \theta - 1)$$

C.
$$a^2 (e^4 \sec^2 \theta + 1)$$

D. none of these

Answer:

37. Let $P(a \sec \theta, b \tan \theta)$ and $Q(a \sec c\phi, b \tan \phi)$

(where $heta+\phi=rac{\pi}{2}$ be two points on the hyperbola

 $rac{x^2}{a^2} - rac{y^2}{b^2} = 1$ If (h,k) is the point of intersection

of the normals at $P \ \mathrm{and} \ Q$ then k is equal to (A)

$$\dfrac{a^2+b^2}{a}$$
 (B) $-\left(\dfrac{a^2+b^2}{a}\right)$ (C) $\dfrac{a^2+b^2}{b}$ (D)

$$-\left(\frac{a^2+b^2}{b}\right)$$

A.
$$\frac{a^2+b^2}{a}$$

$$B. - \frac{a^2 + b^2}{a}$$

C.
$$\frac{a^2 + b^2}{b^2}$$

$$D. - \frac{a^2 + b^2}{b}$$

Answer:

38. The equation of the chord of contact of tangents drawn from a point $(2,\,-1)$ to the hyperbola $16x^2 - 9y^2 = 144$, is

A. 9x + 32y = 144

B. 32x - 9y = 144

C. 32x + 9y = 144

D. none of these

Answer: C

39. The point of intersection of tangents drawn to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ at the points where it

is intersected by the line
$$lx+my+n=0$$
 , is

$$\left(\frac{-a^2l}{n},\frac{b^2m}{n}\right) \text{ (b) } \left(\frac{-a^2l}{m},\frac{b^2n}{m}\right) \\ \left(\frac{a^2l}{m},\frac{-b^2n}{m}\right)$$

(d)
$$\left(\frac{a^2l}{m}, \frac{b^2n}{m}\right)$$

A.
$$\left(rac{a^2l}{n},\ -rac{b^2m}{n}
ight)$$

$$\mathsf{B.}\left(\,-\,rac{a^2l}{n},\,rac{b^2m}{n}
ight)$$

C.
$$\left(\frac{a^2l}{n}, \frac{b^2m}{n}\right)$$

D.
$$\left(-rac{a^2l}{n},rac{-b^2m}{n}
ight)$$

Answer:

40. The equation of the chord of $x^2-y^2=9$ which is bisected at $(5,\,-3)$, is

A.
$$5x + 3y - 16 = 0$$

B.
$$2x - 3y - 19 = 0$$

$$C. 3x + 5y = 0$$

D. none of these

Answer:

41. The locus of the midde points ofchords of hyperbola $3x^2-2y^2+4x-6y=0$ parallel to y=2x is

A.
$$3x - 4y = 4$$

B.
$$3y - 4x + 4 = 0$$

C.
$$4x - 4y = 3$$

D.
$$3x - 4y = 2$$

Answer:

42. The pole of the line lx+my+n=0 with respect to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, is

A.
$$\left(\frac{a^2l}{n}, \frac{b^2m}{n}\right)$$

$$\mathsf{B.}\left(-\,\frac{a^2l}{n},\,\frac{b^2m}{n}\right)$$

$$\mathsf{C.}\left(\frac{a^2l}{n},\ -\frac{b^2m}{n}\right)$$

D.
$$\left(-\frac{a^2l}{n}, \frac{-b^2m}{n}\right)$$

Answer:

43. The locus of the poles of the chords of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ which subtend a right angle at its centre is

A.
$$\dfrac{x^2}{a^4}+\dfrac{y^2}{b^4}=1$$

B.
$$rac{x^2}{a^4} + rac{y^2}{b^4} = rac{1}{a^2} + rac{1}{b^2}$$

C.
$$rac{x^2}{a^4} + rac{y^2}{b^4} = rac{1}{a^2} - rac{1}{b^2}$$

D.
$$\frac{x^2}{a^4} - \frac{y^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2}$$

Answer:

44. The equations of the asymptotes of the hyperbola $2x^2+5xy+2y^2-11x-7y-4=0$ are

A.
$$2x^2 + 5xy + 2y^2 - 11x - 7y - 5 = 0$$

$$\mathsf{B.}\ 2x^2 + 4xy + 2y^2 - 7x - 11y - 5 = 0$$

$$\mathsf{C.}\,2x^2+5xy+2y^2-11x-7y+5=0$$

D. none of these

Answer: C

45. Find the equation of the hyperbola whose asymptotes are $3x=\pm 5y$ and the vertices are $(\pm 5,0)$

A.
$$3x^2 - 5y^2 = 25$$

B.
$$5x^2 - 3y^2 = 25$$

$$\mathsf{C.}\, 9x^2 - 25y^2 = 225$$

D.
$$225x^2 - 9y^2 = 225$$

Answer: C

46. .Find the product of lengths of the perpendiculars from any point on the hyperbola

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$
 to its asymptotes.

A.
$$\frac{a^2b^2}{a^2+b^2}$$

B.
$$\frac{ab}{a^2+b^2}$$

C.
$$\frac{a^2b^2}{a+b}$$

D.
$$\frac{1}{a^2 + b^2}$$

Answer:

47. If e_1 and e_2 are the eccentricites of hyperbola

$$xy=c^2$$
 and $x^2-y^2=c^2$, then $e_1^2+e_2^2=$

- A. 1
- B. 4
- **C**. 6
- D. 8

Answer: B

48. The normal to the rectangular hyperbola xy=4 at the point t_1 meets the curve again at the point t_2 Then the value of to t_2 is

A.
$$t_2 = -rac{1}{t_1^3}$$
B. $t_1 = -rac{1}{t_2^3}$

D.
$$t_2=rac{1}{t_1^3}$$

Answer: A

49. If the tangent and normal to a rectangular hyperbola cut off intercepts a_1 and a_2 on one axis and b_1 and b_2 on the other, then

A.
$$a_1a_2 + b_1b_2 = 0$$

B.
$$a_1 a_2 = -b_1 b_2$$

C.
$$a_1b_2 = a_2b_1$$

$$\mathsf{D.}\,a_1a_2=b_1b_2$$

Answer:

Section I Solved Mcqs

1. The eccentricity of the conic represented by

$$x^2-y^2-4x+4y+16=0$$
 is 1 (b) $\sqrt{2}$ (c) 2 (d) $rac{1}{2}$

- **A.** 1
- B. $\sqrt{2}$
- $\mathsf{C.}\,2$
- D. 1/2

Answer:

2. Find the vertices of the hyperbola

$$9x^2 = 16y^2 - 36x + 96y - 252 = 0$$

A. (6,3) and $(\,-6,3)$

B. (6,3) and $(\,-2,3)$

C. (-6,3) and (-6,-3)

D. none of these

Answer:

3. The centre of the hyperbola

 $9x^2 - 36x - 16y^2 + 96y - 252 = 0$, are

A. (2, 3)

B. (-2, -3)

C.(-2,3)

D. (2, -3)

Answer:

4. The eccentricity of the hyperbola with laturs rectum 12 and semi-conjugate axis is $2\sqrt{3}$, is

- A. 2
- B. 3
- $\mathsf{C.}\,\sqrt{3}/2$
- D. $2\sqrt{3}$

Answer:

5. The equation of the hyperbola with vertices (3,0)

and $(\,-3,0)$ and semi-laturs rectum 4, is given by

A.
$$4x^2 - 3y^2 + 36 = 0$$

$$\mathsf{B.}\, 4x^2 - 3y^2 + 12 = 0$$

$$\mathsf{C.}\, 4x^2 - 3y^2 - 36 = 0$$

D. none of these

Answer:

6. Find the equation of tangents to the curve

 $4x^2 - 9y^2 = 1$ which are parallel to 4y = 5x + 7.

