© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DHANPAT RAI \& CO MATHS

(HINGLISH)

PARABOLA

Illustration

1. The equation of conic section whose focus is
at $(-1,0)$, directrix is the $4 x-3 y+2=0$ and
eccentricity $1 / \sqrt{2}$, is
A.

$$
34 x^{2}+41 y^{2}+24 x y+84 x+12 y+46=0
$$

B.

$$
34 x^{2}+41 y^{2}-24 x y+84 x+12 y+46=0
$$

C.

$$
34 x^{2}+41 y^{2}-24 x y-84 x-12 y+46=0
$$

D. none of these.

Answer: A
2. The conic represented by the equation $x^{2}+y^{2}-2 x y+20 x+10=0$, is
A. Pair of straight lines
B. Circle
C. Paraabola

D. Ellipse

Answer: C

3. The curve described parametrically by
$x=t^{2}+t+1, \mathrm{y}=t^{2}-t+1$ represents :
A. a circle
B. a parabola
C. an ellipse
D. a pair of straight lines

Answer: B

- Watch Video Solution

4.

The
equation
$16 x^{2}+y^{2}+8 x y-74 x-78 y+212=0$
represents
A. a circle
B. a parabola
C. an ellipse

D. a hyperbola

Answer: B

- Watch Video Solution

5.
 The
 centre
 of
 the
 conic
 $14 x^{2}-4 x y+11 y^{2}-44 x-58 y+71=0$, is

A. $(2,3)$
B. $(-2,3)$
C. $(3,2)$
D. none of these

Answer: A

- Watch Video Solution

6. If the focus of a parabola is at $(0,-3)$ and its directrix is $y=3$, then its equation is

$$
\begin{aligned}
& \text { A. } x^{2}=-12 y \\
& \text { B. } x^{2}=12 y \\
& \text { C. } y^{2}=-12 x \\
& \text { D. } y^{2}=112 x
\end{aligned}
$$

Answer: A

Watch Video Solution

7. The equation of a parabola having focus $(3,0)$ and directrix $x+3=0$, is
A. $y^{2}=12 x$
B. $y^{2}=-12 x$
C. $x^{2}=12 y$
D. $x^{2}=-12 y$

Answer: A

Watch Video Solution

8. The equation of the directrix of the parabola
$25\left\{(x-2)^{2}+(y+5)^{2}\right\}=(3 x+4 y-1)^{2}$, is
A. $3 x+4 y=0$
B. $3 x+4 y-1=0$
C. $4 x-3 y=0$
D. $3 x+4 y+1=0$

Answer: B
9. The length of the latusrectum of the parabola
$2\left\{(x-a)^{2}+(y-a)^{2}\right\}=(x+y)^{2}$, is
A. 2 a
B. $2 \sqrt{2} a$
C. 4 a
D. $\sqrt{2} a$

Answer: B

10. The vertex of the parabola
 $x^{2}+y^{2}-2 x y-4 x-4 y+4=0$ is at

A. $(1,1)$
B. $(-1,-1)$
C. $\left(\frac{1}{2}, \frac{1}{2}\right)$
D. none of these

Answer: C
11. The vertex of a parabola is the point (a, b) and latusrectum is of length l. If the axis of the parabola is along the positive direction of y-axis, then its equation is :

$$
\begin{aligned}
& \text { A. }(x+a)^{2}=\frac{l}{2}(2 y-2 b) \\
& \text { B. }(x-a)^{2}=\frac{l}{2}(2 y-2 b) \\
& \text { C. }(x+a)^{2}=\frac{l}{4}(2 y-2 b) \\
& \text { D. }(x-a)^{2}=\frac{l}{8}(2 y-2 b)
\end{aligned}
$$

Answer: B

12. The equation of the parabola whose vertex and focus lie on the axis of x at distances a and

$$
\begin{aligned}
& a_{1} \quad \text { from the origin, respectively, is } \\
& y^{2}-4\left(a_{1}-a\right) x \quad y^{2}-4\left(a_{1}-a\right)(x-a) \\
& \left.y^{2}-4\left(a_{1}-a\right)(x-a) 1\right) \text { noneofthese }
\end{aligned}
$$

$$
\text { A. } y^{2}=4\left(a_{1}-a\right) x
$$

$$
\text { B. } y^{2}=4\left(a_{1}-a\right)(x-a)
$$

$$
\text { C. } y^{2}=4\left(a_{1}-a\right)\left(x-a_{1}\right)
$$

D. none of these

Answer: B

D Watch Video Solution

13. If the parabola $y^{2}=4 a x$ passes through (3,
2). Then the length of its latusrectum, is
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{1}{3}$
D. 4

Answer: B

D Watch Video Solution

14. The locus of the vertices of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is:
A. $x y=\frac{105}{64}$
B. $x y=\frac{3}{4}$
C. $x y=\frac{35}{16}$
D. $x y=\frac{64}{105}$

Answer: A

D Watch Video Solution

15. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabola $y^{2}=4 a x$ and $x^{2}=4 a y$, then
A. $d^{2}+(2 b-3 c)^{2}=0$
B. $d^{2}+(3 b+2 c)^{2}=0$
C. $d^{2}+(3 b-2 c)^{2}=0$
D. $d^{2}+(3 b+2 c)^{2}=0$

Answer: D

D Watch Video Solution

16. Let (x, y) be any point on the parabola $y^{2}=4 x$. Let P be the point that divides the line segment from $(0,0)$ and $(x, y) n$ the ratio 1:3. Then the locus of P is :
A. $x^{2}=y$
B. $x^{2}=2 y$
C. $y^{2}=x$
D. $x^{2}=2 y$

Answer: C

(D) Watch Video Solution

17. Find the coordinates of any point on the parabola whose focus is $(0,1)$ and directrix is $x+2=0$
A. $\left(t^{2}+1,2 t-1\right)$
B. $\left(t^{2}+1,2 t+1\right)$
C. $\left(t^{2}, 2 t\right)$
D. $\left(t^{2}-1,2 t+1\right)$

Answer: D

D Watch Video Solution

> 18. The vertex of the parabola
> $x^{2}+8 x+12 y+4=0$ is
A. $(-4,1)$
B. $(4,-1)$
C. $(-4,-1)$

D. $(4,1)$

Answer: A

D Watch Video Solution

> 19. The focus of the parabola $y^{2}-4 y-8 x+4=0$ is,
A. $(1,1)$
B. $(1,2)$
C. $(2,1)$
D. $(2,2)$

Answer: D

D Watch Video Solution

$$
\begin{aligned}
& \text { 20. The axis of the parabola } \\
& 9 y^{2}-16 x-12 y-57=0 \text { is }
\end{aligned}
$$

A. $3 y=2$
B. $x+3 y=3$
C. $2 x=3$

$$
\text { D. } y=3
$$

Answer: A

D Watch Video Solution

21. the equation of the parabola whose focus is the point $(0,0)$ and the tangent at the vertix is

$$
x-y+1=0 \text { is }
$$

A. $x^{2}+y^{2}-2 x y-4 x+4 y-4=0$
B. $x^{2}+y^{2}-2 x y+4 x-4 y-4=0$
C. $x^{2}+y^{2}+2 x y-4 x+4 y-4=0$

$$
\text { D. } x^{2}+y^{2}+2 x y-4 x-4 y+4=0
$$

Answer: C

D Watch Video Solution

22. The equation of the parabola with its vertex at $(1,1)$ and focus at $(3,1)$ is

$$
\begin{aligned}
& \text { А. }(x-3)^{2}=8(y-1) \\
& \text { В. }(y-1)^{2}=8(x-1) \\
& \text { С. }(y-1)^{2}=8(x-3)
\end{aligned}
$$

$$
\text { D. }(x-1)^{2}=8(y-1)
$$

Answer: B

D Watch Video Solution

23. The focus of the parabola
$y^{2}-x-2 y+2=0$ is
A. $(1 / 4,0)$
B. $(1 / 2)$
C. $(3 / 4,1)$

D. $(5 / 4,1)$

Answer: D

D Watch Video Solution

$$
\begin{aligned}
& \text { 24. The directrix of the parabola } \\
& x^{2}-4 x-8 y+12=0 \text { is }
\end{aligned}
$$

A. 4
B. 6
C. 8

Answer: C

D Watch Video Solution

25. The length of the latusretum of the parabola

$$
169\left|(x-1)^{2}+(y-3)^{2}\right|=(5 x-12 y+7)^{2} \text {, is }
$$

A. $\frac{14}{13}$
B. $\frac{28}{13}$
C. $\frac{12}{13}$
D. $\frac{48}{13}$

Answer: D

D Watch Video Solution

26. If $(0,3)$ and (0,2) are respectively the vertex and focus of a parabola, then its equation, is
A. $x^{2}+8 y=12$
B. $y^{2}+8 x=32$
C. $x^{2}-8 y=32$

$$
\text { D. } y^{2}-8 x=32
$$

Answer: A

D Watch Video Solution

27. If V and S are respectively the vertex and focus of the parabola $y^{2}+6 y+2 x+5=0$, then $S V=$ a. $2 \mathrm{~b} .1 / 2 \mathrm{c} .1 \mathrm{~d}$. none of these
A. 2
B. 43467
C. 1

D. none of these

Answer: B

D Watch Video Solution

> 28. The directrix of the parabola
> $x^{2}-4 x-8 y+12=0$ is
A. $y=0$
B. $x=1$
C. $y=-1$

D. $x=-1$

Answer: C

D Watch Video Solution

29. The equation of the directrix of the parabola
whose vertex and focus are $(1,4)$ and $(2,6)$ respectively, is
A. $x+2 y=4$
B. $x-y=3$
C. $2 x+y=5$

$$
\text { D. } x+3 y=8
$$

Answer: A

D Watch Video Solution

30. A parabola has the origin as its focus and the line $x=2$ as the directrix. Then the vertex of the parabola is at $(1)(0,2)(2)(1,0)(3)(0,1)$
$(4)(2,0)$
A. $(0,1)$
B. $(2,0)$
C. $(0,2)$
D. $(1,0)$

Answer: D

D Watch Video Solution

31. The length of the chord of the parabola $x^{2}=4 a y$ passing through the vertex and having slope $\tan \alpha i s(\mathrm{a}>0)^{\prime}$:
A. $2 a \operatorname{cosec} \alpha \cot \alpha$
B. $4 a \tan \alpha \sec \alpha$
C. $4 a \cos \alpha \cot \alpha$

D. $4 a \sin \alpha \tan \alpha$

Answer: A

D Watch Video Solution

32. Write the length of het chord of the parabola $y^{2}=4 a x$ which passes through the vertex and in inclined to the axis at $\frac{\pi}{4}$.
A. $4 \sqrt{2} a$
B. $2 \sqrt{2} a$
C. $\sqrt{2} a$

D. none of these

Answer: A

D Watch Video Solution

33. Area of the triangle formed by the
threepoints ' t_{1} '. ' t_{2} ' and ' t_{3} ' on $y^{2}=4 a x$ is

$$
K\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right| \text { then } K=
$$

A. $a\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right|$
B. $a^{2}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right|$

$$
\begin{aligned}
& \text { C. } \frac{a^{2}}{2}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right| \\
& \text { D. } \frac{1}{4} a^{2}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right|
\end{aligned}
$$

Answer: B

D Watch Video Solution

34. The point $(a, 2 a)$ is an interior point of the region bounded by the parabola $y^{2}=16 x$ and the double ordinate through the focus. then find the values of a.
A. $a \in(-\infty, 4)$

$$
\begin{aligned}
& \text { B. } a \in(0,4) \\
& \text { C. } a \in(0,2) \\
& \text { D. } a \in(4, \infty)
\end{aligned}
$$

Answer: B

D Watch Video Solution

35. Find the set of values of α in the interval [$\left.\frac{\pi}{2}, 3 \frac{\pi}{2}\right]$, for which the point $(\sin \alpha, \cos \alpha)$ does not exist outside the parabola $2 y^{2}+x-2=0$
A. $[\pi / 2,5 \pi / 6]$

$$
\begin{aligned}
& \text { B. }[\pi, 3 \pi / 2] \\
& \text { C. }[\pi / 2,5 \pi / 6] \cup[\pi, 3 \pi / 2] \\
& \text { D. }[5 \pi / 6,3 \pi / 2]
\end{aligned}
$$

Answer: C

D Watch Video Solution

36. If $\left(a^{2}, a-2\right)$ be a point interior to the region of the parabola $y^{2}=2 x$ bounded by the chord joining the points $(2,2)$ and $(8,-4)$, then the set of all possible real values of a is

$$
\begin{aligned}
& \text { A. }(-2, \sqrt{2}) \\
& \text { B. }(-3,2) \\
& \text { C. }(-2,2 \sqrt{2}) \\
& \text { D. }(-2,-2+\sqrt{2})
\end{aligned}
$$

Answer: D

D Watch Video Solution

37. The number of integral values of a for which the point $(-2 a, a+1)$ will be interior point of the
smaller region bounded by the circle $x^{2}+y^{2}=4$ and the parabola $y^{2}=4 x$ is:
A. $(-1,3 / 5)$
B. $(-1,-5+2 \sqrt{6})$
C. $(-5-2 \sqrt{6},-5+2 \sqrt{6})$
D. none of these

Answer: B

D Watch Video Solution
38. If the chord joining the points t_{1} and t_{2} on
the parabola $y^{2}=4 a x$ subtends a right angle at its vertex then $t_{2}=$
A. 0
B. 1
C. -1
D. 2

