©'doubtnut

MATHS

BOOKS - DHANPAT RAI \& CO MATHS (HINGLISH)

MEAN VALUE THEOREMS

Illustration

1. Rolle's theorem is not applicable to the function
$f(x)=|x|$ for $-2 \leq x \leq 2$ becase
A. f is continuus on $[-2,2]$
B. f is not derivable at $x=0$
C. $f(-2)=f(x)$
D. f is not a constant function

Watch Video Solution

2. A function is defined by $f(x)=2+(x-1)^{2 / 3}$ on [0, 2]. Which of the following is not correct?
A. f is not derivable in $(0,2)$
B. f is not continuous in [0,2]
C. $f(0)=f(2)$
D. Rolle's theorem is applicable on $[0,2]$

Answer: D

- Watch Video Solution

3. A function f is defined by $f(x)=x^{x} \sin x$ in $[0, \pi]$. Which of the following is not correct?
A. f is continuous in $[0, \pi]$
B. f is defferebtiable in $(0, \pi)$
C. $f(0)=f(\pi)$
D. Rolle's theorme is not applicable to fx on $[0, \pi]$

Answer: D

- Watch Video Solution

4. verify Rolle's theorem for the function $f(x)=x(x+3) e^{-\frac{x}{2}}$ in
$[-3,0]$
A. 0
B. -1
C. -2
D. -3

Answer: C

5. If $\mathrm{f}(\mathrm{x})$ satisfies the condition for Rolle's heorem on $[3,5]$ then $\int_{3}^{5} f(x)$ dx equals
A. 2
B. -1
C. 0
D. $-4 / 3$

Answer: D

- Watch Video Solution

6. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval $(0,1)$.
A. at least one root
B. at most one root
C. no root
D. none of these

Answer: A

- Watch Video Solution

7. Let $f(x)=e^{x}, x \in[0,1]$, then a number c of the Largrange's mean value theorem is
A. $\log _{e}(e-1)$
B. $\log _{e}(e+1)$
C. $\log _{e} e$
D. none of these

Answer: A

8. If $0<a<b<\frac{\pi}{2}$ and $f(a, b)=\frac{\tan b-\tan a}{b-a}$ then,
A. $f(a, b) \geq 2$
B. $f(a, b)>2$
C. $f(a, b) \leq 2$
D. none of these

Answer: D

Watch Video Solution

Section I Solved Mcqs

1. The value of c prescribed by Largrange's mean value. Theorem, when
$f(x)=\sqrt{x^{2}-4}, a=2$ and $b=3$ is
A. 2.5
B. $\sqrt{5}$
C. $\sqrt{3}$
D. $\sqrt{3}+1$

Answer: B

- Watch Video Solution

2. The value of c in Rolle's theorem when
$f(x)=2 x^{3}-5 x^{2}-4 x+3, x \in[1 / 2,3]$ is
A. 2
B. $-\frac{1}{3}$
C. -2
D. $\frac{2}{3}$

Answer: A

3. If $a+b+c=0$, then, the equation $3 a x^{2}+2 b x+c=0$ has, in the interval (0,1).
A. at least one root
B. at most one root
C. no root
D. none of these

Answer: A

- Watch Video Solution

4. If a, b, c be non-zero real numbers such that $\int_{0}^{1}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x=\int_{0}^{2}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x=$ then, the equation $a x^{2}+b x+c=0$ will have
A. one root between 0 and 1 and other root between 1 and 2
B. both roots between 0 and 1
C. both the roots between 1 and 2
D. none of these

Answer: A

- Watch Video Solution

5. If $27 a+9 b+3 c+d=0$ then the equation $4 a x^{3}+3 b x^{2}+2 c x+d$ has at leat one real root lying between
A. 0 and 1
B. 1 and 3
C. 0 and 3
D. none of these

Answer: C

6. In between any two real roots of an $e^{x} \sin x=1$ there exists how many roots satisfying equation $e^{x} \cos x=-1$
A. at least one root
B. at most one root
C. exuctly one root
D. no root

Answer: A

D Watch Video Solution

7. If the functions $f(x)$ and $g(x)$ are continuous on $[a, b]$ and differentiable on (a, b) then in the interval (a, b) the equation
$\left|\begin{array}{ll}f^{\prime}(x) & f(a) \\ g^{\prime}(x) & g(a)\end{array}\right|=\frac{1}{a-b}=\left|\begin{array}{cc}f(a) & f(b) \\ g(a) & g(b)\end{array}\right|$
A. has at least one root
B. has exactly one root
C. has at most one root
D. no root