A.
$$24y - 30x = 17$$

B.
$$30y - 24x = \pm \sqrt{161}$$

C.
$$24y - 30x = \pm \sqrt{161}$$

D. none of these

Answer:

7. The equation of the tangent parallel to y=x

drawn to
$$\dfrac{x^2}{3}-\dfrac{y^2}{2}=1$$
, is

A.
$$x - y + 1 = 0$$

$$\mathsf{B.}\,x-y+2=0$$

C.
$$x - y + 3 = 0$$

D.
$$x - y - 2 = 0$$

Answer:

8. If m is a variable, then prove that the locus of the point of intersection of the lines

$$\frac{x}{3} - \frac{y}{2} = m \ ext{ and } \ \frac{x}{3} + \frac{y}{2} = \frac{1}{m} ext{ is a hyperbola.}$$

A. parabola

B. ellipse

C. hyperbola

D. none of these

Answer:

9. If the chords of contact of tangents fromtwo points (x_1,y_1) and (x_2,y_2) to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ are at right angles, then $\frac{x_1x_2}{y_1y_2}$ is equal to (a) $\frac{a^2}{-b^2}$ (b) $\frac{b^2}{-a^2}$ (c) $\frac{b^4}{-a^4}$

A.
$$-rac{a^2}{b^2}$$

$$B.-\frac{b^2}{a^2}$$

$$\mathsf{C.} - \frac{b^4}{a^4}$$

D.
$$-\frac{a^4}{b^4}$$

Answer:

10. The equation of the chord joining two points (x_1,y_1) and (x_2,y_2) on the rectangular hyperbola $xy=c^2$, is

A.
$$\dfrac{x}{x_1+x_2}+\dfrac{y}{y_1+y_2}=1$$

$$\mathsf{B.}\, \frac{x}{x_1 - x_2} + \frac{y}{y_1 - y_2} = 1$$

C.
$$rac{x}{y_1+y_2}+rac{y}{x_1+x_2}=1$$

D.
$$\dfrac{x}{y_1-y_2}+\dfrac{y}{x_1-x_2}=1$$

Answer: A

11. From any point to the hyperbola $\hat{a} = \frac{2}{a^2} - \frac{y^2}{b^2} = 1$, tangents are drawn to thehyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=2$ The area cut off bythe chord of contact on the regionbetween the asymptotes is equal to

A.
$$\frac{ab}{2}$$

B. ab

 $\mathsf{C}.\,2ab$

D. 4*ab*

Answer:

12. PQ and RS are two perpendicular chords of the rectangular hyperbola $xy=c^2\cdot$ If C is the center of the rectangular hyperbola, then find the value of product of the slopes of CP,CQ,CR, and $CS\cdot$

- A. -1
- B. 1
- $\mathsf{C}.\,0$
- D. none of these

Answer:

13. If PN is the perpendicular from a point on a rectangular hyperbola $xy=c^2$ to its asymptotes, then find the locus of the midpoint of PN

- A. circle
- B. parabola
- C. ellipse
- D. hyperbola

Answer:

14. The combined equation of the asymptotes of the

hyperbola $2x^2+5xy+2y^2+4x+5y=0$ is -

A.
$$2x^2 + 5xy + 2y^2 + 4x + 5y + 2 = 0$$

$$\mathsf{B.}\, 2x^2 + 5xy + 2y^2 + 4x + 5y - 2 = 0$$

$$\mathsf{C.}\, 2x^2 + 5xy + 2y^2 = 0$$

D. none of these

Answer:

15. If x=9 is the chord of contact of the hyperbola

 $x^2-y^2=9$ then the equation of the corresponding pair of tangents is (A)

$$9x^2 - 8y^2 + 18x - 9 = 0 \tag{B}$$

$$9x^2 - 8y^2 - 18x + 9 = 0 (C)$$

$$9x^2 - 8y^2 - 18x - 9 = 0$$
 (D) $9x^2-8y^2+18x+9=0$

A.
$$9x^2 - 8y^2 + 18x - 9 = 0$$

$$B. 9x^2 - 8y^2 - 18x + 9 = 0$$

$$\mathsf{C.}\, 9x^2 - 8y^2 - 18x - 9 = 0$$

$$\mathsf{D.}\, 9x^2 - 8y^2 + 18x + 9 = 0$$

Answer:

hyperbolas
$$\dfrac{x^2}{9}-\dfrac{y^2}{16}=1$$
 and $\dfrac{y^2}{9}-\dfrac{x^2}{16}=1$, are

A.
$$\pm 2$$

$$B.\pm 1$$

$$\mathsf{C}.\pm 1/2$$

D. none of these

Answer:

17. Consider a branch of the hypebola $x^2-2y^2-2\sqrt{2}x-4\sqrt{2}y-6=0$ with vertex at the point A. Let B be one of the end points of its latus rectum. If C is the focus of the hyperbola nearest to the point A, then the area of the triangle ABC is

A.
$$1-\sqrt{rac{2}{3}}$$

$$\text{B.}\ \sqrt{\frac{3}{2}-1}$$

$$\mathsf{C.}\,1+\sqrt{\frac{2}{3}}$$

$$\mathsf{D.}\,\sqrt{\frac{3}{2}+1}$$

18. A hyperbola, having the transverse axis of length

 $2\sin heta$, is confocal with the ellipse $3x^2+4y^2=12$.

Then its equation is

A.
$$x^2 \cos ec^2\theta - y^2 \sec^2\theta = 1$$

$$B. x^2 \sec^2 \theta - y^2 \cos ec^2 \theta = 1$$

$$\mathsf{C.}\,x^2\sin^2\theta-y^2\cos^2\theta=1$$

$$D. x^2 \cos^2 \theta - y^2 \sin^2 \theta = 1$$

Answer:

19. The locus of the point of intersection of the tangents at the ends of normal chord of the hyperbola $x^2-y^2=a^2$ is

A.
$$y^4 - x^4 = 4a^2x^2y^2$$

B.
$$y^2 - x^2 = 4a^2x^2y^2$$

C.
$$a^2(y^2-x^2)=4x^2y^2$$

D.
$$y^2 + x^2 = 4a^2x^2y^2$$

Answer:

20. If angle subtended by any chord of a rectangular hyperbola at the centre is α and angle between the tangents at ends of chord is β , then

A.
$$lpha=2eta$$

B.
$$eta=2lpha$$

$$\mathsf{C}.\,\alpha+\beta=\pi$$

D.
$$\alpha+\beta=rac{\pi}{2}$$

Answer:

21. If a hyperbola passing through the origin has 3x - 4y - 1 = 0 and 4x - 3y - 6 = 0 as its asymptotes, then find the equation of its transvers and conjugate axes.

A.
$$x - y - 5 = 0$$
 and $x + y + 1 = 0$

B.
$$x - y = 0$$
 and $x + y + 5 = 0$

C.
$$x - y - 5 = 0$$
 and $x - y - 1 = 0$

D.
$$x + y - 1 = 0$$
 and $x - y - 5 = 0$

Answer:

22. If PQ is a double ordinate of the hyperbola

 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \ \ \text{such that} \ \ OPQ \ \ \text{is an equilateral}$ triangle, O being the center of the hyperbola, then find the range of the eccentricity e of the hyperbola.