Answer: B
39. If $(2,-8)$ is at an end of a focal chord of
the parabola $y^{2}=32 x$, then find the other end of the chord.
A. $(32,32)$
B. $(32,-32)$
C. $(-2,8)$

D. none of these

Answer: A
40. PQ is any focal of the parabola $y^{2}=32 x$. The length of PQ cam never be less then
A. 8 units
B. 16 units
C. 32 units
D. 48 units

Answer: C
(D) Watch Video Solution
41. If a focal chord of $y^{2}=4 a x$ makes an angle $\alpha \in\left[0, \frac{\pi}{4}\right]$ with the positive direction of the x axis, then find the minimum length of this focal chord.
A. $4 a \sec ^{2} \alpha$
B. $2 a \operatorname{cosec}^{2} \alpha$
C. $4 a \operatorname{cosec}^{2} \alpha$

D. $4 a \cot ^{2} \alpha$

Answer: C

42. If the length of a focal chord of the parabola $y^{2}=4 a x$ at a distance b from the vertex is c, then
A. $2 a^{2}=b c$
B. $a^{3}=b^{2} c$
C. $a c=b^{2}$
D. $b^{2} c=4 a^{3}$

Answer: D
43. If I denotes the semi-latusrectum of the parabolay ${ }^{2}=4 a x$, and SP and SQ denote the segments of and focal chord $P Q$, being the focusm the SP, I, SQ are in the relation
A. A.P.
B. G.P.
C. H.P.
D. $l^{2}=S P^{2}+S Q^{2}$
44. The latus rectum of a parabola whose focal chord is PSQ such that $\mathrm{SP}=3$ and $\mathrm{SQ}=2$
A. $24 / 5$
B. 43804
C. 43621
D. none of these

Answer: A
45. The harmonic mean of the segments of a focal chord of the parabola $y^{2}=16 a x$, is
A. 2 a
B. 4 a
C. 8 a
D. 16a

Answer: C
(D) Watch Video Solution
46. If b and k are segments of a focal chord of the parabola $y^{2}=4 a x$, then $\mathrm{k}=$

$$
\begin{aligned}
& \text { A. } \frac{a b}{b-a} \\
& \text { B. } \frac{b}{b-a} \\
& \text { C. } \frac{a}{b-a} \\
& \text { D. } \frac{a b}{a-b}
\end{aligned}
$$

Answer: A

- Watch Video Solution

47. If $P S Q$ is a focal chord of the parabola $y^{2}=8 x$ such that $S P=6$, then the length of $S Q$ is 6 (b) 4 (c) 3 (d) none of these
A. 6
B. 4
C. 3
D. 8

Answer: C

- Watch Video Solution

48. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix $y=0$ (b) $x=-a x=0$ (d) none of these

$$
\begin{aligned}
& \text { A. } x=-a \\
& \text { B. } x=-\frac{a}{2} \\
& \text { C. } x=0 \\
& \text { D. } x=\frac{a}{2}
\end{aligned}
$$

49. let P be the point $(1,0)$ and Q be a point on
the locus $y^{2}=8 x$. The locus of the midpoint of $P Q$ is

$$
\begin{aligned}
& \text { A. } x^{2}-4 y=2=0 \\
& \text { B. } x^{2}+4 y+2-0 \\
& \text { C. } y^{2}+4 x+2=0 \\
& \text { D. } y^{2}-4 x+2=0
\end{aligned}
$$

50. Let O be the vertex and Q be any point on the parabola, $x^{2}=8 y$. It the point P divides the
line segment $O Q$ internally in the ratio $1: 3$, then
the locus of P is : (1) $x^{2}=y$ (2) $y^{2}=x$
$y^{2}=2 x(4) x^{2}=2 y$
A. $y^{2}=2 x$
B. $x^{2}=2 y$
C. $x^{2}=y$
D. $y^{2}=x$

Answer: B

D Watch Video Solution

51. If the line $y=m x+c$ touches the parabola $y^{2}=4 a(x+a)$, then

$$
\text { A. } c=a+\frac{a}{m}
$$

B. $c=a m+\frac{a}{m}$
C. $c=a m+a$
D. none of these

Answer: B

D Watch Video Solution

52. If $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$ is tangent to the parabola $x^{2}=y$, them
A. $t^{2}=2 m n$
B. $i=4 m^{2} n^{2}$
C. $m^{2}=\frac{4}{n}$
D. $l^{2}=4 m n$

Answer: D

D Watch Video Solution

53. If the line $x+y-1=0$ touches the parabola $y^{2}=k x$, thn the value of k , is
A. 4
B. -4
C. 2
D. -2

Answer: B

D Watch Video Solution

54. If the line $y=m x+1$ is tangent to the parabola $y^{2}=4 x$, then find the value of m.
A. 1
B. 2
C. 4
D. 3

Answer: A

D Watch Video Solution

55. Tangent to the curve $y=x^{2}+6$ at a point $(1,7)$ touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ at a point Q, then the coordinates of Q are
A. $(6,7)$
B. $(-6,7)$
C. $(6,-7)$

D. $(-6,-7)$

Answer: D

D Watch Video Solution

56. Consider the two curves $C_{1} ; y^{2}=4 x, C_{2}$: $x^{2}+y^{2}-6 x+1=0$ then :
A. C_{1} and C_{2} touch each other at one point
B. C_{1} and C_{2} touch eacth other exactly at two point
C. C_{1} and C_{2} intersect (but do not touch) at exactly two points
D. C_{1} and C_{2} neither intersect not touch each other

Answer: B

D Watch Video Solution

57. The tangent to the parabola $y^{2}=4 a x$ at $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\mathrm{Q}\left(a t_{2}^{2}, 2 a t_{2}\right)$ intersect on its axis, them

$$
\begin{aligned}
& \text { A. } t_{1}=t_{2} \\
& \text { B. } t_{1}=-t_{2} \\
& \text { C. } t_{1} t_{2}=2 \\
& \text { D. } t_{1} t_{2}=-1
\end{aligned}
$$

Answer: B
58. If $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ are two
points on the parabola at $y^{2}=4 a x$, then that
area of the triangle formed by the tangents at P
and Q and the chord $P Q$, is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} a^{2}\left|t_{1}-t_{2}\right|^{3} \\
& \text { B. } \frac{1}{2} a^{2}\left|t_{1}-t_{2}\right|^{2} \\
& \text { C. } a^{2}\left|t_{1}-t_{2}\right|^{3} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: A
59. Let A, B, C be three points on the parabola $y^{2}=4 a x$ such that tangents at these points
taken in pairs form a triangle PQR. Then, area
$(\Delta A B C):(\Delta P Q R)=$
A. 1:1
B. 2: 1
C. 1:2
D. $2: 3$
60. Consider the parabola $y^{2}=8 x$. Let Δ_{1} be
the area of the triangle formed by the end points of its latus rectum and the point $\mathrm{P}\left(\frac{1}{2}, 2\right)$ on the parabola and Δ_{2} be the area of the triangle formed by drawing tangents at P and at the end points of latus rectum. $\frac{\Delta_{1}}{\Delta_{2}}$ is : A. 1
B. 2
C. 3

Answer: B

D Watch Video Solution

61. If the tangents at the points $\operatorname{Pand} Q$ on the
parabola $y^{2}=4 a x$ meet at $T, a n d S$ is its focus,
A. A. P.
B. G. P.
C. H. P.

D. none of these

Answer: B

D Watch Video Solution

62. If the distances of two points P and Q from
the focus of a parabola $y^{2}=4 x$ are 4 and 9,respectively, then the distance of the point of intersection of tangents at P and Q from the focus is
A. 8
B. 6
C. 5
D. 13

Answer: B

D Watch Video Solution

63. AB, AC are tangents to a parabola $y^{2}=4 a x$.

If l_{1}, l_{2}, l_{3} are the lengths of perpendiculars from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on any tangent to the parabola, then
A. l_{1}, l_{2}, l_{3} are in GP
B. l_{2}, l_{1}, l_{3} are in GP
C. l_{3}, l_{1}, l_{2} are in GP
D. l_{3}, l_{2}, l_{1} are in GP

Answer: B::C

D Watch Video Solution

64. The locus of the point of intersection of
tangents drawn at the extremities of a normal chord to the parabola $y^{2}=4 a x$ is the curve

A. tangent at the vertex

B. its derectrix

C. its latusrectum
D. a parabola

Answer: B

D Watch Video Solution

65. If two tangents drawn from a point P to the parabola $y 2=4 x$ are at right angles, then the
locus of P is (1) $2 x+1=0$ (2) $x=1$ (3)
$2 x 1=0(4) x=1$
A. $x=-1$
B. $2 x-1=0$
C. $x=1$
D. $2 x+1=0$

Answer: A

- Watch Video Solution

66. The tangents to the parabola $y^{2}=4 a x$ at the vertex V and any point P meet at Q. If S is the focus, then prove that $S P \dot{S} Q$, and $S V$ are in GP.
A. A. P.
B. G. P.
C. H. P.
D. none of these

Answer: B
67.
$y^{2}=4 a\left(x-c_{1}\right)$ and $x^{2}=4 a\left(y-c_{2}\right) \quad$ where
c_{1} and c_{2} are variables, touch each other. Locus of their point of contact is
A. straight line
B. Circle
C. Parabola
D. hyperbola
68. The focal chord to $y^{2}=16 x$ is tangent to $(x-6)^{2}+y^{2}=2$ then the possible values of the slope of this chord
A. $(-1,1)$
B. $(-2,2)$
C. $(-2,1 / 2)$
D. $(2,-1 / 2)$

Answer: A
69. The circle $x^{2}+y^{2}-2 x-6 y+2=0$
intersects the parabola $y^{2}=8 x$ orthogonally at the point P. The equation of the tangent to the parabola at P can be
A. $x-y-4=0$
B. $2 x+y-2=0$
C. $x+y-4=0$
D. $2 x-y+1=0$

Answer: D

D Watch Video Solution

70. Let $P Q$ be a focal chord of the parabola $y^{2}=4 a x$ The tangents to the parabola at P and
Q meet at a point lying on the line $y=2 x+a, a>0$. Length of chord PQ is
A. 7 a
B. $5 a$
C. 2a

D. 3 a

Answer: B

D Watch Video Solution

71. Mutually perpendicular tangents T AandTB
are drawn to $y^{2}=4 a x$. Then find the minimum
length of $A B$.
A. a
B. 2 a
C. 4 a

D. 8 a

Answer: C

D Watch Video Solution

72. The equation of a tangent to the parabola $y^{2}=8 x i s y=x+2$. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is
$(-1,1)(2)(0,2)(3)(2,4)(4)(-2,0)$
A. $(2,4)$
B. $(-2,0)$
C. $(-1,1)$
D. $(0,2)$

Answer: B

D Watch Video Solution

73. The triangle formed by the tangents to a parabola $y^{2}=4 a x$ at the ends of the latus rectum and the double ordinate through the focus is
A. equilateral
B. isosceles
C. right-angled isosceles
D. dependent on the velue of a for its

classification.

Answer: C

D Watch Video Solution

74. The tangents at the end points of any chord through $(1,0)$ to the parabola $y^{2}+4 x=8$
intersect
A. at 45° on $x-3=0$
B. at 45° on $x+3=0$
C. at 90° on $x+3=0$
D. at 90° on $x-3=0$

Answer: D

D Watch Video Solution

75. The equation of the common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$ is given by
A. $a^{1 / 3} x+b^{1 / 3} y=(a b)^{1 / 3}$
B. $a^{1 / 3} x+b^{1 / 3} y=(a b)^{1 / 3}=0$
C. $a^{2 / 3} x+b^{2 / 3} y=(a b)^{2 / 3}$
D. $a^{2 / 3} x+b^{2 / 3} y=(a b)^{2 / 3}=0$

Answer: B

(D) Watch Video Solution

76. find the common tangents of the circle $x^{2}+y^{2}=2 a^{2}$ and the parabola $y^{2}=8 a x$

$$
\begin{aligned}
& \text { A. } x= \pm(y+2 a) \\
& \text { В. } y= \pm(y+2 a) \\
& \text { C. } x= \pm(y+a) \\
& \text { D. } x= \pm(x+a)
\end{aligned}
$$

Answer: B

D Watch Video Solution

77. Two equal parabolas have the same vertex and their axes are at right angles. The length of the common tangent to them, is
A. 3 a
B. $3 \sqrt{2} a$
C. 6 a
D. 2 a

Answer: B

D Watch Video Solution

78. The equations of the common tangents to
the parabola $y=x^{2}$ and $y=-(x-2)^{2}$
is/are :
A. $y=0, y=4(x-1)$
B. $y=0, y=-4(x-1)$
C. $y=0, y=-30 x-50$
D. none of these

Answer: A

D Watch Video Solution

79. The equation of the common tangents to the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ the x-axis, is
A. $\sqrt{3} y=3 x+1$

$$
\text { B. } \sqrt{3} y=-(x+1)
$$

C. $\sqrt{3} y=(x+1)$
D. $\sqrt{3} y=-(3 x+1)$

Answer: C

D Watch Video Solution

80. The common tangent of the parabolas
$y^{2}=4 x$ and $x^{2}=-8 y$, is
A. $y=x+2$
B. $y=x-2$
C. $y=2 x+3$
D. none of these

