© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - DHANPAT RAI \& CO MATHS (HINGLISH)

STRAIGHT LINES

Illustration

1. (i) Find the gradient of a straight line which is passes through the point
(-3.6) and the mid point of ($4,-5$) and ($-2,9$)
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{3 \pi}{4}$
2. The point $P(a, b), Q(c, d), R(a, d)$ and $S(c, b)$, where a, b, c, d are distinct real numbers, are
A. collinear
B. vertices of a square
C. vertices of a rhombus
D. concyclic

Answer: B

- Watch Video Solution

3. Determine x so that the line passing through $(3,4) \operatorname{and}(x, 5)$ makes an angle of 135^{0} angle with positive direction of x - axis

$$
\text { A. }-2
$$

B. 2
C. -1
D. 1

Answer: B

- Watch Video Solution

4. If the points $A(-2,-5), B(2,-2)$ and $C(8, a)$ are collinear, then
$a=$
A. $-5 / 2$
B. $5 / 2$
C. $3 / 2$
D. $1 / 2$

Answer: B

5. If x_{1}, x_{2}, x_{3} and y_{1}, y_{2}, y_{3} are both in $G . P$. with the same common ratio then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
A. lie on a straight line
B. lie on an ellipse
C. lie on a circle
D. are vertices of a triangle

Answer: A

- Watch Video Solution

6. Let $0<\alpha<\frac{\pi}{2}$ be a fixed angle . If $p=(\cos \theta, \sin \theta)$ and $Q(\cos (\alpha-\theta))$, then Q is obtained from P by
A. clockwise rotation around origin through an angle α
B. anti-clockwise rotation around origin through an angle α
C. reflection in the line through origin with slope $\tan \alpha$
D. reflection in the line through origin with slope $\tan \alpha / 2$

Answer: D

- Watch Video Solution

7. The medians $B E$ and $A D$ of a triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are perpendicular to each other, if.
A. $b=\sqrt{2} a$
B. $a= \pm \sqrt{2} b$
C. $b=-\sqrt{2} a$
D. $a=-2 b$

Answer: B

8. Find the equation of a line which is equidistant from the lines $x=-4$ and $x=8$.
A. $x=2$
B. $x=6$
C. $y=2$
D. $y=6$

Answer: A

- Watch Video Solution

9. The orthocentre of the triangle formed by the lines $x=2, y=3$ and $3 x+2 y=6$ is at the point
A. $(2,0)$
B. $(0,3)$
C. $(2,3)$
D. none of these

Answer: C

- Watch Video Solution

10. The equation of the pair of lines through the point (a, b) parallel to the coordinates axes, is
A. $(x-a)(y+b)=0$
B. $(a-b)(y-a)=0$
C. $(x-a)(y-b)=0$
D. $(x+a)(y-b)=0$

Answer: C

- Watch Video Solution

11. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle PQR
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

- Watch Video Solution

12. The equations of bisectors of the angles between the lines $|x|=|y|$ are
A. $y= \pm x, x=0$
B. $x=\frac{1}{2}, y=\frac{1}{2}$
C. $y=0, x=0$
D. none of these

Answer: C

- Watch Video Solution

13. A square of side 'a' lies above the x-axis and has one vertex at the origin. The side passing through the origin makes an angle α (0< $\alpha^{\prime}<$ pi/4) with the positive direction of x-axis. Find the equation of diagonal not passing through the origin ?
A. $y(\cos \alpha+\sin \alpha)+x(\cos \alpha-\sin \alpha)=a$
B. $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$
C. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
D. $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$

Answer: A

14. Consider the equation $y-y_{1}=m\left(x-x_{1}\right)$. If mandx_{1} are fixed and different lines are drawn for different values of y_{1}, then the lines will pass through a fixed point there will be a set of parallel lines all the lines intersect the line $x=x_{1}$ all the lines will be parallel to the line $y=x_{1}$
A. the lines will pass through a single point
B. there will be one possible line only
C. there will be a set of parallel lines
D. none of these

Answer: C

- Watch Video Solution

15. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1) \operatorname{and} R(7,3)$ Then equation of the line passing through $(1,-1)$ and parallel to $P S$ is $2 x-9 y-7=0$ $2 x-9 y-11=02 x+9 y-11=02 x+9 y+7=0$
A. $2 x-9 y-7=0$
B. $2 x-9 y-11=0$
C. $2 x+9 y-11=0$
D. $2 x+9 y+7=0$

Answer: D

- Watch Video Solution

16. The line $\frac{x}{a}-\frac{y}{b}=1$ cuts the x-axes at P. The equation of the line passes through point P and perpendicular to the line is:
A. $x+y=a b$
B. $x+y=a+b$
C. $a x+b y=a^{2}$
D. $b x+a y=b^{2}$

Answer: C

17. If the foot of the perpendicular from the origin to a straight line is at $(3,-4)$, then find the equation of the line.
A. $3 x+4 y=25$
B. $3 x-4 y+25=0$
C. $4 x+3 y-25=0$
D. $4 x-3 y+25=0$

Answer: A

- Watch Video Solution

18. Let $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ be three points. The equation of the bisector of the angle PQR
A. $\frac{\sqrt{3}}{2} x+y=0$
B. $x+\sqrt{3} y=0$
C. $\sqrt{3} x+y=0$
D. $x+\frac{\sqrt{3}}{2} y=0$

Answer: C

- Watch Video Solution

19. The point $\mathrm{P}(\mathrm{a}, \mathrm{b})$ lies on the straight line $3 x+2 y=13$ and the point $Q(b, a)$ lies on the straight line $4 x-y=-5$, then the equation of the line $P Q$ is
A. $x-y=5$
B. $x+y=5$
C. $x+y=-5$
D. $x-y=-5$

Answer: B

20. The perpendicular bisector of the line segment joining $P(1,4)$ and $Q(K, 3)$ has Y intercept -4 then a possible value of K is
A. -2
B. -4
C. 1
D. 2

Answer: B

- Watch Video Solution

21. A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A . Its equation is :
A. $x+y=7$
B. $3 x-4 y+7=0$
C. $4 x+3 y=24$
D. $3 x+4 y=25$

Answer: C

- Watch Video Solution

22. The straight line $a x+b y+c=0$ and the coordinate axes form an isosceles triangle under which one of the following consitions?
A. a,b,c are in G.P.
B. a, c, b are in G.P.
C. c, a, b are in G.P.
D. none of these

Answer: B

23. A line forms a triangle of area $54 \sqrt{3}$ square units with the coordinate axes. Find the equation of the line if the perpendicular drawn from the origin to the line makes an angle of 60° with the X-axis.
A. $\sqrt{3} x+y=18$
B. $x+\sqrt{3} y=0$
C. $x+\sqrt{3} y=18$
D. none of these

Answer: C

- Watch Video Solution

24. The line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction through an angle of 15°. find the equation of line in the new position. If b goes to c in the new position what will be the coordinates of C .
A. $\left(2+\frac{1}{\sqrt{2}}, \sqrt{3}\right)$
B. $\left(2+\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)$
C. $\left(2+\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}\right)$
D. $\left(2-\frac{1}{\sqrt{2}},-\frac{\sqrt{3}}{2}\right)$

Answer: D

- Watch Video Solution

25. The distance of a point $(2,3)$ from the line $2 x-3 y+9=0$ measured along a line $x-y+1=0$ is :
A. 4
B. $2 \sqrt{2}$
C. $8 \sqrt{2}$
D. $4 \sqrt{2}$

Watch Video Solution

26. A line through the point $\mathrm{A}(2,4)$ intersects the line $x+y=9$ at the point. The minimum distance of $A P$, is
A. $\frac{5}{\sqrt{2}}$
B. $\frac{7}{\sqrt{2}}$
C. $\frac{2}{\sqrt{2}}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

27. The distance of the point (1,1) from the line $2 x-3 y-4=0$ in the direction of the line $x+y=1$, is
A. $\sqrt{2}$
B. $5 \sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. none of these

Answer: A

- Watch Video Solution

28. Angle made with the x-axis by a straight line drawn through $(1,2)$ so that it intersects $x+y=4$ at a distance $\frac{\sqrt{6}}{3}$ from $(1,2)$ is
A. $\pi / 6$ and $\pi / 3$
B. $\pi / 8$ and $3 \pi / 8$
C. $\pi / 12$ and $5 \pi / 12$
D. none of these

Answer: C

29. The point $(2,1)$, translated parallel to the line $x-y=3$ by the distance of 4 units. If this new position A^{\prime} is in the third quadrant, then the coordinates of A^{\prime} are-
A. $(2+2 \sqrt{2}, 1+2 \sqrt{2})$
B. $(-2+\sqrt{2},-1-2 \sqrt{2})$
C. $(2-2 \sqrt{2}, 1-2 \sqrt{2})$
D. none of these

Answer: C

- Watch Video Solution

30. A straight line through origin O meets the lines $3 y=10-4 x$ and $8 x+6 y+5=0$ at point A and B respectively. Then, O divides the segment $A B$ in the ratio.
A. $3: 4$
B. 1: 2
C. 2: 3
D. $4: 1$

Answer: D

- Watch Video Solution

31. The point $(2,1)$ is translated parallel to the line $L: x-y=4$ by $2 \sqrt{3}$ units. If the new point Q lies in the third quadrant, then the equation of the line passing through Q and perpendicular to L is
A. $2 x+2 y+\sqrt{16}-1=0$
B. $x+y=3-3 \sqrt{6}$
C. $x+y=2-\sqrt{6}$
D. $x+y=3-2 \sqrt{6}$

D Watch Video Solution

32. A line passing through the point $\mathrm{P}(1,2)$ meets the line $x+y=7$ at the distance of 3 units from P. Then the slope of this line satisfies the equation :
A. $8 x^{2}-9 x+1=0$
B. $7 x^{2}-18 x+7=0$
C. $16 x^{2}-39 x+16=0$
D. $7 x^{2}-6 x-7=0$

Answer: B

33. If $\left(a, a^{2}\right)$ falls inside the angle made by the lines
$y=\frac{x}{2}, x>0$ and $y=3 x, x>0$, then a belongs to the interval
A. $\left(0, \frac{1}{2}\right)$
B. $(3, \infty)$
C. $\left(\frac{1}{2}, 3\right)$
D. $\left(-3,-\frac{1}{2}\right)$

Answer: C

- Watch Video Solution

34. Points (1,2) and ($-2,1$) are
A. on the same side of the $4 x+2 y=1$
B. on the line $4 x+2 y=1$
C. on the opposite side of $4 x+2 y=1$
D. none of these

Answer: C

D Watch Video Solution

35. The range of values of θ in the interval $(0, \pi)$ such that the points $(3,5)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y-1=0$, is
A. $\left(0, \frac{\pi}{2}\right)$
B. $\left(0, \frac{\pi}{4}\right)$
C. $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
D. none of these

Answer: A

- Watch Video Solution

36. Find the values of β so that the point $(0, \beta)$ lies on or inside the
$3 x+y+2=0,2 x-3 y+5=0 a n d x+4 y-14=0$.
A. $\left[\frac{5}{3}, \infty\right)$
B. $\left(-\infty, \frac{7}{2}\right]$
C. $\left[\frac{5}{3}, \frac{7}{2}\right]$
D. none of these

Answer: C

- Watch Video Solution

37. If the points $\left(a, a^{2}\right)$ and $(1,2)$ lie in the same angular region between the lines $3 x+4 y-1=0$ and $2 x+y-3=0$, then
A. $a<-3$ or , $a>1$
B. $a \in[-3,1]$
C. $a<\frac{1}{4}$ or,$a>-1$
D. none of these

- Watch Video Solution

38. If the point (α, α) falls between the lines $|x+y|=4$, then
A. $|\alpha|=4$
B. $|\alpha|=2$
C. $|\alpha|<2$
D. $|\alpha|<4$

Answer: C

Watch Video Solution

39. Find the value of λ, if the line
$3 x-4 y-13=0,8 x-11 y-33=0 \quad$ and $\quad 2 x-3 y+\lambda=0 \quad$ are
A. 7
B. 6
C. -7
D. 4

Answer: C

- Watch Video Solution

40. If the lines $x+2 a y+a=0, x+3 b y+b=0$ and $x+4 c y+c=0$ are concurrent then a, b, c are in
A. A.P.
B. G.P.
C. H.P.
D. none of these

Answer: C

41.