Answer: A

D Watch Video Solution

8. Let f be a function which is continuous and differentiable for all real x. If $f(2)=-4$ and $f^{\prime}(x) \geq 6$ for all $x \in[2,4]$, then
A. $f(4)<8$
B. $f(4) \geq 8$
C. $f(4) \geq 2$
D. none of these

Answer: B

- Watch Video Solution

9. The value of c in Lagrange's mean value theorem for the function $f(x)=|x|$ in the interval $[-1,1]$ is
A. 0
B. $1 / 2$
C. $-1 / 2$
D. non-existent in the internal

Answer: D

- Watch Video Solution

10. The equation $\sin x+x \cos x=0$ has at least one root in
A. $(-\pi / 2,0)$
B. $(0, \pi)$
C. $(-\pi / 2, \pi / 2)$
D. none of these

Answer: B

- Watch Video Solution

11. Let $f(x)=a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$ in R and $f(x)=0$ has a positive root. α. Then,
A. $\mathrm{f}^{\prime}(\mathrm{x})=0$ has a root α_{1} such that $0 \leq \alpha_{1} \leq \alpha_{0}$
B. $f^{\prime}(x)=0$ has at leat one real root
C. $f^{\prime}(x)=0$ has at least two real roots
D. all of the above

Answer: D

- Watch Video Solution

12. If $f^{\prime \prime}(x) \leq 0$ for all $x \in(a, b)$ then $\mathrm{f}^{\prime}(\mathrm{x})=0$
A. exactly once in (a, b)
B. at most once in (a, b)
C. at leat once
D. none of these

Answer: B

- Watch Video Solution

13. In $[0,1]$ Largrange's mean value theorem is not application to
A. $f(x) \begin{cases}\frac{1}{2}-x & x<\frac{1}{2} \\ \left(\frac{1}{2}-x\right)^{2} & x \geq \frac{1}{2}\end{cases}$
B. $f(x)=\left\{\left(\frac{\sin x}{x}, x \neq 0\right),(1, x=0):\right\}$
C. $f(x)=x|x|$
D. $f(x)=|x|$

Answer: A

14. Rolle's theorem hold for the function $f(x)=x^{3}+b x^{2}+c x, 1 \leq x \leq 2$ at the point $4 / 3$, the values of b and c are
A. $b=8, c=-5$
B. $b=-5, c=8$
C. $b=5, c=-8$
D. $b=-5, c=-8$

Answer: B

- Watch Video Solution

15. Let (x) satisfy the required of Largrange's Meahn value theorem in $[0,3]$. If $f(0)=0$ and $\left|f^{\prime}(x)\right| \leq \frac{1}{2}$ for all $x \in[0,2]$ then
A. $f(x) \leq 2$
B. $|f(x)| \leq 2$
C. $f(x)=2 x$
D. $f(x)=3$ for at least one ' x in [0.2]

Answer: B

- Watch Video Solution

16. If $f(x)$ satifies of conditiohns of Rolle's theorem in $[1,2]$ and $f(x)$ is continuous in [1,2] then $\therefore \int_{1}^{2} f^{\prime}(x) d x$ is equal to
A. 3
B. 0
C. 1
D. 2

Answer: B
17. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ satisfies Rolle's theorem in the interval $[1,3]$ and $f^{\prime}\left(\frac{2 \sqrt{3}+1}{\sqrt{3}}\right)=0$, then
A. $a=-11$
B. $b=-6$
C. $a=6$
D. $a=11$

Answer: D

- Watch Video Solution

18. If $f(x)=\left\{\begin{array}{ll}x^{\alpha} \log x & x>0 \\ 0 & x=0\end{array}\right.$ and Rolle's theorem is applicable to $f(x)$ for $x \in[0,1]$ then α may equal to (A) -2 (B) -1 (C) 0 (D) $\frac{1}{2}$
A. -2
B. -1
C. 0
D. $\frac{1}{2}$

Answer: D

- Watch Video Solution

19. A value of C for which the conclusion of mean value theorem bolds for the function $f(x)=g l o_{e} x$ on the interval $[1,3]$ is $\frac{1}{2}(\log)_{e} 3$ (b) $(\log)_{3} e$ $(\log)_{e} 3(\mathrm{~d}) 2(\log)_{3} e$
A. $2 \log _{3} e$
B. $\frac{1}{2} \log _{3}$
C. $\log _{3} e$
D. $\log _{e} 3$