Answer: D

D Watch Video Solution

81. Find the equation of the common tangent to
the curves $y^{2}=8 x$ and $x y=-1$.
A. $3 y=9 y+2$
B. $y=2 x+1$
C. $2 \mathrm{y}=\mathrm{x}+8$
D. $y=x+2$

Answer: D

(D) Watch Video Solution

82. The equation to the line touching both the
parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is
A. $x+2 y+4=0$
B. $2 x+y+4=0$

$$
\text { C. } x-2 y-4=0
$$

$$
\text { D. } x-2 y+4=0
$$

Answer: D

D Watch Video Solution

83. The slope of the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is (a) $\frac{1}{2}$
(b) $\frac{3}{2}$ (c) $\frac{1}{8}$ (d) $\frac{2}{3}$
A. 43473
B. 43499
C. 43467
D. 43526

Answer: C

D Watch Video Solution

84. If m be the slope of common tangent of
$y=x^{2}-x+1$ and $y=x^{2}-3 x+1$. Then m is
equal to
A. 16
B. 7
C. 9
D. none of these

Answer: B

(D) Watch Video Solution

85. If $\left(\frac{a}{b}\right)^{\frac{1}{3}}+\left(\frac{b}{a}\right)^{\frac{1}{3}}=\frac{\sqrt{3}}{2}$, then the angle of
$y^{2}=4 a x$ and $x^{2}=4 b y$ at the point other than the origin is
A. $\sqrt{3}$
B. $\sqrt{\frac{3}{2}}$
C. $\frac{\sqrt{3}}{2}$
D. none of these

Answer: C
(Watch Video Solution
86. The normals at the ends of the latusrectum
of the
parabola
$y^{2}=4 a x \quad$ are $(\mathrm{a}, 2 \mathrm{a})$ and $(\mathrm{a},-2 \mathrm{a})$.
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

87. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{2}+(y+2)^{2}=r^{2}$
, then the value of r^{2} is
A. 4
B. 2
C. 6
D. 9

Answer: B
88. Find the equation of the normal to the parabola $y^{2}=4 x$ which is parallel to

$$
y-2 x+5=0
$$

A. $y=2 x+12$
B. $y=2 x-12$
C. $y=2 x+8$
D. $y=-2 x+12$

Answer: B
89. The value of $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which the
line $y=x \cos \theta+4 \cos ^{3} \theta-14 \cos \theta-1$ is a normal to the parabola $y^{2}=16 x$, is
A. $\pi / 3$
B. $\pi / 6$
C. $\pi / 9$
D. $\pi / 4$

Answer: C
90. The line $l x+m y+n=0$ is a normal to the parabola $y^{2}=4 a x$ if
A. $a l\left(l^{2}+2 m^{2}\right)+m^{2} n=0$
B. $a l\left(l^{2}+2 m^{2}\right)+m^{2} n$
C. $a l\left(2 l^{2}+2 m^{2}\right)+m^{2} n=0$
D. $a l\left(2 l^{2}+2 m^{2}\right)+m^{2} n$

Answer: A
91. The line $2 x+y+\lambda=0$ is a normal to the parabola $y^{2}=-8 x$, is $\lambda=$
A. 12
B. -12
C. 24
D. -24

Answer: C

- Watch Video Solution

92. The normal to the parabola $y^{2}=4 x$ at $\mathrm{P}(1$,
2) meets the parabola again in Q, then coordinates of Q are
A. $(-6,9)$
B. $(9,-6)$
C. $(-9,-6)$
D. $(-6,-9)$

Answer: B
93. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on the
parabola $y^{2}=4 b x$ meets the parabola again in the point $\left(b t_{2}^{2}, 2 b t_{2},\right)$ then

$$
\begin{aligned}
& \text { A. } t_{2}=t_{1}+\frac{2}{t_{1}} \\
& \text { B. } t_{2}=t_{1}-\frac{2}{t_{1}} \\
& \text { C. } t_{2}=-t_{1}+\frac{2}{t_{1}} \\
& \text { D. } t_{2}=t_{1}-\frac{2}{t_{1}}
\end{aligned}
$$

Answer: B
94. A normal drawn at a point P on the parabola
$y^{2}=4 a x$ meets the curve again at Q . The least distance of Q from the axis of the parabola, is
A. $2 \sqrt{2} a$
B. $3 \sqrt{2} a$
C. $4 \sqrt{a}$

D. none of these

Answer: C
95. The area between the parabola $y^{2}=4 x$, normal at one end of latusrectum and X -axis in sq.units is
A. 60°
B. less then 60°
C. more then 60°
D. less then 45°

Answer: C

- Watch Video Solution

96. If $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right)$ and $R\left(x_{3}, y_{3}\right)$ are
three points on $y^{2}=4 a x$ and the normal at PQ
and R meet at a point, then the value of

$$
\frac{x_{1}-x_{2}}{y_{3}}+\frac{x_{2}-x_{3}}{y_{1}}+\frac{x_{3}-x_{1}}{y_{2}}=
$$

A. 4 a
B. 2 a
C. a
D. 0

Answer: D

97. If three distinct normals are drawn from
$(2 k, 0)$ to the parabola $y^{2}=4 x$ such that one of them is x-axis and other two are perpendicular, then $k=$
A. $k<1$
B. $k>1$
C. $k \leq 1$
D. $k \geq 1$

Answer: B
98. If three distinct normals are drawn from $(2 k, 0)$ to the parabola $y^{2}=4 x$ such that one
of them is x-axis and other two are perpendicular, then $k=$
A. 1
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. none of these

- Watch Video Solution

99. Find the point where the line $x+y=6$ is a normal to the parabola $y^{2}=8 x$
A. $(18,-12)$
B. $(4,2)$
C. $(2,4)$
D. $(3,3)$

Answer: C
100. Normals at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are drawn to $y^{2}=4 x$ which intersect at $(3,0)$. Then, area of $\triangle P Q R$, is
A. $2 / 5$
B. $1 / 2$
C. $5 / 2$
D. 2

Answer: D

101. Normals at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are drawn to $y^{2}=4 x$
which intersect at $(3,0)$. Then, are of $\triangle P Q R$, is
A. $(2 / 3,0)$
B. $(2 / 5,0)$
C. $(5 / 2,0)$
D. none of these

Answer: A
102. Normals at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are drawn to $y^{2}=4 x$ which intersect at $(3,0)$. Then, are of $\triangle P Q R$, is
A. $(2,0)$
B. $(1,0)$
C. $(2 / 3,0)$
D. $(5 / 2,0)$

Answer: B

D Watch Video Solution

103. If the parabolas $y^{2}=4 a x$ and
$y^{2}=4 c(x-b)$ have a common normal other than the x -axis (a, b, c being distinct positive real numbers), then prove that $\frac{b}{a-c}>2$.

$$
\begin{aligned}
& \text { A. } 0<\frac{b}{a-c}<1 \\
& \text { B. } \frac{b}{a-c}>2 \\
& \text { C. } \frac{b}{a-c}<0 \\
& \text { D. } 1<\frac{b}{a-c}<2
\end{aligned}
$$

Answer: B

104. If from a point A, two tangents are drawn to
parabola $y^{2}=4 a x$ are normal to parabola $x^{2}=4 b y$, then
A. $a^{2} \geq b^{2}$
B. $a^{2} \geq 4 b^{2}$
C. $a^{2} \geq 8 b^{2}$
D. $8 a^{2} \geq b^{2}$

Answer: C

105. Three normals drawn from a point (h k) to parabola $y^{2}=4 a x$
A. $h>a$ and $k^{2}>\frac{4}{27 a}(h-2 a)^{2}$
B. $h>2 a$ and $k^{2}>\frac{4}{27 a}(h-2 a)^{2}$
C. $h>2 a$ and $k^{2}<\frac{4}{27 a}(h-2 a)^{2}$
D. $h>2 a$

Answer: C

D Watch Video Solution

106. The set of points on the axis of the parabola $y^{2}=4 x+8$ from which the three normals to the parabola are all real and different is
$\{(k, 0) \mid k \leq-2\}$
(b)
$\{(k, 0) \mid$
$k\rangle-2\}$
$\{(0, k) \mid k \succ 2\}$ (d) none of these

$$
\begin{aligned}
& \text { А. }\{(x, 0): x \leq-2)\} \\
& \text { в. }\{(x, 0): x>-2)\} \\
& \text { С. }\{(0, y): y>-2)\}
\end{aligned}
$$

D. none of these
107. Set of values of ' h ' for which the number of
distinct common normals of
$(x-2)^{2}=4(y-3)$ and
$x^{2}+y^{2}-2 x-h y-c=0(c>0)$ is 3, is
A. $(2, \infty)$
B. $(4, \infty)$
C. $(2,4)$
D. $(10, \infty)$
108. The set of points on the axis of the parabola $y^{2}=4 a x$, from which three distinct normals can be drawn to theparabola $y^{2}=4 a x$, is
A. $\{(x, 0): x>a\}$
B. $\{(x, 0): x>2 a\}$
C. $\{(x, x>4 a\}$
D. $\{x: a<x<2 a\}$

- Watch Video Solution

109. A normal drawn at a point P on the parabola $y^{2}=4 a x$ meets the curve again at Q .

The least distance of Q from the axis of the parabola, is
A. $4 \sqrt{6} a$
B. $2 \sqrt{6} a$
C. $3 \sqrt{6} a$
D. none of these

Answer: A

D Watch Video Solution

110. Find the number of distinct normals that
can be drawn from $(-2,1)$ to the parabola $y^{2}-4 x-2 y-3=0$
A. 1
B. 2
C. 3
D. 0

Answer: A

D Watch Video Solution

111. If the normal chord of the parabola $y^{2}=4 x$ makes an angle 45° with the axis of the parabola, then its length, is
A. 8
B. $8 \sqrt{2}$
C. 4
D. $4 \sqrt{2}$

Answer: B

D Watch Video Solution

112. The slopes of tangents drawn from a point $(4,10)$ to parabola $y^{2}=9 x$ are
A. $1 / 4,3 / 4$
B. $1 / 4,9 / 4$
C. $1 / 4,1 / 3$
D. none of these

Answer: B

D Watch Video Solution

113. The angle between the tangents drawn from
the point $(1,4)$ to the parabola $y^{2}=4 x$ is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: C

D Watch Video Solution

114. Two tangent are drawn from the point $(-2,-1)$ to parabola $y^{2}=4 x$. if α is the angle between these tangents, then find the value of $\tan \alpha$.
A. 3
B. 43468
C. 2

D. 43467

Answer: A

D Watch Video Solution

115. The locus of the point of intersection of the tangents to the parabola $y^{2}=4 a x$ which include an angle α is
A. $(x+a)^{2} \tan ^{2} \alpha=y^{2}-4 a x$
B. $(x+a) \tan ^{2} \alpha=y^{2}-4 a x$
C. $(x-a)^{2} \tan ^{2} \alpha=y^{2}-4 a x$

D. none of these

Answer: A

D Watch Video Solution

116. The locus of the point of intersection of tangents drawn at the extremities of a normal chord to the parabola $y^{2}=4 a x$ is the curve
A. $x=a$
B. $x=-a$
C. $y=a$

D. $y=-a$

Answer: B

D Watch Video Solution

117. The locus of point of intersection of tangents inclined at angle 45° to the parabola $y^{2}=4 x$ is
A. $y^{2}-4 a x=(a+x)^{2}$
B. $y^{2}+4 a x=(a+x)^{2}$
C. $y^{2}-4 a x=(a-x)^{2}$

$$
\text { D. } y^{2}+4 a x=(a-x)^{2}
$$

Answer: A

D Watch Video Solution

118. The equation of the chord of contact of tangents from $(2,5)$ to the parabola $y^{2}=8 x$, is
A. $4 x+5 y+8=0$
B. $4 x-5 y+8=0$
C. $4 x-5 y-9=0$

D. $4 x+5 y-8=0$

Answer: B

D Watch Video Solution

119. Tangents are drawn to the parabola $y^{2}=4 a x$ at the point where the line $l x+m y+n=0$ meets this parabola. Find the point of intersection of these tangents.
A. $(n, / 1,-2 a m / 1)$
B. $(l / n,-2 a m / n)$

$$
\text { C. }(n / m,-2 a l / m)
$$

D. none of these

Answer: A

D Watch Video Solution

120. The chords of contact of the pairs of tangents drawn from each point on the line $2 x+y=4$ to the parabola $y^{2}=-4 x$ pass through the point
A. $(2,-1)$

$$
\begin{aligned}
& \text { B. }(1 / 2,1 / 4) \\
& \text { C. }(-1 / 2,-1 / 4) \\
& \text { D. }(-2,1)
\end{aligned}
$$

Answer: D

- Watch Video Solution

121. Show that the length of the chord of contact of the tangents drawn from $\left(x_{1}, y_{1}\right)$ to
the parabola $\quad y^{2}=4 a x \quad$ is
$\frac{1}{a} \sqrt{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)}$

$$
\begin{aligned}
& \text { A. } \frac{1}{a} \sqrt{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)} \\
& \text { B. } \sqrt{\left(y_{1}^{2}-4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)} \\
& \text { C. } \frac{1}{a} \sqrt{\left(y_{1}^{2}+4 a x_{1}\right)\left(y_{1}^{2}+4 a^{2}\right)} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: A

