

MATHS

BOOKS - DHANPAT RAI & CO MATHS (HINGLISH)

MEAN VALUE THEOREMS

- 1. Rolle's theorem is not applicable to the function $f(x) = |x| {
 m for} 2 \le x \le 2$ becase
 - A. f is continuus on [-2,2]
 - B. f is not derivable at x=0
 - $\mathsf{C}.\,f(\,-\,2)\,=\,f(x)$
 - D. f is not a constant function

Answer: B

2. A function is defined by $f(x) = 2 + (x-1)^{2/3} on[0,2]$. Which of the

following is not correct?

A. f is not derivable in (0,2)

B. f is not continuous in [0,2]

 $\mathsf{C}.\,f(0)\,=\,f(2)$

D. Rolle's theorem is applicable on [0,2]

Answer: D

Watch Video Solution

3. A function f is defined by $f(x) = x^x \sin x$ in $[0, \pi]$. Which of the

following is not correct?

A. f is continuous in $[0,\pi]$

B. f is defferebtiable in $(0, \pi)$

C.
$$f(0) = f(\pi)$$

D. Rolle's theorme is not applicable to f x on $[0, \pi]$

Answer: D

Watch Video Solution

4. verify Rolle's theorem for the function $f(x) = x(x+3)e^{-rac{x}{2}}$ in [-3,0]

- A. 0
- $\mathsf{B.}-1$
- $\mathsf{C}.-2$
- $\mathsf{D.}-3$

Answer: C

5. If f(x) satisfies the condition for Rolle's hearem on [3,5] then $\int_3^5 f(x)$

dx equals

A. 2 B. — 1 C. 0

D. - 4/3

Answer: D

Watch Video Solution

6. If 2a + 3b + 6c = 0, then prove that at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval (0,1).

A. at least one root

B. at most one root

C. no root

D. none of these

Answer: A

Watch Video Solution

7. Let $f(x)=e^x, x\in [0,1]$, then a number c of the Largrange's mean

value theorem is

A. $\log_e(e-1)$

 $B.\log_e(e+1)$

 $\mathsf{C.}\log_e e$

D. none of these

Answer: A

8. If
$$0 < a < b < rac{\pi}{2} ext{ and } f(a,b) = rac{ an b - an a}{b-a}$$
 then,

A. $f(a,b) \geq 2$

 $\mathsf{B.}\, f(a,b) > 2$

C. $f(a,b) \leq 2$

D. none of these

Answer: D

Watch Video Solution

Section I Solved Mcqs

1. The value of c prescribed by Largrange's mean value . Theorem, when

$$f(x)=\sqrt{x^2-4}, a=2 ext{ and } b=3$$
 is

A. 2.5

B. $\sqrt{5}$

C. $\sqrt{3}$

D. $\sqrt{3}+1$

Answer: B

A. 2

 $B. -\frac{1}{3}$ C. -2

$\mathsf{D.}\,\frac{2}{3}$

Answer: A

3. If a + b + c = 0, then, the equation $3ax^2 + 2bx + c = 0$ has , in the interval (0,1).

A. at least one root

B. at most one root

C. no root

D. none of these

Answer: A

Watch Video Solution

4. If a,b,c be non-zero real numbers such that
$$\int_0^1 (1+\cos^8 x) (ax^2+bx+c) dx = \int_0^2 (1+\cos^8 x) (ax^2+bx+c) dx =$$
then, the equation $ax^2+bx+c=0$ will have

A. one root between 0 and 1 and other root between 1 and 2

B. both roots between 0 and 1

C. both the roots between 1 and 2

D. none of these

Answer: A

Watch Video Solution

5. If 27a + 9b + 3c + d = 0 then the equation $4ax^3 + 3bx^2 + 2cx + d$

has at leat one real root lying between

A. 0 and 1

B. 1 and 3

C. 0 and 3

D. none of these

Answer: C

6. In between any two real roots of an $e^x \sin x = 1$ there exists how many roots satisfying equation $e^x \cos x = -1$

A. at least one root

B. at most one root

C. exuctly one root

D. no root

Answer: A

Watch Video Solution

7. If the functions f(x) and g(x) are continuous on [a,b] and differentiable

on (a,b) then in the interval (a,b) the equation

$$egin{array}{cc|c} f'(x) & f(a) \ g'(x) & g(a) \end{array} igg| = rac{1}{a-b} = igg| egin{array}{cc|c} f(a) & f(b) \ g(a) & g(b) \end{array} igg|$$