A.
$$1 < e < rac{2}{\sqrt{3}}$$

$$\mathsf{B.}\,e = \frac{2}{\sqrt{3}}$$

$$\mathsf{C.}\,e = \frac{\sqrt{3}}{2}$$

D.
$$e>rac{2}{\sqrt{3}}$$

Answer:

23. The normal at P to a hyperbola of eccentricity e, intersects its transverse and conjugate axes at L and M respectively. Show that the locus of the middle point of LM is a hyperbola of eccentricity

$$\frac{e}{\sqrt{e^2-1}}$$

A.
$$\frac{e+1}{e-1}$$

$$\mathsf{B.} \; \frac{e}{\sqrt{e^2-1}}$$

 $\mathsf{C}.\,e$

D. none of these

Answer:

24. An ellipse intersects the hyperbola $2x^2-2y^2=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then

A. Equation of the ellipse is $x^2+2y^2=2$ with foci at $(\,\pm\,1,0)$

B. Equation of the ellipse is $x^2+2y^2=2$ with foci at $ig(\pm\sqrt{2},0ig)$

C. Equation of the ellipse is $x^2+2y^2=4$ with foci at $(\,\pm\,1,0)$

D. Equation of the ellipse is $x^2+2y^2=4$ with foci at $(\,\pm\,\sqrt{2},0)$

Answer: A

Watch Video Solution

25. If a variable straight line $x\cos\alpha+y\sin\alpha=p$ which is a chord of hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(b>a)$ subtends a right angle at the centre of the hyperbola, then it always touches a fixed circle whose radius, is

A.
$$\frac{ab}{\sqrt{b-2a}}$$

B.
$$\frac{a}{a-b}$$

C.
$$\frac{ab}{\sqrt{b^2-a^2}}$$

D.
$$\frac{ab}{\sqrt{b+a}}$$

Watch Video Solution

26. If H(x,y)=0 represents the equation of a hyperbola and A(x,y)=0, C(x,y)=0 the joint equation of its asymptotes and the conjugate hyperbola respectively, then for any point (α,β) in the plane $H(\alpha,\beta)$, $A(\alpha,\beta)$, and $C(\alpha,\beta)$ are in

A. A. P.

B. G. P.

 $\mathsf{C}.\,H.\,P.$

D. none of these

Answer:

Watch Video Solution

27. The equation of a tangent to the hyperbola $16x^2-25y^2-96x+100y-356=0 \text{, which makes}$ an angle $\pi/4$ with the transverse axis, is

A.
$$y = x + 2$$

B.
$$y = x - 5$$

C.
$$y = x + 3$$

D.
$$x = y + 2$$

Watch Video Solution

28. The point of intersection of two tangents to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, the product of whose slopes is c^2 , lies on the curve

A.
$$y^2 - b^2 = c^2 (x^2 + a^2)$$

B.
$$y^2 + a^2 = c^2 (x^2 - b^2)$$

C.
$$y^2 + b^2 = c^2 (x^2 - a^2)$$

D.
$$y^2 - a^2 = c^2 ig(x^2 + b^2 ig)$$

Watch Video Solution

29. Let A and B be two fixed points and P, another point in the plane, moves in such a way that $k_1PA+k_2PB=k_3$, where $k_1,\,k_2$ and k_3 are real

constants. The locus of P is

Which one of the above is not true?

A. a circle if $k_1=0$ and $k_2,k_3>0$

B. a circle if $k_1>0$ and $k_2<0$, $k_3=0$

C. an ellipse if $k_1=k_2>\ =0$ and $k_3>0$

D. a hyperbola if $k_2=\,-\,1$ and $k_1,k_3>0$

Answer:

30. The equation of the line passing through the centre of a rectangular hyperbola is x-y-1=0.

If one of its asymptotoes is 3x-4y-6=0, the equation of the other asymptote is $\mathsf{A.}\, 4x+3y+17=0$

B.
$$4x-3y+8=0$$

$$\mathsf{C.}\,3x-2y+15=0$$

Answer: A

31. If radii of director circles of
$$rac{x^2}{a^2}+rac{y^2}{b^2}=1$$
 and $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ are $2r$ and r

respectively, let $e_E \ {
m and} \ e_H$ are the eccentricities of ellipse and hyperbola respectively, then

A.
$$2e_h^2-e_e^2=6$$

B.
$$e_e^2 - 4e_h^2 = 6$$

$$\mathsf{C.}\, 4e_h^2 - e_e^2 = 6$$

D. none of these

Answer:

Watch Video Solution

32. A variable straight line of slope 4 intersects the hyperbola xy=1 at two points. The locus of the

A. $16x^2 + 10xy + y^2 = 2$ B. $16x^2 - 10xy + y^2 = 2$

point which divides the line segment between these

Answer:

C. $16x^2 + 10xy + y^2 = 4$

two points in the ratio 1:2 is

Watch Video Solution

33. If
$$P(a\sec\alpha,b\tan\alpha)$$
 and $Q(a\sec\beta,b\tan\beta)$ are two points on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ such

that $\alpha - \beta = 2\theta$ (a constant), then PQ touches the

hyperbola

A.
$$\dfrac{x^2}{a^2\sec^2 heta}-\dfrac{y^2}{b^2}=1$$

B.
$$rac{x^2}{a^2}-rac{y^2}{b^2\sec^2 heta}=1$$
C. $rac{x^2}{a^2}-rac{y^2}{b^2}=\cos^2 heta$

Answer:

Watch Video Solution

34. If the tangents drawn from a point on the hyperbola
$$x^2-y^2=a^2-b^2$$
 to ellipse

C.
$$an lpha an eta = 1$$
D. $an lpha an eta = -1$

Answer:

Watch Video Solution

35. The locus of the point of intersection of the

tangents at the end-points of normal chords of the

 $rac{x^2}{a^2} + rac{y^2}{b^2} = 1$ make angle lpha and eta with the

transverse axis of the hyperbola, then

A. $\tan \alpha - \tan \beta = 1$

B. $\tan \alpha + \tan \beta = 1$

A. $\displaystyle rac{a^6}{x^2} + rac{b^6}{v^2} = \left(a^2 + b^2
ight)^2$

B.
$$\dfrac{a^6}{x^2}-\dfrac{b^6}{y^2}=\left(a^2+b^2
ight)^2$$
C. $\dfrac{a^6}{x^2}-\dfrac{b^6}{y^2}=\left(a^2-b^2
ight)^2$

D. $rac{a^6}{x^2} + rac{b^6}{u^2} = \left(a^2 - b^2
ight)^2$

hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is

36. Find the product of the length of perpendiculars drawn from any point on the hyperbola $x^2-2y^2-2=0$ to its asymptotes.

- A. 1/2
- B. 2/3
- C.3/2
- D. 2

Watch Video Solution

37. The length of the transverse axis of the rectangular hyperbola xy=18 is

A.6

- B.12
- **C**. 18
- D.9

Answer: B

Watch Video Solution

38. Find the eccentricity of the hyperbola with asymptotes 3x+4y=2 and 4x-3y=2.

- A. 3
- B. 2

 $\mathsf{C}.\,\sqrt{2}$

D. 4

Answer: C

Watch Video Solution

39. The foci of a hyperbola are (-5,18) and (10,20) and it touches the y-axis . The length of its transverse axis, is

A. 100

B. $\sqrt{89}/2$

 $\mathsf{C.}\,\sqrt{89}$

D. $\sqrt{50}$

Answer:

Watch Video Solution

40. If tangent to any member of family of hyperbolas $xy=4\sin^2\theta,\, \theta\in(0,2\pi)-\{\pi\}$ is not a normal to any member of family of circles $x^2+y^2-2x2y+\mu=0$, where μ is any real parapmeter, then θ belongs to

A.
$$\left(\frac{5\pi}{6}, \frac{7\pi}{6}\right)$$

B.
$$\left(0, \frac{\pi}{6}\right)$$

$$\mathsf{C.}\left(\frac{11\pi}{6},2\pi\right)$$

D. all of these

Answer:

Watch Video Solution

41. The circle $x^2 + y^2 - 8x = 0$ and hyperbola $\frac{x^2}{\Omega} - \frac{y^2}{A} = 1$ intersect at the points A and B. The equation of a common tangent with positive slope to the circle as well as to the hyperbola, is

A.
$$2x - \sqrt{5}y - 20 = 0$$

$$\mathsf{B.}\,2x-\sqrt{5}y+4=0$$

C.
$$3x - 4y + 8 = 0$$

D.
$$4x - 3y + 4 = 0$$

Watch Video Solution

42. The circle $x^2 + y^2 - 8x = 0$ and hyperbola

$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$
 intersect at the points A and B

Equation of the circle with AB as its diameter is

A.
$$x^2 + y^2 - 12x + 24 = 0$$

$$B. x^2 + y^2 + 12x + 24 = 0$$

C.
$$x^2 + y^2 + 24x - 12 = 0$$

D.
$$x^2 + y^2 - 24x - 12 = 0$$

Answer: A

Watch Video Solution

43. Let the eccentricity of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ be the reciprocal to that of the ellipse $x^2+4y^2=4$. If the hyperbola passes through a focus of the ellipse, then the equation of the hyperbola, is

A.
$$\frac{x^2}{3} - \frac{y^2}{2} = 1$$

$$\mathsf{B.}\,x^2-3y^2=3$$

c.
$$\frac{x^2}{2} - \frac{y^2}{3} = 1$$

D.
$$3x^2-y^2=3$$

44. let the eccentricity of the hyperbola
$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$
 be reciprocal to that of the ellipse
$$x^2+4y^2=4.$$
 if the hyperbola passes through a

focus of the ellipse then: (a) the equation of the

hyperbola is $\frac{x^2}{3}-\frac{y^2}{2}=1$ (b) a focus of the hyperbola is (2,0) (c) the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$ (d) the equation of the hyperbola is $x^2-3y^2=3$

A.
$$(2,0)$$

B. (0, 2)

C.(3,0)

D. (0, 3)

Answer:

45. Suppose an ellipse and a hyperbola have the same pair of foci on the x-axis with centres at the origin and they intersect at (2, 2). If the eccentricity of the ellipse is $\frac{1}{2}$, then the eccentricity of the hyperbola, is

A.
$$\sqrt{\frac{7}{4}}$$

B.
$$\sqrt{\frac{7}{3}}$$

C.
$$\sqrt{\frac{5}{4}}$$

D.
$$\sqrt{\frac{5}{3}}$$

Answer:

Watch Video Solution

46. Tangents are drawn to the hyperbola

$$rac{x^2}{9} - rac{y^2}{4} = 1$$
 parallet to the sraight line

2x - y = 1. The points of contact of the tangents

on the hyperbola are (A)
$$\left(\frac{2}{2\sqrt{2}},\frac{1}{\sqrt{2}}\right)$$
 (B

$$\left(-\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \qquad \text{(C)} \qquad \left(3\sqrt{3}, \, -2\sqrt{2}\right) \qquad \text{(D)}$$

$$ig(-3\sqrt{3},2\sqrt{2}ig)$$

A.
$$\left(\pm \frac{9}{2\sqrt{2}}, \pm \frac{1}{\sqrt{2}}\right)$$

B.
$$\left(\pm \frac{1}{\sqrt{2}}, \pm \frac{9}{2\sqrt{2}}\right)$$

C.
$$(3\sqrt{3}, -2\sqrt{2})$$

D.
$$\left(-3\sqrt{3},2\sqrt{2}\right)$$

Watch Video Solution

47. If the foci of the ellipse $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ and the hyperbola $\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}$ coincide, then find the value

A. 7

B. 8

C. 10

D. 9

Watch Video Solution

48. Consider the hyperbola $H: x^2 - y^2 = 1$ and a circle S with centre $N(x_2,0)$ Suppose that H and S touch each other at a point $(P(x_1, y_1))$ with $x_1 > 1$ and $y_1 > 0$ The common tangent to H and S at P intersects the x-axis at point M. If (I,m) is the centroid of the triangle ΔPMN then the correct expression is (A) $\dfrac{dl}{dx_1}=1-\dfrac{1}{3x_1^2}$ for $x_1>1$ (B) $rac{dm}{dx_1} = rac{x_1}{3ig(\sqrt{x_1^2}-1ig)} \, igg) f \,\, ext{or} \,\, x_1 > 1$

(C)

$$rac{dm}{dy_1}=rac{1}{3}f ext{ or } y_1>0$$
 A. $rac{dl}{dx_1}=1-rac{1}{3x_1^2}$ for $x_1>1$

B. $rac{dm}{dx_1}=rac{x_1}{3\Big(\sqrt{x_1^2-1}\Big)}$ for $x_1>1$

C. $\dfrac{dl}{dx_1}=1+\dfrac{1}{3x_1^2}$ for $x_1>1$

(D)

Watch Video Solution

D. $\frac{dm}{du} = \frac{1}{3}$ for $y_1 > 0$.

 $\frac{dl}{dx_1} = 1 + \frac{1}{3x_1^2} f \text{ or } x_1 > 1$

49. The angle between pair of tangents to the curve

 $7x^2-12y^2=84$ from the point M(1,2) is

A.
$$2 \tan^{-1} \frac{1}{2}$$

 $\mathsf{B.}\,2\tan^{-1}2$

C.
$$2\left(\tan^{-1}.\ \frac{1}{3} + \tan^{-1}.\ \frac{1}{2}\right)$$

D. $2 \tan^{-1} 3$

Answer:

Watch Video Solution

50. Consider the chords of the parabola $y^2=4x$ which touches the hyperbola $x^2-y^2=1$, the locus of the point of intersection of tangents drawn to the parabola at the extremitites of such chords is a conic section having laturs rectum λ , the value of λ , is

A. 1

B.2

C. 3

D. 4

Answer:

51. There exist two points P and Q on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \text{ such that } PO\perp OQ \text{, where } O \text{ is the origin, then the number of points in the } xy\text{-plane}$ from where pair of perpendicular tangents can be drawn to the hyperbola , is

A. 0

B. 1

 $\mathsf{C.}\,2$

D. infinite

52. If four points be taken on a rectangular hyperbola such that the chord joining any two is perpendicular to the chord joining the other two, and if $\alpha, \beta, \gamma, \delta$ be the inclinations to either asymptotes of the straight lines joining these points to the centre, then $\tan \alpha \tan \beta \tan \gamma \tan \delta$ is equal to

A. 1

B. 2

 $\mathsf{C}.-2$

D. -1

Answer:

Watch Video Solution

53. A hyperbola whose transverse axis is along the major axis of the conic, $\frac{x^2}{3} + \frac{y^2}{4} = 4$ and has vertices at the foci of this conic. If the eccentricity of the hyperbola is $\frac{3}{2}$, then which of the following points does NOT lie on it?

A.
$$(\sqrt{5}, 2\sqrt{2})$$

B. $(\sqrt{5}, 2\sqrt{3})$

C.(0,2)

D. $(\sqrt{10}, 2\sqrt{3})$

Answer:

Watch Video Solution

Section Ii Assertion Reason Type

1. Statement-1: If the foci of a hyperbola are at (4,1) and $(\,-6,1)$ and eccentricity is $rac{5}{4}$, then the length of its transverse axis is 4.

Statement-2: Distance between the foci of a hyperbola is equal to the product of its eccentricity and length of the transverse axis.

- **A**. 1
- B. 2
- **C**. 3
- D. 4

Answer:

Watch Video Solution

2. A vertex of a branch of the hyperbola $x^2-2y^2-2\sqrt{2}x-4\sqrt{2}y-6=0$, B is one of the end points of its latuscrectum and C is the focus of the hyperbola nearest to the point A.