D Watch Video Solution

122. Area of the triangle formed by the tangents from $\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ and its chord of contact is $\frac{\left(y_{1}^{2}-4 a x_{1}\right)^{\frac{3}{2}}}{2 a}=\frac{S_{11}^{\frac{3}{2}}}{2 a}$
A. $\frac{\left(y_{1}^{2}+4 a x_{1}\right)^{3 / 2}}{2 a}$
B. $\frac{\left(y_{1}^{2}-4 a x_{1}\right)^{3 / 2}}{2 a}$
C. $\frac{\left(y_{1}^{2}+4 a x_{1}\right)^{3 / 2}}{a}$
D. none of these

Answer: B

D Watch Video Solution

123. Equation of the chord of the parabola
$y^{2}=8 x$ which is bisected at the point $(2,-3)$
is
A. $4 x+3 y+1=0$
B. $2 x+3 y+5=0$
C. $3 x+4 y+6=0$
D. $2 x-3 y-12=0$

Answer: A

D Watch Video Solution

124. if the line $4 x+3 y+1=0$ meets the parabola $y^{2}=8 x$ then the mid point of the chord is
A. $(5 / 4,3)$
B. $(2,4)$
C. $(5 / 2,14 / 3)$
D. $(5,8)$

Answer: A

D Watch Video Solution

125. The locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which pass through the focus, is

$$
\begin{aligned}
& \text { A. } y^{2}+2 a x+2 a^{2}=0 \\
& \text { B. } y^{2}-a x+2 a^{2}=0 \\
& \text { C. } y^{2}-2 a x+2 a^{2}=0 \\
& \text { D. } y^{2}-2 a x+a^{2}=0
\end{aligned}
$$

Answer: C

Watch Video Solution

126. Find the locus of the middle points of the chords of the parabola $y^{2}=4 a x$ which subtend a right angle at the vertex of the parabola.

$$
\begin{aligned}
& \text { A. } y^{2}-2 a x+2 a^{2}=0 \\
& \text { B. } y^{2}-2 a x+8 a^{2}=0 \\
& \text { C. } y^{2}+2 a x-8 a^{2}=0 \\
& \text { D. } y^{2}-2 a x-8 a^{2}=0
\end{aligned}
$$

Answer: B

D Watch Video Solution

127. If the tangent at the point $P(2,4)$ to the parabola $y^{2}=8 x$ meets the parabola
$y^{2}=8 x+5$ at $Q a n d R$, then find the midpoint of chord $Q R$.
A. $(2,4)$
B. $(4,2)$
C. $(7,9)$

D. none of these

Answer: A

- Watch Video Solution

128. The tangent at the point $P\left(x_{1}, y_{1}\right)$ to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=4 a(x+b)$ at Q and R. the coordinates of the mid-point of $Q R$ are
A. $\left(x_{1}, y_{1}\right)$
B. $\left(x_{1}+b, y_{1}\right)$
C. $\left(x_{1}+b, y_{1}+b\right)$
D. $\left(x_{1}-b, y_{1}-b\right)$

Answer: A
129. The locus of the mid-point of the chords of the parabola $x^{2}=4 p y$ having slope m , is a
A. circle with center at origin and radius $\mid 2$
pm |
B. line parallel to x-axis at a distance $|2 \mathrm{pm}|$
from it
C. line parallel to y-axis a distance | 2 pm from it

D. line parallel to $\mathrm{y}=\mathrm{mx}, m \neq 0$ at a distance \mid

$2 \mathrm{pm} \mid$ from it

Answer: C

D Watch Video Solution

130. The polar of line point $(2,1)$ with respect to
the parabola $y^{2}=6 x$, is
A. $y=3 x+2$
B. $y=3 x+6$
C. $3 y=x+6$

$$
\text { D. } y=3 x+4
$$

Answer: B

D Watch Video Solution

131. The pole of the line $1 x+m y+n=0$ with respect to the parabola $y^{2}=4 a x$, is
A. $\left(\frac{n}{l},-\frac{2 a m}{l}\right)$
B. $\left(\frac{n}{m},-\frac{2 a m}{m}\right)$
C. $\left(\frac{n}{m},-\frac{2 a l}{m}\right)$

D. none of these

Answer: A

D Watch Video Solution

132. The locus of the poles of tangents to the parabola $y^{2}=4 a x$ with respect to the parabola $y^{2}=4 a x$ is
A. a circle
B. a parabola

C. a straight line

D. an ellipse

Answer: B

(D) Watch Video Solution

Section I - Solved Mcqs

$$
\begin{array}{lcl}
\text { 1. } & \text { If } & \text { the } \\
\lambda x^{2}+4 x y+y^{2}+\lambda x+3 y+2=0 & \text { represent }
\end{array}
$$

a parabola then find λ.
A. -4
B. 4
C. 0
D. none of these

Answer: C

D Watch Video Solution

2.

The
equation
$x^{2}+4 x y+4 y^{2}-3 x-6 y-4=0$ represents
A. circle
B. parabola

C. a pair of straght lines

D. none of these

Answer: C

D Watch Video Solution

3. The number of chords drawn from point (a, a)
on the circle $x^{2}+y^{2}=2 a^{2}$, which are bisected
by the parabola $y^{2}=4 a x$, is
A. 1
B. 4
C. 2
D. 0

Answer: C

D Watch Video Solution

4. The length of the latusrectum of the parabola
$x=a y^{2}+b y+c$, is
A. $a / 4$
B. $a / 3$
C. $1 / a$
D. $1 /(4 a)$

Answer: C

(D) Watch Video Solution

5. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of k is $\frac{1}{8}$ (b) 8 (c) 4 (d) $\frac{1}{4}$
A. $1 / 8$
B. 8
C. 4
D. 43469

Answer: C

Watch Video Solution

6. The number of parabolas that can be drawn if
two ends of the latus rectum are given 1 (b) 2 (c)
4 (d) 3
A. 1
B. 2
C. 0
D. infinite

Answer: B

D Watch Video Solution

7. The number of points with integral coordinates that lie in the interior of the region
common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=4 x$, is
A. 8
B. 10
C. 16
D. none of these

Answer: A
(Watch Video Solution
8. Range of values of k for which the point ($k,-1$)
is exterior to both the parabolas $y^{2}=|x|$ is
A. $a \in(0,1)$
B. $a \in(-1,1)$
C. $a \in(-1,0)$
D. none of these

Answer: B
9. AB is a chord of the parabola $y^{2}=4 a x$ with its vertex at A. $B C$ is drawn perpendicular to $A B$ meeting the axis at C.The projecton of BC on the axis of the parabola is
A. a
B. 2 a
C. 4 a
D. 8 a

Answer: C
10. The coordinates of an end-point of the latusrectum of the parabola
$(y-1)^{2}=4(x+1)$, are
A. $(0,-3)$
B. $(0,-1)$
C. $(0,1)$
D. $(1,3)$

Answer: B
11. M is the foot of the perpendicular from a point P on a parabola $y^{2}=4 a x$ to its directrix and $S P M$ is an equilateral triangle, where S is the focus. Then find $S P$.
A. a
B. 2a
C. 3 a
D. 4 a
12. What is the equation of the parabola, whose vertex and focus are on the x-axis at distance a and b from the origin respectively ? $(b>a>0)$

$$
\begin{aligned}
& \text { А. } y^{2}=4(b-a)(x-a) \\
& \text { В. } y^{2}=4(b-b)(x-b) \\
& \text { С. } y^{2}=4(b-a)(x-a)
\end{aligned}
$$

D. none of these
13. If parabolas $y^{2}=\lambda x \quad$ and
$25\left[(x-3)^{2}+(y+2)^{2}\right]=(3 x-4 y-2)^{2}$ are equal, then the value of λ is 9 (b) 3 (c) 7 (d) 6
A. 1
B. 2
C. 4
D. 6

Answer: D
14. The point on $y^{2}=4 a x$ nearest to the focus has to abscissa equal to
A. $-a$
B. a
C. $a / 2$
D. 0

Answer: D

15. The focal chord of the parabola $y^{2}=a x$ is
$2 x-y-8=0$. Then find the equation of the directrix.
A. $x+4=0$
B. $X-4=0$
C. $Y-4=0$
D. $Y++4=0$

Answer: A

- Watch Video Solution

16. Number of common chords of a parabola \& a circle can be
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

17. A ray of light moving parallel to the x-axis gets reflected from parabolic mirror whose equation \quad is $\quad(y-3)^{2}=8(x+2) . \quad$ After reflection, the ray must pass through
A. $(0,3)$
B. $(3,0)$
C. $(0,0)$
D. none of these

Answer: A

18.

If $y+b=m_{1}(x+a)$ and $y+b=m_{2}(x+a)$ are two tangents to the paraabola $y^{2}=4 a x$ then
A. $m_{1}+m_{2}=0$
B. $m_{1} m_{2}=1$
C. $m_{1} m_{2}=-1$
D. none of these

Answer: C

19. If normals at the ends of the double ordinate
$x=4$ of parabola $y^{2}=4 x$ meet the curve again
in P and P^{\prime} respectively, then $\mathrm{PP}^{\prime}=$
A. 6
B. 12
C. 10
D. none of these

Answer: B
20. Radius of the largest circle which passes 13
through the focus of the parabola $y^{2}=4 x$ and contained in it, is
A. 8
B. 4
C. 2
D. 5

Answer: B
21. If the tangents and normals at the extremities of a focal chord of a parabola intersect at $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, respectively, then $x_{1}=y^{2}$ (b) $x_{1}=y_{1} y_{1}=y_{2}$ (d) $x_{2}=y_{1}$
A. $x_{1}=x_{2}$
B. $x_{1}=y_{2}$
C. $y_{1}=y_{2}$
D. $x_{2}=y_{1}$

Answer: C
22. The axis of a parabola is along the line $y=x$ and its vertex and focus are in the first quadrant at distances $\sqrt{2}, 2 \sqrt{2}$ respectively, from the origin. The equation of the parabola, is
A. $(x+y)^{2}=x-y-2$
B. $(x-y)^{2}=x-y-2$
C. $(x-y)^{2}=(x-y-2)$
D. $(x-y)^{2}=8(x+y-2)$
23. If the normals any point to the parabola $x^{2}=4 y$ cuts the line $\mathrm{y}=2$ in points whose abscissar are in A.P., them the slopes of the tangents at the 3 conormal points are in
A. AP
B. GP
C. HP
D. none of these

Answer: B

D Watch Video Solution

24. Let $A B C D$ be a square of side length 2 units.
C_{2} is the fircle through the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and
C_{1} is the circle touching all the of the square

ABCD. L is a lien through vertex A. A circle touches the line L and the circle C_{1} externally such that both the circles are on the same side of the line L . The locus of the centre of the circle is
A. an ellipse
B. a hyperbola
C. a parabola
D. a pair of straight lines

Answer: C

(D) Watch Video Solution

25.

Minimum
distance
between
$y^{2}-4 x-8 y+40=0$
$x^{2}-8 x-4 y+40=0$ is
A. 0
B. $\sqrt{3}$
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: D

D Watch Video Solution

26. $A B C D$ is a square with side $A B=2$. A point P moves such that its distance from A equals its distance from the line $B D$. The locus of P meets
the line AC at T_{1} and the line through A parallel
to BD at T_{2} and T_{3}. The area of the triangle $T_{1} T_{2} T_{3}$ is :
A. $\frac{1}{2}$ sq. unit
B. $\frac{2}{3}$ sq. unit
C. 1sq. unit
D. 2sq. unit

Answer: C

27. Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in
first and 4th quadrant,respectively. Tangents to
the circle at P and Q intersect the x-axis at R and tangents at the parabola at P and Q intersect the x-axis at S.
A. $1: \sqrt{2}$
B. 1:2
C. 1: 4
D. $1: 8$

Answer: C

D Watch Video Solution

28. If $P(1,2 \sqrt{2}), R(9,0), S(-1,0)$, the radius of the circumcircle of $\Delta P R S$, is
A. 5
B. $3 \sqrt{3}$
C. $3 \sqrt{2}$
D. $2 \sqrt{3}$

Answer: B

D Watch Video Solution

29. In exampla 27, the radius of the incircle of
$\triangle P Q R$, is
A. 4
B. 3
C. 43680
D. 2

Answer: D

- View Text Solution

30. Circle described on the focal chord as diameter touches the tangent at the vertex
A. the axis
B. the tangent at the vertex
C. the directrix
D. none of these

Answer: B

D Watch Video Solution

31. A normal chord of the parabola $y^{2}=4 a x$ subtends a right angle at the vertex if its slope is
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 2
D. none of these

Answer: B

D Watch Video Solution

32. If the circle $x^{2}+y^{2}+2 a x=0, a \in R$ touches the parabola $y^{2}=4 x$, them
A. $a \in(-\infty, 0)$
B. $a \in(0, \infty)$
C. $a \in(2, \infty)$
D. none of these

Answer: B

D Watch Video Solution

33. The area of the trapezium whose vertices lie on the parabola $y^{2}=4 x$ and its diagonals pass through (1,0) and having length $\frac{25}{4}$ units each is

> A. $\frac{75}{4}$
> B. $\frac{625}{16}$
> C. $\frac{25}{4}$

D. $\frac{25}{8}$

Answer: A

D Watch Video Solution

34. If (h, k) is a point on the axis of the parabola
$2(x-1)^{2}+2(y-1)^{2}=(x+y+2)^{2}$
where three distinct normals can be drawn, then prove that $h>2$.
A. $h>2$
B. $h<4$
C. $h>8$
D. $h<8$