A. has at least one root

B. has exactly one root

C. has at most one root

D. no root

Answer: A

Watch Video Solution

8. Let f be a function which is continuous and differentiable for all real x.

If f(2) = -4 and $f'(x) \geq 6$ for all $x \in [2,4]$, then

A. f(4) < 8

 $\mathsf{B.}\,f(4)\geq 8$

 $\mathsf{C}.\,f(4)\geq 2$

D. none of these

Answer: B

9. The value of c in Lagrange's mean value theorem for the function f(x) = |x| in the interval [-1,1] is

A. 0

B. 1/2

C. - 1/2

D. non-existent in the internal

Answer: D

Watch Video Solution

10. The equation $\sin x + x \cos x = 0$ has at least one root in

A.
$$(-\pi/2, 0)$$

B. $(0, \pi)$

C. $(-\pi/2, \pi/2)$

D. none of these

Answer: B

11. Let
$$f(x) = ax^5 + bx^4 + cx^3 + dx^2 + ex$$
, where a,b,c,d,e in R and

f(x)=0 has a positive root. lpha. Then,

A. f'(x)=0 has a root $lpha_1$ such that $0\leq lpha_1\leq lpha_0$

B. f'(x)=0 has at leat one real root

C. f'(x)=0 has at least two real roots

D. all of the above

Answer: D

12. If $f''(x) \leq 0$ for all $x \in (a, b)$ then f'(x)=0

A. exactly once in (a,b)

B. at most once in (a,b)

C. at leat once

D. none of these

Answer: B

Watch Video Solution

13. In [0,1] Largrange's mean value theorem is not application to

A.
$$f(x) \begin{cases} \frac{1}{2} - x & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2 & x \ge \frac{1}{2} \end{cases}$$

B. $f(x) = \left\{ \left(\frac{\sin x}{x}, x \neq 0\right), (1, x = 0) : \right\}$
C. $f(x)=x|x|$

D. f(x)=|x|

Answer: A

Rolle's hold function 14. theorem for the $f(x)=x^3+bx^2+cx, 1\leq x\leq 2$ at the point 4/3, the values of b and c are A. b = 8, c = -5B. b = -5, c = 8C. b = 5, c = -8D. b = -5, c = -8Answer: B Watch Video Solution

15. Let (x) satisfy the required of Largrange's Meahn value theorem in [0,3]. If f(0)=0 and $|f'(x)|\leq rac{1}{2} ext{for all}x\in[0,2]$ then

A. $f(x) \leq 2$

 $\mathsf{B.}\left|f(x)\right|\leq 2$

 $\mathsf{C}.\,f(x)=2x$

D. f(x)=3 for at least one 'x in [0.2]

Answer: B

Watch Video Solution

16. If f(x) satifies of conditions of Rolle's theorem in [1,2] and f(x) is continuous in [1,2] then $\therefore \int_{1}^{2} f'(x) dx$ is equal to

A. 3

B. 0

C. 1

D. 2

Answer: B

17. If the function $f(x)=x^3-6x^2+ax+b$ satisfies Rolle's theorem in

the interval [1,3] and
$$f'\left(rac{2\sqrt{3}+1}{\sqrt{3}}
ight)=0$$
 , then

A. a = -11B. b = -6C. a = 6

D. a = 11

Answer: D

Natch Video Solution

18. If
$$f(x) = \begin{cases} x^{lpha} \log x & x > 0 \\ 0 & x = 0 \end{cases}$$
 and Rolle's theorem is applicable to $f(x)$ for $x \in [0,1]$ then $lpha$ may equal to (A) -2 (B) -1 (C) 0 (D) $rac{1}{2}$

A.
$$-2$$

 $\mathsf{B.}-1$

C. 0
D.
$$\frac{1}{2}$$

Answer: D

Watch Video Solution

19. A value of C for which the conclusion of mean value theorem bolds for the function $f(x) = glo_e x$ on the interval [1, 3] is $\frac{1}{2}(\log)_e 3$ (b) $(\log)_3 e$ $(\log)_e 3$ (d) $2(\log)_3 e$