$x+a y+a=0, b x+y+b=0, c x+c y+1=0(a \neq b \neq c \neq 1)$ are concurrent then value of $\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=$
A. -1
B. 0
C. 1
D. none of these

Answer: C

Watch Video Solution

42. If lines $p x+q y+r=0, q x+r y+p=0 a n d r x+p y+q=0$ are concurrent, then prove that $p+q+r=0(w h e r e p, q, r$ are distinct $)$.
A. $p+q+r=0$
B. $p^{2}+q^{2}+r^{2}=p q+q r+r p$
C. $p^{3}+q^{3}+r^{3}=3 p q r$
D. none of these

Answer: C

- Watch Video Solution

43. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines $4 a x+2 a y+c=0$ and $5 b x+2 b y+d=0$ lies in the fourth quadrant and is equidistant from the two axes, then
A. $3 b c-2 a b=0$
B. $3 b c+2 a b=0$
C. $2 b c-3 a d=0$
D. $2 b c+3 a d=0$

- Watch Video Solution

44. The lines $x+y=|a|$ and $a x-y=1$ intersect each other in the first quadrant. Then the set of all possible values of a is the interval:
A. $[1, \infty)$
B. $(-1, \infty)$
C. $(-1,1)$
D. $(0, \infty)$

Answer: A

- Watch Video Solution

45. For $a>b>c>0$, if the distance between $(1,1)$ and the point of intersection of the line $a x+b y-c=0$ and $b x+a y+c=0$ is less
than $2 \sqrt{2}$ then, (A) $a+b-c>0$ (B) $a-b+c<0$ (C) $a-b+c>0$ (D) $a+b-c<0$
A. $a+b-c>0$
B. $a-b+c<0$
C. $a-b+c>0$
D. $a+b-c<0$

Answer: A

- Watch Video Solution

46. Equation of the line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a \quad$ is $x \cos \theta-y \sin \theta=a \sin 2 \theta$.
A. $x \cos \theta-y \sin \theta=a \cos \theta$
B. $x \cos \theta-y \sin \theta=a \cos 2 \theta$
C. $x \cos \theta-y \sin \theta=-a \cos 2 \theta$
D. none of these

Answer: B

- Watch Video Solution

47. if P is the length of perpendicular from origin to the line $\frac{x}{a}+\frac{y}{b}=1$ then prove that $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}$
A. $p^{2}=a^{2}+b^{2}$
B. $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$
C. $p=a+b$
D. $\frac{1}{p}=\frac{1}{a}+\frac{1}{b}$

Answer: B

D Watch Video Solution

48. If p and q are respectively the perpendiculars from the origin upon the striaght lines, whose equations are $x \sec \theta+y \cos e c \theta=a$ and $x \cos \theta-y \sin \theta a=\cos 2 \theta$, then $4 p^{2}+q^{2}$ is equal to
A. $p^{2}+p^{2}=a^{2}$
B. $p^{2}+4 p^{2}=a^{2}$
C. $4 p^{2}+p^{2}=a^{2}$
D. $4 p^{2}+p^{\prime 2}=4 a^{2}$

Answer: C

- Watch Video Solution

49. The line L given by $\frac{x}{5}+\frac{y}{b}=1$ passes through the point (13,32).the line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1$ then the distance between L and K is
A. $17 / \sqrt{15}$
B. $23 / \sqrt{17}$
C. $23 / \sqrt{15}$
D. $\sqrt{17}$

Answer: B

- Watch Video Solution

50. The area of the parallelogram formed by the lines
$2 x-3 y+a=0,3 x-2 y-a=0,2 x-3 y+3 a=0 \quad$ and
$3 x-2 y-2 a=0$ in square units, is
A. $\frac{a^{2}}{5}$
B. $\frac{2 a^{2}}{5}$
C. $\frac{3 a^{2}}{5}$
D. none of these

- Watch Video Solution

51. Prove that the area of the parallelogram formed by the lines $x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y s \in \alpha=q, x \cos \beta+y \sin \beta=$ rand $x \cos$,
A. $\left|\frac{(p-q)(r-s)}{\cos (\alpha-\beta)}\right|$
B. $\left|\frac{(p-q)(r-s)}{\sin (\alpha+\beta)}\right|$
C. $\left|\frac{(p-q)(r-s)}{\sin (\alpha-\beta)}\right|$
D. $\left|\frac{(p-q)(r-s)}{\cos (\alpha+\beta)}\right|$

Answer: C

- Watch Video Solution

52.

$\frac{x}{a}+\frac{y}{b}=1, \frac{x}{b}+\frac{y}{a}=1, \frac{x}{a}+\frac{y}{b}=2$ and $\frac{x}{b}+\frac{y}{a}=2 \quad$ form \quad a
rhombus of area (in square units)
A. $\frac{a b}{\left|a^{2}-b^{2}\right|}$
B. $\frac{a b}{a^{2}+b^{2}}$
C. $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$
D. $\frac{a^{2} b^{2}}{\left|a^{2}-b^{2}\right|}$

Answer: D

- Watch Video Solution

53. Write the area of the figure formed by the lines $a|x|+b|y|+c=0$.
A. $\frac{c^{2}}{|a b|}$
B. $\frac{2 c^{2}}{|a b|}$
C. $\frac{c^{2}}{2|a b|}$
D. none of these

Answer: B

54. Find the image of the point $(4,-13)$ in the line $5 x+y+6=0$.
A. $(1,-14)$
B. $(6,-15)$
C. $(-1,-14)$
D. none of these

Answer: C

- Watch Video Solution

55. If the image of point $P(2,3)$ in a line L is $Q(4,5)$ then, the image of point $R(0,0)$ in the same line is:
A. $(3,2)$
B. $(-2,3)$
C. $(-3,-2)$
D. $(3,-2)$

Answer: D

- Watch Video Solution

56. The point $(4,1)$ undergoes the following two successive transformations
(i) Reflection about the line $y=x$
(ii) Translation through a distance 2 units along the positive X -axis.

Then the final coordinate of the point are
A. $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
B. $\left(-\frac{1}{2}, \frac{7}{\sqrt{2}}\right)$
C. $\left(\frac{7}{\sqrt{2}}, \frac{1}{2}\right)$
D. none of these

Answer: B

- Watch Video Solution

57. The point $(4,1)$ undergoes the following three transformations successively: (a) Reflection about the line $\mathrm{y}=\mathrm{x}$ (b) Translation through a distance 2 units along the positive direction of the x-axis. (c) Rotation through an angle $\frac{\pi}{4}$ about the origin in the anti clockwise direction. The final position of the point is given by the co-ordinates.
A. $(2,3)$
B. $(2,3 \sqrt{2})$
C. $(0,3 \sqrt{2})$
D. none of these

Answer: C

58. Thu Line L has intercept a and b on the co-ordinate axes. When keeping the origin fixed, the coordinate axis are rotated around a fixed angle, then the line has intercepts p and q on rotate axis, then
A. $a^{2}+b^{2}=p^{2}+q^{2}$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
C. $a^{2}+p^{2}=b^{2}+q^{2}$
D. $\frac{1}{a^{2}}+\frac{1}{p^{2}}=\frac{1}{b^{2}}+\frac{1}{q^{2}}$

Answer: B

- Watch Video Solution

59. A straight line through the origin ' O ' meets the parallel lines $4 x+2 y=9$ and $2 x+y=-6$ at points P and Q respectively. Then the point ' O ' divides the segment $P Q$ in the ratio
A. 1:2
B. 2:1
C. $4: 2$
D. $4: 3$

Answer: D

- Watch Video Solution

60. The equations of the lines through $(-1,-1)$ and making angle 45° with the line $x+y=0$ Then combined equation of these lines are given by
A. $x^{2}-x y+x-y=0$
B. $x y-y^{2}+x-y=0$
C. $x y+x y+y=0$
D. $x y+x+y+1=0$

Answer: D

61. A vertex of an equateral triangle is $(2,3)$ and the opposite side is $x+y$ $=2$. The equaiton of other sides are
A. $(2 \pm \sqrt{3}) x-y=1 \pm 2 \sqrt{3}$
B. $(2 \pm \sqrt{3}) x+y=1 \pm 2 \sqrt{3}$
C. $(1 \pm 2 \sqrt{3}) x-y=2 \pm \sqrt{3}$
D. $(2 \pm \sqrt{3}) x+y=1 \pm 2 \sqrt{3}$

Answer: A

- Watch Video Solution

62. The st. lines $3 x+4 y=5$ and $4 x-3 y=15$ interrect at a point $A(3,-1)$. On these line the points B and C are chosen so that $A B=A C$. Find the possible eqns of the line $B C$ passing through the point (1, 2)
A. $x-7 y+13=0$ and $7 x+y+9=0$
B. $x+7 y-13=0$ and $7 x-y-9=0$
C. $x-7 y+13=0$ and $7 x+y-9=0$
D. $x-7 y-13=0$ and $7 x+y+9=0$

Answer: C

- Watch Video Solution

63. The straight line through the point of intersection of $a x+b y+c=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime}=0$ are parallel to the y -axis has the equation
A. $x\left(a b^{\prime}-a^{\prime} b\right)+\left(c b^{\prime}-c^{\prime} b\right)=0$
B. $x\left(a b^{\prime}=a^{\prime} b\right)+\left(c b^{\prime}-c^{\prime} b\right)=0$
C. $y\left(a^{\prime} b-a b^{\prime}\right)+\left(a^{\prime} c-a c^{\prime}\right)=0$
D. none of these

D Watch Video Solution

64. The set of lines $a x+b y+c=0$, where $3 a+2 b+4 c=0$, is concurrent at the point:
A. $(3 / 4,1 / 2)$
B. $(1 / 2,3 / 4)$
C. $(-3 / 4,-1 / 2)$
D. none of these

Answer: A

D Watch Video Solution

65. If a, b, c are in A. P then the lines represented by $a x+b y+c=0$
A. a single line
B. a family of concurrent lines
C. a family of parallel lines
D. none of these

Answer: B

- Watch Video Solution

66. If $u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is the same straight line u different straight line not a straight line none of these
A. $u=0$
B. a family of concurrent lines
C. a family of parallel lines
D. none of these

D Watch Video Solution

67. If $\quad u=a_{1} x+b_{1} y+c_{1}=0, v=a_{2} x+b_{2} y+c_{2}=0, \quad$ and $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the curve $u+k v=0$ is the same straight line u different straight line not a straight line none of these
A. a family of concurrent lines
B. a family of parallel line
C. $u=-0$ or $v=0$
D. none of these

Answer: B

- Watch Video Solution

68. The algebraic sum of the perpendicular distances from $A\left(x_{1}, y_{1}\right)$, $B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ to a variable line is zero. Then the line passes through (A) the orthocentre of $\triangle A B C$ (B) centroid of $\triangle A B C$ (C) incentre of $\triangle A B C$ (D) circumcentre of $\triangle A B C$
A. the orthocentre of $\triangle A B C$
B. the centroid of $\triangle A B C$
C. the circumcentre of $\triangle A B C$
D. none of these

Answer: B

- Watch Video Solution

69. If the point $(p, 5)$ lies on the parallel to y-axis and passing thorugh the intersection of the lines $2\left(a^{2}+1\right) x+b y+4\left(a^{3}+a\right)=0$, the p is equal to
A. 3a
B. $-2 a$
C. $-3 a$
D. 2a

Answer: B

- Watch Video Solution

70. Locus of the image of the point $(2,3)$ in the line $(2 x-3 y+4)+k(x-2 y+3)=0, k \varepsilon R$, is a : (1) straight line parallel to x-axis. (2) straight line parallel to y-axis (3) circle of radius $\sqrt{2}(4)$ circle of radius $\sqrt{3}$
A. circle of radius $\sqrt{2}$
B. circle of radis $\sqrt{3}$
C. straight line parallel to x-axis
D. straight line parallel to y-axis

- Watch Video Solution

71. For the straight lines $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the bisector of the obtuse angle between them, bisector of the acute angle between them, and bisector of the angle which contains (1, 2)
A. $9 x-7 y-41=0$
B. $7 x+9 y-3=0$
C. $9 x-7 y-3=0$
D. $7 x++9 x-41=0$

Answer: A

- Watch Video Solution

72. The equation of the bisector of the acute angle between the lines
$2 x-y+4=0$ and $x-2 y=1$ is
A. $x+y+5=0$
B. $x-y+1=0$
C. $x-y-5=0$
D. none of these

Answer: B

- Watch Video Solution

73. The equations of the bisector of the angle between the line $2 x+y-6=0$ and $2 x-4 y+7=0$ which contains the point $(1,2)$ is.
A. $6 x-2 y-5=0$
B. $2 x+6 y-19=0$
C. $6 x+2 y-5=0$
D. $2 x+6 y+19=0$

Answer: A

- Watch Video Solution

74. Find the locus of point of intersection of the lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b$ where alpha is the variable.
A. $x^{2}+y^{2}=a^{2}-b^{2}$
B. $x^{2}-y^{2}=a^{2}-b^{2}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. none of these

Answer: C

- Watch Video Solution

75. If O is the origin and Q is a variable points on $x^{2}=4 y$. Find the locus of the mid pint of OQ .
A. $y^{2}=2 x$
B. $y^{2}=x$
C. $x^{2}=y$
D. $x^{2}=2 y$

Answer: D

- Watch Video Solution

76. A variable line through the point $\left(\frac{6}{5}, \frac{6}{5}\right)$ cuts the coordinates axes in the point A and B. If the point P divides $A B$ internally in the ratio $2: 1$, show that the equation to the locus of P is:
A. $x y=2 x+y$
B. $5 x y=2 x+y$
C. $5 x y=2(2 x+y)$
D. $5 x y=2(x+2 y)$

Answer: C

- Watch Video Solution

Illustration 18

1. The locus of a point which moves difference of its distance from two fixed straight which are at right angles is equal to the distance from another fixed straight line is
A. a stright line
B. a circle
C. a parabola
D. an ellipse

- Watch Video Solution

Section I Solved Mcqs

1. If the quadrilateral formed by the lines $a x+b y+c=0, a^{\prime} x+b^{\prime} y+c=0, a x+b y+c^{\prime}=0, a^{\prime} x+b^{\prime} y+c^{\prime}=$ has perpendicular diagonals, then $b^{2}+c^{2}=b^{\prime 2}+c^{\prime 2}$ $c^{2}+a^{2}=c^{\prime 2}+a^{\prime 2} a^{2}+b^{2}=a^{\prime 2}+b^{\prime 2}(\mathrm{~d})$ none of these
A. $b^{2}+c^{2}=b^{2}+c^{2}$
B. $c^{2}+a^{2}=c^{2}+a^{2}$
C. $a^{2}+b^{2}=a^{2}+b^{2}$
D. none of these

Answer: C

2. If the orthocentre of the triangle formed by the lines $2 x+3 y-1=0, x+2 y-1=0, a x+b y-1=0$ is at the origin then (a, b) is given by.
A. $(6,4)$
B. $(-3,3)$
C. $(-8,8)$
D. $(0,7)$

Answer: C

- Watch Video Solution

3. The straight lines $x+2 y-9=0,3 x+5 y-5=0$, and $a x+b y-1=0$ are concurrent, if the straight line $35 x-22 y+1=0$ passes through the point $(a, b)(b)(b, a)(-a,-b)$ (d) none of these
A. (a, b)
B. (b, c)
C. (a, b)
D. $(-a, b)$

Answer: A

- Watch Video Solution

4. Let the algebraic sum of the perpendicular distances from the points $(2,0),(0,2) \operatorname{and}(1,1)$ to a variable straight line be zero. Then the line pass through a fixed point whose coordinates are $(1,1)$ b. $(2,2)$ c. $(3,3)$ d. $(4,4)$
A. $(-1,1)$
B. $(1,1)$
C. $(1,-1)$
D. $(-1,-1)$

D Watch Video Solution

5. If the point A is symmetric to the point $B(4,-1)$ with respect to the bisector of the first quadrant then $A B$ is
A. $3 \sqrt{2}$
B. $5 \sqrt{2}$
C. $7 \sqrt{2}$
D. $9 \sqrt{2}$