Answer: A

D Watch Video Solution

35. The radius of the circle whose centre is $(-4,0)$
and which cuts the parabola $y^{2}=8 x$ at A and B
such that the common chord $A B$ subtends a
right angle at the vertex of the parabola is equal to
A. 4
B. 3
C. $\sqrt{18}$
D. 5

Answer: A
(Watch Video Solution
36. PSQ is a focal chord of a parabola whose focus is S and vertex is A. PA, QA, are produced to meet the directrix in R and T . Then $\angle R S T$ is equal to
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

37. The tangent PT and the normal PN to the parabola $y^{2}=4 a x$ at a point P on it meet its axis at points T and N , respectively. The locus of the centroid of the triangle PTN is a parabola whose:
A. vertex is $(2 a / 3,0)$
B. Directri is $\mathrm{x}=0$
C. Latusrectum is $\frac{2 a}{3}$
D. Focus is $(-a, 0)$

Answer: A

D Watch Video Solution

38. The vertex of the parabola $y^{2}=8 x$ is at the centre of a circle and the parabola cuts the circle at the ends of itslatus rectum. Then the equation of the circle is
A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}=20$
C. $x^{2}+y^{2}=80$

D. none of these

Answer: B

- Watch Video Solution

39. Let A, B and C be three points taken on the
parabola $\quad y^{2}=4 a x \quad$ with coordinates
$\left(a t_{i}^{2}, 2 a t_{i}\right), i=1,2,3, \quad$ where t_{1}, t_{2} and t_{3} are in A.P. If $A A^{\prime}, B^{\prime}$ and $C C^{\prime}$ are focal chords and coordinates of A^{\prime}, B^{\prime} and C^{\prime} are $\left(a t_{i}^{\prime 2}, 2 a t^{\prime}{ }_{i}\right), i=1,2,3$, them $t_{1}, t^{\prime}{ }_{2}$ and $t^{\prime}{ }_{3}$ are in

A. AP

B. GP
C. HP
D. none of these

Answer: C

D Watch Video Solution

40. Let there be two parabolas with the same axis, focus of each being exterior to the other and the latus rectam being 4 a and 4 b . The locus
of the middle points of the intercepts between the parabolas made on the lines parallel to the common axis is a:
A. straight line if $a>b$
B. parabola if $\mathrm{a} \in b$
C. parabola for all a, b
D. ellipse, if $b>a$

Answer: B

- Watch Video Solution

41. Let A and B be two points on $y^{2}=4 a x$ such that normals to the curve at A and B meet at point C, on the curve, then chord $A B$ will always pass through a fixed point whose coordinates, are
A. $(2 a, 0)$
B. $(-a, 0)$
C. $(-2 a, 0)$
D. $(a, 0)$
42. The set of real values of 'a' for which at least one tangent to $y^{2}=4 a x$ becomes normal to the circle
$x^{2}+y^{2}-2 a x-4 a y+3 a^{2}=0$, is
A. $[1,2]$
B. $[\sqrt{2}, 3]$
C. R
D. none of these

Answer: C

D Watch Video Solution

43. The locus of the mid-point of the line segment joining a point on the parabola $Y^{2}=4 a x$ and the point of contact of circle drawn on focal distance of the point as diameter with the tangent at the vertex, is
A. $y^{2}=9 a x$
B. $9 y^{2}=2 a x$
C. $2 x^{2}=9 a y$
D. $2 y^{2}=9 a x$

Answer: D

D Watch Video Solution

44. The tangent and normal at the point $\mathrm{p}(18$,
12) of the parabola $y^{2}=8 x$ intersects the x-axis
at the point A and B respectively. The equation of the circle through P, A and B is given by
A. $x^{2}+y^{2}+4 x-540=0$
B. $x^{2}+y^{2}-6 x-360=0$
C. $x^{2}+y^{2}-4 x-396=0$
D. $x^{2}+y^{2}-2 x-444=0$

Answer: C

D Watch Video Solution

45. Tangent and normal at any point P of the parabola $y^{2}=4 a x(a>0)$ meet the x-axis at T and N respectively. If the lengths of sub-tangent
and sub-normal at this point are equal, then the area of $\triangle P T N$ is given by
A. $4 a^{2}$
B. $6 \sqrt{2} a^{2}$
C. $4 \sqrt{2} a^{2}$
D. none of these

Answer: D

- Watch Video Solution

46. The point of intersection of the curve whose parametrix equations are

$$
\begin{equation*}
x=t^{2}+1, y=2 t \quad \text { and } \quad x=2 s, y=\frac{2}{s} \tag{is}
\end{equation*}
$$ given by

A. $(1,-3)$
B. $(2,2)$
C. $(-2,4)$
D. $(1,2)$

Answer: B
47. The locus of the midpoint of the segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix $y=0$ (b) $x=-a x=0$ (d) none of these
A. $x=-a$
B. $x=a$
C. $x=0$
D. $x=a / 2$

Answer: C

D Watch Video Solution

48. The radical centre of the circles drawn on the focal chords of $y^{2}=4 a x$ as diameters, is
A. $(-a, 0)$
B. $(a, 0)$
C. $(0,0)$
D. (a, a)

Answer: C

D Watch Video Solution

49. For each parabola $y=x^{2}+p x+q$, meeting coordinate axes at 3-distinct points, if circles are drawn through these points, then the family of circles must pass through
A. $(1,0)$
B. $(0,1)$
C. $(1,1)$

D. (p, q)

Answer: B

D Watch Video Solution

50. Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two points
on the parabola $y^{2}=4 a x$. If the circle with chord $A B$ as a diameter touches the parabola, then $\left|y_{1}-y_{2}\right|=$
A. 4 a
B. 8 a
C. $6 \sqrt{2} a$

D. none of these

Answer: B

D Watch Video Solution

51. Let A and B be two distinct points on the parabola $y^{2}=4 x$. If the axis of the parabola touches a circle of radius r having $A B$ as its diameter, then the slope of the line joining A and B can be

> A. $\pm \frac{1}{r}$
> B. $\pm \frac{2}{r}$
> C. $\pm \frac{3}{r}$
> D. $\pm \frac{1}{2} r$

Answer: B

- Watch Video Solution

52. Find the shortest distance between the line
$x-y+1=0$ and the curve $y^{2}=x$.

> A. $\frac{\sqrt{3}}{4}$
> B. $\frac{3 \sqrt{2}}{8}$
> C. $\frac{8}{3 \sqrt{2}}$
> D. $\frac{4}{\sqrt{3}}$

Answer: B

Watch Video Solution

53. Let S be the focus of the parabola $y^{2}=8 x$ and let $P Q$ be the common chord of the circle
$x^{2}+y^{2}-2 x-4 y=0$ and the given parabola.

The area of the triangle PQS is -
A. 4
B. 3
C. 2
D. 8

Answer: A

- Watch Video Solution

54. Let $P Q$ be a focal chord of the parabola $y^{2}=4 a x$ such that tangents at P and Q meet at point on the line $y=2 x+a, a>0$, If PQ subtends an angle θ at the vertex of $y^{2}=4 a x$, then $\tan \theta=$
A. $\frac{2 \sqrt{7}}{3}$
B. $-\frac{2 \sqrt{7}}{3}$
C. $\frac{2 \sqrt{3}}{3}$
D. $-\frac{2 \sqrt{5}}{3}$
55. Let $\mathrm{a}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ be non-zero real numbers. Let
$P\left(a t^{2}, 2 a t\right), Q, R\left(a r^{2}, 2 a r\right)$ and $S\left(a s^{2}, 2 a s\right)$
be distinct points onthe parabola $y^{2}=4 a x$.
Suppose that $P Q$ is the focal chord and lines $Q R$
and PK are parallel, where K isthe point ($2 \mathrm{a}, 0$).
The value of r is
A. $-\frac{1}{t}$
B. $\frac{t^{2}+1}{t}$
C. $\frac{1}{t}$

D. $\frac{t^{2}-1}{t}$

Answer: D

D Watch Video Solution

56. Let $\mathrm{a}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ be non-zero real numbers. Let
$P\left(a t^{2}, 2 a t\right), Q\left(a r^{2}, 2 a r\right)$ and $S\left(a s^{2}, 2 a s\right)$ be distinct points on the parabola $y^{2}=4 a x$.

Suppose that PQ is the focal chord and lines QR and $P K$ are parallel, where K the point $(2 a, 0)$.

If $s t=1$, then the tangent at P and the normal at S
to the parabola meet at a point whose ordinate
is
A. $\frac{(t+1)^{2}}{2 t^{3}}$

B $a(t+1)^{2}$
$2 t^{3}$
C. $\frac{a\left(t^{2}+1\right)^{2}}{t^{3}}$
D. $\frac{a\left(t^{2}+2\right)^{2}}{t^{3}}$

Answer: B

- Watch Video Solution

57. Let P and Q be distinct points on the parabola $y^{2}=2 x$ such that a circle with PQ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle $\triangle O P Q$ is 32 , then which of the following is (are) the coordinates of P ?
A. $(4,2 \sqrt{2})$
B. $(9,3 \sqrt{2})$
C. $(1 / 4,1 / \sqrt{2})$
D. $(1, \sqrt{2})$

Answer: A: D

D Watch Video Solution

58. Let the curve C be the mirror image of the parabola $y^{2}=4 x$ with respect to the line $x+y+4=0$. If A and B are the points of intersection of C with the line $y=-5$, then the distance between A and B is
A. 3
B. 6
C. 8
D. 4

Answer: D

D Watch Video Solution

59. PSQ is a focal chord of a parabola whose focus is S and vertex is A. PA, QA, are produced to meet the dirrecterix in R and T . Then $\angle R S T$ is equal to
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

D Watch Video Solution

60. Let P be the point on parabola $y^{2}=4 x$ which is at the shortest distance from the
center
S
the
circle
$x^{2}+y^{2}-4 x-16 y+64=0$ let Q be the
point on the circle dividing the line segment SP internally. Then
A. $S P=2 \sqrt{5}$
B. $S P: Q P=\sqrt{5}+1): 2$
C. the x-intercept of the normal to the
parabola at P is 6
D. the slope of the tangent to the circle at Q is $1 / 2$

Answer: B
61. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the centre

C of the circle, $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its centre at P is :
$x^{2}+y^{2}-4 x+8 y+12=0$
$x^{2}+y^{2}-x+4 y-12=0$
$x^{2}+y^{2}-\frac{x}{4}+2 y-24=0$
$x^{2}+y^{2}-4 x+9 y+18=0$

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-x+4 y-12=0 \\
& \text { B. } x^{2}+y^{2}=\frac{1}{4} x+2 y-24=0
\end{aligned}
$$

$$
\text { C. } x^{2}+y^{2}-4 x+9 y+12=0
$$

D. $x^{2}+y^{2}-4 x+8 y+12=0$

Answer: D

D Watch Video Solution

62. P and Q are two distinct points on the parabola, $y^{2}=4 x$ with parameters t and t_{1} respectively. If the normal at P passes through
Q, then the minimum value of t_{1}^{2} is
A. 4
B. 6
C. 8
D. 2

Answer: C

D Watch Video Solution

63. Let $P Q$ be a focal chord of the parabola
$y^{2}=4 x$. If the centre of a circle having $P Q$ as its diameter lies on the line $\sqrt{5} y+4=0$, then
length of the chord $P Q$, is

> A. $\frac{36}{5}$
> B. $\frac{26}{5}$
> C. $\frac{36 \sqrt{5}}{5}$
> D. $\frac{26 \sqrt{5}}{5}$

Answer: A

D Watch Video Solution

64. The centres of those circles which touch the
circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally
and also touch the x-axis, lie on : (1) a circle. (2)
an ellipse which is not a circle. (3) a hyperbola.
(4) a parabola.
A. an ellipe which is not a circle B. a hyperbola
C. a parabola
D. a circle

Answer: C

- Watch Video Solution

65. The radius of a circle, having minimum area,
which touches the curve $y=4-x^{2}$ and the
lines $y=|x|$, is
A. $2(\sqrt{2}+2)$
B. $2(\sqrt{2}-1)$
C. $4(\sqrt{2}-1)$
D. $4(\sqrt{2}+1)$

Answer: C

- Watch Video Solution

66. If a chord which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 \mathrm{x}+\mathrm{y}=\mathrm{p}$, and mid-point (h, k), then which of the following is (are) possible value (s) of p, h and k ?

$$
\begin{aligned}
& \text { A. } p=5, h=4, k=-3 \\
& \text { B. } p=-1, h=1, k=-3 \\
& \text { C. } p=-2, h=2, k=-4 \\
& \text { D. } p=2, h=3, k=-4
\end{aligned}
$$

Answer: D

SECTION- (SOLVED MCQs EXAMPLE)

1. Three points A, B and C are considered on a parabola. The tangents to the parabola at these points from a triangle MNP (NP being tangent at
$A, P M$ at B and $M N$ at C). If the line through B and parallel to axis of parabola intersects $A C$ at
L. then the quadrilateral LMNP
A. is always a parallelogram

B. can never be parallelogram

C. is parallelogram only when ordinates of A,

$$
\mathrm{B}, \mathrm{C} \text { are in A.P. }
$$

D. has exactly sides parallel to each always.

Answer: A

D View Text Solution

Section II - Assertion Reason Type

1. Statement । The curve $y=\frac{x^{2}}{2}+x+1$ is
symmetric with respect to the line $x=1$. because Statement II A parabola is symmetric about its axis.
A. Statement- 1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for Statement-1`

B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True, Statement - 2 is False.