Answer: A

20. If $f(x)$ is a twice differentiable function such that $f(a)=0, f(b)=2$, $\mathrm{f}(\mathrm{c})=-1, \mathrm{f}(\mathrm{d})=2, \mathrm{f}(\mathrm{e})=0$ where $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d} \mathrm{e}$, then the minimum number of zeroes of $g(x)=f^{\prime}(x)^{2}+f^{\prime \prime}(x) f(x)$ in the interval [a, e] is
A. 7
B. 4
C. 6
D. 3

Answer: C

- Watch Video Solution

21. If $f(x)$ is a twice differentiable function and given that $f(1)=1, f(2)=4$, $f(3)=9$, then

$$
\text { A. } f^{\prime \prime}(x)=2 \text { for all } x \text { in } R
$$

B. $f^{\prime}(x) 5=f^{\prime \prime}(x)$,$f or some \mathrm{x}$ in $[1,3]^{\prime}$
C. there exists at least one $x \in(1,3)$ such that $\mathrm{f}^{\prime \prime}(\mathrm{x})=2$
D. none of these

Answer: C

- Watch Video Solution

22. Let $f:[0,4] \in R$ be acontinuous function such that $|f(x)| \leq 2$ for all $x \in[0,4]$ and $\int_{0}^{4} f(t)=2$. Then, for all $x \in[0,4]$, the value of $\int_{0}^{k} f(t) \mathrm{dt}$ lies in the in the interval
A. $[-6+2 x, 10-2 x]$
B. $[-12+2 x,-7+2 x]$
C. $[11-2 x, 17+2 x]$
D. $[-8-2 x, 6-2 x]$
23. If $f(x)=(x-p)(x-q)(x-r)$ where $p<q \ll r$, are real numbers, then the application, of Rolle's theorem on f leasds to
A. $(p+q+r)(p q+q r+r p)=3$
B. $(p+q+r)^{2}=3(p q+q r+r p)$
C. $(p+q+r)^{2}>3(p q+q r+r p)$
D. $(p+q+r)^{2}<3(p q+q r+r p)$

Answer: C

- Watch Video Solution

24. Let $f, g:[-1,2] \rightarrow \mathbb{R}$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of f and g at the points -1, 0 and 2 be as given in the following table : $x=-1 x=0 x=2 f(x) 360 g(x) 01-1$ In each of the intervals $(-1,0)$
and $(0,2)$ the function $(f-3 g)$ " never vanishes. Then the correct statement(s) is(are)
A. $f^{\prime}(x)-3 g,(x)=0$ has exctly three solution in $(-1,0) \cup(0,2)$
B. $f(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$
C. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$
D. $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in ($-1,0$) and exactly one solution in $(0,2)$

Answer: D

- Watch Video Solution

Section li Assertion Reason Type

1. Statement-1: The equation $3 x^{5}+15 x-18=0$ has exactly one real root.

Statement-2: Between any two roots of , there is a root of its derivative $f^{\prime}(x)$.
A. Statement-1 is True, Statement-2 is Ture, Statement-2 is a correct explanation for statement-1
B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a correct explanation for statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 True.

Answer: A

- Watch Video Solution

2. Statement-1 : If f is differentiable on an open interval (a, b) such that
$\mid f^{\prime}(x) \leq M$ for all $x \in(a, b)$, then
$|f(x)-f(y)| \leq M|x-y|$ for all $\in(a, b)$

Satement-2: If $f(x)$ is a continuous function defined on $[a, b]$ such that it is
differentiable on (a, b) then exists $c \in(\mathrm{a}, \mathrm{b})$ such that
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
A. Statement- 1 is True, Statement- 2 is Ture, Statement- 2 is a correct explanation for statement-1
B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a correct explanation for statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 True.

Answer: A

- Watch Video Solution

3. Statement-1 : There is no value ofb k for which the equaiton $x^{3}-3 x+k=0$ has two distinct roots between 0 and 1 .

Statement-2: $x>\sin x$ for all $x>0$
A. Statement-1 is True, Statement-2 is Ture, Statement-2 is a correct explanation for statement-1
B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a correct explanation for statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 True.

Answer: B

D Watch Video Solution

4. Statement-1: The equation $e^{x-1}+x-2=0$ has only one real root. Statement-2 : Between any two root of an equation $f(x)=0$ there is a root of its derivative $f^{\prime}(x)=0$
A. Statement-1 is True, Statement-2 is Ture, Statement-2 is a correct explanation for statement-1
B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a correct explanation for statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 True.