A. $2\log_3 e$

$$\mathsf{B}.\,\frac{1}{2}\mathrm{log}_3$$

 $\mathsf{C}.\log_3 e$

 $D. \log_e 3$

Answer: A

20. If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < d e, then the minimum number of zeroes of $g(x) = f'(x)^2 + f''(x)f(x)$ in the interval [a, e] is

- A. 7
- B. 4
- C. 6
- D. 3

Answer: C

Watch Video Solution

21. If f(x) is a twice differentiable function and given that f(1) = 1, f(2) = 4,

f(3) = 9, then

A. f''(x)=2 for all x in R

B. f'(x)5 = f''(x,)f or some x in[1,3]`

C. there exists at least one $x \in (1,3)$ such that f"(x)=2

D. none of these

Answer: C

Watch Video Solution

22. Let
$$f:[0,4] \in R$$
 be acontinuous function such that
 $|f(x)| \leq 2$ for all $x \in [0,4]$ and $\int_0^4 f(t) = 2$. Then, for all $x \in [0,4]$, the
value of $\int_0^k f(t)$ dt lies in the in the interval
A. $[-6+2x, 10-2x]$
B. $[-12+2x, -7+2x]$
C. $[11-2x, 17+2x]$
D. $[-8-2x, 6-2x]$

Answer: A

23. If
$$f(x) = (x-p)(x-q)(x-r)$$
 where $p < q < < r,$ are real

numbers, then the application, of Rolle's theorem on f leasds to

A.
$$(p+q+r)(pq+qr+rp) = 3$$

B. $(p+q+r)^2 = 3(pq+qr+rp)$
C. $(p+q+r)^2 > 3(pq+qr+rp)$
D. $(p+q+r)^2 < 3(pq+qr+rp)$

Answer: C

Watch Video Solution

24. Let $f, g: [-1, 2] \to \mathbb{R}$ be continuous functions which are twice differentiable on the interval (-1, 2). Let the values of f and g at the points -1, 0 and 2 be as given in the following table : x = -1x = 0x = 2f(x)360g(x)01 - 1 In each of the intervals (-1,0) and (0, 2) the function (f - 3g)" never vanishes. Then the correct statement(s) is(are)

A. f'(x) - 3g, (x) = 0 has exctly three solution in $(\, -1, 0) \cup (0, 2)$

B. f(x) - 3g'(x)=0 has exactly one solution in (-1,0)

C. f'(x)-3g'(x)=0 has exactly one solution in (0,2)

D. f'(x)-3g'(x)=0 has exactly one solution in (-1,0) and exactly one

solution in (0,2)

Answer: D

Watch Video Solution

Section li Assertion Reason Type

1. Statement-1 : The equation $3x^5 + 15x - 18 = 0$ has exactly one real

root.

Statement-2: Between any two roots of , there is a root of its derivative f'(x).

A. Statement-1 is True, Statement-2 is Ture, Statement-2 is a correct

explanation for statement-1

B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a

correct explanation for statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 True.

Answer: A

Watch Video Solution

2. Statement-1 : If f is differentiable on an open interval (a,b) such that

$$egin{aligned} |f'(x) &\leq M ext{for all} x \in (a,b), \ \|f(x) - f(y)\| &\leq M |x-y| ext{for all} \in (a,b) \end{aligned}$$
 then

Satement-2: If f(x) is a continuous function defined on [a,b] such that it is

differentiable on (a,b) then exists $c\in (a,b)$ such that

$$f'(c)=rac{f(b)-f(a)}{b-a}$$

A. Statement-1 is True, Statement-2 is Ture, Statement-2 is a correct

explanation for statement-1

B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a

correct explanation for statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 True.

Answer: A

Watch Video Solution

3. Statement-1 : There is no value ofb k for which the equaiton $x^3 - 3x + k = 0$ has two distinct roots between 0 and 1.

Statement-2: $x > \sin x$ for all x > 0

A. Statement-1 is True, Statement-2 is Ture, Statement-2 is a correct

explanation for statement-1

B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a

correct explanation for statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 True.

Answer: B

Watch Video Solution

4. Statement-1: The equation $e^{x-1} + x - 2 = 0$ has only one real root.

Statement-2 : Between any two root of an equation f(x)=0 there is a root of its derivative f'(x)=0

A. Statement-1 is True, Statement-2 is Ture, Statement-2 is a correct

explanation for statement-1

B. Statement-1 is True, Statement-2 is Ture, Statement-2 is not a

correct explanation for statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 True.