D. Statement- 1 is True, Statement -2 is True.

Answer: A

- Watch Video Solution

2. Statement-1: The tangents at the extrenities
of a forcal of the parabola $y^{2}=4 a x$ intersect on the line $x+a=0$.

Statement-2: The locus of the point of intersection of perpendicular tangents to the parabola is its directrix

A. Statement- 1 is True, Statement -2 is true,

Statement-2 is a correct explanation for

Statement-1`

B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation
for Statement-2
C. Statement-1 is True, Statement - 2 is False.

D. Statement-1 is True, Statement - 2 is True.

Answer: A

3. Consider the two curves
$C_{1}: y^{2}=4 x, C_{2}: x^{2}+y^{2}-6 x+1=0$. Then
C_{1} and C_{2} touch each other only at one point
C_{1} and C_{2} touch each other exactly at two point
C_{1} and C_{2} interesect (but do not touch) at exactly two points. C_{1} and C_{2} neither intersect nor touch each other.
A. Statement- 1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation
for Statement-3
C. Statement-1 is True, Statement - 2 is False.

D. Statement-1 is True, Statement - 2 is True.

Answer: B

D Watch Video Solution

4. Statement-1: Three normals can be drawn to
the parabola $y^{2}=4 a x$ through the point (a ,
$\mathrm{a}+1$), if $a<2$.

Statement-2: The point $(a, a+1)$ lies outside the parabola $y^{2}=4 x$ for all $a \neq 1-$.
A. Statement-1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement- 1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation
for Statement-4
C. Statement-1 is True, Statement - 2 is False.
D. Statement-1 is False, Statement - 2 is True.

Answer: D

D Watch Video Solution

5. Statement-1: Length of the common chord of the parabola $y^{2}=8 x$ and the circle $x^{2}+y^{2}=9$ is less than the length of the latusrectum of the parabola.

Statement-2: If vertex of a parabola lies at the point (a.0) and the directrix is $x+a=0$, then the focus of the parabola is at the point (2a, 0).

A. Statement- 1 is True, Statement -2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation
for Statement-5
C. Statement-1 is True, Statement - 2 is False.

D. Statement-1 is True, Statement - 2 is True.

Answer: C

6. Statement-1: $y+b=m_{1}(x+a)$ and
$y+b=m_{2}(x+a)$ are perpendicular tangents
to the parabola $y^{2}=4 a x$.
Statement-2: The locus of the point of intersection of perpendicular tangents to a parabola is its directrix.
A. Statement-1 is True, Statement - 2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation
for Statement-6
C. Statement-1 is True, Statement - 2 is False.

D. Statement-1 is True, Statement - 2 is True.

Answer: A

D Watch Video Solution

7. Given : A circle, $2 x^{2}+2 y^{2}=5$ and a parabola,
$y^{2}=4 \sqrt{5} x$. Statement $-\mathrm{I}:$ An equation of a
common tangent to these curves is $y=\mathrm{x}+\sqrt{5}$ Statement - II : If the line,
$y=m x+\frac{\sqrt{5}}{m}(m \neq 0)$ is their common
tangent, then m satisfies $m^{4}-3 m^{2}+2=0$.
(1) Statement - I is True; Statement -II is true;

Statement-II is not a correct explanation for

Statement-I (2) Statement -I is True; Statement -II is False. (3) Statement I-I False; Statement -II is

True (4) Statement -I is True; Statement -II is

True; Statement-II is a correct explanation for

Statement-I

A. Statement- 1 is True, Statement -2 is true,

Statement-2 is a correct explanation for

Statement-1`
B. Statement-1 is True, Statement - 2 is true,

Statement-2 is not a correct explanation
for Statement-7
C. Statement-1 is True, Statement - 2 is False.

D. Statement- 1 is True, Statement - 2 is True.

Answer: B

Exercise

1. If the focus and vertex of a parabola are the

 points $(0,2)$ and $(0,4)$, respectively, then find the equationA. $y^{2}=8 x+32$
B. $y^{2}=-8 x+32$
C. $x^{2}+8 x=32$
D. $x^{2}-8 y=32$

Answer: C

D Watch Video Solution

2. Find the equation of the directrix of the parabola $x^{2}-4 x-3 y+10=0$
A. $y=-\frac{5}{4}$
B. $y=\frac{5}{4}$
C. $y=-\frac{3}{4}$
D. $x=\frac{5}{4}$

Answer: B

D Watch Video Solution

3. If the vertex of a parabola is the point $(-3,0)$ and the directrix is the line $x+5=0$, then find its equation.

$$
\begin{aligned}
& \text { А. } y^{2}=8(x+3) \\
& \text { В. } x^{2}=8(x+3) \\
& \text { С. } y^{2}=-8(x+3) \\
& \text { D. } y^{2}=8(x+5)
\end{aligned}
$$

Answer: A

D Watch Video Solution

4. Find the angle made by a double ordinate of
length $8 a$ at the vertex of the parabola $y^{2}=4 a x$.
A. $\pi / 3$
B. $\pi / 2$
C. $\pi / 4$
D. $\pi / 6$

Answer: B

- Watch Video Solution

5. Find the coordinates of points on the parabola $y^{2}=8 x$ whose focal distance is 4 .
A. $(1 / 2, \pm 2)$
B. $(1, \pm 2 \sqrt{2})$
C. $(2, \pm 4)$
D. none of these

Answer: C

D Watch Video Solution

6. An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$ whose vertex is at of the parabola. Find the length of its side.
A. $4 a \sqrt{3}$
B. $2 a \sqrt{3}$
C. $16 a \sqrt{3}$
D. $8 a \sqrt{3}$

Answer: D

D Watch Video Solution

7. The coordinates of the focus of the parabola $x^{2}-4 x-8 y-4=0$
A. $(0,2)$
B. $(2,1)$
C. $(1,2)$
D. $(-2,-1)$

Answer: B

D Watch Video Solution

8. If y_{1}, y_{2}, y_{3} be the ordinates of a vertices of the triangle inscribed in a parabola $y^{3}=4 a x$, then show that the area of the triangle is

$$
\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
$$

$$
\text { A. } \frac{1}{2 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
$$

$$
\text { B. } \frac{1}{4 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
$$

$$
\text { C. } \frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
$$

D. none of these

Answer: C

D Watch Video Solution

9. The are of the triangel inscribed in the parabola $y^{2}=4 x$ the ordinates of whose
vertices are 1, 2 and 4 square units, is
A. $\frac{7}{2}$
B. $\frac{5}{2}$
C. $\frac{3}{2}$
D. $\frac{3}{4}$

Answer: D

D Watch Video Solution

10. The length of the latusrectum of the parbola whose focus is $(3,3)$ and directrix $3 x-4 y-2=0$, is
A. 2
B. 1
C. 4

D. none of these

Answer: A

D Watch Video Solution

11. The length of the latus rectum of the parabola whose focus is $\left(\frac{u^{2}}{2 g} \sin 2 \alpha,-\frac{u^{2}}{2 g} \cos 2 \alpha\right)$ and directrix is
$y=\frac{u^{2}}{2 g}$ is $\frac{u^{2}}{g} \cos ^{2} \alpha$ (b) $\frac{u^{2}}{g} \cos ^{2} 2 \alpha \frac{2 u^{2}}{g} \cos ^{2} 2 \alpha$
(d) $\frac{2 u^{2}}{g} \cos ^{2} \alpha$
A. $\frac{u^{2}}{g} \cos ^{2} \alpha$
B. $\frac{u^{2}}{g} \cos 2 \alpha$
C. $\frac{2 u^{2}}{g} \cos 2 \alpha$
D. $\frac{2 u^{2}}{g} \cos ^{2} \alpha$

Answer: D

D Watch Video Solution

12. $P Q$ is a double ordinate of a parabola $y^{2}=4 a x$. Find the locus of its points of trisection.
A. $y^{2}=a x$
B. $9 y^{2}=4 a x$
C. $9 y^{2}=a x$
D. $y^{2}=9 a x$

Answer: B

(Watch Video Solution

13. If the segment intercepted by the parabola
$y=4 a x \quad$ with the line $l x+m y+n=0$
subtends a right angle at the vertex, then
$4 a l+n=0$
$4 a m+n=0(\mathrm{~d}) a l+n=0$
A. $4 \mathrm{al}+\mathrm{n}=0$
B. $4 \mathrm{al}+4 \mathrm{am}+\mathrm{n}=0$
C. $4 \mathrm{am}+\mathrm{n}=0$
D. $\mathrm{al}+\mathrm{n}=0$

Answer: A

- Watch Video Solution

14. The length of a focal chord of the parabola $y^{2}=4 a x$ making an angle θ with the axis of the parabola is $(a>0)$ is:
A. $4 a \operatorname{cosec}^{2} \theta$
B. $4 a \cos \theta \operatorname{cosec}^{2} \theta$
C. $4 a \cot \theta \operatorname{cosec}^{2} \theta$
D. $2 a \operatorname{cosec}^{2} \theta$

Answer: B
15. Show that the parametric point $\left(2+t^{2}, 2 t+1\right)$ represents a parabola. Show that its vertex is $(2,1)$.
A. a parabola with focus at $(2,1)$
B. a parabola with vertex at $(2,1)$
C. an ellipse with centre at $(2,1)$

D. none of these

Answer: B
16. The ratio in which the line segment joining the point $(4,-6)$ and $(3,1)$ si divided by the parabola $y^{2}=4 a x$ is

$$
\begin{aligned}
& \text { A. } \frac{-20 \pm \sqrt{155}}{11}: 1 \\
& \text { B. } \frac{-2 \pm \sqrt{155}}{11}: 1 \\
& \text { C. }-20 \pm 2 \sqrt{155}: 11 \\
& \text { D. }-20 \pm \sqrt{155}: 11
\end{aligned}
$$

Answer: C

17. If (a, b) is the midpoint of a chord passing through the vertex of the parabola $y^{2}=4 x$, then (A) $a=2 b$ (B) $2 a=b$ (C) $a^{2}=2 b$

$$
2 a=b^{2}
$$

A. $a=a b$
B. $2 a=b$
C. $a^{2}=a b$
D. $2 a=b^{2}$

Answer: D
18. If the vertex and focus of a parabola are $(3,3)$
and $(-3,3)$ resepectively, then its equation, is
A. $x^{2}+6 x-24 y+63=0$
B. $x^{2}-6 x+24 y-63=0$
C. $y^{2}-6 y+24 x-63=0$
D. $y^{2}+6 y-24 x+63=0$

Answer: C

19. The locus of the middle points of the focal chord of the parabola $y^{2}=4 a x$, is

$$
\begin{aligned}
& \text { A. } y^{2}=a(x-a) \\
& \text { B. } y^{2}=2 a(x-a) \\
& \text { C. } y^{2}=4 a(x-a)
\end{aligned}
$$

D. none of these

Answer: B

- Watch Video Solution

20. If y_{1}, y_{2} are the ordinates of two points P and Q on the parabola and y_{3} is the ordinate of the intersection of tangents at P and Q, then
A. y_{1}, y_{2}, y_{3} are in AP
B. y_{1}, y_{3}, y_{2} are in AP
C. y_{1}, y_{2}, y_{3} are in GP
D. y_{1}, y_{3}, y_{2} are in GP

Answer: B
21. If the line $x+y=1$ touches the parabola $y^{2}-y+x=0$, then the coordinates of the point of contact are:
A. $(1,1)$
B. $(1 / 2,1 / 2)$
C. $(0,1)$
D. $(1,0)$

Answer: C
22. The locus of foot of the perpendiculars drawn from the vertex on a variable tangent to the parabola $y^{2}=4 a x$ is

A. the directrix

B. tangent at the vertex
C. $x=a$

D. none of these

Answer: B
23. The equation to the line touching both the parabolas $y^{2}=4 x$ and $x^{2}=-32 y$ is
A. $x+2 y+4=0$
B. $2 x+y-4=0$
C. $x-2 y-4=0$
D. $x-2 y+4=0$

Answer: D

D Watch Video Solution
24. If t is the parameter for one end of a focal chord of the parabola $y^{2}=4 a x$, then its length is :

$$
\begin{aligned}
& \text { A. } a\left(t+\frac{1}{t}\right)^{2} \\
& \text { B. } a\left(t-\frac{1}{t}\right)^{2} \\
& \text { C. } a\left(t+\frac{1}{t}\right) \\
& \text { D. } a\left(t-\frac{1}{t}\right)
\end{aligned}
$$

Answer: A

25. Find the equation of normal to the parabola $y^{2}=4 a x$ at point $\left(a t^{2}, 2 a t\right)$
A. 1/t
B. t
C. $-t$
D. $-\frac{1}{t}$

Answer: C

(D) Watch Video Solution
26. The normal at the point $P\left(a p^{2}, 2 a p\right)$ meets
the parabola $y^{2}=4 a x$ again at $Q\left(a q^{2}, 2 a q\right)$
such that the lines joining the origin to P and Q
are at right angle. Then (A) $p^{2}=2$ (B) $q^{2}=2$ (C)

$$
p=2 q(\mathrm{D}) q=2 p
$$

A. $p^{2}+p q+2=0$
B. $p^{2}-p q+2=0$
C. $q^{2}+p q+2=0$
D. $p^{2}+p q+1=0$

Answer: A
27. The length of the subnormal to the parabola $y^{2}=4 a x$ at any point is equal to
A. $a \sqrt{2}$
B. $2 \sqrt{2} a$
C. $\frac{a}{\sqrt{2}}$
D. $2 a$