Answer: B

- Watch Video Solution

6. If the straight lines $a x+b y+c=0$ and $x \cos \alpha+y \sin \alpha=c$ encloses an angle of $\frac{\pi}{4}$ between them and meet the straight line
$x \sin \alpha-y \cos \alpha=0$ in the point then
A. $a^{2}+b^{2}=c^{2}$
B. $a^{2}+b^{2}=c^{2}$
C. $a^{2}+b^{2}=2 c^{2}$
D. $a^{2}+b^{2}=4$

Answer: B

- Watch Video Solution

7. A and B are fixed points such that $\mathrm{A} \mathrm{B}=2 \mathrm{a}$. The vertex C of $\triangle A B C$ such that $\cot A+\cot B=$ constant. Then locus of C is
A. perpendicular to $A B$
B. parallel to $A B$
C. inclined at an angle $A-B$ to $A B$
D. none of these

D Watch Video Solution

8. Two vertices of a triangle are $(5,-1)$ and $(-2,3)$. If the orthocentre of the triangle is the origin, then the third vertex is
A. $(4,7)$
B. $(-4,-7)$
C. $(2,-3)$
D. $(5,-1)$

Answer: B

- Watch Video Solution

9. The are enclosed by $2|x|+3|y| \leq 6$ is
A. 3
B. 12
C. 9
D. 24

Answer: B

- Watch Video Solution

10. If two vertices of an equilateral triangle have rational co-ordinates, then for the third vertex which one is most applicable?
A. integral coordinates
B. coordinates which are rational
C. at lest one coordinate irrational
D. coordinates which are irrational

Answer: C

11. The number of integral values of m for which the x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer is
A. 2
B. 0
C. 4
D. 1

Answer: A

Watch Video Solution

12. Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x$ and $y=n x+1$ equals to
A. $\frac{|m+n|}{(m-n)^{2}}$
B. $\frac{2}{|m+n|}$
C. $\frac{1}{|m+n|}$
D. $\frac{1}{|m-n|}$

Answer: D

D Watch Video Solution

13. The circumcentre of the triangle formed by the lines, $x y+2 x+2 y+4=0$ and $x+y+2=0$ is-
A. $(-1,-1)$
B. $(0,-1)$
C. $(1,1)$
D. $(-1,0)$
14. The lines $p\left(p^{2}+1\right) x-y+q=0 \quad$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for
A. no value of p
B. exactly one value of p
C. exactly two values of p
D. more than two value of p

Answer: B

- Watch Video Solution

15. A straight line through the origin ' O ' meets the parallel lines $4 x+2 y=9$ and $2 x+y=-6$ at points P and Q respectively. Then the point ' O ' divides the segment PQ in the ratio
A. $1: 2$
B. $3: 4$
C. 2: 1
D. $4: 3$

Answer: B

- Watch Video Solution

16. The point (3,2) is reflected in the y-axis and then moved a distance of 5 units towards the negative side of y-axis . The coordinate of the point thus obtained , are
A. $(3,-3)$
B. $(-3,3)$
C. $(3,3)$
D. $(-3,-3)$

- Watch Video Solution

17. If a, b, c are in harmonic progression, then the straight line $\left(\frac{x}{a}\right)+\left(\frac{y}{b}\right)+\left(\frac{1}{c}\right)=0$ always passes through a fixed point. Find that point.
A. $(-1,2)$
B. $(1,-2)$
C. (-1,-2)
D. $(1,2)$

Answer: B

- Watch Video Solution

18. Vertices of a variable triangle are $(3,4),(5 \cos \theta, 5 \sin \theta)$ and $(5 \sin \theta,-5 \cos \theta)$, where $\theta \in \mathbb{R}$. Locus of it's orthocentre is
A. $(x+y-1)^{2}+(x-y-7)^{2}=100$
B. $(x+y-7)^{2}+(x-y-1)^{2}=100$
C. $(x+y-7)^{2}+(x+y-1)^{2}=100$
D. $(x+y-7)^{2}+(x-y+1)^{2}=100$

Answer:

- Watch Video Solution

19. If point $P\left(\alpha, \alpha^{2}-2\right)$ lies inside the triangle formed by the lines $x+y=1, y=x+1$ and $y=-1$ then $\alpha \in$
A. $(-\sqrt{3}, \sqrt{3})$
в. $\left(\frac{1-\sqrt{13}}{2},-1\right) \cup\left(1, \frac{-1+\sqrt{13}}{2}\right)$
C. $[-1,1]$
D. $\left(\frac{1-\sqrt{13}}{2}, \frac{-1+\sqrt{13}}{2}\right)$

Answer: B

- Watch Video Solution

20. $A(3,4), B(0,0)$ and $c(3,0)$ are vertices of $\triangle A B C$. If ' P ' is the point inside the $\triangle A B C$, such that $d(P, B C) \leq \min .\{d(P, A B), d(P, A C)\}$.

Then the maximum of $d(P, B C)$ is.(where $d(P, B C)$ represent distance between P and $B C$).
A. 1
B. $1 / 2$
C. 2
D. none of these

Answer:

21. The line parallel to the X-axis and passing through the point of intersection of the lin $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$ where $(a, b) \neq(0,0)$ is
A. above the x-axis at a distance of $2 / 3$ from it .
B. above the x-axis at a distance of $3 / 2$ from it .
C. below the x-axis at a distance of $2 / 3$ from it.
D. below the x-axis at a distance of $3 / 2$ from it

Answer:

- Watch Video Solution

22. lfP $\left(1+\frac{1}{\sqrt{2}}, 2+\frac{1}{\sqrt{2}}\right)$ be any point on a line, then the range of values of t for which the point P lies between the parallel lines $x+2 y=1$ and $2 x+4 y=15$ is:
A. $\left(\frac{-4 \sqrt{2}}{5}, \frac{5 \sqrt{2}}{6}\right)$
B. $\left(0, \frac{5 \sqrt{2}}{6}\right)$
C. $\left(\frac{-4 \sqrt{2}}{5}, 0\right)$
D. none of these

Answer:

- Watch Video Solution

23. If the point (a, a) falls between the lines $|x+y|=2$. then .
A. $|a|=2$
B. $|a|=1$
C. $|a|<1$
D. $|a|<\frac{1}{2}$

Answer: C

24. The side $A B$ of an isosceles triangle is along the axis of X with vertices
$\mathrm{A}(-1,0)$ and $\mathrm{AB}=\mathrm{AC}$. The equation of the side BC when $\angle A=120^{\circ}$ and $B C=4 \sqrt{3}$ is :
A. $x+\sqrt{3} y-3=0$
B. $\sqrt{3} x+y=3$
C. $x+y=\sqrt{3}$
D. none of these

Answer:

- Watch Video Solution

25. Point $P(2,4)$ is translated through a distance $3 \sqrt{2}$ units measured parallel to the line $y-x-1=0$ in the directionof decreasing ordinates to reach at Q . If R is the imageof Q with respect to the line $y-x-1=0$
, then thecoordinates of R are given by $(1)(5,7)(2)(-1,1)(3)(6,6)(4)$ $(0,0)$
A. $(-1,1)$
B. $(5,7)$
C. $(6,6)$
D. $(0,0)$

Answer:

(Watch Video Solution

26. If the distance of any point (x, y) from origin is defined as $d(x, y)=\max \{|x|,|y|\}$, then the locus of the point (x, y) where $d(x, y)=1$ is
A. a circle
B. a square
C. a triangle
D. none of these

Answer: B

- Watch Video Solution

27. A family of lines is given by $(1+2 \lambda) x+(1-\lambda) y+\lambda=0$ being a parameter. The line belonging to this family at the maximum distance from the point $(1,4)$ is $a x+b y+c=0$, then find the value of $\frac{a+b+c}{16}$
A. $4 x-y+1=0$
B. $33 x+12 y 7=0$
C. $12 x+33 y=7$
D. none of these

Answer: C

- Watch Video Solution

28. In the quadratic equation $a x^{2}+b x+c=0$, if $\Delta=b^{2}-4 a c$ and $\alpha+\beta, \alpha^{2}+\beta^{2}, \alpha^{3}+\beta^{3}$ are in GP. where α, β are the roots of $a x^{2}+b x+c=0$, then
A. $(1,-1)$
B. $(1,1)$
C. (-1/6, -7/6)
D. $(1 / 6,7 / 6)$

Answer: C

- Watch Video Solution

29. Find the coordinates of one vertex of an equilateral triangle with centroid at the origin and the opposite side $x+y-2=0$.
A. $(-1,1)$
B. $(2,2)$
C. $(-2,-2)$
D. none of these

Answer: C

- Watch Video Solution

30. Let $\mathrm{A}(1,2), \mathrm{B}(3,4)$ be two points and $\mathrm{C}(\mathrm{x}, \mathrm{y})$ be a point such that area of
$\Delta A B C$ is 3 sq. units and $(x-1)(x-3)+(y-2)(y-4)=0$. Then number of positions of C , in the xy plane is
A. 2
B. 4
C. 8
D. none of these

Answer:

31. The co-ordinates of the four vertices of quadrilateral are $(-2,4),(-1,2),(1,2)$ and $(2,4)$, taken in order. The equation of the line through the vertex $(-1,2)$ and dividing the quadrilateral in two'equal parts is:
A. $x+1=0$
B. $x+y=1$
C. $x-y+3=0$
D. none of these

Answer:

(D) Watch Video Solution

32. The bisector of the acute angle formed between the lines $4 x-3 y+7=$ 0 and $3 x-4 y+14=0$ has the equation
B. $x-y-3=0$
C. $x-y+3=0$
D. $3 x-y-7=0$

Answer: C

D Watch Video Solution

33. The equation of the bisector of that angle between the lines $x+y=3$ and $2 x-y=2$ which contains the point $(1,1)$ is
A. $(\sqrt{5}-2 \sqrt{2}) x+(\sqrt{5}+\sqrt{2}) y-3 \sqrt{5}+2 \sqrt{2}=0$
B. $(\sqrt{5}+2 \sqrt{2}) x+(\sqrt{5}-\sqrt{2}) y-3 \sqrt{5}-2 \sqrt{2}=0$
C. $3 x=10$
D. none of these

Answer: A

34. If the area of the parallelogram formed by the lines $2 x-3 y+a=0,3 x-$ $2 y-a=0,2 x-3 y+3 a=0$ and $3 x-2 y-2 a=0$ is 10 square units, then $a=$
A. ± 1
B. ± 10
C. ± 5
D. none of these

Answer: C

- Watch Video Solution

35. If a vertex of an equilateral triangle is the origin and the side opposite to it has the equation $x+y=1$, then orthocentre of the triangle is :
A. $(1 / 3,1 / 3)$
B. $(\sqrt{2} / 3, \sqrt{2} / 3)$
C. $(2 / 3,2 / 3)$
D. none of these

Answer:

- Watch Video Solution

36. Let $A(3,4)$ and $B(5,8)$ be two points. If C is a point on the x-axis such that $A C+B C$ is minimum then the co ordinates of C are
A. $(5 / 3,0)$
B. $(1 / 3,0)$
C. $(3,0)$
D. none of these

Answer:

37. The equation of straight line equally inclined to the axes and equidistant from the point $(1,-2)$ and $(3,4)$ is:
A. $x+y+1=0$
B. $x+y+2=0$
C. $x-y-2=0$
D. $x-y-1=0$

Answer: D

- Watch Video Solution

38. The point $A(2,1)$ is shifted by $3 \sqrt{2}$ unit distance parallel to the line $x+y=1$ in the direction of increasing ordinate to reach a point B. Find the image of B by the line $x+y=1$.
A. (5,-2)
B. $(-3,2)$
C. $(5,4)$
D. $(-1,4)$

Answer:

- Watch Video Solution

39. The equation of the line AB is $y=x$. If A and B lie on the same side of the line mirror $2 x-y=1$, then the equation of the image of $A B$ is (a) $x+y-2=0$ (b) $8 x+y-9=0$ (c) $7 x-y-6=0$ (d)'None of these
A. $x+y-2=0$
B. $8 x+y-9=0$
C. $7 x-y-6=0$
D. none of these

Answer:

40. If a ray travelling along the line $x=1$ gets reflected from the line $\mathrm{x}+$ $y=1$, then the eqaution the line along which the reflected ray travels is
A. $y=0$
B. $x-y=1$
C. $x=0$
D. none of these

Answer:

- Watch Video Solution

41. Equation of the bisector of angle B of the triangle ABC is $y=x$. If A is
$(2,6)$ and B is $(1,1)$; equation of side BC is (A) $2 x+y-3=0$
$x-5 y+4=0$ (C) $x-6 y+5=0$ (D) none of these

$$
\text { A. } 2 x+y-3=0
$$

B. $x-5 y+4=0$
C. $x-6 y+5=0$
D. none of these

Answer:

- Watch Video Solution

42. Let $A 3(0,4)$ and $B s(21,0) \in R$. Let the perpendicular bisector of $A B$ at M meet the y-axis at R. Then the locus of midpoint P of $M R$ is $y=x^{2}+21$
A. $x^{2}+y^{2}=\frac{1}{4}$
B. $(y-2)^{2}-x^{2}=4$
C. $y+x^{2}=2$
D. $3 x^{2}+y^{2}=8$

Answer: C

43. Let A and B have coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively. We define the distance between A and B as
$\mathrm{d}(\mathrm{A}, \mathrm{B})=\max \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right\}$
If $d(A, O)=1$, where O is the origin, then the locus of A has an area of
A. 1sq. Unit
B. 2 sq. units
C. 4sq. units
D. $1 / 4$ sq. units

Answer: C

- Watch Video Solution

44. Number of integral points (integral points means both the coordinates should be integer) exactly in the interior of the triangle with
vertices $(0,0),(0,15)$ and $\operatorname{Or}(15,0)$ is
A. 133
B. 190
C. 233
D. 105

Answer: B

- Watch Video Solution

45. Prove that the locus of the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$, and $(1,0)$, where t is a parameter, is circle.
A. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}=a^{2}-b^{2}$
C. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$

Answer:

- Watch Video Solution

46. The locus of a point which moves difference of its distance from two fixed straight which are at right angles is equal to the distance from another fixed straight line is
A. a straight line
B. a circle
C. a parabola
D. an ellipse

Answer: A

- Watch Video Solution

47. If the sum of the distances of a point from two perpendicular lines in a plane is 1 , then its locus is a square (b) a circle a straight line (d) two intersecting lines
A. a circle
B. an ellipse
C. a hyperbola
D. none of these

Answer:

- Watch Video Solution

48. distance of the lines $2 x-3 y-4=0$ from the point $(1,1)$ measured paralel to the line $x+y=1$ is
A. $\sqrt{2}$
B. $\frac{5}{\sqrt{2}}$
C. $\frac{1}{\sqrt{2}}$
D. 6

Answer:

- Watch Video Solution

49. $A B C$ is an isosceles triangle. If the coordinates of the base are $B(1,3)$ and $C(-2,7)$, the coordinates of vertex A can be $(1,6)$ (b) $\left(-\frac{1}{2}, 5\right)\left(\frac{5}{6}, 6\right)$ (d) none of these
A. $(1,6)$
B. $(1 / 2,5)$
C. $(5 / 6,6)$
D. none of these

Answer:

50. The co-ordinate axes are rotated about the origin O in the counterclockwise direction through an angle 60° If p and q are the intercepts made on the new axes by a straight line whose equation referred to the original axes is $\mathrm{x}+\mathrm{y}=1$, then $\frac{1}{p^{2}}+\frac{1}{q^{2}}=$
A. 2
B. 3
C. 6
D. 8

Answer: A

- Watch Video Solution

51. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value
of $\quad c \quad$ is $\quad a a 2-a 22+b 12-b 22 \quad \sqrt{a 12+b 12-a 22-b 22}$ $\frac{1}{2}(a 12+a 22+b 12+b 22) \frac{1}{2}(a 22+b 22-a 12-b 12)$
A. $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$
B. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$
C. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
D. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$

Answer: B

- Watch Video Solution

52. Let $A(2,-3)$ and $B(-2,1)$ be vertices of a triangle $A B C$. If the centroid of this triangle moves on line $2 x+3 y=1$, then the locus of the vertex C is the line :
A. $3 x-2 y=3$
B. $2 x-3 y=7$
C. $3 x+2 y=5$
D. $2 x+3 y=9$

Answer: D

- Watch Video Solution

53. The equation of the straight line passing through the point (4.3) and making intercepts on the co ordinate axes whose sum is -1 , is
A. $\frac{x}{2}-\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
B. $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
C. $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{2}+\frac{y}{1}=1$
D. $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$

Answer: A

- Watch Video Solution

54. The locus of the orthocentre of the triangle formed by the lines $(1+p) x-p y+p(1+p)=0,(1+q) x-q y+q(1+q)=0$ and $\mathrm{y}=0$, where $p \neq \cdot q$, is (A) a hyperbola (B) a parabola (C) an ellipse (D) a straight line
A. hyperbola
B. a parabola
C. an ellipse
D. a straight line

Answer: D

- Watch Video Solution

55. A straight line L through the point $(3,-2)$ is inclined at an angle 60° to the line $\sqrt{3} x+y=1$ If L also intersects the x -axis then equation of L is
A. $\sqrt{3} x+y+2-3 \sqrt{3}=0$
B. $y-\sqrt{3} x+2+3 \sqrt{3}=0$
C. $\sqrt{3} y-x+3+2 \sqrt{3}=0$
D. $\sqrt{3} y+x-3+2 \sqrt{3}=0$

Answer:

- Watch Video Solution

56. IfA $(2,-3)$ and $B(-2,1)$ are two vertices of a triangle and third vertex moves on the line $2 x+3 y$ 9,th the locus of the centroid of the triangle is 21. AIEEE-2011 (1) $x-y=1$ (2) $2 x+3 y=1$ (3) $2 x+3 y=3$ (4) $2 x-3 y=1$
A. $2 x+3 y=1$
B. $2 x+y=3$
C. $2 x-3 y=1$
D. $x-y=1$

D Watch Video Solution

57. A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching x axis, the equation of the reflected ray is
A. $y=x+\sqrt{3}$
B. $\sqrt{3} y=x-\sqrt{3}$
C. $y=\sqrt{3} x-\sqrt{3}$
D. $\sqrt{3} y=x-1$

Answer: B

D Watch Video Solution

58. Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1) \operatorname{and} R(7,3)$ Then equation of the line passing
through $(1,-1)$ and parallel to $P S$ is $2 x-9 y-7=0$ $2 x-9 y-11=02 x+9 y-11=02 x+9 y+7=0$
A. $4 x+7 y+3=0$
B. $2 x-9 y-11=0$
C. $4 x-7 y+11=0$
D. $2 x+9 y+7=0$

Answer: D

- Watch Video Solution

59. For a point P in the plane, let $d_{1}(P)$ and $d_{2}(P)$ be the distances of the point P from the lines $x-y=0 a n d x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq d_{1}(P)+d_{2}(P) \leq 4$, is
A. 4 sq.units
B. 6 units
C. 8 sq. units
D. 2 sq. units

Answer: B

- Watch Video Solution

60. The area of region bounded by the lines $y=x, y=0$ and
$x=\sin ^{-1}\left(a^{4}+1\right)+\cos ^{-1}\left(a^{4}+1\right)-\tan ^{-1}\left(a^{4}+1\right)$ is
A. $\frac{\pi}{8}-\frac{a^{2}}{4}$
B. $\frac{\pi^{2}}{8}-\frac{a^{2}}{2}$
C. $\frac{\pi^{2}}{16}$
D. $\frac{\pi^{2}}{32}$

Answer: D

- Watch Video Solution

61. A ray of light is incident along a line which meets another line, $7 x-y+1=0$, at the point $(0,1)$. The ray isthen reflected from this point along the line, $y+2 x=1$. Then the equation of the line of incidence of the ray of light is (A) $41 x+38 y-38=0$

$$
\begin{equation*}
41 x-38 y+38=0 \text { (C) } 41 x+25 y-25=0 \text { (D) } 41 x-25 y+25=0 \tag{B}
\end{equation*}
$$

A. $41 x+38 y-38=0$
B. $41 \mathrm{x}-38 \mathrm{y}+38=0$
C. $41 x+25 y-25=0$
D. $41 x-25 y+25=0$

Answer: B

(D) Watch Video Solution

62. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which
one of the following is a vertex of this rhombus ? (1) $(-3,-9)$ (2) $(-3,-8)$ (3) $\left(\frac{1}{3},-\frac{8}{3}\right)$ (4) $\left(-\frac{10}{3},-\frac{7}{3}\right)$
A. $(-3,-8)$
B. $\left(\frac{1}{3},-\frac{8}{3}\right)$
C. $\left(-\frac{10}{3},-\frac{7}{3}\right)$
D. $(-3,-9)$

Answer: B

- Watch Video Solution

63. In a triangle $A B C$, right angled at the vertex A, if the position vectors of A, B and C are respectively $3 \hat{i}+\hat{j}-\hat{k},-\hat{i}+3 \hat{j}+p \hat{k}$ and $5 \hat{i}+q \hat{j}-4 \hat{k}$, then the point (p, q) lies on a line
A. parallel to y-axis
B. making an acute angle with the positive direction of x-axis
C. parallel to x-axis
D. making an obtuse angle with the positive direction of x axis

Answer: B

- Watch Video Solution

64. If a variable line drawn through the intersection of the lines $\frac{x}{3}+\frac{y}{4}=1$ and $\frac{x}{4}+\frac{y}{3}=1$ meets the coordinate axes at A and $B,(A \neq B)$, then the locus of the midpoint of $A B$ is (A)
$6 x y=7(x+y)$
(B) $\quad 4(x+y)^{2}-28(x+y)+49=0$
$7 x y=6(x+y)$ (D) $14(x+y)^{2}-97(x+y)+168=0$
A. $7 x y=6(x+y)$
B. $6 x y=7(x+y)$
C. $4(x+y)^{2}-28(x+y)+49=0$
D. $14(x+y)^{2}-97(x+y)+168=0$

Section 1 Solved Mcqs Example

1. Two vertices of a triangle are ($3,-2$) and $(-2,3)$ and its orthocentre is $(-6,1)$
. Then the third vertex of this triangle can not lie on the line
A. $6 x+y=0$
B. $4 x+y=2$
C. $5 x+y=2$
D. $3 x+y=3$

Answer: C

- Watch Video Solution

Section li Assertion Reason Type Mcqs

1. Statement -1 : The lines $(a+b) x+2(a-b) y=2 a$ are concurrent at the point (1, 1/2) .

Statement-2: $L_{1}+\lambda L_{2}=0$ represents the equation of family of lines passing through the intersection of the lines $L_{1}=0$ and $L_{2}=0$ for all non-zero finite value of λ
A. Statement -1 is True , Statement -2 is true , Statement- 2 is a correct explanation for statement - 1
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement -2 is False .
D. Statement -1 is False , Statement -2 is True .

Answer: A

- Watch Video Solution

2. Statement-1: Reflection of the point $(-3,2)$ in the line $x+y=0$ is $(-2$, 3).Statement-2: The reflection of a point $P(\alpha, \beta)$ in the line ax $+\mathrm{by}+\mathrm{c}=0$ is the point $Q\left(\alpha^{\prime}, \beta^{\prime}\right)$ if $\left(\frac{\alpha+\alpha^{\prime}}{2}, \frac{\beta+\beta^{\prime}}{2}\right)$ lies on the line
A. Statement -1 is True , Statement -2 is true, Statement- 2 is a correct explanation for statement - 2
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement -1 is False , Statement -2 is True .

Answer: C

- Watch Video Solution

3. Statement-1 : If the perpendicular bisector of the line segment joining points $\mathrm{A}(\mathrm{a}, 3)$ and $\mathrm{B}(1,4)$ has y -intercept -4 , then $a= \pm 4$.

Statement- 2 : Locus of a point equidistant from two given points is the perpendicular bisector of the line joining the given points.
A. Statement -1 is True , Statement -2 is true , Statement- 2 is a correct explanation for statement -3
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement -2 is False .
D. Statement -1 is False , Statement -2 is True .

Answer: A

- Watch Video Solution

4. Consider the system of equations

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=0 \\
& a_{2} x+b_{2} y+c_{2} z=0
\end{aligned}
$$

$a_{3} x+b_{3} y+c_{3} z=0$
If $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$, then the system has
A. Statement -1 is True , Statement -2 is true, Statement- 2 is a correct explanation for statement-4
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False , Statement -2 is True .

Answer: A

- Watch Video Solution

5. Statement -1 : The circumcentre of the triangle formed by the lines $x+y$
$=0, x-y=0$ and $x+5=0(-5,0)$.
Statement-2 : Cicumcentre of a triangle lies inside the triangle
A. Statement -1 is True, Statement -2 is true, Statement- 2 is a correct explanation for statement - 5
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement-1 .
C. Statement-1 is True, Statement - 2 is False .
D. Statement-1 is False, Statement -2 is True .

Answer: C

- Watch Video Solution

6. Statement 1: Each point on the line $y-x+12=0$ is equidistant from the lines $4 y+3 x-12=0,3 y+4 x-24=0$ Statement 2: The locus of a point which is equidistant from two given lines is the angular bisector of the two lines.
A. Statement -1 is True, Statement -2 is true, Statement- 2 is a correct explanation for statement - 6
B. Statement-1 is True , Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True, Statement - 2 is False .
D. Statement - 1 is False, Statement -2 is True .

Answer: A

- Watch Video Solution

7. Prove that the locus of the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$, and $(1,0)$, where t is a parameter, is circle.
A. Statement -1 is True , Statement -2 is true, Statement- 2 is a correct
explanation for statement-7
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False, Statement -2 is True .

Answer: B

- Watch Video Solution

8. Statement -1 : The line $3 x+2 y=24$ meets the coordinates axes at A and B, and the perpendicular bisector of $A B$ meets the line through ($0,-1$) parallel to the x-axis at C. The area of $\Delta A B C$ is 91 square units .

Statement-2 : Area of the triangle with vertices at $(a, 0),(0, b)$ and (a, b) is ab/2 sq. units.
A. Statement -1 is True, Statement -2 is true, Statement- 2 is a correct explanation for statement-8
B. Statement-1 is True , Statement-2 is True, Statement -2 is not a correct explanation for Statement-1.
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False, Statement -2 is True .

Answer: B

- Watch Video Solution

9. Statement - 1 : If non-zero numbers a, b, c are in H.P., then the equation $\frac{x}{a}+\frac{y}{b}=\frac{1}{c}$ represents a family of concurrent lines.

Statement-2 : A linear equation $p x+q y=1$ in x, y represents a family of straight lines passing through a fixed point iff there is a linear relation between p and q .
A. Statement -1 is True, Statement -2 is true, Statement- 2 is a correct explanation for statement-9
B. Statement-1 is True , Statement-2 is True, Statement -2 is not a correct explanation for Statement-1 .
C. Statement-1 is True, Statement - 2 is False .
D. Statement - 1 is False, Statement -2 is True .

(D) Watch Video Solution

10. Statement-1: Equations $(2 \pm \sqrt{3}) x-y=1 \pm 2 \sqrt{3}$ represent two sides of an equilateral triangle having one vertex $(2,3)$ and $x+y-2=0$ as the opposite side .

Statement - 2 : The equation of the lines passing through $\left(x_{1}, y_{1}\right)$ and making constant angle α with the line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ are given by
$y-y_{1}=\frac{m \pm \tan \alpha}{1 \pm \tan \alpha}\left(x-x_{1}\right)$
A. Statement -1 is True , Statement -2 is true , Statement- 2 is a correct
explanation for statement - 10
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False , Statement -2 is True .

Answer: A

11. Statement -1 : For the straight lines $3 x-4 y+5=0$ and $5 x+12 y-1=0$, the equation of the bisector of the angle which contains the origin is 16 x $+2 y+15=0$ and it bisects the acute angle between the given lines.
statement - 2 : Let the equations of two lines be $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ where c_{1} and c_{2} are positive. Then, the bisector of the angle containing the origin is given by

$$
\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{2}^{2}+b_{1}^{2}}}=\frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}
$$

If $a_{1} a_{2}+b_{1} b_{2}>0$, then the above bisector bisects the obtuse angle between given lines.
A. Statement -1 is True , Statement -2 is true, Statement- 2 is a correct explanation for statement - 11
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False , Statement -2 is True .

Answer: D

- Watch Video Solution

12. $A B C$ is a triangle formed by the lines $x y=0$ and $x+y=1$.

Statement-1: Orthocentre of the triangle ABC is at the origin .
Statement - 2 : Circumcentre of $\Delta A B C$ is at the point $(1 / 2,1 / 2)$.
A. Statement -1 is True , Statement -2 is true , Statement- 2 is a correct
explanation for statement - 12
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement -2 is False .
D. Statement -1 is False , Statement -2 is True .