Statement-1 : The area of ΔABC is $\left(\frac{\sqrt{3}}{2}-1\right)$ sq. units.

Statement-2 : Eccentricity of the hyperbola is $\frac{\sqrt{3}}{2}$ and length of the conjugate axis is $2\sqrt{2}$.

A. 1

B. 2

C. 3

Watch Video Solution

3. Statement-1: Tangents drawn from the point (2,-1) to the hyperbola $x^2-4y^2=4$ are at right angle. Statement-2: The locus of the point of intersection of perpendicular tangents to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is the circle $x^2+y^2=a^2-b^2$.

A. 1

- B.2
- **C**. 3
- D. 4

Answer:

Watch Video Solution

4. Statement-1: If 5/3 is the eccentricity of a hyperbola, then the eccentricity of its conjugate hyperbola is 5/4.

Statement-2: If e and e^{\prime} are the eccentricities of

A. 1

B. 2

C. 3

D. 4

C

respectively, then $\frac{1}{e^2} + \frac{1}{e^{\prime 2}} = 1$.

hyperbolas $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ and $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=-1$

1. The equation of the hyperbola whose directrix

x+2y=1, focus (2,1) and eccentricity 2, is

A.
$$x^2 + 16xy - 11y^2 - 12x + 6y + 21 = 0$$

B.
$$x^2 - 16xy - 11y^2 - 12x + 6y + 21 = 0$$

C.
$$x^2 - 4xy - y^2 - 12x + 6y + 21 = 0$$

D. none of these

Answer:

2. The eccentricity of the hyperbola whose latuscrectum is 8 and conjugate axis is equal to half the distance between the foci, is

A.
$$4/3$$

B.
$$4/\sqrt{3}$$

$$\mathsf{C.}\,2/\sqrt{3}$$

D. none of these

Answer:

3. The eccentricity of the hyperbola can never be equal to

A.
$$\sqrt{\frac{9}{5}}$$

A.
$$\sqrt{\frac{9}{5}}$$
B. $2\sqrt{\frac{1}{9}}$

c.
$$8\sqrt{\frac{1}{8}}$$

Answer:

Vatch Video Solution

4. The eccentricity of a rectangular hyperbola, is

B.
$$\sqrt{2}$$

$$\mathsf{C}.\,0$$

D. none of these

Answer:

Watch Video Solution

5. If
$$t$$
 is a parameter, then $x=a\Big(t+rac{1}{t}\Big)$, $y=b\Big(t-rac{1}{t}\Big)$ represents

A. an ellipse

- B. a circle
- C. a pair of straight lines
- D. a hyperbola

Answer:

- **6.** If $5x^2 + \lambda y^2 = 20$ represents a rectangular hyperbola, then λ equals
 - **A.** 5
 - B.4

$$\mathsf{C.}-5$$

D. none of these

Answer:

Watch Video Solution

7. The eccentricity of the hyperbola

$$3x^2 - 4y^2 = -12$$
 is

A.
$$\sqrt{\frac{7}{3}}$$
B. $\frac{\sqrt{7}}{2}$

B.
$$\frac{\sqrt{7}}{2}$$

$$\mathsf{C.} - \sqrt{\frac{7}{3}}$$

D.
$$-\frac{\sqrt{2}}{2}$$

Answer:

Watch Video Solution

8. The locus of the point of intersection of the straight lines $\frac{x}{a}+\frac{y}{b}=\lambda$ and $\frac{x}{a}-\frac{y}{b}=\frac{1}{\lambda}$ (λ is a variable), is

A. a circle

B. a parabola

C. an ellipse

D. a hyperbola

Answer:

Watch Video Solution

9. The equation

 $ax^2+2hxy+by^2+2gx+2fy+c=0$ repersents

a hyperbola if

A. $\Delta
eq 0$, $h^2 < ab$

B. $\Delta
eq 0$, $h^2 > ab$

C. $\Delta
eq 0$, $h^2 = ab$

D.
$$\Delta
eq 0$$
, $a+b=0$

Answer:

Watch Video Solution

10. The equation $ax^2+2hxy+by^2+2gx+2fy+c=0$ repersents

a rectangular hyperbola if

A.
$$\Delta
eq 0$$
, $h^2 > ab$, $a+b=0$

B.
$$\Delta
eq 0$$
, $h^2 < ab$, $a+b=0$

C.
$$\Delta \neq 0$$
, $h^2 = ab$, $a+b=0$

D. none of these

Answer:

Watch Video Solution

11. The locus of the midde points ofchords of hyperbola $3x^2-2y^2+4x-6y=0$ parallel to y=2x is

A.
$$3x - 4y = 4$$

B.
$$3y - 4x + 4 = 0$$

C.
$$4x - 3y = 3$$

D.
$$3x - 4y = 2$$

Answer:

Watch Video Solution

12. The value of m, for wnich the line $y=mx+25rac{\sqrt{3}}{3}$ is a normal to the conic

$$rac{x^2}{16}-rac{y^2}{9}=1$$
 , IS

A.
$$\pm \frac{2}{\sqrt{3}}$$

B. $\sqrt{3}$

$$\mathsf{C.} - \frac{\sqrt{3}}{2}$$

D. none of these

Answer:

Watch Video Solution

13. The value of m for which the line y=mx+2 becomes a tangent to the hyperbola

$$4x^2 - 9y^2 = 36$$
 is

A.
$$\pm \frac{2}{3}$$

$$\mathsf{B.}\pm\frac{\sqrt{2}}{3}$$

$$\mathsf{C.}\pmrac{8}{9}$$

$$\frac{4\sqrt{2}}{3}$$

Answer:

Watch Video Solution

- **14.** The equation $\frac{x^2}{12-k}+\frac{y^2}{8-k}=1$ represents
 - A. a hyperbola if k < 8
 - B. an ellipse if k > 8
 - C. a hyperbola if 8 < k < 12
 - D. none of these

Answer:

15. If
$$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b)$$
 and $x^2-y^2=c^2$ cut at right angles, then:

A.
$$a^2 + b^2 = 2c^2$$

B.
$$b^2 - a^2 = 2c^2$$

$$\mathsf{C.}\,a^2-b^2=2c^2$$

D.
$$a^2b^2=2c^2$$

Answer:

16. A common tangent to $9x^2-16y^2=144$ and

$$x^2+y^2=9$$
, is

$$\mathsf{A}.\,y = \frac{3}{\sqrt{7}}x + \frac{15}{\sqrt{7}}$$

$$\texttt{B.}\,y=3\sqrt{\frac{2}{7}}x+\frac{15}{\sqrt{7}}$$

C.
$$y=2\sqrt{rac{3}{7}}x+15\sqrt{7}$$

D. none of these

Answer:

17. The equation of a tangent parallel to y=x

drawn to
$$\dfrac{x^2}{3}-\dfrac{y^2}{2}=1$$
, is

A.
$$x - y + 1 = 0$$

B.
$$x - y + 2 = 0$$

C.
$$x + y - 1 = 0$$

D.
$$x - y + 2 = 0$$

Answer:

18. The diameter of $16x^2 - 9y^2 = 144$ which is conjugate to x = 2y is

$$\mathsf{A.}\,y = \frac{16x}{9}$$

$$\mathrm{B.}\,y = \frac{32x}{9}$$

$$\operatorname{C.} x = \frac{16y}{9}$$

$$\mathsf{D.}\,x = \frac{32y}{9}$$

Answer:

19. The tangents from a point $\left(2\sqrt{2},1\right)$ to the hyperbola $16x^2-25y^2=400$ inculde an angle equal to

A.
$$\pi/2$$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C}.\,\pi$$

D.
$$\pi/3$$

Answer:

20. If the line $y=3x+\lambda$ touches the hyperbola

 $9x^2-5y^2=45$, then the value of λ is

- A. 36
- B. 45
- **C**. 6
- D. 15

Answer:

21. Find the equations to the common tangents to

the two hyperbolas
$$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$$
 and $\dfrac{y^2}{a^2}-\dfrac{x^2}{b^2}=1$

A.
$$y=~\pm~x\pm\sqrt{b^2-a^2}$$

B.
$$y=~\pm~x\pm\sqrt{a^2-b^2}$$

C.
$$y=\pm x\pm \left(a^2-b^2
ight)$$

D.
$$y=\pm x\pm\sqrt{a^2+b^2}$$

Answer:

22. A point moves in a plane so that its distances PA and PB from two fixed points A and B in the plane satisfy the relation $PA-PB=k(k\neq 0)$, then the locus of P, is

- A. a parabola
- B. an ellipse
- C. a hyperbola
- D. a branch of a hyperbola

Answer:

23. If the foci of the ellipse $\frac{x^2}{16}+\frac{y^2}{b^2}=1$ and the hyperbola $\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}$ coincide, then find the value

- **A.** 1
- B. 5
- C. 7
- D. 9

Answer:

24. The curve represented by $x=a\cos h heta,$ $y=b\sin h heta,$ is

A. a hyperbola

B. an ellipse

C. a parabola

D. a circle

Answer:

25. The equation oi the conic with focus at (1,-1) directrix along x-y+1=0 and eccentricity $\sqrt{2}$ is xy=1 b. 2xy+4x-4y-1=0 c. $x^2-y^2=1$ d.

$$2xy - 4x + 4y = 1 = 0$$

A.
$$x^2 - y^2 = 1$$

$$B. xy = 1$$

C.
$$2xy - 4a + 4y + 1 = 0$$

D.
$$2xy + 4x - 4y - 1 = 0$$

Answer:

26. If the eccentricity of a hyperbola is $\sqrt{3}$, the eccentricity of its conjugate hyperbola, is

- A. $\sqrt{2}$
- B. $\sqrt{3}$
- C. $\sqrt{\frac{3}{2}}$
- D. $2\sqrt{3}$

Answer:

27. Area of the triangle formed by the lines $x-y=0,\,x+y=0$ and any tangant to the hyperbola $x^2-y^2=a^2$ is

- A. $4a^2$
- B. $3a^2$
- $\mathsf{C.}\,2a^2$
- D. a^2

Answer:

28. The angle between the asymptotes of

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 is equal to

A.
$$2\tan^{-1}\left(\frac{b}{a}\right)$$

$$\operatorname{B.tan}^{-1}\left(\frac{a}{b}\right)$$

C.
$$2\tan^{-1}\left(\frac{a}{b}\right)$$

D.
$$\tan^{-1}\left(\frac{b}{a}\right)$$

Answer:

29. If a normal of slope m to the parabola $y^2=4ax$

touches the hyperbola $x^2-y^2=a^2$, then

A.
$$m^6-4m^4-3m^2+1=0$$

$$\mathsf{B.}\, m^6 - 4m^4 + 3m^2 - 1 = 0$$

C.
$$m^6 + 4m^4 - 3m^2 + 1 = 0$$

D.
$$m^6 + 4m^4 + 3m^2 + 1 = 0$$

Answer:

30. The equation of common tangent to the parabola $y^2=8x$ and hyperbola $3x^2-y^2=3$ is

A.
$$2x - y - 1 = 0$$

B.
$$x - 2y + 1 = 0$$

C.
$$2x + y - 1 = 0$$

D.
$$2x + y + 1 = 0$$

Answer:

31. The circle drawn on the line segment joining the foci of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ as diameter cuts the asymptotes at (A) (a,a) (B) (b,a) (C) $(\pm b, \pm a)$ (D) $(\pm a, \pm b)$

A.
$$(a, a)$$

C.
$$(\pm b, \pm a)$$

D.
$$(\pm a, \pm b)$$

Answer:

32. The angle between the asymptotes of the hyperbola $2x^2-2y^2=9$, is

A.
$$\pi/4$$

B.
$$\pi/3$$

C.
$$\pi/6$$

D.
$$\pi/2$$

Answer:

33. The difference of the focal distances of any point on the hyperbola is equal to its

- A. latusrectum
- B. eccentricity
- C. transverse axis
- D. conjugate axis

Answer:

34. If $P(x_1,y_1),\,Q(x_2,y_2),\,R(x_3,y_3)\,$ and $\,S(x_4,y_4)\,$ are four concyclic points on the rectangular hyperbola) and $xy=c^2$, then coordinates of the orthocentre of the triangle PQR is

A.
$$(x_4, -y_4)$$

B.
$$(x_4, y_4)$$

C.
$$(-x_4, -y_4)$$

D.
$$(-x_4, y_4)$$

Answer:

35. The point of intersection of the curve whose

parametrix

by

equations

are

 $x=t^2+1,y=2t$ and $x=2s,y=rac{2}{s},$ is given

A. (1, -3)

B.(2,2)

C. (-2, 4)

D.(1,2)

Answer:

36. The equation of the hyperbola whose foci are (6.5), (-4,5) and eccentricity 5/4 is

A.
$$\frac{{{{\left({x - 1} \right)}^2}}}{{16}} - \frac{{{{\left({y - 5} \right)}^2}}}{9} = 1$$

$$\text{B.} \, \frac{x^2}{16} - \frac{y^2}{9} = 1$$

C.
$$\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = -1$$

D. none of these

Answer:

37. Find the point on the hyperbola $x^2-9y^2=9$ where the line 5x+12y=9 touches it.

A.
$$(-5/4, 3)$$

B.
$$(5, -4/3)$$

C.
$$(3, -1/2)$$

D. none of these

Answer:

38. The length of the latusrectum of the hyperbola

$$rac{x^2}{a^2} - rac{y^2}{b^2} = \, - \, 1$$
 , is

A.
$$\frac{2a^2}{b}$$

B.
$$\frac{2b^2}{a}$$

C.
$$\frac{b^2}{a}$$

D.
$$\frac{a^2}{b}$$

Answer:

39. P is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT. ON is equal to

- A. e^2
- B. a^2
- $\mathsf{C}.\,b^2$
- D. b^2/a^2

Answer:

40. If the tangent at the point $(2\sec\theta, 3\tan\theta)$ to

the hyperbola $rac{x^2}{4} - rac{y^2}{9} = 1$ is parallel to

3x-y+4=0, then the value of heta, is

A. $45\,^\circ$

B. 60°

C. 30°

D. 75°

Answer:

41. The eccentricity of the hyperbola

$$rac{\sqrt{1999}}{3}ig(x^2-y^2ig)=1$$
, is

A.
$$\sqrt{2}$$

$$\mathsf{C.}\,2\sqrt{2}$$

D.
$$\sqrt{3}$$

Answer:

42. The tangent to the hyperbola $x^2-y^2=3$ are parallel to the straight line 2x+y+8=0 at the following points

A.
$$(2, 1), (1, 2)$$

B.
$$(2, -1)$$
, $(-2, 1)$

$$\mathsf{C}.\,(\,-2,\,-1),(1,2)$$

D.
$$(-2, -1)$$
, $(-1, -2)$

Answer:

43. If the tangents at the point $(a\sec\alpha,b\tan\alpha)$ to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ meets the transverse axis at T, then the distance of T from a focus of the hyperbola, is

A.
$$b(e - \cos \alpha)$$

B.
$$b(e + \cos \alpha)$$

$$\mathsf{C.}\,a(e+\cos\alpha)$$

D.
$$\sqrt{a^2e^2+b^2\cot^2\alpha}$$

Answer:

44. The equation of the hyperbola of given transverse axis 2a with its vertex mid-way between the centre and the corresponding focus, is

A.
$$3x^2 - y^2 = a^2$$

B.
$$3x^2 - y^2 = 3a^2$$

C.
$$x^2 - 3y^2 = a^2$$

D.
$$x^2 - 3y^2 = a^2$$

Answer:

45. Find the locus of the-mid points of the chords of the circle $x^2+y^2=16$, which are tangent to the hyperbola $9x^2-16y^2=144$

A.
$$\left(x^2+y^2\right)^2=16x^2-9y^2$$

B.
$$\left(x^2+y^2\right)^2=9x^2-16y^2$$

C.
$$\left(x^2-y^2\right)^2=16x^2-9y^2$$

D. none of these

Answer:

46. If the latus rectum subtends a right angle at the center of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, then find its eccentricity.