Answer: A

- Watch Video Solution

Exercise

1. Let a and b be two distinct roots of a polynomial equation $f(x)=0$ Then there exist at least one root lying between a and b of the polynomial equation
A. $f(x)$
B. $f^{\prime}(x)$
C. $\mathrm{f}^{\prime \prime}(\mathrm{x})$
D. none of these

Answer: B

- Watch Video Solution

2. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval $(0,1)$.
A. $(0,1)$
B. $(1,2)$
C. $(2,3)$
D. none of these

Answer: A

- Watch Video Solution

3. Let $f(x) \operatorname{and} g(x)$ be two functions which are defined and differentiable for all $x \geq x_{0}$. If $f\left(x_{0}\right)=g\left(x_{0}\right)$ and $f^{\prime}(x)>g^{\prime}(x)$ for all $x>x_{0}$, then prove that $f(x)>g(x)$ for all $x>x_{0}$.
A. $f(x)<g(x)$ for some $x>x_{0}$
B. $f(x)=g(x)$ for some $x>x_{0}$
C. $f(x)>g(x)$ for some $x>x_{0}$
D. none of these

Answer: C

- Watch Video Solution

4. Let f be differentiable for all x, If $f(1)=-2 a n d f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then find the range of values of $f(6)$.
A. $f(6)=5$
B. $f(6)<5$
C. $f(6)<5$
D. $f(6)>8$

Answer: D

- Watch Video Solution

5. If the function $f(x)=x^{3}-6 x^{2}+a x+b$ defined on [1,3] satisfies Rolles theorem for $c=\frac{2 \sqrt{3}+1}{\sqrt{3}}$ then find the value of $a a n d b$
A. $a=11, b=6$
B. $a=-11, b=6$
C. $a=11, b \in R$
D. none of these

Answer: C

6. Let $\frac{a_{0}}{n+1}+\frac{a_{1}}{n}+\frac{a_{2}}{n-1}++\frac{a_{n-1}}{2}+a_{n}=0$. Show that there exists at least real x between 0 and 1 such that $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}++a_{n}=0$
A. at least one zero
B. at most one zero
C. only 3 zeros
D. only 2 zeros

Answer: A

Watch Video Solution

7. The number of values of k for which the equation $x^{3}-3 x+k=0$ has two distinct roots lying in the interval $(0,1)$ is three (b) two (c) infinitely many (d) zero
A. three
B. two
C. infinitely many
D. no value of k satifies the requirement

Answer: D

D Watch Video Solution

8. Let $f(x)=(x-4)(x-5)(x-6)(x-7)$ then. (A) $f^{\prime}(x)=0$ has four roots (B)Three roots of $f^{\prime}(x)=0$ lie in $(4,5) \cup(5,6) \cup(6,7)$ The equation $f^{\prime}(x)=0$ has only one real root (D) Three roots of $f^{\prime}(x)=0$ lie in $(3,4) \cup(4,5) \cup(5,6)$
A. $f^{\prime}(x)=0$ has four roots
B. three roots of $f^{\prime}(x)=0$ line in $(4,5) \cup(5,6) \cup(6,7)$
C. the equation $f^{\prime}(x)=0$ hs only one root
D. three roots of $f^{\prime}(x)=0$ line $\in(3,4) \cup(4,5) \cup(5,6)$

Answer: B

- Watch Video Solution

9. Let fandg be differentiable on $[0,1]$ such that $f(0)=2, g(0), f(1)=6 \operatorname{andg}(1)=2$. Show that there exists $c \in(0,1)$ such that $f^{\prime}(c)=2 g^{\prime}(c)$.
A. 1
B. 2
C. -2
D. -1

Answer: B

10.

$a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots .+a_{0}=0, n$ being a positive integer, has two different real roots a and b. then between a and b the equation $n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots \ldots .+a_{1}=0$ has
A. a positive root less than α
B. a positive root larger than α
C. a negative root
D. no positive root

Answer: A

- Watch Video Solution

11. The equation $x \log x=3-x$ has, in the interval $(1,3)$:
A. exactly one root
B. at most one root
C. at least one root
D. no root

Answer: C

- Watch Video Solution

12. If $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ ar edifferentiable function for $0 \leq x \leq 1$ such that $f(0)=2, g(0)=0, f(1)=6, g(1)=2$, then in the interval $(0,1)$
A. $f^{\prime}(x)=0$ for all x
B. $f^{\prime}(x)=2 g^{\prime}(x)$ for at leaset one x
C. $f^{\prime}(x)=2 g^{\prime}(x)$ for at most one x
D. none of these

Answer: B

- Watch Video Solution

13. If $\alpha \beta(\alpha<\beta)$ are two distinct roots of the equation. $a x^{2}+b x+c=0$, then
A. $\alpha>-\frac{b}{2 a}$
B. $\beta<-\frac{b}{2 a}$
C. $\alpha<-\frac{b}{2 a}<\beta$
D. $\beta<-\frac{b}{2 a}<\alpha$

Answer: C

- Watch Video Solution

14.