Answer: B

13. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisectors of the acute angle between L_{1} and L_{2} intersect L_{3} at R .

Statement 1 : The ratio PR: RQ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles .
A. Statement -1 is True , Statement -2 is true, Statement- 2 is a correct explanation for statement - 13
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False , Statement -2 is True .

Answer: C

- Watch Video Solution

14. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisectors of the acute angle between L_{1} and L_{2} intersect L_{3} at R .

Statement 1 : The ratio PR : RQ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles .
A. Statement -1 is True , Statement -2 is true , Statement- 2 is a correct explanation for statement-14
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False , Statement -2 is True .

Answer: A

- Watch Video Solution

1. Let L be the line $\mathrm{y}=2 \mathrm{x}$, in the two dimensional plane .

Statement 1 : The image of the point $(0,1)$ in L is the point $(4 / 5,3 / 5)$
Statement 2 : The points (0,1) and $(4 / 5,3 / 5)$ lie on opposite sides of the line L and are at equal distance from it .
A. Statement -1 is True , Statement -2 is true, Statement- 2 is a correct explanation for statement-15
B. Statement-1 is True, Statement-2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement-1 is True , Statement - 2 is False .
D. Statement - 1 is False , Statement -2 is True .

Answer: A

- Watch Video Solution

1. If $P=(1,0) ; Q=(-1.0) \& R=(2,0)$ are three given points, then the locus of the points S satisfying the relation, $S Q^{2}+S R^{2}=2 S P^{2}$ is -
A. a straight line parallel to x-axis
B. circle through origin
C. circle with centre at the origin
D. a straight line parallel to y-axis

Answer: D

- Watch Video Solution

2. Find the locus of the mid-point of the portion of the line $x \cos \alpha+y \sin \alpha=p$ which is intercepted between the axes.
A. $x^{2}+y^{2}=4 p^{2}$
B. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{p^{2}}$
C. $x^{2}+y^{2}=\frac{4}{p^{2}}$
D. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{2}{p^{2}}$

Answer: B

- Watch Video Solution

3. Locus of the point of intersection of the lines $x \cos \alpha+y \sin \alpha=a$ and $x \sin \alpha-y \cos \alpha=b$ where α is variable.
A. $2\left(x^{2}+y^{2}\right)=a^{2}+b^{2}$
B. $x^{2}-y^{2}=a^{2}-b^{2}$
C. $x^{2}+y^{2}=a^{2}+b^{2}$
D. none of these

Answer: C

- Watch Video Solution

4. if x and y coordinates of a point P in x - yplane are given by $x=(u \cos \alpha) t, y=(u \sin \alpha) t-\frac{1}{2} g t^{2}$ where t is a aprameter and u, α, g the constants. Then the locus of the point P is a parabola then whose vertex is:
A. a circle
B. a parabola
C. an ellipse
D. none of these

Answer: B

- Watch Video Solution

5. If $A(\cos \alpha, \sin \alpha), B(\sin \alpha,-\cos \alpha), C(1,2)$ are the vertices of $A B C$, then as α varies, find the locus of its centroid.
A. $x^{2}+y^{2}-2 x-4 y+1=0$
B. $3\left(x^{2}-y^{2}\right)-2 x-4 y+1=0$
C. $x^{2}+y^{2}-2 x-4 y+3=0$
D. none of these

Answer: B

- Watch Video Solution

6. If A and B are two fixed points, then the locus of a point which moves in such a way that the angle $A P B$ is a right angle is
A. a circle
B. an ellipse
C. a parabola
D. none of these

Answer: A

7. If a variable line passes through the point of intersectionof the lines $x+2 y-1=0$ and $2 x-y-1=0$ and meets the coordinate axes in A and B, then the locus of the midpoint of $A B$ is: (A) $x+3 y=0$ (B) $x+3 y=10$ (C) $x+3 y=10 x y$ (D) None of these
A. $x+3 y=0$
B. $x+3 y=10$
C. $x+3 y=10 x y$
D. none of these

Answer: C

- Watch Video Solution

8. A variable straight line is drawn through the point of intersection of the straight lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ and meets the
coordinate axes at A and B. Show that the locus of the midpoint of $A B$ is the curve $2 x y(a+b)=a b(x+y)$
A. $\alpha \beta(x+y)=x y(\alpha+\beta)$
B. $\alpha \beta(x+y)=2 x y(\alpha+\beta)$
C. $(\alpha+\beta)(x+y)=2 \alpha \beta x y$
D. none of these

Answer: B

- Watch Video Solution

9. The nearest point on the line $3 x+4 y=25$ from the origin is
A. $(-4,5)$
B. $(3,-4)$
C. $(3,4)$
D. $(3,5)$

Answer: B

- Watch Video Solution

10. The distance between the parallel lines given by $(x+7 y)^{2}+4 \sqrt{2}(x+7 y)-42=0$ is
A. $4 / 5$
B. $4 \sqrt{2}$
C. 2
D. $10 \sqrt{2}$

Answer: A

- Watch Video Solution

11. The image of the point $(-1,3)$ by the line $x-y=0$, is
A. $(3,-1)$
B. $(1,-3)$
C. $(-1,-1)$
D. $(3,3)$

Answer: b

- Watch Video Solution

12. If $A(1,1), B(\sqrt{3}+1,2)$ and $C(\sqrt{3}, \sqrt{3}+2)$ are three vertices of a square, then the diagonal through B is
A. $y=(\sqrt{3}-2) x+(3-\sqrt{3})$
B. $y=0$
C. $y=x$
D. none of these
13. If $)-4,0$) and $(1,-1)$ are two vertices of a triangle of area 4squinits, then its third vertex lies on $y=x$ (b) $5 x+y+12=0$ $x+5 y-4=0$ (d) $x+5 y+12=0$
A. $y=x$
B. $5 x+y+12=0$
C. $x+5 y-4=0$
D. none of these

Answer: C

- Watch Video Solution

14. Equation of a straight line passing through the point of intersection of $x-y+1=0$ and $3 x+y-5=0$ are perpendicular to one of them is
A. $x+y+3=0$
B. $x-y-3=0$
C. $x-3 y-5=0$
D. $x-3 y+5=0$

Answer: D

- Watch Video Solution

15. The distance between the lines $5 x-12 y+65=0$ and $5 x-12 y-39=0$ is :
A. 4
B. 16
C. 2
D. 8
16. Prove that the locus of the centroid of the triangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t)$, and $(1,0)$, where t is a parameter, is circle.
A. $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
B. $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
C. $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
D. $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$

Answer: B

Watch Video Solution

17. The equation of the line with gradient $-\frac{3}{2}$ which is concurrent with the lines $4 x+3 y-7=0$ and $8 x+5 y-1=0$
A. $3 x+2 y-2=0$
B. $3 x+2 y-63=0$
C. $2 y-3 x-2=0$
D. none of these

Answer: A

- Watch Video Solution

18. The point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$ lies on the plane
A. $x-y=0$
B. $(x+y)(a+b)=2 a b$
C. $(l x+m y)(a+b)=(I+m) a b$
D. all of these
19. Find the equation of the bisector of the obtuse angle between the lines $3 x-4 y+7=0$ and $12 x+5 y-2=0$.
A. $99 x-27 y-81=0$
B. $11 x-3 y+9=0$
C. $21 x+77 y-101=0$
D. $21 x+77 y+101=0$

Answer: B

- Watch Video Solution

20. If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is $\left(a_{1}-a_{2}\right) x+\left(b_{1}-b_{2}\right) y+c=0$, then the value of $c \quad$ is $\quad a a 2-a 22+b 12-b 22 \quad \sqrt{a 12+b 12-a 22-b 22}$ $\frac{1}{2}(a 12+a 22+b 12+b 22) \frac{1}{2}(a 22+b 22-a 12-b 12)$
A. $a_{1}^{2}-a_{2}^{2}+b_{1}^{2}-b_{2}^{2}$
B. $\sqrt{a_{1}^{2}+b_{1}^{2}-a_{2}^{2}-b_{2}^{2}}$
C. $\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+b_{1}^{2}+b_{2}^{2}\right)$
D. $\frac{1}{2}\left(a_{2}^{2}+b_{2}^{2}-a_{1}^{2}-b_{1}^{2}\right)$

Answer: D

- Watch Video Solution

21. The equations of the perpendicular bisectors of the sides $A B a n d A C$ of triangle $A B C$ are $x-y+5=0$ and $x+2 y=0$, respectively. If the point A is $(1,-2)$, then find the equation of the line $B C$.
A. $23 x+14 y-40=0$
B. $23 x+14 y+40=0$
C. $14 x+23 y-40=0$
D. $14 x+23 y+40=0$

D Watch Video Solution

22. If each of the points $(x-1,4),\left(-2, y_{1}\right)$ lies on the line joining the points $(2,-1) \operatorname{and}(5,-3)$, then the point $P\left(x_{1}, y_{1}\right)$ lies on the line.
$6(x+y)-25=0 \quad 2 x+6 y+1=0 \quad 2 x+3 y-6=0$
$6(x+y)+25=0$
A. $6(x+y)-25=0$
B. $2 x+6 y+1=0$
C. $2 x+3 y-6=0$
D. $6(x+y)+25=0$

Answer: B

- Watch Video Solution

23. Equation of the line passing through the point $\left(a \cos ^{3} \theta, a \sin ^{3} \theta\right)$ and perpendicular to the line $x \sec \theta+y \operatorname{cosec} \theta=a \quad$ is $x \cos \theta-y \sin \theta=a \sin 2 \theta$.
A. $x \cos \theta+y \sin \theta=2 a \cos 2 \theta$
B. $x \sin \theta-y \cos \theta=2 a \sin 2 \theta$
C. $x \sin \theta+y \cos \theta=2 a \cos \theta$
D. none of these

Answer: D

- Watch Video Solution

24. The ends of the base of an isosceles triangle are at $(2 a, 0)$ and $(0, a)$. The equation of one side is $x=2 a$. The equation of the other side, is

$$
\text { A. } x+2 y-a=0
$$

B. $x+2 y=2 a$
C. $3 x+4 y-4 a=0$
D. $3 x-4 y+4 a=0$

Answer: D

D Watch Video Solution

25. The straight lines $x+y-4=0,3 x+y-4=0 \quad$ and
$x+3 y-4=0$ form a triangle, which is
A. right angled
B. equilateral
C. isosceles
D. none of these

Answer: C

26. If the lines $a x+b y+c=0, b x+c y+a=0$ and $c x+a y+b=0$ be concurrent, then:
A. $a+b=c$
B. $b+c=a$
C. $c+a=b$
D. $a+b+c=0$

Answer: D

- Watch Video Solution

27. The equation of one side of a rectangle is $3 x-4 y-10=0$ and the coordinates of two of its vertices are $(-2,1)$ and $(2,4)$. Then, the area of the rectangle is
A. 20
B. 40
C. 10
D. 30

Answer: A

- Watch Video Solution

28. Given four lines whose equations are $x+2 y-3=0,2 x+3 y-4=0,3 x+4 y-7=0$ and $4 x+5 y-6=0$,then the lines are
A. concurrent
B. sides of a square
C. sides of a rhombus
D. none of these

Answer: D

29. All points lying inside the triangle formed by the points (1. 3). (5, 0)
and $(-1,2)$ satisfy
(A) $3 x+2 y \geq 0$
(B) $2 x+y-13 \geq 0$
$2 x-3 y-12 \leq 0$ (D) $-2 x+y \geq 0$
A. $3 x+2 y \geq 0$
B. $2 x+y-13 \geq 0$
C. $2 x-3 y+12 \leq 0$
D. $-2 x+y \geq 0$

Answer: A

- Watch Video Solution

30. Find the distance of the point $(3,5)$ from the line $2 x+3 y=14$ measured parallel to the line $x-2 y=1$.
A. $7 / \sqrt{5}$
B. $7 / \sqrt{13}$
C. $\sqrt{5}$
D. $\sqrt{13}$

Answer: C

- Watch Video Solution

31. Let the base of a triangle lie along the line $x=a$ and be of length a.

The area of this triangle is $a 2$, if the vertex lies on the line
A. $x=-a, x=2 a$
B. $x=0, x=a$
C. $x=a / 2, x=-a$
D. none of these
32. The equation of straight line passing through point $(1,2)$ and having intercept of length 3 between straight line $3 x+4 y=12$ and $3 x+4 y=24$ is
A. $7 x+24 y-55=0$
B. $24 x+7 y-38=0$
C. $24 x-7 y-10=0$
D. $7 x-24 y+41=0$

Answer: D

- Watch Video Solution

33. The point $(4,1)$ undergoes the following two successive transformations
(i) Reflection about the line $y=x$
(ii) Translation through a distance 2 units along the positive X-axis.