Answer: D

28. The two parabolas $y^{2}=4 x$ and $x^{2}=4 y$ intersect at a point P, whose abscissas is not zero, such that
A. they both touch each other at P
B. they cut at right angles at P
C. the tangents to each curvs at P make complementary angles with the x -axis

D. none of these

- Watch Video Solution

29. A set of parallel chords of the parabola $y^{2}=4 a x$ have their midpoint on any straight
line through the vertex any straight line through the focus a straight line parallel to the axis another parabola
A. any straight line through the vertex
B. any straight line through the focus
C. a straight line parallel to the axis
D. another parabola

Answer: C

D Watch Video Solution

30. Find the point on the curve $y^{2}=a x$ the tangent at which makes an angle of $45^{\wedge} 0$ with the x-axis.
A. $(a / 2, a / 4)$
B. $(-a / 2, a / 4)$
C. $(a / 4, a / 2)$
D. $(-a / 4, a / 2)$

Answer: C

- Watch Video Solution

31. The line $2 x+y+\lambda=0$ is a normal to the
parabola $y^{2}=-8 x$, is $\lambda=$
A. -16
B. -8
C. -24
D. 24

Answer: D

D Watch Video Solution

32. Find the angle at which the parabolas $y^{2}=4 x$ and $x^{2}=32 y$ intersect.
A. $\tan ^{-1}(3 / 5)$
B. $\tan ^{-2}(4 / 5)$
C. π
D. $\pi / 2$

Answer: A

D Watch Video Solution

33. The normal at $(a, 2 a)$ on $y^{2}=4 a x$ meets
the curve again at $\left(a t^{2}, 2 a t\right)$. Then the value of
$t=$
A. 1
B. 3
C. -1
D. -3

Answer: D

D Watch Video Solution

34. If a chord which is normal to the parabola at one end subtend a right angle at the vertex, then angle to the axis is
A. 1
B. 3
C. -1
D. -3

Answer: C

D Watch Video Solution

35. Find the equations of the normals at the ends of the latus- rectum of the parabola $y^{2}=4 a x$. Also prove that they are at right angles on the axis of the parabola.
A. $x^{2}-y^{2}-6 a x+9 a^{2}=0$
B. $x^{2}-y^{2}-6 a x-6 a n+9 a^{2}=0$
C. $x^{2}-y^{2}-6 x y+9 a^{2}=0$

D. none of these

Answer: A

D Watch Video Solution

36. The normal at the point $P\left(a p^{2}, 2 a p\right)$ meets
the parabola $y^{2}=4 a x$ again at $Q\left(a q^{2}, 2 a q\right)$
such that the lines joining the origin to P and Q
are at right angle. Then (A) $p^{2}=2$ (B) $q^{2}=2$ (C)

$$
p=2 q(\mathrm{D}) q=2 p
$$

A. $p^{2}=2$
B. $q^{2}=2$
C. $p=2 q$
D. $q=2 p$

Answer: A

D Watch Video Solution

37. If the normals at points $t_{1} a n d t_{2}$ meet on the parabola, then $t_{1} t_{2}=1$ (b) $t_{2}=-t_{1}-\frac{2}{t_{1}}$ $t_{1} t_{2}=2(\mathrm{~d})$ none of these
A. $t_{1} t_{2}=-1$

$$
\begin{aligned}
& \text { B. } t_{2}=-t_{1}-\frac{2}{t_{1}} \\
& \text { C. } t_{1} t_{2}=2
\end{aligned}
$$

D. none of these

Answer: C

D Watch Video Solution

38. If the normals at two points P and Q of a parabola $y^{2}=4 a x$ intersect at a third point R on the curve, then the product of ordinates of P and Q is (A) $4 a^{2}$ (B) $2 a^{2}$ (C) $-4 a^{2}$ (D) $8 a^{2}$
A. $4 a^{2}$
B. $2 a^{2}$
C. $-4 a^{2}$
D. $8 a^{2}$

Answer: D

D Watch Video Solution

39. The angle between the tangents drawn from
the origin to the paraboala $y^{2}=4 a(x-a)$, is
A. 90°
B. 30°
C. $\tan ^{-1}(1 / 2)$
D. 45°

Answer: A

D Watch Video Solution

40. The angle between the tangents drawn from
the point $(-\mathrm{a}, 2 \mathrm{a})$ to $y^{2}=4 \mathrm{ax}$ is
A. $\pi / 4$
B. $\pi / 2$
C. $\pi / 3$
D. $\pi / 6$

Answer: B

(D) Watch Video Solution

41. The angle between the tangents to the parabola $y^{2}=4 a x$ at the points where it
intersects with the line $x-y-a=0$ is $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$ (c) π (d) $\frac{\pi}{2}$
A. $\pi / 3$
B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 2$

Answer: D

(Watch Video Solution
42. $P(-3,2)$ is one end of focal chord $P Q$ of the parabola $y^{2}+4 x+4 y=0$. Then the slope of the normal at Q is
A. $-1 / 2$
B. 2
C. $1 / 2$
D. -2

Answer: A

- Watch Video Solution

43. If $x=m y+c$ is a normal to the parabola $x^{2}=4 a y$, then the value of c , is
A. $-2 a m-a m^{3}$
B. $2 a m+a m^{3}$
C. $-\frac{2 a}{m}-\frac{a}{m^{3}}$
D. $\frac{2 a}{m}+\frac{a}{m^{3}}$

Answer: A
44. Find the equations of the tangent and the normal to the given curve at the indicated point
:
$y^{2}=4 a x \quad$ at $\quad\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)$

$$
\begin{aligned}
& \text { A. } y=m x-2 a m-a m^{3} \\
& \text { B. } m^{3} y=m^{2} x-2 a m^{2}-a \\
& \text { C. } m^{3} y=2 a m^{2}-m^{2} x+a
\end{aligned}
$$

D. none of these

Answer: C

45. f the normal at the point $P\left(a t_{1}, 2 a t_{1}\right)$ meets
the parabola $y^{2}=4 a x$ aguin at $\left(a t_{2}, 2 a t_{2}\right)$, then
A. -1
B. -2
C. -3
D. -4

Answer: D

46. If the vertex of the parabola $y=x^{2}-8 x+c$ lies on x-axis, then the value of c , is
A. -16
B. -4
C. 4
D. 16

Answer: D

47. If the chord $y=m x+c$ subtends a right angle at the vertex of the parabola $y^{2}=4 a x$, thenthe value of c is

$$
\text { A. }-4 a m
$$

B. $4 a m$
C. $-2 a m$
D. $2 a m$

Answer: A
48. The equation of the tangent at the vertex of the parabola $x^{2}+4 x+2 y=0$, is
A. $x=-2$
B. $x=2$
C. $x=a$
D. $x=-a$

Answer: C

D Watch Video Solution

49. The locus of the point of intersection of the

 perpendicular tangents to the parabola $x^{2}=4 a y$ is .A. $y=a$
B. $y=-a$
C. $x=a$
D. $x=-a$

Answer: B

D Watch Video Solution
50. If $y=2 x+3$ is a tangent to the parabola $y^{2}=24 x$, then find its distance from the parallel normal.
A. $5 \sqrt{5}$
B. $10 \sqrt{5}$
C. $15 \sqrt{5}$
D. $3 \sqrt{5}$

Answer: C

51. If the normal at $(1,2)$ on the parabola $y^{2}=4 x$ meets the parabola again at the point $\left(t^{2}, 2 t\right)$ then the value of t, is
A. 1
B. 3
C. -3
D. -1

Answer: C

52. The normals at three points P, Q, R of the
parabola $y^{2}=4 a x$ meet in (h, k) The centroid of triangle $P Q R$ lies on $(A) \mathrm{x}=0(B) \mathrm{y}=0(C) \mathrm{x}=-\mathrm{a}$ $(D) \mathrm{y}=\mathrm{a}$ `
A. $x=0$
B. $y=0$
C. $x=-a$
D. $y=a$

Answer: B
53. If the point $P(4,-2)$ is the one end of the focal
chord PQ of the parabola $y^{2}=x$, then the slope of the tangent at Q, is
A. $-1 / 4$
B. $1 / 4$
C. 4
D. -4

Answer: C
54. If $P S Q$ is a focal chord of the parabola
$y^{2}=8 x$ such that $S P=6$, then the length of
$S Q$ is 6 (b) 4 (c) 3 (d) none of these
A. 6
B. 4
C. 3

D. none of these

Answer: C
55. The angle between the normals to the parabola $y^{2}=24 x$ at points $(6,12)$ and $(6,-12)$, is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

(D) Watch Video Solution
56. Find the equation of the common tangent of
$y^{2}=4 a x$ and $x^{2}=4 a y$.
A. $x+y+a=0$
B. $x+y-a=0$
C. $x-y+a=0$
D. $x-y-a=0$

Answer: A

Watch Video Solution

57. The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=0$ and the parabola $y^{2}=4 x$ above he x-axis is

$$
\begin{aligned}
& \text { A. } \sqrt{3} y=3 x+1 \\
& \text { B. } \sqrt{3} y=-x-3 \\
& \text { C. } \sqrt{3} y=(x+3) \\
& \text { D. } \operatorname{sqrt3y=-3x-1}
\end{aligned}
$$

Answer: C
58. The length of the subtangent to the parabola $y^{2}=16 x$ at the point whose abscissa is 4 , is
A. 2
B. 4
C. 8

D. none of these

Answer: C
59. if P is a point on parabola $y^{2}=4 a x$ such that subtangents and subnormals at P are equal, then the coordinates of P are:
A. $(a, 2 a)$ or $(a,-2 a)$
B. $(2 a, 2 \sqrt{2} a)$ or $(2 a,-2 \sqrt{2} a)$
C. $(4 a,-4 a)$ or $(4 a, 4 a)$

D. none of these

Answer: A

60. The normal to the parabola $y^{2}=8 a x$ at the point $(2,4)$ meets the parabola again at the point
A. $(-18,-12)$
B. $(-28,12)$
C. $(18,12)$
D. $(18,-12)$

Answer: D

61. The graph represented by
 $x=\sin ^{2} t, y=2 \cos t$ is

A. a protion of a parabola B. a part of a hyperbola
C. a part of a sing graph
D. a part of a hyperbola

Answer: B

D Watch Video Solution

62. The subtangent, ordinate and subnormal to
the parabola $y^{2}=4 a x$ are in
A. AP
B. GP
C. HP
D. none of these

Answer: B

63. f the normal at the point $P\left(a t_{1}, 2 a t_{1}\right)$ meets
the parabola $y^{2}=4 a x$ aguin at $\left(a t_{2}, 2 a t_{2}\right)$, then
A. $t_{1} t_{2}=-1$
B. $t_{1} t_{2}=1$
C. $t_{1} t_{2}=2$
D. $t_{2} t_{2}=-2$

Answer: A
(D) Watch Video Solution
64. The equation of the parabola whose vertex is at $(2,-1)$ and focus at $(2,-3)$, is

$$
\begin{aligned}
& \text { A. } x^{2}+4 x-8 y-12=0 \\
& \text { B. } x^{2}-4 x+8 y+12=0 \\
& \text { C. } x^{2}+8 y=12 \\
& \text { D. } x^{2}-4 x+12=0
\end{aligned}
$$

Answer: B
65. The ends of a line segment are $P(1,3)$ and $Q(1,1), \mathrm{R}$ is a point on the line segment PQ such that $P R: Q R=1: \lambda$.If R is an interior point of the parabola $y^{2}=4 x$ then
A. $(0,1)$
B. $(-3 / 5,1)$
C. $(1 / 2,3 / 5)$
D. none of these

Answer: A

66. The vertex of the parabola
$y^{2}+6 x-2 y+13=0$ is
A. $(1,-1)$
B. $(-2,1)$
C. $(3 / 2,1)$
D. $(-7 / 2,1)$

Answer: B

- Watch Video Solution

67. The Cartesian equation of the directrix of the parabola whose parametrix equations are

$$
x=2 t+1, y=t^{2}+2 \text {, is }
$$

A. $y=2$
B. $y=1$
C. $y=-1$
D. $y=-2$

Answer: B
68. If the vertex of a parabola is $(0,2)$ and the extremities of latusrectum are $(-6,4)$ and $(6,4)$ then, its equation, is

$$
\begin{aligned}
& \text { A. } x^{2}-4 y+8=0 \\
& \text { B. } x^{2}+4 y-8=0 \\
& \text { C. } x^{2}-8 y+16=0 \\
& \text { D. } x^{2}+8 y-16=0
\end{aligned}
$$

Answer: C

69. A line L passing through the focus of the
parabola $(y-2)^{2}=4(x+1)$ intersects the two distinct point. If m be the slope of the line I, then
A. $\min (-\infty,-1) \cup(1, \infty)$
B. $m \in(-\infty, 0) \cup(0, \infty)$
C. $\min (-\infty, 0) \cup(0, \infty)$
D. none of these

Answer: C

70. Let $y=f(x)$ be a parabola, having its axis parallel to the y-axis, which is touched by the line $y=x$ at $x=1$. Then, $2 f(0)=1-f^{\prime}(0)$
(b) $\quad f(0)+f^{\prime}(0)+f^{0}=1 \quad f^{\prime}(1)=1$ $f^{\prime}(0)=f^{\prime}(1)$
A. $f^{\prime}(0)={ }^{\prime}(1)$
B. $2 f(0)=1-f^{\prime}(0)$
C. $f^{\prime}(1)=1$
D. $f(0)+f^{\prime}(0)+f^{\prime}(0)=1$