(x) is
a
function
given
by
$f(x)=\left|\begin{array}{lll}\sin x & \sin a & \sin b \\ \cos x & \cos a & \cos b \\ \tan x & \tan a & \tan b\end{array}\right|$ where $0<a<b<\frac{\pi}{2} \quad$ Then the equation $\mathrm{f}^{\prime}(\mathrm{x})=0$
A. has at least one root in (a,b)
B. has at most one root in (a,b)
C. has exactly one root in (a, b)
D. has no root in (a,b)

Answer: A

- Watch Video Solution

15. The value of c in Largrange's theorem for the function $f(x)=\log _{e} \sin x$ in the interval $[\pi / 6,5 \pi / 6]$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. none of these

Answer: B

16. n is a positive integer. If the value of c presecribed in Rolle's theorem for the function $f(x)=2 x(x-3)^{n}$ on the interaval $[0,3]$ is $3 / 4$, then the value of n, is
A. 5
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

17. The distance travelled by a particle upto tiem x is given by $f(x)=x^{3}-2 x+1$. The time c at which at velocity of the particle is equal to its average velocity between times $x=-1$ and $x=2$ sec. is
B. $\sqrt{\frac{3}{2}} \mathrm{sec}$
C. $\sqrt{3} \mathrm{sec}$
D. $\sqrt{\frac{7}{3}} \mathrm{sec}$

Answer: C

- Watch Video Solution

18. The number of real root of the equation $e^{x-1}+x-2=0$, is
A. 1
B. 2
C. 3
D. 4

Answer: A

$a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots \ldots .+a_{0}=0, n$ being a positive integer, has two different real roots a and b. then between a and b the equation $n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots \ldots .+a_{1}=0$ has
A. exactly one root
B. almost one root
C. at least one root
D. no root

Answer: C

- Watch Video Solution

20. If $4 a+2 b+c=0$, then the equation $3 a x^{2}+2 b x+c=0$ has at least one real root lying in the interval
A. $(0,1)$
B. $(1,2)$
C. $(0,2)$
D. none of these

Answer: C

- Watch Video Solution

21. For the function $f(x)=x+\frac{1}{x}, x \in[1,3]$, the value of c for mean value therorem is
A. 1
B. $\sqrt{3}$
C. 2
D. none of these

Answer: B

22. If from Largrange's mean value theorem, we have $f\left(x^{\prime}(1)\right)=\frac{f^{\prime}(b)-f(a)}{b-a}$ then,
A. $a<x_{1} \leq b$
B. $a \leq x_{1}<b$
C. $a<x_{1}<b$
D. $a \leq x_{1} \leq b$

Answer: C

Watch Video Solution

23. Rolle's theorem is applicable in case of $\phi(x)=a^{\sin x}, a>0$ in
A. any interval
B. the interval $[0, \pi]$
C. the interval $(0, \pi / 2)$
D. none of these

Answer: B

(Watch Video Solution

24. The value of c in Rolle's theorem when
$f(x)=2 x^{3}-5 x^{2}-4 x+3, x \in[1 / 2,3]$ is
A. 2
B. $-1 / 3$
C. -2
D. $2 / 3$

Answer: A

- Watch Video Solution

25. When the tangent the curve $\mathrm{y}=\mathrm{x} \log (\mathrm{x})$ is parallel to the chord joining the points $(1,0)$ and (e, e) the value of x, is
A. $1 / 1-e$
B. $e^{(e-1)(2 e-1)}$
C. $e^{\frac{2 e-1}{e-1}}$
D. $\frac{e-1}{e}$

Answer: A

- Watch Video Solution

26. The value of c in Rolle's theorem for the function $f(x)=\frac{x(x+1)}{e^{x}}$ defined on $[-1,0]$ is
A. 0.5
B. $\frac{1+\sqrt{5}}{2}$
c. $\frac{1-\sqrt{5}}{2}$
D. -0.5

Answer: C

- Watch Video Solution

27. The value of c in Largrange's mean value theorem for the function
$f(x)=x(x-2)$ when $x \in[1,2]$ is
A. 1
B. $1 / 2$
C. $2 / 3$
D. $3 / 2$

Answer: D

- Watch Video Solution

28. The value of c in Rolle's theorem for the function $f(x)=x^{3}-3 x$ in the interval $[0, \sqrt{3}]$ is
A. 1
B. -1
C. $3 / 2$
D. $1 / 3$

Answer: A