Then the final coordinate of the point are
A. $(1 / \sqrt{2}, 7 / \sqrt{2})$
B. $(-2,7 \sqrt{2})$
C. $(-1 / \sqrt{2}, 7 / \sqrt{2})$
D. $(\sqrt{2}, 7 \sqrt{2})$

Answer: C

- Watch Video Solution

34. A line passes through the point $(2,2)$ and is perpendicular to the line
$3 x+y=3$, then its y-intercept is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. 1
D. $\frac{4}{3}$

Answer: D

- Watch Video Solution

35. The co-ordinates of a point on the line $y=x$ where perpendicular distance from the line $3 x+4 y=12$ is 4 units, are :
А. $\left(-\frac{8}{7},-\frac{8}{7}\right),\left(-\frac{32}{7},-\frac{32}{7}\right)$
B. $\left(\frac{8}{7}, \frac{8}{7}\right),\left(\frac{32}{7}, \frac{32}{7}\right)$
c. $\left(-\frac{8}{7},-\frac{8}{7}\right),\left(\frac{32}{7}, \frac{32}{7}\right)$
D. none of these

- Watch Video Solution

36. The point $P(1,1)$ is translated parallal to the line $2 x=y$ in the first quadrant through a unit distance.The coordinates of the new position of P are:
A. $\left(1 \pm \frac{2}{\sqrt{5}}, 1 \pm \frac{1}{\sqrt{5}}\right)$
B. $\left(1 \pm \frac{1}{\sqrt{5}}, 1 \pm \frac{2}{\sqrt{5}}\right)$
C. $\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$
D. $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$

Answer: B

- Watch Video Solution

37. If a line joining two points $A(2,0)$ and $B(3,1)$ is rotated about A in anticlockwise direction 15°, then the equation of the line in the new position is
A. $\sqrt{3} x-y=2 \sqrt{3}$
B. $\sqrt{3} x+y=2 \sqrt{3}$
C. $x+\sqrt{3} y=2 \sqrt{3}$
D. none of these

Answer: A

- Watch Video Solution

38. The limiting position of the point of intersection of the lines
$3 x+4 y=1$ and $(1+c) x+3 c^{2} y=2$ as c tends to 1 , is
A. $(-5,4)$
B. $(5,-4)$
C. $(4,-5)$
D. none of these

Answer: A

39. Given three straight lines $2 x+11 y-5=0,24 x+7 y-20=0$, and $4 x-3 y-2=0$. Then, they form a triangle one line bisects the angle between the other two two of them are parallel
A. $2 p_{1}=p_{2}$
B. $p_{1}=p_{2}$
C. $p_{1}=2 p_{2}$
D. none of these

Answer: B

- Watch Video Solution

40. $P(2,1), Q(4,-1), R(3,2)$ are the vertices of a triangle and if through P and R lines parallel to opposite sides are drawn to intersect in S, then the area of $P Q R S$, is
A. 6
B. 4
C. 8
D. 12

Answer: B

- Watch Video Solution

41. If a line passes through the point $(2,2)$ and encloses a triangle of area A square units with the coordinate axes, then the intercepts made by the line on the coordinate axes are the roots of the equations
A. $x^{2} \pm A x \pm 2 A=0$
B. $x^{2} \pm A x \pm 2 A=0$
C. $x^{2} \pm 2 A x \pm A=0$
D. $x^{2} \pm 2 A x \pm A=0$

- Watch Video Solution

42. Points on the line $x+y=4$ which are equidistant from the lines $|x|=|y|$, are
A. $(4,0),(0,4)$
B. $(-4,0),(0,-4)$
C. $(4,0),(-4,0)$
D. none of these

Answer: A

- Watch Video Solution

43. If $A B=4$ and the ends A, B move on the coordinate axes, the locus of the mid-point of $A B$
A. a straight line
B. a pair of straight lines
C. a circle
D. none of these

Answer: C

- Watch Video Solution

44. A straight line L is perpendicular to the line $5 x-y=1$. The area of the triangle formed by line L, and the coordinate axes is 5 . Find the equation of line L.
A. $x+5 y+5=0$
B. $x+5 y \pm \sqrt{2}=0$
C. $x+5 y \pm \sqrt{5}=0$
D. $x+5 y \pm 5 \sqrt{2}=0$

Answer: D

D Watch Video Solution

45. Let O be the origin. If $A(1,0) \operatorname{andB}(0,1) \operatorname{and} P(x, y)$ are points such that $x y>0 a n d x+y<1$, then P lies either inside the triangle $O A B$ or in the third quadrant. P cannot lie inside the triangle $O A B P$ lies inside the triangle $O A B P$ lies in the first quadrant only
A. P lies either in side $\triangle O A B$ or in third quadrant
B. P cannot be inside $\triangle O A B$
C. P lies inside the $\triangle O A B$
D. none of these

Answer: A

- Watch Video Solution

46. Two equal sides of an isosceles triangle are given by $7 x-y+3=0$ and $x+y=3$, and its third side passes through the point $(1,-10)$. Find the equation of the third side.
A. $x-3 y-7=0$ or, $3 x+y-31=0$
B. $x-3 y-31=0$ or , $3 x+y-7=0$
C. $x-3 y-31=0$ or, $3 x+y+7=0$
D. none of these

Answer: C

- Watch Video Solution

47. The straight line passing through $P\left(x_{1}, y_{1}\right)$ and making an angle α with x -axis intersects $A x+B y+C=0$ in Q then $\mathrm{PQ}=$
A. $\left|\frac{A x_{1}+B y_{1}+C}{\sqrt{A^{2}+B^{2}}}\right|$
B. $-\frac{A x_{1}+B y_{1}+C}{A \cos \alpha+B \sin \alpha}$
C. $\frac{A x_{1}+B y_{1}+C}{A \cos \alpha+B \sin \alpha}$
D. $-\frac{A x_{1}+B y_{1}+C}{A \sin \alpha+B \cos \alpha}$

Answer: B

- Watch Video Solution

48. Find the value of λ, if the line $3 x-4 y-13=0,8 x-11 y-33=0 \operatorname{and} 2 x-3 y+\lambda=0 \quad$ are concurrent.
A. 20
B. -7
C. 7
D. -20

Answer: B
49. The equation of lines on which the perpendiculars from the origin make 30° angle with the x-axis and which form a triangle of area $\frac{50}{\sqrt{3}}$ with the axes are $\sqrt{3} x+y-10=0 \sqrt{3} x+y+10=0 x+\sqrt{3} y-10=0$ (d) $x-\sqrt{3} y-10=0$
A. $x+\sqrt{3} y \pm 10=0$
B. $\sqrt{3} x+y \pm 10=0$
C. $x \pm \sqrt{3} y-10=0$
D. none of these

Answer: B

- Watch Video Solution

50. The area (in square units) of the triangle formed by y-axis, the straight line L passing through (1,1) and (2,0) and the straight line perpendicular to the line L and passing through $(1 / 2,0)$, is
A. $\frac{25}{8}$
B. $\frac{25}{4}$
C. $\frac{25}{16}$
D. $\frac{25}{2}$

Answer: C

- Watch Video Solution

51. The points on $x+y=4$ that lie at a unit distance from the line $4 x+3 y-10=$ are
A. $(3,1)$ and $(-7,11)$
B. $(-3,7)$ and $(2,2)$
C. $(-3,7)$ and $(-7,11)$
D. none of these
52. The equation of the straight line through the point of intersection of lines $x-3 y+1=0$ and $2 x+5 y-9=0$ and whose distance from the origin is $\sqrt{5}$ is
A. $2 x-y=5$
B. $x+2 y=5$
C. $2 x+y=5$
D. $x+2 y=1$

Answer: C

- Watch Video Solution

53. The number of lines that are parallel to $2 x+6 y-7=0$ and have an intercept 10 between the coordinate axes is
A. 1
B. 2
C. 4
D. infinitely many

Answer: B

- Watch Video Solution

54. In what ratio, the line joining $+(-1,1) \operatorname{and}(5,7)$ is divided by the line $x+y=4$?
A. 2
B. $1 / 2$
C. 3
D. none of these
55. The image of the point $(1,3)$ in the line $x+y-6=0$ is
A. $(3,5)$
B. $(5,3)$
C. $(1,-3)$
D. $(-1,3)$

Answer: A

- Watch Video Solution

56. A triangle $A B C$, right angled at A, has points A and B as $(2,3)$ and $(0,-1)$, respectively. If C is $\mathrm{BC}=5$, then the point C is
A. (-4,2)
B. $(4,2)$
C. $(3,-3)$
D. $(0,-4)$

Answer: B

- Watch Video Solution

57. The equation of the line passing though the intersection of $x-\sqrt{3} y+\sqrt{3}-1=0$ and $x+y-2=0$ and making an angle of 15° with the first line is
A. $x-y=0$
B. $x-y+1=0$
C. $y=1$
D. $\sqrt{3} x-y+1-\sqrt{3}=0$

Answer: A

58. In a rhombus $A B C D$ the diagonals $A C$ and $B D$ intersect at the point $(3,4)$. If the point A is $(1,2)$ the diagonal $B D$ has the equation
A. $x-y-1=0$
B. $x+y-1=0$
C. $x-y+1=0$
D. $x+y-7=0$

Answer: D

- Watch Video Solution

59. The distance between the pair of parallel line, $x^{2}+2 x y+y^{2}-8 a x-8 a y-9 a^{2}=0$ is
A. $2 \sqrt{5} a$
B. $10 \sqrt{a}$
C. $10 a$
D. $5 \sqrt{2} a$

Answer: D

- Watch Video Solution

60. The ratio in which the line $3 x-2 y+5=0$ divides the join of $(6,7)$ and $(-2,3)$ is
A. $1: 1$
B. $7: 37$
C. $37: 7$
D. none of these

Answer: C

61. Find the coordinates of one vertex of an equilateral triangle with centroid at the origin and the opposite side $x+y-2=0$.
A. $(-1,-1)$
B. $(2,2)$
C. $(-2,-2)$
D. none of these

Answer: C

- Watch Video Solution

62. The distance of the line $x+y-8=0$ from $(4,1)$ measured along the direction whose slope is -2 , is
A. $3 \sqrt{5}$
B. $6 \sqrt{5}$
C. $2 \sqrt{5}$
D. none of these

Answer: A

- Watch Video Solution

63. The area enclosed within the curve $|x|+|y|=1$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

64. The orthocenter of the triangle formed by lines $x+y=1,2 x+3 y=6$ and $4 x-y+4=0$ lines in quadrant number
A. I quadrant
B. Il quadrant
C. III quadrant
D. IV quadrant

Answer: A

- Watch Video Solution

65. If each of the points $(x-1,4),\left(-2, y_{1}\right)$ lies on the line joining the points $(2,-1) \operatorname{and}(5,-3)$, then the point $P\left(x_{1}, y_{1}\right)$ lies on the line.
$6(x+y)-25=0 \quad 2 x+6 y+1=0 \quad 2 x+3 y-6=0$
$6(x+y)+25=0$
A. $x=3 y$
B. $x=-3 y$
C. $y=2 x+1$
D. $2 x+6 y+1=0$

Answer: D

- Watch Video Solution

66. The area bounded by the straight lines $y=1$ and $\pm 2 x+y=2$, in square units, is
A. $1 / 2$
B. 1
C. $3 / 2$
D. 2

Answer: A

67. The locus of a point P which divides the line joining $(1,0)$ and $(2 \cos \theta, 2 \sin \theta)$ intermally in the ratio $1: 2$ for all θ. is
A. straight line
B. circle
C. pair of straight lines
D. parabola

Answer: B

- Watch Video Solution

68. The area of triangle $A B C$ is $20 \mathrm{~cm}^{2}$. The coordinates of vertex A are $-5,0)$ and those of B are $(3,0)$. The vertex C lies on the line $x-y=2$.

The coordinates of C are $(5,3)$ (b) $(-3,-5)(-5,-7)$ (d) $(7,5)$
A. $(-7,-5)$ or $(3,5)$
B. $(-3,-5)$ or $(-5,7)$
C. $(7,5)$ or $(3,5)$
D. $(-3,-5),(7,5)$

Answer: D

- Watch Video Solution

69. The area of the parallelogram formed by the lines $x \cos \alpha+y \sin \alpha=p, x \cos \alpha+y \sin \alpha=q, x \cos \beta+y \sin \beta=r \quad$ and $x \cos \beta+y \sin \beta=s$ for given values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s is least, if $(\alpha-\beta)=$ (A) $\pm \frac{\pi}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{3}$
A. $\pm \frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

D Watch Video Solution

70. The ratio in which the line $3 x+4 y+2=0$ divides the distance between $3 x+4 y+5=0$ and $3 x+4 y-5=0$ is?
A. $7: 3$
B. 3:7
C. 2: 3
D. none of these

Answer: B

D Watch Video Solution

71. If the extremities of the base of an isosceles triangle are the points $(2 a, 0)$ and ($0, \mathrm{a}$), and the equation of one of the side is $x=2 a$, then
the area of the triangle is $5 a^{2}$ squinits (b) $\frac{5 a^{2}}{2}$ sqinits $\frac{25 a^{2}}{2}$ sqiunits (d) none of these
A. $5 a^{2}$
B. $\frac{5}{2} a^{2}$
C. $\frac{25 a^{2}}{2}$
D. none of these

Answer: B

D Watch Video Solution

72. The vertices of a $\triangle O B C$ are $O(0,0), B(-3,-1), C(-1,-3)$. Find the equation of the line parallel to $B C$ and intersecting the sides $O B$ and OC and whose perpendicular distance from the origin is $\frac{1}{2}$.
A. $x+y+\frac{1}{2}=0$
B. $x+y-\frac{1}{2}=0$
C. $x+y-\frac{1}{\sqrt{2}}=0$
D. $x+y+\frac{1}{\sqrt{2}}=0$

Answer: D

- Watch Video Solution

73. The area (in square units) of the quadrilateral formed by two pairs of lines

$$
\begin{aligned}
& l^{2} x^{2}-m^{2} y^{2}- \\
& x-m y)=0, \text { is }
\end{aligned}
$$

A. $\frac{n^{2}}{2|l m|}$
B. $\frac{n^{2}}{|l m|}$
C. $\frac{n}{2|l m|}$
D. $\frac{n^{2}}{4|l m|}$

Answer: A

- Watch Video Solution

74. The equation of the bisector of that angle between the lines $x+2 y-11=0,3 x-6 y-5=0$ which contains the point $(1,-3)$ is $(3 x=19$ (b) $3 y=73 x=19 a n d 3 y=7$ (d) None of these
A. $3 x=19$
B. $3 y=7$
C. $3 x=19$ and $3 y=7$
D. none of these

Answer: A

- Watch Video Solution

75. The line $3 x+2 y=24$ meets the y -axis at A and the x -axis at B. The perpendicular bisector of $A B$ meets the line through $(0,-1)$ parallel to the x -axis at C. If the area of triangle $A B C$ is A, then the value of $\frac{A}{13}$ is \qquad
A. 182 sq. units
B. 91 sq. units
C. 48 sq. units
D. none of these

Answer: B

- Watch Video Solution

76. A ray of light coming fromthe point $(1,2)$ is reflected at a point A on the x-axis and then passes through the point $(5,3)$. The coordinates of the point A is :
A. $(13 / 5,0)$
B. $(5 / 13,0)$
C. $(-7,0)$
D. none of these

Answer: A

77. If PM is the perpendicular from $\mathrm{P}(2,3)$ on the line $x+y=3$, then the coordinate of M are
A. $(2,1)$
B. $(-1,4)$
C. $(1,2)$
D. $(4,-1)$

Answer: C

78. The incentre of the triangle formed by the line $3 x+4 y-12=0$ with the coordinate axis is
B. $(1,1)$
C. $(1,1 / 2)$
D. $(1 / 2,1)$