Answer: A

Watch Video Solution

Exercise

1. Let a and b be two distinct roots of a polynomial equation f(x) = 0 Then there exist at least one root lying between a and b of the polynomial equation

A. f(x)

B. f'(x)

C. f''(x)

D. none of these

Answer: B

2. If 2a + 3b + 6c = 0, then prove that at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval (0,1).

A. (0,1)

B. (1,2)

C. (2,3)

D. none of these

Answer: A

3. Let f(x)andg(x) be two functions which are defined and differentiable for all $x \ge x_0$. If $f(x_0) = g(x_0)andf'(x) > g'(x)$ for all $x > x_0$, then prove that f(x) > g(x) for all $x > x_0$.

A.
$$f(x) < g(x) ext{for some} x > x_0$$

B. f(x) = g(x) for some $x > x_0$

C. f(x) > g(x) for some $x > x_0$

D. none of these

Answer: C

Watch Video Solution

4. Let f be differentiable for all x, If $f(1) = -2andf'(x) \ge 2$ for all $x \in [1, 6],$ then find the range of values of f(6).

A. f(6) = 5

B. f(6) < 5

C. f(6) < 5

D. f(6) > 8

Answer: D

5. If the function $f(x)=x^3-6x^2+ax+b$ defined on [1,3] satisfies Rolles theorem for $c=rac{2\sqrt{3}+1}{\sqrt{3}}$ then find the value of aandb

A. a = 11, b = 6

B. a = -11, b = 6

 $\mathsf{C}.\,a=11,b\in R$

D. none of these

Answer: C

6. Let $\frac{a_0}{n+1} + \frac{a_1}{n} + \frac{a_2}{n-1} + + \frac{a_{n-1}}{2} + a_n = 0$. Show that there exists at least real x between 0 and 1 such that $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + + a_n = 0$

A. at least one zero

B. at most one zero

C. only 3 zeros

D. only 2 zeros

Answer: A

Watch Video Solution

7. The number of values of k for which the equation $x^3 - 3x + k = 0$ has two distinct roots lying in the interval (0, 1) is three (b) two (c) infinitely many (d) zero

A. three

B. two

C. infinitely many

D. no value of k satifies the requirement

Answer: D

Watch Video Solution

8. Let f(x) = (x - 4)(x - 5)(x - 6)(x - 7) then. (A)f'(x) = 0 has four roots (B)Three roots of f'(x) = 0 lie in $(4, 5) \cup (5, 6) \cup (6, 7)$ (C) The equation f'(x) = 0 has only one real root (D) Three roots of f'(x) = 0 lie in $(3, 4) \cup (4, 5) \cup (5, 6)$

A. f'(x)=0 has four roots

B. three roots of f'(x) = 0 line in (4,5) \cup (5, 6) \cup (6, 7)

C. the equation f'(x) = 0 hs only one root

D. three roots of f'(x)=0 line $\ \in (3,4)\cup (4,5)\cup (5,6)$

Answer: B

9. Let fandg be differentiable on [0,1] such that f(0)=2,g(0),f(1)=6andg(1)=2. Show that there exists $c\in(0,1)$ such that f'(c)=2g'(c).

A. 1

B. 2

 $\mathsf{C}.-2$

 $\mathsf{D.}-1$

Answer: B

10. If the polynomial equation $a_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0 = 0, n$ being a positive integer, has two different real roots a and b. then between a and b the equation $na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 = 0$ has

A. a positive root less than lpha

B. a positive root larger than α

C. a negative root

D. no positive root

Answer: A

Watch Video Solution

11. The equation $x\log x = 3 - x$ has, in the interval (1,3) :

A. exactly one root

B. at most one root

C. at least one root

D. no root

Answer: C

Watch Video Solution

12. If f(x) and g(x) ar edifferentiable function for $0 \le x \le 1$ such that

$$f(0)=2, \, g(0)=0, \, f(1)=6, \, g(1)=2$$
, then in the interval (0,1)