Answer: B
71. If two tangents drawn from the point (α, β) to the parabola $y^{2}=4 x$ are such that the slope of one tangent is double of the other, then prove that $\alpha=\frac{2}{9} \beta^{2}$.
A. $9 y=2 x^{2}$
B. $9 x=2 y^{2}$
C. $2 x=9 y^{2}$

D. none of these

Answer: B

D Watch Video Solution

72. The angle between the tangents drawn form

> the point $(3,4)$ to the parabola
> $y^{2}-2 y+4 x=0$, is
A. $\tan ^{-1}(8 \sqrt{5} / 7)$
B. $\tan ^{-1}(12 / \sqrt{5})$
C. $\tan ^{-1}(\sqrt{5} / 7)$
D. none of these

Answer: A

D Watch Video Solution

73. set of values of m for which a chord of slope m of the circle $x^{2}+y^{2}=4$ touches parabola $y^{2}=4 x$, may lie in intervel
A.

$$
\left(-\infty,-\sqrt{\frac{\sqrt{2} / 7}{2}}\right) \cup\left(\sqrt{\frac{\sqrt{2}-1}{2}, \infty}\right)
$$

B. $(-\infty,-1) \cup(1, \infty)$
C. $(-1,1)$

D. R

Answer: A

D Watch Video Solution

74. The mid-point of the line joining the common points of the line
$2 x-3 y+8=0$ and $y^{2}=8 x$, is
A. $(3,2)$
B. $(5,6)$
C. $(4,-1)$
```
D. (2,-3)
```


Answer: B

D Watch Video Solution

75. Tangents $P Q$ and $P R$ are draqn to the parabola
$y^{2}=20(x+5)$ and $y^{2}=60(x+15)$
respectively such that $\angle R P Q=\frac{\pi}{2}$, the locus of point P, is
A. $x+10=0$
B. $x+30=0$

$$
\text { C. } x+40=0
$$

D. none of these

Answer: D

D Watch Video Solution

76. $P C$ is the normal at P to the parabola $y^{2}=4 a x, C$ being on the axis. $C P$ is produced outwards to disothat $P Q=C P$; show that the locus of Q is a parabola.
A. ellipse
B. parabola
C. hyperbola

D. ciacle

Answer: B

D Watch Video Solution

77. From a fixed point A three normals are drawn
to the parabola $y^{2}=4 a x$ at the points P, Q and
R. Two circles C_{1} and C_{2} are drawn on AP and
$A Q$ as diameter. If slope of the common chord of the circles C_{1} and C_{2} be m_{1} and the slope of the tangent to teh parabola at R be m_{2}, then $m_{1} \times m_{2}$, is equal to
A. $\frac{1}{2}$
B. 2
C. $-\frac{1}{2}$
D. -2

Answer: A
78. The tangent to the parabola $y=x^{2}$ has been drawn so that the abscissa x_{0} of the point of tangency belongs to the interval [1,2]. Find x_{0} for which the triangle bounded by the tangent, the axis of ordinates, and the straight line $y=x 02$ has the greatest area.
A. 0
B. 1
C. 2
D. $\frac{3}{2}$

Answer: C

D Watch Video Solution

79. A circle drawn on any focal $A B$ of the parabola $y^{2}=4 a x$ as diameter cute the parabola again at C and D. If the parameters of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be t_{1}, t_{2}, t_{3} and t_{4} respectively, then the value of t_{3}, t_{4}, is
A. -1
B. 2
C. 3

D. none of these

Answer: C

D Watch Video Solution

80. Let F be the focus of the parabola $y^{2}=4 a x$ and M be the foot of perpendicular form point $P\left(a t^{2}, 2 a t\right)$ on the tangent at the vertex. If N is a point on the tangent at P , then $\frac{M N}{F N}$ equals A. $\frac{t^{2}}{t^{2}+1}$
B. $\frac{t^{2}+1}{t^{2}}$
C. 1

D. none of these

Answer: A

D Watch Video Solution

81. The focus of a parabola is (0,0) and vertex (1 ,
1). If two mutually perpendicular tangents can be drawn to a parabola from the circle $(x-2)^{2}+(y-3)^{2}=r^{2}$,then

$$
\begin{aligned}
& \text { A. }|r|>\frac{1}{\sqrt{2}} \\
& \text { B. } r>\frac{1}{\sqrt{2}} \\
& \text { C. } r=\frac{1}{\sqrt{2}} \\
& \text { D. }|r|<\frac{1}{\sqrt{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

82. The point P on the parabola $y^{2}=4 a x$ for which | $P R-P Q \mid$ is maximum, where $R(-a, 0)$ and Q
$(0, a)$ are two points,
A. $(a, 2 a)$
B. $(a,-2 a)$
C. (4a, 4a)
D. $(4 a,-4 a)$

Answer: A

D Watch Video Solution

Chapter Test

1. If $y=2 x+k$ is a tangent to the curve
$x^{2}=4 y$, then k is equal to
A. 4
B. 43467
C. -4
D. $-1 / 2$

Answer: C
2. The normal drawn at a point $\left(a t_{1}^{2}, 2 a t_{1}\right)$ of the parabola $y^{2}=4 a x$ meets on the point $\left(a r_{2}^{2}, 2 a t_{2}\right)$ then
A. $t_{1}=2 t_{2}$
B. $t_{1}^{2}=2 t_{2}$
C. $t_{1} t_{2}=1$
D. none of these

Answer: D
3. The mid-point of the chord $2 x+y-4=0$ of the parabola $y^{2}=4 x$ is
A. $(5 / 2,-1)$
B. $(-1,5 / 2)$
C. $(3 / 2,-1)$
D. none of these

Answer: A
(D) Watch Video Solution
4. The two ends of latusrectum of a parabola are the points $(3,6)$ and $(-5,6)$. The focus, is
A. $(1,6)$
B. $(-1,6)$
C. $(1,-6)$
D. $(-1,-6)$

Answer: B

5. Prove that the locus of the middle points of all chords of the parabola $y^{2}=4 a x$ passing through the vertex is the parabola $y^{2}=2 a x$.

$$
\begin{aligned}
& \text { A. } y^{2}=8 x \\
& \text { B. } y^{2}=2 x \\
& \text { C. } x^{2}+4 y^{2}=16 \\
& \text { D. } x^{2}=2 y
\end{aligned}
$$

Answer: B

6. The focus of the parabola
 $x^{2}-8 x+2 y+7=0$ is

A. $(4,7 / 2)$
B. $(4,9 / 2)$
C. $(9 / 2,4)$
D. $(1,0)$

Answer: B

- Watch Video Solution

7. The point of contact of the line $x-2 y-1=0$ with the parabola $y^{2}=2(x-3)$, is
A. $(5,2)$
B. $(5,-2)$
C. $(2,5)$
D. $(5,3)$

Answer: A
8. Find the number of distinct normals that can
be drawn from $(-2,1)$ to the parabola
$y^{2}-4 x-2 y-3=0$
A. 3
B. 2
C. 1
D. 4

Answer: A
9. At what point on the parabola $y^{2}=4 x$ the normal makes equal angle with the axes? $(4,4)$
(b) $(9,6)$ (d) $(4,-4)$ (d) $(1, \pm 2)$
A. $(4,4)$
B. $(9,6)$
C. $(4,-4)$
D. $(1,-2)$

Answer: D

10. Three normals to the parabola $y^{2}=x$ are drawn through a point (C, O) then $\mathrm{C}=$

$$
\text { A. } c=1 / 4
$$

B. $c=1 / 2$
C. $c<1 / 2$
D. none of these

Answer: C
(Watch Video Solution
11. The normal chord of a parabola $y^{2}=4 a x$ at
the point $P\left(x_{1}, x_{1}\right)$ subtends a right angle at the
A. focus
B. vertex
C. end of the latusrectum
D. none of these

Answer: A
12. $A B, A C$ are tangents to a parabola $y^{2}=4 a x ; p_{1}, p_{2}, p_{3}$ are the lengths of the perpendiculars from A, B, C on any tangents to the curve, then p_{2}, p_{1}, p_{3} are in:
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: B
13. The circles on the focal radii of a parabola as
diameter touch: A) the tangent at the vertex B)
the axis C) the directrix D) latus rectum
A. the tangent at the vertex
B. the axis
C. the directrix
D. none of these

Answer: A
14. If the normals from any point to the parabola $y^{2}=4 x$ cut the line $x=2$ at points whose ordinates are in AP, then prove that the slopes of tangents at the co-normal points are in GP.
A. A.P.
B. G.P.
C. H.P.
D. none of these
15. Consider a circle with its centre lying on the focus of the parabola, $y^{2}=2 p x$ such that it touches the directrix of the parabola. Then a point of intersection of the circle \& the parabola is:
A. $(p / 2, \pm p)$
B. $(p, p / 2)$
C. $(-p / 2, p)$
D. $(-p / 2,-p)$

Answer: A

D Watch Video Solution

16. The equation of the tangent to the parabola $y^{2}=8 x$ which is perpendicular to the line

$$
x-3 y+8=0 \text {, is }
$$

A. $9 x+3 y+2=0$
B. $3 x+y+2=0$
C. $3 x-y-1=0$
D. $9 x-3 y+2=0$

Answer: A

D Watch Video Solution

17. the tangent drawn at any point P to the parabola $y^{2}=4 a x$ meets the directrix at the point K. Then the angle which $K P$ subtends at the focus is
A. 30°
B. 45°
C. 60°

Answer: D

D Watch Video Solution

18. The tangent and normal at $P(t)$, for all real positive t, to the parabola $y^{2}=4 a x$ meet the axis of the parabola in T and G respectively, then the angle at which the tangent at P to the parabola is inclined to the tangent at P to the circle passing through the points P, T and G is

A. $\tan ^{-1}\left(t^{2}\right)$
 B. $\left.\cot ^{-1}\right)\left(t^{2}\right)$
 C. $\tan ^{-1}(t)$
 D. $\cot ^{-1}(t)$

Answer: C

D Watch Video Solution

19. The parabola $y^{2}=4 a x$ passes through the point (2, -6), then the length of its latusrectum, is
A. 18
B. 9
C. 6
D. 16

Answer: A

D Watch Video Solution

20. A variable circle passes through the fixed point $(2,0)$ and touches y-axis Then, the locus of its centre, is
A. a parabola
B. a circle
C. an ellipse
D. a hyperbola

Answer: A

D Watch Video Solution

21. The locus of the middle points of the focal chords of the parabola, $y^{2}=4 x$ is:
A. the axis

B. a focal chord

C. the directrix
D. the tangent at the vertex

Answer: C

D Watch Video Solution

22. If the Isope of the focal chord of $y^{2}=16 x$ is

2 , then the length of the chord, is
A. 22
B. 24
C. 20
D. 18

Answer: C

D Watch Video Solution

23. If $x-2 y-a=0$ is a chord of the parabola $y^{2}=4 a x$, then its langth, is

A. $4 a \sqrt{5}$

B. $40 a$
C. $20 a$
D. $15 a$

Answer: C

D Watch Video Solution

24. Equation of normal to the parabola $y^{2}=4 x$
which passes through $(3,0)$, is
A. $x+y=3$
B. $x+y+3=0$
C. $x-2 y=3$
D. none of these

Answer: A

D Watch Video Solution

25. Find the length of normal chord which subtends an angle of 90° at the vertex of the parabola $y^{2}=4 x$.
A. $6 \sqrt{3}$
B. $3 \sqrt{3}$
C. 2
D. 1

Answer: A

(D) Watch Video Solution

26. At what point on the parabola $y^{2}=4 x$ the normal makes equal angle with the axes? $(4,4)$
(b) $(9,6)$ (d) $(4,-4)$ (d) $(1, \pm 2)$
A. $(4,4)$
B. $(9,0)$
C. $(4,-4)$
D. $(1,-2)$

Answer: D

D Watch Video Solution

27. The circles on the focal radii of a parabola as
diameter touch: A) the tangent at the vertex B)
the axis C) the directrix D) latus rectum

A. axis

B. directrix

C. tangent at the vertex
D. none of these

Answer: C

D Watch Video Solution

28. Tangents are drawn at the ends of any focal chord of the parabola $y^{2}=16 x$. Then which of
the following statements about the point of intersection of tangents is true.
A. its abscissa is independent of the extremities of the focal chord
B. its ordinate is independent of the
extremities of the focal chord
C. it is at a distance of 8 units from the
vertex of the parabola
D. It is at a distance of 16 units from the
focus of the parabola

Answer: A

D Watch Video Solution

29. The angle between the pair of tangents
drawn form $(1,3)$ to the parabola $y^{2}=8 x$, is
A. $\tan ^{-1} 2$
B. $\tan ^{-1}\left(\frac{1}{2}\right)$
C. $\tan ^{-1}\left(\frac{1}{3}\right)$
D. $\tan ^{-1} 3$

Answer: C

D Watch Video Solution

30. A variable tangent to the parabola $y^{2}=4 a x$ meets the parabola $y^{2}=-4 a x \mathrm{P}$ and Q . The locus of the mid-point of PQ , is

$$
\text { A. } y^{2}=-2 a x
$$

B. $y^{2}=-a x$
C. $y^{2}=-\frac{4}{3} a x$
D. $y^{2}=-4 a x$

Answer: C
(D) Watch Video Solution