Answer: B

- Watch Video Solution

79. If one vertex of an equilateral triangle is at $(2 .-1)$ 1base is $x+y-2=0$, then the length of each side, is
A. $\sqrt{3 / 2}$
B. $\sqrt{2 / 3}$
C. $2 / 3$
D. $3 / 2$

Answer: B

80. The area of the parallelogram formed by the lines $3 x-4 y+1=0,3 x-4 y+3=0,4 x-3 y-1=0 \quad$ and
$4 x-3 y-2=0, \quad$ is (A) $\frac{1}{7}$ squnits \quad (B) $\frac{2}{7}$ squnits \quad (C) $\frac{3}{7}$ squnits
$\frac{4}{7}$ squnits
A. $\frac{1}{6}$
B. $\frac{2}{7}$
C. $\frac{3}{8}$
D. none of these

Answer: B

- Watch Video Solution

81. Points $A(1,3)$ and $C(5,1)$ are opposite vertices of a rectangle $A B C D$. If the slope of $B D$ is 2 , then its equation is
A. $2 x-y=4$
B. $2 x+y=4$
C. $2 x+y-7=0$
D. $2 x+y+7=0$

Answer: A

- Watch Video Solution

82. The line $x+2 y=4$ is-translated parallel to itself by 3 units in the sense of increasing x and is then rotated by 30° in the clockwise direction about the point where the shifted line cuts the x-axis.Find the equation of the line in the new position
A. $y=\tan \left(\theta-30^{\circ}\right)(x-4-3 \sqrt{5})$
B. $y=\tan \left(30^{\circ}-\theta\right)(x-4-3 \sqrt{5})$
C. $y=\tan \left(\theta+30^{\circ}\right)(x+4+3 \sqrt{5})$
D. $y=\tan \left(\theta-30^{\circ}\right)(x+4+3 \sqrt{5})$

D Watch Video Solution

83. The line $P Q$ whose equation is $x-y=2$ cuts the x-axis at P, and Q is $(4,2)$. The line $P Q$ is rotated about P through 45^{0} in the anticlockwise direction. The equation of the line $P Q$ in the new position is $y=-\sqrt{2}$
(b) $y=2 x=2$ (d) $x=-2$
A. $y=-\sqrt{2}$
B. $y=2$
C. $x=2$
D. $x=-2$

Answer: C

84. . The points $(1,3),(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$. Find c and remaining two vertices.
A. 4
B. -4
C. 2
D. none of these

Answer: B

- Watch Video Solution

85. . The points $(1,3),(5,1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y=2 x+c$. Find c and remaining two vertices.
A. $(2,0),(4,4)$
B. $(2,4),(4,0)$
C. $(-2,0),(4,-4)$
D. $(2,0),(-4,4)$

Answer: A

- Watch Video Solution

86. The vertices of a diagonal of a square are $(-2,4)$ and $(-2,-2)$ Find the other vertices
A. $(1,-1),(5,1)$
B. $(1,1),(5,-1)$
C. $(1,1),(-5,1)$
D. none of these

Answer: C

87. The equations of two sides of a square whose area is 25 sq.units are $3-4 y=0$ and $4 x+3 y=0$. The equation of the other two sides of the square are
A. $3 x-4 y \pm 25=0,4 x+3 y \pm 25=0$
B. $3 x-4 y \pm 05=0,4 x+3 y \pm 5=0$
C. $3 x-4 y \pm 05=0,4 x+3 y \pm=0$
D. none of these

Answer: A

- Watch Video Solution

88. The centroid of the triangle formed by the pair of straight lines $12 x^{2}-20 x y+7 y^{2}=0$ and the line $2 x-3 y+4=0$ is
A. $\left(-\frac{7}{3}, \frac{7}{3}\right)$
B. $\left(-\frac{8}{3}, \frac{8}{3}\right)$
C. $\left(\frac{8}{3}, \frac{8}{3}\right)$
D. $\left(\frac{4}{3}, \frac{4}{3}\right)$

Answer: C

- Watch Video Solution

89. If the lines $a x+2 y+1=0, b x+3 y+1=0 a n d c x+4 y+1=0$ are concurrent, then a, b, c are in a. A.P. b. G.P. c. H.P. d. none of these
A. AP
B. GP
C. HP
D. none of these

Answer: A

90. Two vertices of a triangle are $(5,-1)$ and $(-2,3)$ If the orthocentre of the triangle is the origin, find the coordinates of the third point.
A. $(4,7)$
B. $(-4,-7)$
C. $(-4,7)$
D. none of these

Answer: B

- Watch Video Solution

91. If the foot of the perpendicular from the origin to a straight line is at
$(3,-4)$, then find the equation of the line.
A. $3 x-4 y=25$
B. $3 x-4 y+25=0$
C. $4 x+3 y-25=0$
D. $4 x-3 y+25=0$

Answer: A

- Watch Video Solution

92. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, then their coordinates are
A. $(3,1),(3,3)$
B. $(3,1),(3,6)$
C. (3,1),(3,4)
D. none of these

Answer: B

93. The orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$ is
A. $(1 / 2,1 / 2)$
B. $(1 / 3,1 / 3)$
C. $(0,0)$
D. $(1 / 4,1 / 4)$

Answer: C

- Watch Video Solution

94. A line passes through the point $(2,2)$ and is perpendicular to the line $3 x+y=3$, then its y-intercept is
A. $1 / 3$
B. $2 / 3$
C. 1
D. $4 / 3$

Answer: D

- Watch Video Solution

95. A line passes through $(2,2)$ and is perpendicular to the line $3 x+y=3$, the y-intercept is?
A. $1 / 3$
B. $2 / 3$
C. 1
D. $4 / 3$

Answer: D

96. Given three straight lines $2 x+11 y-5=0,24 x+7 y-20=0$, and $4 x-3 y-2=0$. Then, they form a triangle one line bisects the angle between the other two two of them are parallel
A. form a triangle
B. are only concurrent
C. are concurrent with one line bisecting the angle between the other two
D. none of these

Answer: C

- Watch Video Solution

97. A line passes through the point of intersection of the line $3 x+y+1=0$ and $2 x-y+3=0$ and makes equal intercepts with axes. Then, equation of the line is
A. $5 x+5 y-3=0$
B. $x+5 y-3=0$
C. $5 x-y-3=0$
D. $5 x+5 y+3=0$

Answer: A

- Watch Video Solution

98. A straight line through the point $(2,2)$ intersects the lines $\sqrt{3} x+y=0$ and $\sqrt{3} x-y=0$ at the point A and B, respectively. Then find the equation of the line $A B$ so that triangle $O A B$ is equilateral.
A. $x-2=0$
B. $y-2=0$
C. $x+y-4=0$
D. none of these

- Watch Video Solution

99. Find the image of the point $(3,8)$ with respect to the line $x+3 y=7$ assuming the line to be a plane mirror.
A. $(1,4)$
B. $(4,1)$
C. (-1,-4)
D. $(-4,-1)$

Answer: C

- Watch Video Solution

100. The equation $(b-c) x+(c-a) y+(a-b)=0 \quad$ and $\left(b^{3}-c^{3}\right) x+\left(c^{3}-a^{3}\right) y+a^{3}-b^{3}=0$ will represent the same line if
A. $a+b=-c$
B. $c+a=-b$
C. $b+c=-a$
D. $a+b+c=0$

Answer: D

- Watch Video Solution

101. The range of values of θ in the interval $(0, \pi)$ such that the points
$(3,5)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y-1=0$, is
A. $(0, \pi / 2)$
B. $(0, \pi / 4)$
C. $(\pi / 4, \pi / 2)$
D. none of these
102. If $\mathrm{P}(\sin \theta, 1 / \sqrt{2})$ and $Q(1 / \sqrt{2}, \cos \theta),-\pi \leq \theta \leq \pi$ are two points on the same side of the line $x-y=0$, then θ belongs to the interval
A. $(-\pi / 4, \pi / 4) \cup(\pi / 4,3 \pi / 4)$
B. $(-\pi / 4, \pi / 4)$
C. $(\pi / 4, \pi / 4)$
D. none of these

Answer: A

- Watch Video Solution

103. If the point $(1, \alpha)$ always remains in the interior of the triangle formed by the lines $y=x, y=0$ and $x+y=4$, then α lies in the interval
A. $(0,1)$
B. $[0,1]$
C. $[0,4]$
D. none of these

Answer: B

- Watch Video Solution

104. Let $A B C$ be an isosceles triangle with $A B=B C$. If base $B C$ is parallel to x-axis and m_{1} and m_{2} are the slopes of medians drawn through the angular points B and C, then
A. $m_{1}, m_{2}=2$
B. $m_{1}+m_{2}=0$
C. $m_{1} m_{2}=2$
D. $m_{1}+2 m_{2}=0$

Answer: B

- Watch Video Solution

105. If $\mathrm{a}, \mathrm{c}, \mathrm{b}$ are in G.P then the line $a x+b y+c=0$
A. has a fixed direction
B. always passes through a fixed point
C. forms a triangle with the axes whose area is constant
D. always cuts intercepts on the axes such that their sum is zero

Answer: C

- Watch Video Solution

106. The equations of the sided of a triangle are
$x+y-5=0, x-y+1=0, \quad$ and $\quad x+y-\sqrt{2}=0 \quad$ is

$$
\left(-\infty,-\frac{4}{3}\right) \cup\left(\frac{4}{3},+\infty\right)\left(-\frac{4}{3}, \frac{4}{3}\right) \text { (c) }\left(-\frac{3}{4}, \frac{4}{3}\right) \text { none of }
$$

these
A. $(-\infty,-4 / 3) \cup(4 / 3, \infty)$
B. $(-4 / 3,4 / 3)$
C. $(-3 / 4,3 / 4)$
D. none of these

Answer: A

- Watch Video Solution

107. The straight line $4 x+3 y=12$ intersects te x -axis and y -axis at A and B respectively. Then the distance BI where I is the centre of the in-circle of $\triangle O A B$, where B is the origin, is equal to
A. $\sqrt{10}$
B. $2 \sqrt{5}$
C. 3
D. 2

Answer: A

D Watch Video Solution

108. The four sides of a quadrilateral are given by the equation $x y(x-2)(y-3)=0$ The equation of the line parallel to $x-4 y=0$ that divides the quadrilateral in two equal areas is
A. $x-4 y+5=0$
B. $x-4 y-5=0$
C. $4 y=x+1$
D. $4 y+1=x$

Answer: A

109. The co-ordinates of foot of the perpendicular from the point $(2,4)$ on the line $x+y=1$ are:
A. $(1 / 2,3 / 2)$
B. $(-1 / 2,3 / 2)$
C. (4/3,1/2)
D. $(3 / 4,-1 / 2)$

Answer: B

- Watch Video Solution

110. Three vertices of a quadrilateral in order are $(6,1)(7,2)$ and $(-1,0)$. If the area of the quadrilateral is 4 sq. unit. Then the locus of the fourth vertex has the equation.

$$
\text { A. } x-7 y=1
$$

B. $x-7 y+15=0$
C. $x=7 y+15=0$
D. $(x-7 y)^{2}+14(x-7 y)-15=0$

Answer: C

D Watch Video Solution

111. Find the range of $(\alpha, 2+\alpha)$ and $\left(\frac{3 \alpha}{2}, a^{2}\right)$ lie on the opposite sides of the line $2 x+3 y=6$.
A. $(-2,1)$
B. $(-\infty,-2) \cup(0,1)$
C. $(-2,0) \cup(1, \infty)$
D. $(-1,0) \cup(2, \infty)$

Answer: B

112. A point moves such that the area of the triangle formed by it with the points $(1,5)$ and $(3,-7)$ squinits. Then, find the locus of the point.
A. $6 x+y-32=0$
B. $6 x-y+32=0$
C. $x+6 y-32=0$
D. $6 x-y-32=0$

Answer: A

- Watch Video Solution

113. The orthocentre of the triangle whose vertices are (5,-2),(-1,2) and (1,4) is
A. $(1 / 5,14 / 5)$
B. $(14 / 5,1 / 5)$
C. $(1 / 5,1 / 5)$
D. $(14 / 5,14 / 5)$

Answer: A

- Watch Video Solution

114. If the pair of straight lines $x y-x-y+1=0$ \& the line $a x+2 y-3=0$ are concurrent then $a=$
A. -1
B. 0
C. 3
D. 1

Answer: D

115. If $(-2,6)$ is the image of the point $(4,2)$ with respect to line $L=0$, then L is:
A. $3 x-2 y+5$
B. $3 x-2 y+10$
C. $2 x+3 y-5$
D. $6 x-4 y-7$

Answer: A

- Watch Video Solution

116. If the points $(1,2)$ and $(3,4)$ were to be on the opposite side of the $3 x-5 y+\alpha=0$, then:
A. $7<a<11$
B. $a=7$
C. $a=1$

- Watch Video Solution

117. The coordinates of the image of the origin O with respect to the line $x+y+1=0$ are
A. $(-1 / 2,-1 / 2)$
B. $(-2,-2)$
C. $(1,1)$
D. $(-1,-1)$

Answer: D

- Watch Video Solution

118. A straight line of length 9 units slides with ends A, B always on x and y axes respectiv Locus of centroid of $A O A B$ is
A. $x^{2}+y^{2}=3$
B. $x^{2}+y^{2}=9$
C. $x^{2}+y^{2}=1$
D. $x^{2}+y^{2}=81$

Answer: B

- Watch Video Solution

119. The area of the triangle formed by the axes \& the line $(\cosh \alpha-\sinh \alpha) x+(\cosh \alpha+\sinh \alpha) y=2$ in square units is
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

120. A line passes through (1,0). The slope of the line, for which its intercept between $y=x-2$ and $y=-x+2$ subtends a right angle at the origin is
A. $\pm \frac{2}{3}$
B. $\pm \frac{3}{2}$
C. ± 1
D. none of these

Answer: D

- Watch Video Solution

121. What is the y intercept of the line that is parallel to $y=3 x$ and which bisects the area of rectangle with corners at $(0,0),(4,0),(4,2)$ and $(0,2)$?
A. $0,-7$
B. $0,-6$
C. $0,-5$
D. 0,-4

Answer: C

- Watch Video Solution

122. Given $A \equiv(1,1)$ and $A B$ is any line through it cutting the x-axis at B. If $A C$ is perpendicular to $A B$ and meets the y-axis in C, then the equation of the locus of midpoint P of $B C$ is $x+y=1$ (b) $x+y=2$
$x+y=2 x y$ (d) $2 x+2 y=1$

$$
\text { A. } x+y=1
$$

B. $x+y=2$
C. $x+y=2 x y$
D. $2 x+2 y=1$

Answer: C

- Watch Video Solution

123. Consider two intersecting (non-perpendicular lines
$L_{1}=0$ and $L_{2}=0$ and a point P_{1}. Image of P_{1} and $L_{1}=0$ is P_{2}, image of P_{2} in $L_{2}=0$ is P_{3}, image of P_{3} in $L_{1}=0$ is P_{4} and so on. Which of the following statements are incorrect ?
A. $\overrightarrow{P_{3} P_{5}}=\overrightarrow{P_{4} P_{6}}$
B. $\overrightarrow{P_{1} P_{4}}=\overrightarrow{P_{2} P_{3}}$
C. P_{i} are concylic
D. P_{5} is P_{14}

Answer: D

- Watch Video Solution

124. A pair of perpendicular lines passing through $P(1.4)$ intersect x-axis at Q and R , then the locus of incentre of $\triangle P Q R$ is
A. $x^{2}+y^{2}-2 x-8 y+17=0$
B. $x^{2}+y^{2}+2 x-8 y+17=0$
C. $x^{2}-y^{2}-2 x-8 y+17=0$
D. $x^{2}+y^{2}-2 x+8 y+17=0$

Answer: C

- Watch Video Solution

125. A triangle is formed by the lines $x+y=0, x-y=0$ and $l x+m y+1=0$. If I and m vary subject to
the condition $l^{2}+m^{2}=1$, then the locus of the circumcentre of the triangle is
A. $\left(x^{2}-y^{2}\right)^{2}=x^{2}+y^{2}$
B. $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$
C. $x^{2}+y^{2}=4 x^{2} y^{2}$
D. $\left(x^{2}-y^{2}\right)^{2}=\left(x^{2}+y^{2}\right)^{2}$

Answer: A

- Watch Video Solution

126. If x_{1}, y_{1} are the roots of $x^{2}+8 x-97=0, x_{2}, y_{2}$ are the roots of $4 x^{2}+32 x-997=0$ and x_{3}, y_{3} are the roots of $9 x^{2}+72 x-9997=0$.

Then the point $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
A. are collinear
B. form an equilateral triangle
C. form a right angled isosceles triangle
D. are concylic

Answer: A

D Watch Video Solution

127. Pis a point inside the triangle $A B C$. Lines are drawn through P, parallel to the sides of the triangle.The three resulting triangles with the vertex at P have areas 4,9 and $49 s q$. units. The area of thetriangle ABC is -
A. $2 \sqrt{3}$
B. 12
C. 24
D. 144

Answer: D

- Watch Video Solution

128. If $a x^{3}+b y^{3}+c x^{2} y+d x y^{2}=0$ represents three distinct straight lines, such that each line bisects the angle between other two, then which of the following is/are correct
A. $d^{2}>5 b c$
B. $3 b+c=0$
C. $d^{2}<5 b c$
D. $b+3 c=0$

Answer: B

- Watch Video Solution

129. The line $l x+m y+n=0$ intersects the curve $a x^{2}+2 h x y+b y^{2}=1$ at the point P and Q . The circle on PQ as diameter passes through the origin. Then $n^{2}(a+b)$ equals (A) $l^{2}+m^{2}$ (B) $2 l m$ (C) $l^{2}-m^{2}$ (D) $4 l m$

$$
\text { A. } n^{2}(a+b)=l^{2}+m^{2}
$$

B. $l^{2}(a+b)=n^{2}+m^{2}$
C. $m^{2}(a+b)=l^{2}+n^{2}$
D. none of these

Answer: A

- Watch Video Solution

130. The orthocentre of triangle with vertices
$\left(2, \frac{\sqrt{3}-1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right),\left(2,,-\frac{1}{2}\right)$
A. $\left(\frac{3}{2}, \frac{\sqrt{3}-2}{6}\right)$
B. $\left(2,-\frac{1}{2}\right)$
C. $\left(\frac{5}{4}, \frac{(\sqrt{3}-2)}{4}\right)$
D. ((1)/(2),-(1)/(2))'

Chapter Test

1. The equation to a pair of opposite sides of a parallelogram are $x^{2}-5 x+6=0$ and $y^{2}+5=0$. The equations to its diagonals are $x+4 y=13, y=4 x-7$ (b) $\quad 4 x+y=13,4 y=x-7$
$4 x+y=13, y=4 x-7$ (d) $y-4 x=13, y+4 x-7$
A. $x+4 y=13$ and $y=4 x-7$
B. $4 x+y=13$ and $4 y=x-7$
C. $4 x+y=13$ and $y=4 x-7$
D. $y-4 x=13$ and $y+4 x=7$

Answer: C

- Watch Video Solution

2. The distance between the parallel Ines $y=2 x+4$ and $6 x-3 y-5$ is
(A) 1 (B) $\frac{17}{\sqrt{3}}$ (C) $7 \frac{\sqrt{5}}{15}$ (D) $3 \frac{\sqrt{5}}{15}$
A. $17 / \sqrt{3}$
B. 1
C. $3 / \sqrt{5}$
D. $17 \sqrt{15} / 15$

Answer: D

- Watch Video Solution

3. P is a point on either of the two lines $y-\sqrt{3}|x|=2$ at a distance 5 units from their point of intersection The coordinates of the foot of the perpendicular from P on the bisector of the angle between them are
A. $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$ or , $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$ depending on which the point P is taken.
B. $\left(0, \frac{4+5 \sqrt{3}}{2}\right)$
C. $\left(0, \frac{4-5 \sqrt{3}}{2}\right)$
D. $\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$

Answer: B

- Watch Video Solution

4. If one diagonal of a square is along the line $x=2 y$ and one of its vertex is $(3,0)$, then its sides through the vertex are given by the equations -
A. $y-3 x+9=0,3 y+x-3=0$
B. $y+3 x+9=0,3 y+x-3=0$
C. $y-3 x+3=0,3 y-x+3=0$
D. $y-3 x+3=0,3 y+x+9=0$
5. The line, which is parallel to X-axis and crosses the curve $y=\sqrt{x}$ at an angle 45°, is
A. $x=1 / 4$
B. $y=1 / 4$
C. $y=1 / 2$
D. $y=1$

Answer: C

- Watch Video Solution

6. Given that $P(3,1), Q(6.5)$, and $R(x, y)$ are three points such that the angle $P R Q$ is a right angle and the area of $R Q P$ is 7 , find the number of such points R.
A. 0
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

7. Find the equation of the straight line which passes through the point
(1-2) and cuts off equal intercepts from axes.
A. $x+y=1$
B. $x-y=1$
C. $x+y+1=0$
D. $x-y-2=0$

Answer: C

8. What is the equation of the straight line which is perpendicular to $y=x$ and passes through $(3,2)$?
A. $x-y=5$
B. $x+y=5$
C. $x+y=1$
D. $x-y=1$

Answer: B

- Watch Video Solution

9. Find the perpendicular distance between the lines $3 x+4 y+9=0$ and to $6 x+8 y+15=0$ is
B. $3 / 10$
C. 6
D. none of these

Answer: B

D Watch Video Solution

10. The equation of the line passing through the point $(1,2)$ and perpendicular to the line $x+y+1=0$ is
A. $y-x+1=0$
B. $y-x-1=0$
C. $y-x+2=0$
D. $y-x-2=0$

Answer: B

11. The straight lines $x+y=0,3 x+y-4=0$ and $x+3 y-4=0$ form a triangle which is (A) isosceles (B) right angled (C) equilateral (D) scalene
A. isosceles
B. equilateral
C. right angled
D. none of these

Answer: A

Watch Video Solution

12. Triangle formed by $x^{2}-3 y^{2}=0$ and $x=4$ is
A. isosceles
B. equilateral
C. right angled
D. none of these

Answer: B

- Watch Video Solution

13. The co-ordinates of the orthocentre of the triangle bounded by the lines, $4 x-7 y+10=0 ; x+y=5$ and $7 x+4 y=15$ is
A. (-1,-2)
B. $(1,-2)$
C. $(-1,2)$
D. $(1,2)$

Answer: D

14. the lines $(p+2 q) x+(p-3 q) y=p-q$ for different values of $p \& q$ passes trough the fixed point is:
A. $(3 / 2,5 / 2)$
B. $(2 / 5,2 / 5)$
C. $(3 / 5,3 / 5)$
D. $(2 / 5,3 / 5)$

Answer: D

- Watch Video Solution

15. The distance between the lines $4 x+3 y=11$ and $8 x+6 y=15$ is
A. $7 / 2$
B. 4
C. $7 / 10$
D. none of these

Answer: C

- Watch Video Solution

16. If the diagonals of a parallelogram $A B C D$ are along the lines $x+5 y=7$ and $10 x-2 y=9$, then ABCD must be a
A. rectangle
B. square
C. cyclic quadrilateral
D. rhombus

Answer: D

- Watch Video Solution

17. The straight lines $x+y-4=0,3 x+y-4=0 \quad$ and $x+3 y-4=0$ form a triangle, which is
A. isosceles
B. right angled
C. equilateral
D. none of these

Answer: A

- Watch Video Solution

18. Write the coordinates of the orthocentre of the triangle formed by points $(8,0),(4,6)$ and $(0,0)$
A. $(4,8 / 3)$
B. $(3,4)$
C. $(4,3)$
D. $(-3,4)$
19.

A point equidistant from the
$+10=0,5 x-12 y+26=0$ and $7 x+24 y-50=0$ is
A. $(1,-1)$
B. $(1,1)$
C. $(0,0)$
D. $(0,1)$

Answer: C

- Watch Video Solution

20. The number of values of a for which the lines $2 x+y-1=0$, $a x+3 y-3=0$, and $3 x+2 y-2=0$ are concurrent is 0 (b) 1 (c) 2 (d) infinite
A. all a
B. $a=4$ only
C. $-1 \leq a \leq 3$
D. $a>0$ only

Answer: A

- Watch Video Solution

21. The diagonals of the parallelogram whose sides are $l x+m y+n=0$, $l x+m y+n^{\prime},=0, m x+l y+n=0, m x+l y+n^{\prime}=0$ include an angle
A. $\pi / 3$
B. $\pi / 2$
C. $\tan ^{-1}\left(\frac{l^{2}-m^{2}}{l^{2}+m^{2}}\right)$
D. $\tan ^{-1}\left(\frac{2 l m}{l^{2}+m^{2}}\right)$

D Watch Video Solution

22. The equations of the sides of a triangle are $x-3 y=0,4 x+3 y=5,3 x+y=0$. The line $3 x-4 y=0$ passes through
A. the incentre
B. the centroid
C. the circumcentre
D. the orthocentre, of the triangle

Answer: D

23. A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at P its equation :
A. $x+2 y=5$
B. $x-y+1=0$
C. $x+y-3=0$
D. $2 x+y-4=0$

Answer: D

- Watch Video Solution

24. Two points $(a, 0)$ and $(0, b)$ are joined by a straight line. Another point on this line, is (A) $(3 a,-2 b)$ (B) $\left(a^{2}, a b\right)$ (C) $(-3 a, 2 b)$ (D) (a, b)
A. $(3 a,-2 b)$
B. $\left(a^{2}, a b\right)$
C. $(-3 a, 2 b)$
D. (a, b)

Answer: A

- Watch Video Solution

25. If the line $y=m x$ meets the lines $x+2 y-1=0$ and
$2 x-y+3=0$ at the same point, then m is equal to
A. 1
B. -1
C. 2
D. -2

Answer: B

26. The equations $a x+b y+c=0$ and $d x+e y+f=0$ represent the same straight line if and only if
A. $\frac{a}{d}=\frac{b}{c}$
B. $c=f$
C. $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
D. $a=d, b=e, c=f$

Answer: C

- Watch Video Solution

27. If the line segment joining (2,3) and $(-1,2)$ is divided internally in the ratio 3:4 by the line $x+2 y=\lambda$, then $\lambda=$
A. $\frac{41}{7}$
B. $\frac{5}{7}$
C. $\frac{36}{7}$
D. $\frac{31}{7}$

Answer: A

- Watch Video Solution

28. A point moves in the xy-plane such that the sum of its distance from two mutually perpendicular lines is always equal to 3 . The area of the locus of the point is
A. 18 sq. units
B. $9 / 2$ sq. units
C. 9 sq. units
D. none of these

Answer: A

- Watch Video Solution

29. The vertices of a triangle are $(0,3),(-3,0)$ and $(3,0)$. The coordinates of its orthocentre are
A. $(0,2)$
B. $(0,-3)$
C. $(0,3)$
D. $(0,-2)$

Answer: C

- Watch Video Solution

30. The lines $x \cos \alpha+y \sin \alpha=P_{1}$ and $x \cos \beta+y \sin \beta=P_{2}$ will be perpendicular, if :
A. $\alpha \pm \beta=\frac{\pi}{2}$
B. $\alpha+\frac{\pi}{2}$
C. $|\alpha-\beta|=\frac{\pi}{2}$
D. $\alpha=\beta$

Answer: C

- Watch Video Solution

31. Family of lines $x \sec ^{2} \theta+y \tan ^{2} \theta-2=0$ for different real θ, is
A. not concurrent
B. concurrent at $(1,1)$
C. concurrent at $(2,-2)$
D. concurrent at (-2,2)

Answer: C

- Watch Video Solution

32. If the equation $x^{2}+(\lambda+\mu) x y+\lambda u y^{2}+x+\mu y=0$ represents two parallel straight lines, then prove that $\lambda=\mu$.
A. $(3,-1)$
B. $-3,1$
C. $(1,1)$
D. none of these

Answer: A

- Watch Video Solution

33. The area of a pentagon whose vertices are $(4,1)(3,6),(-5,1),(-3,-3)$ and $(-3,0)$, is
A. 30 sq. units
B. 60 sq. units
C. 9 sq. units
D. none of these

Answer: A

- Watch Video Solution

34. The foot of the perpendicular on the line $3 x+y=\lambda$ drawn from the origin is C. If the line cuts the x and the y-axis at AandB, respectively, then $B C: C A$ is
A. $1: 3$
B. 3: 1
C. 1:9
D. $9: 1$

Answer: D

- Watch Video Solution