A.
$$f^{\,\prime}(x)=0$$
 for all x

B. f'(x) = 2g'(x) for at leaset one x

C. f'(x) = 2g'(x) for at most one x

D. none of these

Answer: B

13. If lphaeta(lpha<eta) are two distinct roots of the equation. $ax^2+bx+c=0$, then

$$\begin{array}{l} \mathsf{A}.\,\alpha>\ -\displaystyle\frac{b}{2a}\\\\ \mathsf{B}.\,\beta<\ -\displaystyle\frac{b}{2a}\\\\ \mathsf{C}.\,\alpha<\ -\displaystyle\frac{b}{2a}<\beta\\\\ \mathsf{D}.\,\beta<\ -\displaystyle\frac{b}{2a}<\alpha\end{array}$$

Answer: C

Watch Video Solution

14.If(x)isafunctiongivenby
$$f(x) = \begin{vmatrix} \sin x & \sin a & \sin b \\ \cos x & \cos a & \cos b \\ \tan x & \tan a & \tan b \end{vmatrix}$$
where $0 < a < b < \frac{\pi}{2}$ Thenthe

equatiion f'(x)=0

A. has at least one root in (a,b)

B. has at most one root in (a,b)

C. has exactly one root in (a,b)

D. has no root in (a,b)

Answer: A

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{2}$
C. $\frac{2\pi}{3}$

D. none of these

Answer: B

16. n is a positive integer. If the value of c presecribed in Rolle's theorem for the function $f(x) = 2x(x-3)^n$ on the interaval [0,3] is 3/4, then the value of n, is

A. 5 B. 2 C. 3

D. 4

Answer: C

17. The distance travelled by a particle upto tiem x is given by $f(x) = x^3 - 2x + 1$. The time c at which at velocity of the particle is equal to its average velocity between times x=-1 and x=2 sec. is

A. 15 sec

B.
$$\sqrt{\frac{3}{2}}$$
 sec
C. $\sqrt{3}$ sec
D. $\sqrt{\frac{7}{3}}$ sec

Answer: C

Watch Video Solution

18. The number of real root of the equation $e^{x-1}+x-2=0$, is

A. 1

B. 2

C. 3

D. 4

Answer: A

19. If the polynomial equation $a_nx^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \dots + a_0 = 0, n$ being a positive integer, has two different real roots a and b. then between a and b the equation $na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 = 0$ has A. exactly one root

B. almost one root

C. at least one root

D. no root

Answer: C

Watch Video Solution

20. If 4a + 2b + c = 0, then the equation $3ax^2 + 2bx + c = 0$ has at

least one real root lying in the interval

A. (0,1)

B. (1,2)

C. (0,2)

D. none of these

Answer: C

Watch Video Solution

21. For the function $f(x)=x+rac{1}{x}, x\in [1,3]$, the value of c for mean

value therorem is

A. 1

B. $\sqrt{3}$

C. 2

D. none of these

Answer: B

22. If from Largrange's mean value theorem, we have
$$f(x'(1)) = \frac{f'(b) - f(a)}{b - a}$$
 then,
A. $a < x_1 \le b$
B. $a \le x_1 < b$
C. $a < x_1 < b$
D. $a \le x_1 \le b$

Answer: C

D Watch Video Solution

23. Rolle's theorem is applicable in case of $\phi(x)=a^{\sin x}, a>0$ in

A. any interval

B. the interval $[0, \pi]$

C. the interval $(0, \pi/2)$

D. none of these

Answer: B

25. When the tangent the curve y=x log (x) is parallel to the chord joining

the points (1,0) and (e,e) the value of x , is

A.
$$1/1 - e$$

B. $e^{(e-1)(2e-1)}$
C. $e^{\frac{2e-1}{e-1}}$
D. $\frac{e-1}{e}$

Answer: A

Watch Video Solution

26. The value of c in Rolle's theorem for the function $f(x) = rac{x(x+1)}{e^x}$

defined on $\left[-1, 0 \right]$ is

$\mathsf{A.}\,0.5$

B.
$$\frac{1+\sqrt{5}}{2}$$

C. $\frac{1-\sqrt{5}}{2}$

D. - 0.5

Answer: C

27. The value of c in Largrange's mean value theorem for the function

f(x)=x(x-2) when $x\in [1,2]$ is

A. 1

B. 1/2

C.2/3

D. 3/2

Answer: D

28. The value of c in Rolle's theorem for the function $f(x)=x^3-3x$ in the interval $\left[0,\sqrt{3}
ight]$ is

A. 1

 $\mathsf{B.}-1$

C.3/2

D. 1/3

Answer: A