A.
$$\frac{\sqrt{13}}{2}$$

B.
$$\frac{\sqrt{5}-1}{2}$$

$$\mathsf{C.}\,\frac{\sqrt{5}+1}{2}$$

$$\text{D. } \frac{\sqrt{3}+1}{2}$$

Answer:

47. If the latursrectum of a hyperbola through one foucs subtends 60° angle at the other focus, then its eccentricity e, is

- A. $\sqrt{2}$
- B. $\sqrt{3}$
- C. $\sqrt{5}$
- D. $\sqrt{6}$

Answer:

48. If the latus rectum of a hyperbola forms an equilateral triangle with the vertex at the center of the hyperbola ,then find the eccentricity of the hyperbola.

A.
$$\frac{\sqrt{5}+1}{2}$$

$$\mathsf{B.}\,\frac{\sqrt{11}+1}{2}$$

$$\mathsf{C.}\,\frac{\sqrt{13}+1}{2\sqrt{3}}$$

D.
$$\frac{\sqrt{13}-1}{2\sqrt{3}}$$

Answer:

49. Let LL' be the latus rectum through the focus of the hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ and A ' be the farther vertex. If A'LL' is equilateral, then the eccentricity of the hyperbola is (axes are coordinate axes).

A.
$$\sqrt{3}$$

B.
$$\sqrt{3} + 1$$

C.
$$\frac{\sqrt{3}+1}{\sqrt{2}}$$
 D.
$$\frac{\sqrt{3}+1}{\sqrt{3}}$$

D.
$$\frac{\sqrt{3+1}}{\sqrt{3}}$$

Answer: D

50. The angle between the asymptotes of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$, is

A.
$$\pi-2 an^{-1}rac{3}{4}$$

$$\mathsf{B.}\,\pi-2\tan^{-1}\frac{3}{2}$$

C.
$$\tan^{-1} \frac{3}{4}$$

D.
$$\pi - 2 \tan^{-1} \frac{4}{3}$$

Answer:

51. The values of 'm' for which a line with slope m is common tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ and parabola $y^2=4ax$ can lie in interval:

A.
$$m\in(0,\infty)$$

B.
$$m \in (\,-\infty,2) - \left\{\sqrt{rac{\sqrt{5}+1}{2}}
ight\}$$

C.

$$m\in (\,-\infty,\,-1)\cup (1,\infty)-\left\{\,\pm\sqrt{rac{\sqrt{5}+1}{2}}
ight\}$$

D. none of these

Answer:

52. The number of integral points on the hyperbola $x^2-y^2=\left(2000\right)^2$ is (an integral point is a point both of whose co-ordinates are integer) (A) 98 (B) 96 (C) 48 (D) 24

- A. 98
- B. 96
- C.48
- D. 24

Answer:

53. A straight line intersects the same branch of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ in P_1 and P_2 and meets its asymptotes in Q_1 and Q_2 . Then, $P_1Q_2-P_2Q_1$ is equal to

A.
$$a-b$$

B.
$$\sqrt{a^2+b^2}-ab$$

C.
$$\sqrt{a^2-b^2}$$

D. 0

Answer: 4

54. The locus of the centre of a variable circle touching two circles of radii r_1, r_2 externally , which also touch eath other externally, is conic. If $\frac{r_1}{r_2}=3+2\sqrt{2}$, then eccentricity of the conic, is

- **A.** 1
- B. $\sqrt{2}$
- C.1/2
- D. $2\sqrt{2}$

Answer: option 2

55. If tangents OQ and OR are dawn to variable circles having radius r and the center lying on the rectangular hyperbola xy=1, then the locus of the circumcenter of triangle OQR is (O being the origin). xy=4 (b) $xy=\frac{1}{4}$ xy=1 (d) none of these

$$A. xy = 4$$

B.
$$4xy = 1$$

$$\mathsf{C}.\,xy=1$$

D. none of these

Answer:

56. Find the equation of tangent to the conic

$$x^2-y^2-8x+2y+11=0$$
 at $(2,1)$

A.
$$x + 2 = 0$$

B.
$$2x + 1 = 0$$

$$C. x - 2 = 0$$

D.
$$x + y + 1 = 0$$

Answer:

Chapter Test

1. The value of m for which y=mx+6 is a tangent

to the hyperbola $rac{x^2}{100}-rac{y^2}{49}=1$, is

A.
$$\sqrt{rac{17}{20}}$$

B.
$$\sqrt{\frac{20}{17}}$$

C.
$$\sqrt{\frac{3}{20}}$$

D.
$$\sqrt{\frac{20}{3}}$$

Answer:

2. The equation of the tangent to the hyperbola

 $4y^2=x^2-1$ at the point (1,0), is

 $A. \, x = 1$

B. y = 1

 $\mathsf{C}.\,y=4$

D. x = 4

Answer:

3. The number of normals to the hyperbola

$$rac{x^2}{a^2}-rac{y^2}{b^2}=1$$
 from an external point, is

- A. 2
- **B.** 4
- **C**. 6
- D. 3

Answer:

4. If e and e_1 , are the eccentricities of the hyperbolas

 $xy=c^2$ and $x^2-y^2=c^2$, then $e^2+e_1^2$ is equal to

- **A.** 1
- B. 4
- $\mathsf{C.}\,6$
- D. 8

Answer:

5. A rectangular hyperbola whose centre is C is cut by any circle of radius r in four points P, Q, R and S.

Then, $CP^2+CQ^2+CR^2+CS^2=\,$ (A) r^2 (B) $2r^2$ (C) $3r^2$ (D) $4r^2$

- A. r^2
- B. $2r^2$
- $\mathsf{C.}\,3r^2$
- D. $4r^2$

Answer:

6. The equation of the pair of asymptotes of the hyperbola xy-4x+3y=0, is

A.
$$xy - 4x + 3y - 1 = 0$$

B.
$$xy - 4x + 3y - 10 = 0$$

C.
$$xy - 4x + 3y - 12 = 0$$

D. none of these

Answer:

7. If the latus rectum of the hyperbola

$$rac{x^2}{16}-rac{y^2}{b^2}=1$$
 is $rac{9}{2}$, then its eccentricity, is

A.
$$4/5$$

$$\mathsf{B.}\,5/4$$

$$\mathsf{C.}\,3/4$$

$$\mathsf{D.}\,4/3$$

Answer:

8. Chords of the hyperbola, $x^2-y^2=a^2$ touch the parabola, $y^2=4ax$. Prove that the locus of their middlepoints is the curve, $y^2(x-a)=x^3$.

A.
$$x^2(y-a)=y^3$$

$$B. y^2(x-a) = x^3$$

C.
$$x(y^2 - a) = y$$

$$D. y(x^2 - a) = x$$

Answer:

9. Tangents drawn from the point (c,d) to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ make angles lpha and eta with the x-axis. If $\tan lpha an eta=1$, then $c^2-d^2=$

A.
$$a^2 - b^2$$

$$\mathsf{B.}\,b^2-a^2$$

$$c. a^2 + b^2$$

D. none of these

Answer:

10. If the tangent at (h,k) on $b^2x^2-a^2y^2=a^2b^2$ cuts the auxiliary circle in two points whose ordinates are y_1 and y_2 , then $\dfrac{1}{y_1}+\dfrac{1}{y_2}$ is

A.
$$\frac{1}{\alpha}$$

$$\operatorname{B.}\frac{2}{\alpha}$$

C.
$$\frac{1}{\beta}$$
D. $\frac{2}{\beta}$

$$\frac{2}{2}$$

Answer:

11. If the chords of contact of tangents drawn from P to the hyperbola $x^2-y^2=a^2$ and its auxiliary circle are at right angle, then P lies on

A.
$$x^2 - y^2 = 3a^2$$

$$\mathsf{B.}\,x^2-y^2=2a^2$$

$$\mathsf{C.}\,x^2-y^2=0$$

D.
$$x^2 - y^2 = 1$$

Answer:

12. The tangent at a point P on the hyperbola

$$rac{x^2}{a^2} - rac{y^2}{b^2} = 1$$
 meets one of the directrix at F_{\cdot} If

PF subtends an angle $\boldsymbol{\theta}$ at the corresponding focus,

then
$$heta=rac{\pi}{4}$$
 (b) $rac{\pi}{2}$ (c) $rac{3\pi}{4}$ (d) π

A. 45°

B. 30°

C. 60°

D. 90°

Answer:

13. The mid-point of the chord intercepted by the hyperbola $9x^2-16y^2=144$ on the line 9x-8y-10=0, is

A.
$$(1, 2)$$

B.
$$(-1, 2)$$

$$\mathsf{C.}\,(\,-2,1)$$

Answer:

14. Locus of P such that the chord of contact of P with respect to $y^2=4ax$ touches the hyperbola $x^2-y^2=a^2$

$$\mathsf{A.}\,4x^2-y^2=a^2$$

B.
$$y^2 - 4x^2 = 4a^2$$

C.
$$4x^2 + y^2 = 4a^2$$

D.
$$4y^2 - x^2 = 4a^2$$

Answer:

15. C is the center of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ The tangent at any point P on this hyperbola meet the straight lines bx-ay=0 and bx+ay=0 at points QandR, respectively. Then prove that $CQ\dot{C}R=a^2+b^2$.

A.
$$a^2b^2$$

B.
$$a^2 - b^2$$

$$\mathsf{C.}\,a^2+b^2$$

D. none of these

Answer:

16. If lx+my+n=0 is a tangent to the rectangular hyperbola $xy=c^2$, then

$$\mathrm{A.}\,l < m < 0$$

B.
$$l > 0, m < 0$$

C.
$$l < 0, m > 0$$

D. none of these

Answer:

17. A tangent to the hyperbola $rac{x^2}{a^2} - rac{y^2}{b^2} = 1$ cuts

the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ at PandQ . Show that the

locus of the midpoint of PQ is

$$\left(rac{x^2}{a^2} + rac{y^2}{b^2}
ight)^2 = rac{x^2}{a^2} - rac{y^2}{b^2}.$$

A.
$$\left(rac{x^2}{a^2}+rac{y^2}{b^2}
ight)^2=rac{x^2}{a^2}-rac{y^2}{b^2}$$

$$\mathsf{B.} \left(\frac{x^2}{a^2} - \frac{y^2}{b^2} \right)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

C.
$$\left(rac{x^2}{a^2}-rac{y^2}{b^2}
ight)^2=rac{2x^2y^2}{a^2b^2}$$

D. none of these

Answer:

18. The product of lengths of perpendicular from any point on the hyperbola $x^2-y^2=8$ to its asymptotes, is

- **A.** 8
- B.6
- $\mathsf{C.}\,2$
- D. 4

Answer:

19. The angle between the asymptotes of the hyperbola $3x^2-y^2=3$, is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{5}$$

$$\operatorname{C.}\frac{2\pi}{3}$$

D.
$$\frac{2\pi}{5}$$

Answer:

20. Find the area of the triangle formed by any tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ with its asymptotes.

A.
$$4a^2b^2$$

B.
$$a^2b^2$$

$$\mathsf{C.}\,4ab$$

Answer:

21. If e_1 and e_2 are respectively the eccentricities of

the ellipse $rac{x^2}{18} + rac{y^2}{4} = 1$ and the hyperbola $rac{x^2}{9}-rac{y^2}{4}=1$, then the relation between e_1 and e_2 , is

A.
$$2e_1^2 + e_2^2 = 2$$

B.
$$e_1^2 + 2e_2^2 = 3$$

$$\mathsf{C.}\, 2e_1^2 + e_2^2 = 3$$

D.
$$e_1^2 + 3e_2^2 = 2$$

Answer:

22. The distance between the directrices of the hyperbola $x=8sec\theta,\ y=8\tan\theta,\ 8\sqrt{2}$ b. $16\sqrt{2}$ c. $4\sqrt{2}$ d. $6\sqrt{2}$

A.
$$8\sqrt{2}$$

B.
$$16\sqrt{2}$$

$$c. 4\sqrt{2}$$

D.
$$6\sqrt{2}$$

Answer:

23. The straight line $x+y=\sqrt{2}P$ will touch the hyperbola $4x^2-9y^2=36$ if (a) $p^2=2$ (b) $p^2=5$ (c) $5p^2=2$

A.
$$p^2=2$$

B.
$$p^2 = 5$$

$$\mathsf{C.}\,5p^2=2$$

D.
$$2p^2=5$$

Answer:

24. The locus of the point of intersection of perpendicular tangents to the hyperbola

$$\frac{x^2}{3} - \frac{y^2}{1} = 1$$
, is

A.
$$x^2 + y^2 = 2$$

$$\mathsf{B.}\,x^2+y^2=3$$

$$\mathsf{C.}\,x^2-y^2=3$$

D.
$$x^2 + y^2 = 4$$

Answer: A

25. .Find the product of lengths of the perpendiculars from any point on the hyperbola

$$rac{x^2}{16}-rac{y^2}{9}=1$$
 to its asymptotes.

A.
$$\frac{25}{12}$$

B.
$$\frac{144}{25}$$

c.
$$\frac{144}{7}$$

D.
$$\frac{25}{144}$$

Answer:

26. The angle between the asymptotes of the hyperbola $27x^2-9y^2=24$, is

- A. 30°
- B. 120°
- C. 45°
- D. 240°

Answer:

27. The equation of the chord of contact of tangents

from (1,2) to the hyperbola $3x^2-4y^2=3$, is

A.
$$3x - 16y = 3$$

B.
$$3x - 8y - 3 = 0$$

$$\mathsf{C.}\,\frac{x}{3}-\frac{y}{4}=1$$

D.
$$\frac{x}{4} - \frac{y}{3} = 1$$

Answer:

28. Equation of het hyperbola whose vertices are

$$(\,\pm\,3,0)$$
 and foci at $(\,\pm\,5,0)$ is $16x^2-9y^2=144$

b.
$$9x^2-16y^2=144$$
 c. $25x^2-9y^2=225$ d.

$$9x^2 - 25y^2 = 81$$

A.
$$16x^2 - 9y^2 = 144$$

$$B. \, 9x^2 - 16y^2 = 144$$

$$\mathsf{C.}\,25x^2 - 9y^2 = 225$$

D.
$$9x^2 - 25y^2 = 81$$

Answer:

29. The length of the semi-transverse axis of the rectangular hyperbola xy=32, is

- A. 32
- B. 16
- $\mathsf{C.}\,64$
- D. 8

Answer:

