

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

ALGEBRA OF VECTORS

Illustration

1. If ABCD is a rhombus whose diagonals cut at the origin O, then proved that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D + \overrightarrow{O}$.

A.
$$\overrightarrow{AB} + \overrightarrow{AC}$$

$$\mathsf{B.}\stackrel{\longrightarrow}{0}$$

C.
$$2 \left(\overrightarrow{AB} + \overrightarrow{BC} \right)$$

D.
$$\overrightarrow{AC} + \overrightarrow{BD}$$

Answer: B

2. If C is the mid point of AB and P is any point outside AB then

A.
$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$$

$$\operatorname{B.} \overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$$

$$\mathsf{C.}\,\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$$

D.
$$\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$$

Answer: D

Watch Video Solution

3. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$

A. 1

B. 2

C.
$$\sqrt{3}$$

D.
$$2\sqrt{3}$$

Answer: C

Watch Video Solution

non-zero vectors are $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are related by **4.** The

$$\overrightarrow{a}=8\overrightarrow{b} \ \ ext{and} \ \ \overrightarrow{c}=-7\overrightarrow{b}$$
 . Then the angle between $\overrightarrow{a} \ \ ext{and} \ \ \overrightarrow{c}$ is

A. 0

B. $\pi/4$

 $\mathsf{C}.\,\pi/2$

D. π

Answer: D

5. If ABCDEF is a regular hexagon [ਜਿਧਸਿत ਥਟ੍ਮ੍ਰਗ] with $\overrightarrow{AB} = \overrightarrow{a}$ and

$$\overrightarrow{BC} = \overrightarrow{b}$$
 , then \overrightarrow{CE} equals

A.
$$\overset{
ightarrow}{b}-\overset{
ightarrow}{a}$$

$${\rm B.} - \overrightarrow{b}$$

C.
$$\overrightarrow{b}-2\overrightarrow{a}$$

D. none of these

Answer: C

Watch Video Solution

6. If \overrightarrow{a} and \overrightarrow{b} are position vectors (स्थिति सदिश) of A and B respectively the position vector of a point C on AB produced such that $\overrightarrow{AC}=\overrightarrow{3AB}$ is

A.
$$3\overrightarrow{a}-2\overrightarrow{b}$$

$$\operatorname{B.3} \vec{b} - 2 \vec{a}$$

C.
$$3\overrightarrow{a}+2\overrightarrow{a}$$

D.
$$2\overrightarrow{a}-3\overrightarrow{b}$$

Answer: B

Watch Video Solution

7. Let $\overset{
ightarrow}{A}D$ be the angle bisector of $\angle A$ of ΔABC such that

$$\overrightarrow{A}D=lpha\overrightarrow{A}B+eta\overrightarrow{A}C,$$
 then

A.
$$\alpha = \frac{\left|A\dot{B}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}, \beta = \frac{\left|A\dot{C}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}$$

B. $\alpha = \frac{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right|}, \beta = \frac{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AC}\right|}$

C. $\alpha = \frac{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}, \beta = \frac{\left|\overrightarrow{AB}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}$

D. $\alpha = \frac{\left|\overrightarrow{AB}\right|}{\left|\overrightarrow{AC}\right|}, \beta = \frac{\left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right|}$

D.
$$lpha=\dfrac{\left|\overrightarrow{AB}\right|}{\left|\overrightarrow{AC}\right|},eta=\dfrac{\left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right|}$$

Answer: C

Watch Video Solution

- **8.** Let D, EandF be the middle points of the sides BC, CAandAB, respectively of a triangle ABC. Then prove that $\overrightarrow{A}D+\overrightarrow{B}E+\overrightarrow{C}F=\overrightarrow{0}$.
 - A. $\overset{\rightarrow}{0}$
 - B. 0
 - C. 2
 - D. none of these

Answer: A

G is a point inside the plane of the triangle 9. $ABC, \overset{
ightarrow}{G}A + \overset{
ightarrow}{G}B + \overset{
ightarrow}{G}C = 0$, then show that G is the centroid of triangle ABC.

- A. $\overrightarrow{0}$
- B. $3\overrightarrow{GA}$
- C. $3G\overset{
 ightarrow}{B}$
- D. $3\overrightarrow{GC}$

Answer: A

Watch Video Solution

10. If the vectors $\overrightarrow{A}B=3\hat{i}+4\hat{k}$ and $\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is

- A. $\sqrt{18}$
- B. $\sqrt{72}$

C.
$$\sqrt{33}$$

D.
$$\sqrt{45}$$

Answer: C

Watch Video Solution

11. Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=$

A.
$$\overrightarrow{SG}$$

B.
$$2\overrightarrow{SG}$$

C.
$$3\overrightarrow{SG}$$

D.
$$\overrightarrow{0}$$

Answer: C

12. If O and O' are circumcentre and orthocentre of ABC, then $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C$ equals $2\overrightarrow{O}O'$ b. $\overrightarrow{O}O'$ c. $\overrightarrow{O}'O$ d. $2\overrightarrow{O}'O$

A.
$$\overrightarrow{O'O}$$

$$\mathsf{B.}\overrightarrow{OO'}$$

$$\mathsf{C.}\ 2\overrightarrow{OO}'$$

D.
$$\overset{\rightarrow}{0}$$

Answer: B

Watch Video Solution

13. If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'}$

A.
$$\overrightarrow{O'O}$$

$$\mathsf{B}.\overrightarrow{OO'}$$

D.
$$2\overrightarrow{O'O}$$

Answer: C

Watch Video Solution

14. Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and $\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{4}$ respectively, then the position vector of the orthocentre of this triangle is

A.
$$\overset{\rightarrow}{0}$$

$$\text{B.} - \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{2}$$

C.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

D.
$$\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{2}$$

Answer: D

15. Consider \triangle ABC and \triangle $A_1B_1C_1$ in such a way that $\overline{AB}=\overline{A_1B_1}$ and M,N,M_1,N_1 be the midpoints of AB,BC,A_1B_1 and B_1C_1 respectively, then

A.
$$\overrightarrow{MM_1} = \overrightarrow{NN_1}$$

$$\operatorname{B.}\overrightarrow{CC_1} = \overrightarrow{MM_1}$$

C.
$$\overrightarrow{CC_1} = \overrightarrow{NN_1}$$

D.
$$\overrightarrow{MM_1} = \overrightarrow{BB_1}$$

Answer: D

Watch Video Solution

16. Let ABCD be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O}A+\vec{O}B+\vec{O}C+\vec{O}D=\overset{\rightarrow}{4O}P$.

A.
$$\overrightarrow{OP}$$

B.
$$2\overrightarrow{OP}$$

$$\mathsf{C.}\, 3\overset{\longrightarrow}{OP}$$

D. $4\overrightarrow{OP}$

Answer: D

Watch Video Solution

17. If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then $\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{CD}+\overrightarrow{AD}$ is equal to

A.
$$3\overrightarrow{EF}$$

B.
$$4\overrightarrow{EF}$$

$$\mathsf{C.}\, 4\overrightarrow{FE}$$

D.
$$3\overrightarrow{FE}$$

Answer: B

18. Given that the vectors \overrightarrow{a} and \overrightarrow{b} are non-collinear, the values of x and y for which the vector equality $2\overrightarrow{u}-\overrightarrow{v}=\overrightarrow{w}$ holds true if $\overrightarrow{u}=x\overrightarrow{a}+2y\overrightarrow{b},\overrightarrow{v}=-2y\overrightarrow{a}+3x\overrightarrow{b},\overrightarrow{w}=4\overrightarrow{a}-2\overrightarrow{b}$ are

A.
$$x=\frac{4}{7}, y=\frac{6}{7}$$
B. $x=\frac{10}{7}, y=\frac{4}{7}$
C. $x=\frac{8}{7}, y=\frac{2}{7}$

D.
$$x = 2, y = 3$$

Answer: B

Watch Video Solution

19. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-zero vectors such that any two of them are non-collinear. If $\overrightarrow{a}+2\overrightarrow{b}$ is collinear with \overrightarrow{c} and $\overrightarrow{b}+3\overrightarrow{c}$ is collinear with \overrightarrow{a} then $\overrightarrow{a}+2\overrightarrow{b}+6\overrightarrow{c}=$

A.
$$\lambda \overrightarrow{a}$$

B.
$$\lambda \overrightarrow{b}$$

C.
$$\lambda \overrightarrow{c}$$

D.
$$\overrightarrow{0}$$

Answer: D

Watch Video Solution

20. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are three non-zero vectors, no two f thich are collinear and the vector \overrightarrow{a} + \overrightarrow{b} is collinear with \overrightarrow{c} , \overrightarrow{b} + \overrightarrow{c} is collinear with \overrightarrow{a} , $then \overrightarrow{a}$ + \overrightarrow{b} + \overrightarrow{c} =

A.
$$\overrightarrow{c}$$

 $\mathsf{B.}\stackrel{\rightarrow}{0}$

D.
$$\overrightarrow{a}$$

Answer: B

21. If
$$\left|\overrightarrow{AO} + \overrightarrow{OB}\right| = \left|\overrightarrow{BO} + \overrightarrow{OC}\right|$$
 , then A, B, C form

A. non-coplanar

B. collinear

C. non-collinear

D. none of these

Answer: B

Watch Video Solution

22. If the position vector of these points are $\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}, 2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}, -7\overrightarrow{b} + 10\overrightarrow{c}$, then the three points

A. collinear

are

B. non-coplanar

C. non-collinear

D. none of these

Answer: A

Watch Video Solution

23. Three points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} will be collinear if there exist scalars x, y, z such that

A.
$$x\overrightarrow{a}+y\overrightarrow{b}=z\overrightarrow{c}$$

$$\operatorname{B.}\overrightarrow{xa} + y\overrightarrow{b} + z\overrightarrow{c} = 0$$

$$\mathsf{C.}\, x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = 0, \;\; ext{where} \;\; x + y + z = 0$$

$$\operatorname{D} x\overrightarrow{a} + y\overrightarrow{b} = \overrightarrow{c}.$$

Answer: C

 \triangle ABC are $\hat{i}-\hat{j}-3\hat{k}, 2\hat{i}+\hat{j}-2\hat{k}$ and $-5\hat{i}+2\hat{j}-6\hat{k}$ respectively. The length of the bisector AD of the angle $\angle BAC$ where D is on the line segment BC, is

- A. $\frac{15}{2}$
- B. $\frac{11}{2}$
- $\mathsf{C.}\,\frac{1}{4}$

D. none of these

Answer: D

Watch Video Solution

25. Consider points A, B, C and D with position vectors

 $7\hat{i} - 4\hat{j} + 7\hat{k},\,\hat{i} - 6\hat{j} + 10\hat{k},\,\,-\,\hat{i} - 3\hat{j} + 4\hat{k}\,\,\, ext{and}\,\,\,5\hat{i} - \hat{j} + \hat{k}$

respectively. Then, ABCD is a

A. parallelogram but not a rhombus

B. square

C. rhombus

D. rectangle

Answer: C

Watch Video Solution

26. If the vectors $\overset{
ightarrow}{A}B=3\hat{i}+4\hat{k} \,\, {
m and} \,\, \overset{
ightarrow}{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is

A.
$$\sqrt{288}$$

B. $\sqrt{18}$

 $C.\sqrt{72}$

D. $\sqrt{33}$

Answer: D

27. The sides of a parallelogram are $2\hat{i}+4\hat{j}-5\hat{k}$ and $\hat{i}+2\hat{j}+3\hat{k}$, then the unit vector parallel to one of the diagonals is

A.
$$rac{1}{7}ig(3\hat{i}+6\hat{j}-2\hat{k}ig)$$

B.
$$rac{1}{7} \Big(3 \hat{i} - 6 \widehat{K} - 2 \hat{k} \Big)$$

C.
$$rac{1}{7}ig(-3\hat{i}+6\hat{j}-2\hat{k}ig)$$

D.
$$rac{1}{7}ig(3\hat{i}+6\hat{j}+2\hat{k}ig)$$

Answer: A

Watch Video Solution

28. If the points $P\left(\overrightarrow{a}+2\overrightarrow{b}+\overrightarrow{c}\right),Q\left(2\overrightarrow{a}+3\overrightarrow{b}\right),R\left(\overrightarrow{b}+t\overrightarrow{c}\right)$ are collinear, where \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar vectors, the value of t is

A. -2

B. - 1/2

C.1/2

D. 2

Answer: D

Watch Video Solution

29. A vector coplanar with vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ and parallel to the vector $2\hat{i}-2\hat{j}-4\hat{k},\;$ is

A. $\hat{i}-\hat{k}$

B. $\hat{i}-\hat{j}-2\hat{k}$

C. $\hat{i}+\hat{j}-\hat{k}$

D. $3\hat{i}+3\hat{j}-6\hat{k}$

Answer: B

30. Let co-ordinates of a point 'p' with respect to the system non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is (3, 2, 1). Then, co-ordinates of 'p'with respect to the system of vectors \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} , \overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c} . \overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}

- A. (3/2, 1/2, 1)
- B. (3/2, 1, 1/2)
- C.(1/2,3/2,1)
- D. none of these

Answer: C

Watch Video Solution

31. Suppose that \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} non-coplanar vectors in R^3 . Let the components of a vector \overrightarrow{s} along \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} be 4, 3 and 5 respectively. If the components of this vectors

D. 6

A. 7

B. 8

Watch Video Solution

32.

A. 0, -2

B. 2, 0

C. 0, -1

 $=a\Big(x\hat{i}+y\hat{j}+z\hat{k}\Big), ext{ then the values of a are}$

y and z respectively, then the value of 2x - y + z, is

 \overrightarrow{s} along $-\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r},\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}$ and $-\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}$ are x ,

 $(x,y,z)
eq (0,0,0) ext{ and } \Big(\hat{i}+\hat{j}+3\hat{k}\Big)x+\Big(3\hat{i}-3\hat{j}+\hat{k}\Big)y+\Big(-4\hat{i}+5\hat{j}\Big)$

If

Answer: C

Watch Video Solution

33. The vector $\overrightarrow{a}=lpha \hat{i}+2\hat{j}+eta \hat{k}$ lies in the plane of the vectors

$$\overrightarrow{b}=\hat{f i}+\hat{j}$$
 and $\overrightarrow{c}=\hat{j}+\hat{k}$ and bisects the angle between \overrightarrow{b} and \overrightarrow{c} .

Then which one of the following gives possible values of α and β ?

A.
$$\alpha=2, \beta=2$$

B.
$$\alpha=1,\beta=2$$

$$\mathsf{C}.\,\alpha=2,\beta=1$$

D.
$$\alpha = 1, \beta = 1$$

Answer: D

34. If \overrightarrow{a} , \overrightarrow{b} are the vectors forming consecutive sides of a regular of a regular hexagon ABCDEF then the vector representing side CD is

A.
$$\overrightarrow{a} + \overrightarrow{b}$$

B.
$$\overrightarrow{a} - \overrightarrow{b}$$

C.
$$\overrightarrow{b} - \overrightarrow{a}$$

D.
$$-\left(\overrightarrow{a}+\overrightarrow{b}\right)$$

Answer: C

35. In a regual hexagon
$$\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{b} \text{ and } \overrightarrow{CD} = \overrightarrow{c}.$$
 Then $\overrightarrow{AE} = \overrightarrow{C}$

ABCDEF,

A.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\mathtt{B.}\, 2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\mathsf{C}.\overrightarrow{a}+\overrightarrow{c}$$

D.
$$\overrightarrow{a} + 2\overrightarrow{b} + 2\overrightarrow{c}$$

Answer: C

Watch Video Solution

- **36.** If ABCDEF is a regular hexagon , then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ equals
 - A. $2A\overset{
 ightarrow}{B}$
 - $\mathsf{B.}\stackrel{\rightarrow}{0}$
 - $\operatorname{C.}3A\overset{\longrightarrow}{B}$
 - D. $4A\overset{
 ightarrow}{B}$

Answer: D

37. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\overrightarrow{a}+\overrightarrow{c}=\overrightarrow{b}+\overrightarrow{d},$ then ABCD is a

A. rhombus

B. rectangle

C. square

D. parallelogram

Answer: D

Watch Video Solution

38. ABCDEF si a regular hexagon with centre at the origin such that

$$\overrightarrow{AD}+\overrightarrow{EB}+\overrightarrow{FC}=\lambda\overrightarrow{ED}.$$
 Then, λ equals

A. 2

B. 4

C. 6

D. 3

Answer: B

Watch Video Solution

39. ABCD is a parallelogram with AC and BD as diagonals. Then,

$$\overrightarrow{AC} - \overrightarrow{BD} =$$

A.
$$4A\overset{
ightarrow}{B}$$

B. $3A\overset{
ightarrow}{B}$

C. $2A\overset{
ightarrow}{B}$

Answer: C

40. If \overrightarrow{OACB} is a parallelogram with $\overrightarrow{OC} = \overrightarrow{a}$ and $\overrightarrow{AB} = \overrightarrow{b}$, then \overrightarrow{OA}

is equal to

A.
$$\overrightarrow{a} + \overrightarrow{b}$$

B.
$$\overrightarrow{a} - \overrightarrow{b}$$

$$\mathsf{C.}\,\frac{1}{2} \bigg(\overrightarrow{b} \, - \overrightarrow{a} \bigg)$$

D.
$$\dfrac{1}{2} \left(\overrightarrow{a} - \overrightarrow{b} \right)$$

Answer: B

Watch Video Solution

41. If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then $\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=$

A.
$$2\overrightarrow{OG}$$

B.
$$4\overrightarrow{OG}$$

C.
$$5\overrightarrow{OG}$$

D.
$$3\overrightarrow{OG}$$

Answer: B

Watch Video Solution

42. Let G be the centroid of Δ ABC , If $\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b},$ then the

$$\overrightarrow{AG}$$
, in terms of \overrightarrow{a} and \overrightarrow{b} , is

A.
$$\dfrac{2}{3} igg(\overrightarrow{a} + \overrightarrow{b} igg)$$

B.
$$\frac{1}{6} \left(\overrightarrow{a} + \overrightarrow{b} \right)$$

C.
$$\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} \right)$$

D.
$$\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} \right)$$

Answer: C

43. The position vectors of the points A, B, C are

$$2\hat{i}+\hat{j}-\hat{k}, 3\hat{i}-2\hat{j}+\hat{k} ~~ ext{and}~~ \hat{i}+4\hat{j}-3\hat{k}$$
 respectively . These points

A. form an isosceles triangle

B. form a right triangle

C. are collinear

D. form a scalene triangle

Answer: C

- **44.** If the points with position vectors $20\hat{i}+p\hat{j}, 5\hat{i}-\hat{j}$ and $10\hat{i}-13\hat{j}$ are collinear, then p =
 - A. 7
 - B. -37
 - C. -7

Answer: B

Watch Video Solution

45. If the position vector of a point A is $\overrightarrow{a} + 2\overrightarrow{b}$ and \overrightarrow{a} divides AB in the ratio 2: 3, then the position vector of B, is

A.
$$2\overrightarrow{a}-\overrightarrow{b}$$

B.
$$\overset{
ightarrow}{b} - 2\overset{
ightarrow}{a}$$

C.
$$\overrightarrow{a} - 3\overrightarrow{b}$$

D.
$$\overset{\displaystyle \rightarrow}{b}$$

Answer: C

46. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non-zero vectors, no two of which are collinear and the vectors \overrightarrow{a} + \overrightarrow{b} is collinear with \overrightarrow{b} , \overrightarrow{b} + \overrightarrow{c} is collinear with \overrightarrow{a} , then \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =

47. If points $A\Big(60\overrightarrow{i}+3\overrightarrow{j}\Big), B\Big(40\overrightarrow{i}-8\overrightarrow{j}\Big)$ and $C\Big(a\overrightarrow{i}-52\overrightarrow{j}\Big)$

A.
$$\overrightarrow{a}$$

$$\overset{}{\mathsf{B.}}\vec{b}$$

C.
$$\overrightarrow{c}$$

D. none of these

Answer: D

Watch Video Solution

are collinear then a is equal to

C. 20

D. -20

Answer: B

Watch Video Solution

48. Let $\overrightarrow{OA} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\overrightarrow{OB} = 3\hat{i} + \hat{j} - 2\hat{k}$. Then vector \overrightarrow{OC}

biecting the angle $AOB \ \ \mathrm{and} \ \ C$ being a point on the line AB is

A.
$$4ig(\hat{i}+\hat{j}-\hat{k}ig)$$

B.
$$2\Big(\hat{i}+\hat{j}-\hat{k}\Big)$$

C.
$$\hat{i}+\hat{j}-\hat{k}$$

D. none of these

Answer: B

49. If the vector $-\hat{i}+\hat{j}-\hat{k}$ bisects the angle between the vector \overrightarrow{c} and the vector $3\hat{i}+4\hat{j},\;$ then the vector along \overrightarrow{c} is

A.
$$rac{1}{15}\Big(11\hat{i}+10\hat{j}+2\hat{k}\Big)$$

B.
$$-rac{1}{15}\Big(11\hat{i}-10\hat{j}+2\hat{k}\Big)$$

$$\mathsf{C.} - \frac{1}{15} \Big(11 \hat{i} + 10 \hat{j} - 2 \hat{k} \Big)$$

D.
$$-rac{1}{15}\Big(11\hat{i}+10\hat{j}+2\hat{k}\Big)$$

Answer: D

Watch Video Solution

50. If $\overrightarrow{r} = 3\hat{i} + 2\hat{j} - 5\hat{k}$, $\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\overrightarrow{c} = 2\hat{i} + \hat{j} - 3\hat{k}$ such that $\hat{r} = x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c}$ then

A. x, y, z are in AP

B. x, y, z are in GP

C. x, y, z are in HP

D. $y, \frac{x}{2}, z$ are in AP

Answer: D

Watch Video Solution

- **51.** Let $\overrightarrow{A}B=3\hat{i}+\hat{j}-\hat{k}$ and $\overrightarrow{A}C=\hat{i}-\hat{j}+3\hat{k}$ and a point P on the
- line segment BC is equidistant from AB and AC, then \overrightarrow{AP} is

A.
$$2\hat{i}-\hat{k}$$

B.
$$\hat{i}\,-2\hat{k}$$

C.
$$2\hat{i}+\hat{k}$$

D. none of these

Answer: C

52. The vector \overrightarrow{c} , directed along the internal bisector of the angle

between the vectors
$$\overrightarrow{a}=7\hat{i}-4\hat{j}-4\hat{k}$$
 and $\overrightarrow{b}=-2\hat{i}-\hat{j}+2\hat{k}$ with $\left|\overrightarrow{c}\right|=5\sqrt{6},$ is

A.
$$rac{5}{3}\Big(\hat{i}-7\hat{j}+2\hat{k}\Big)$$

B.
$$rac{5}{3}\Big(5\hat{i}\,+5\hat{j}+2\hat{k}\Big)$$

C.
$$rac{5}{3}\Big(\hat{i}+7\hat{j}+2\hat{k}\Big)$$

D.
$$rac{5}{3}\Big(-5\hat{i}+5\hat{j}+2\hat{k}\Big)$$

Answer: A

Watch Video Solution

53. If ABCD is quadrilateral and EandF are the mid-points of ACandBD respectively, prove that $\overrightarrow{A}B + \overrightarrow{A}D + \overrightarrow{C}B + \overrightarrow{C}D = 4\overrightarrow{E}F$.

A. Statement - 1 is True, Statement - 2 is True , Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

Watch Video Solution

54. Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=$

A. Statement - 1 is True, Statement - 2 is True , Statement - 2 is a correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

Watch Video Solution

55. If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'}$

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 1.

.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

56. Let O, O' and G be the circumcentre, orthocentre and centroid of a

 ΔABC and S be any point in the plane of the triangle.

$$\text{Statement -1: } \overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C} = 2\overrightarrow{O'O}$$

Statement -2:
$$\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} = 3\overrightarrow{SG}$$

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

57. Statement -1 : If \overrightarrow{a} and \overrightarrow{b} are non- collinear vectors, then points having position vectors $x_1 \overrightarrow{a} + y_1 \overrightarrow{b}$, $x_2 \overrightarrow{a} + y_2 \overrightarrow{b}$ and $x_3 \overrightarrow{a} + y_3 \overrightarrow{b}$ are collinear if

$$egin{bmatrix} x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \ 1 & 1 & 1 \end{bmatrix} = 0$$

Statement -2: Three points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are collinear iff there exist scalars x, y, z not all zero such that $x\overrightarrow{a}+y\overrightarrow{b}+z\overrightarrow{c}=\overrightarrow{0}$, where x+y+z=0.

A. Statement - 1 is True, Statement - 2 is True , Statement - 2 is a correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

58. Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B, C respectively, then

$$\frac{OL}{OA} + \frac{OM}{OB} = \frac{ON}{OC}$$

Statement -2 : Three points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are collinear iff there exist scalars x, y, z not all zero such that $x\overrightarrow{a}+y\overrightarrow{b}+z\overrightarrow{c}=\overrightarrow{0}$, where x+y+z=0.

A. Statement - 1 is True, Statement - 2 is True , Statement - 2 is a correct explanation for Statement - 1.

- B. Statement -1 is True, Statement 2 is True, Statement -2 is not a correct explanation for Statement 1.
- C. Statement 1 is True, Statement 2 is False.
- D. Statement 1 is False, Statement 2 is True.

Answer: A

1. A point O is the centre of a circle circumscribed about a triangle ABC.

Then,

 $\overrightarrow{OA}\sin 2A + \overrightarrow{OB}\sin 2B + \overrightarrow{OC}\sin 2C$ is equal to

A.
$$\left(\overrightarrow{Oa} + \overrightarrow{OB} + \overrightarrow{OC}\right) \sin 2A$$

B. $3\overrightarrow{OG}, \text{ where G is the centroid of triangle ABC}$

 $\mathsf{C}.\stackrel{\longrightarrow}{0}$

D. none of these

Answer: C

View Text Solution

- **2.** The vectors $2\hat{i}+3\hat{j}, 5\hat{i}+6\hat{j}$ and $8\hat{i}+\lambda\hat{j}$ have their initial points at
- (1, 1). The value of λ so that the vectors terminate on one straight line, is
 - A. 0

B. 3

C. 6

D. 9

Answer: D

Watch Video Solution

3. If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B and C respectively of triangle ABC . The position vector of the point where the bisector of angle A meets BC, is

A.
$$rac{2}{3}ig(-6\hat{i}-8\hat{j}-6\hat{k}ig)$$

B.
$$rac{2}{3}\Big(6\hat{i}+8\hat{j}+6\hat{k}\Big)$$

C.
$$rac{1}{3}\Big(6\hat{i}+13\hat{j}+18\hat{k}\Big)$$

D.
$$rac{1}{3}\Big(5\hat{j}+12\hat{k}\Big)$$

Answer: C

4. If \overrightarrow{a} is a non zero vecrtor iof modulus \overrightarrow{a} and m is a non zero scalar such that ma is a unit vector, write the value of m.

A.
$$m=\pm 1$$

B.
$$m = \left| \overrightarrow{a} \right|$$

$$\mathsf{C.}\,m = \frac{1}{\left|\overrightarrow{a}\right|}$$

D.
$$m=\pm 2$$

Answer: C

Watch Video Solution

5. D, E and F are the mid-points of the sides BC, CA and AB respectively of

$$\Delta ABC$$
 and G is the centroid of the triangle, then $\overrightarrow{GD}+\overrightarrow{GE}+\overrightarrow{GF}=$

A.
$$\overrightarrow{0}$$

B.
$$2\overrightarrow{AB}$$

C.
$$2\overrightarrow{GA}$$

D.
$$2\overrightarrow{GC}$$

Watch Video Solution

6. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then

A.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$

$$\mathsf{B.}\left|\overrightarrow{a}\right|^2 = \left|\overrightarrow{b}\right|^2 + \left|\overrightarrow{c}\right|^2$$

$$\operatorname{C.}\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$$

D. none of these

Answer: A

7. If P, Q, R are three points with respective position vectors

$$\hat{i}+\hat{j},\,\hat{i}-\hat{j}\,\, ext{and}\,\,a\,\hat{i}+b\hat{j}+c\hat{k}.$$
 The points P, Q, R are collinear, if

A.
$$a = b = c = 1$$

B.
$$a = b = c = 0$$

C.
$$a=1,b,c\in R$$

D.
$$a=1, c=0, b\in R$$

Answer: D

8. Let ABC be a triangle, the position vectors of whose vertices are respectively

$$7\hat{j}+10\hat{k},~-\hat{i}+6\hat{j}+6\hat{k}~ ext{and}~-4\hat{i}+9\hat{j}+6\hat{k}.~~ ext{Then},~~\Delta ABC$$
 is

A. isosceles and right angled

B. equilateral

C. right angled but not isosceles

D. none of these

Answer: A

Watch Video Solution

9. If $\overrightarrow{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 6\hat{j} + 2\hat{k}$ then the vector in the direction of \overrightarrow{a} and having mgnitude as $\left|\overrightarrow{b}\right|$ is

A.
$$7\Big(\hat{i}\,+2\hat{j}\,+2\hat{k}\Big)$$

B.
$$rac{7}{9}\Big(\hat{i}\,+2\hat{j}+2\hat{k}\Big)$$

C.
$$rac{7}{3}\Big(\hat{i}\,+2\hat{j}\,+2\hat{k}\Big)$$

D. none of these

Answer: C

10.
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are non-coplanar vectors and $x\overrightarrow{a}+y\overrightarrow{b}+z\overrightarrow{c}=\overrightarrow{0}$ then

A. at least of one of x, y, z is zero

B. x, y, z are necessarily zero

C. none of them are zero

D. none of these

Answer: B

Watch Video Solution

11. The vector \overrightarrow{c} , directed along the internal bisector of the angle between the vectors

$$\overrightarrow{c}=7\hat{i}-4\hat{j}-4\hat{k} ext{ and } \overrightarrow{b}=-2\hat{i}-\hat{j}+2\hat{k} ext{ with } \left|\overrightarrow{c}
ight|=5\sqrt{6}, ext{ is}$$

A.
$$\pmrac{5}{3}\Big(2\hat{i}+7\hat{j}+\hat{k}\Big)$$

$$\mathsf{B.} \pm \frac{3}{5} \Big(\hat{i} + 7 \hat{j} + 2 \hat{k} \Big)$$

C.
$$\pm rac{5}{3} \Big(\hat{i} - 2 \hat{j} + 7 \hat{k} \Big)$$

D.
$$\pm rac{5}{3} \Big(\hat{i} - 7 \hat{j} + 2 \hat{k} \Big)$$

Answer: D

Watch Video Solution

- **12.** A, B have vectors \overrightarrow{a} , \overrightarrow{b} relative to the origin O and X, Y divide \overrightarrow{AB}
- internally and externally respectively in the ratio $2\!:\!1$. Then , $\overrightarrow{XY}=$

A.
$$\dfrac{3}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right)$$

B.
$$\frac{4}{3} \left(\overrightarrow{a} - \overrightarrow{b} \right)$$

C.
$$\frac{5}{6} \left(\overrightarrow{b} - \overrightarrow{a} \right)$$

D.
$$\frac{4}{3} \left(\overrightarrow{b} - \overrightarrow{a} \right)$$

Answer: D

13. If a vector ofmagnitude 50 is collinear with vector

$$\overrightarrow{b}=6\hat{i}-8\hat{j}-rac{15}{2}\hat{k}$$
 and makes an acute anlewih positive z-axis then:

A.
$$24\hat{i}-32\hat{j}-30\hat{k}$$

$$\mathrm{B.}-24\hat{i}\,+32\hat{j}\,+30\hat{k}$$

C.
$$12\hat{i}-16\hat{j}-15\hat{k}$$

D. none of these

Answer: B

Watch Video Solution

14. The vector \overrightarrow{c} , directed along the internal bisector of the angle between the vectors

$$\overrightarrow{c}=7\hat{i}-4\hat{j}-4\hat{k} ext{ and } \overrightarrow{b}=-2\hat{i}-\hat{j}+2\hat{k} ext{ with } \left|\overrightarrow{c}
ight|=5\sqrt{6}, ext{ is}$$

A.
$$\hat{i}-7\hat{j}+2\hat{k}$$

B.
$$\hat{i}+7\hat{j}-2\hat{k}$$

$$\mathrm{C.}-\hat{i}+7\hat{j}+2\hat{k}$$

D.
$$\hat{i}-7\hat{j}-2\hat{k}$$

Watch Video Solution

If $\overrightarrow{r} = \lambda_1 \overrightarrow{r}_1 + \lambda_2 \overrightarrow{r}_2 + \lambda_3 \overrightarrow{r}_3$, then

15. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors such that

$$\overrightarrow{r}_1 = \overrightarrow{a} + \overrightarrow{c}, \overrightarrow{r}_2 = \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}, \overrightarrow{r}_3 = \overrightarrow{c} + \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{r} = 2\overrightarrow{a} - 3\overrightarrow{b}$$

A.
$$\lambda_1=7$$

B.
$$\lambda_1 + \lambda_3 = 3$$

C.
$$\lambda_1 + \lambda_2 + \lambda_3 = 3$$

D.
$$\lambda_3 + \lambda_2 = 2$$

Answer: B,A

16. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \alpha \overrightarrow{d}$ and $\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = \beta \overrightarrow{a}$, then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}$

A.
$$\overset{
ightarrow}{0}$$

в.
$$lpha \overset{
ightarrow}{a}$$

$$\mathsf{C}.\,eta\overset{
ightarrow}{b}$$

D.
$$(\alpha+eta)\overrightarrow{c}$$

 $A \stackrel{\rightarrow}{a}$

17.
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are three non zero vectors no two of which are collonear and the vectors \overrightarrow{a} + \overrightarrow{b} be collinear with \overrightarrow{c} , \overrightarrow{b} + \overrightarrow{c} to collinear with \overrightarrow{a} then \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} the equal to ? (A) \overrightarrow{a} (B) \overrightarrow{b} (C) \overrightarrow{c} (D) None of these

B. \overrightarrow{b}

C. \overrightarrow{c}

D. $\overrightarrow{0}$

Answer: D

Watch Video Solution

18. Let α, β, γ be distinct real numbers. The points with position vectors

$$lpha\hat{i}+eta\hat{j}+\gamma\hat{k},eta\hat{i}+\gamma\hat{j}+lpha\hat{k},\gamma\hat{i}+lpha\hat{j}+eta\hat{k}$$

A. are collinear

B. form an equilateral triangle

C. form a scalene triangle

D. form a right angled triangle

Answer: B

The

points with position vectors

$$60\hat{i}+3\hat{j},40\hat{i}-8\hat{j},40\hat{i}-8\hat{j},a\hat{i}-52\hat{j}$$
 are collinear iff (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these

A.
$$a = -40$$

$$B. a = 40$$

$$C. a = 20$$

D. none of these

Answer: A

Watch Video Solution

20. If the points with position vectors $10\hat{i}+3\hat{j}, 12\hat{i}-5\hat{j}$ and $a\hat{i}+11\hat{j}$ are collinear, find the value of a.

A. -8

B. 4

C. 8

D. 12

Answer: D

Watch Video Solution

21. If C is the middle point of AB and P is any point outside AB, then

A.
$$\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$$

$$\operatorname{B.}\overrightarrow{PA}+\overrightarrow{PB}=2\overrightarrow{PC}$$

$$\operatorname{C.}\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$$

$$\operatorname{D.} \overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$$

Answer: B

22. The median AD of the triangle ABC is bisected at E and BE meets AC at

F. Find AF:FC.

A.
$$3/4$$

D.
$$1/4$$

Answer: B

Watch Video Solution

23. In a trapezium ABCD the vector $\overrightarrow{BC} = \lambda \overrightarrow{AD}$. If $\overrightarrow{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is coillinear with \overrightarrow{AD} such that $\overrightarrow{p} = \mu \overrightarrow{AD}$, then

A.
$$\mu=\lambda+1$$

B.
$$\lambda=\mu+1$$

$$\mathsf{C}.\,\lambda + \mu = 1$$

D.
$$\mu=2+\lambda$$

Watch Video Solution

- **24.** If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b) \overrightarrow{x} + (15b-12c) \overrightarrow{y} + (12c-20a) $\overrightarrow{x} \times \overrightarrow{y}$ is:
 - A. an acute angle triangle
 - B. an obtuse angle triangle
 - C. a right angle triangle
 - D. an isosceles triangle

Answer: C

25. If D, E, F are respectively the mid-points of AB, AC and BC respectively in a ΔABC , then $\overrightarrow{BE} + \overrightarrow{AF} =$

in a
$$\Delta ABC$$
, then $BE + AF =$

A.
$$\overrightarrow{DC}$$

B.
$$\frac{1}{2}\overrightarrow{BF}$$

C.
$$2\overrightarrow{BF}$$

D.
$$\frac{3}{2}\overrightarrow{BF}$$

Answer: A

Watch Video Solution

26. Forces $3\overrightarrow{OA}, 5\overrightarrow{OB}$ act along OA and OB. If their resultant passes through C on AB, then

A. C is a mid-point of AB

B. C divides AB in the ratio 2:1

C.3AC = 5CB

$$\mathsf{D.}\,2AC=3CB$$

Answer: C

Watch Video Solution

27. If ABCDEF is a regular hexagon with $\overrightarrow{AB}=\overrightarrow{a}$ and $\overrightarrow{BC}=\overrightarrow{b}$, then \overrightarrow{CE} equals

A.
$$\overrightarrow{b}-\overrightarrow{a}$$

$${\tt B.} - \overset{\longrightarrow}{b}$$

C.
$$\overset{
ightarrow}{b} - 2\overset{
ightarrow}{a}$$

D.
$$\overset{
ightarrow}{b} + \overset{
ightarrow}{a}$$

Answer: C

28. If A, B, C are vertices of a triangle whose position vectors are

$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} respectively and G is the centroid of ΔABC , then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$, is

A.
$$\overrightarrow{0}$$

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\mathsf{C.}\,\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{3}$$

$\mathsf{D}.\,\frac{\overrightarrow{a}-\overrightarrow{b}-\overrightarrow{c}}{2}$

Answer: A

Watch Video Solution

29. Let $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \ \overrightarrow{b} = 3\hat{i} + 3\hat{j} - \hat{k} \ ext{and} \ \overrightarrow{c} = d\hat{i} + \hat{j} + (2d-1)\hat{k}.$

is parallel to the plane of the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , then $11d=$

B. 1

C. -1

D. 0

Answer: C

Watch Video Solution

30. If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$

A. $3\overrightarrow{OM}$

B. $4\overrightarrow{OM}$

 $\mathsf{C.}\ 2\overset{\longrightarrow}{OM}$

 $\operatorname{D.} \overrightarrow{OM}$

Answer: B

Chapter Test

1. If the vectors $\overrightarrow{a}=2\hat{i}+3\hat{j}+6\hat{k}$ and \overrightarrow{b} are collinear and

$$\left|\overrightarrow{b}
ight|=21, \;\; ext{then} \;\; \overrightarrow{b}=$$

(A)
$$\pm 3 \Big(2 \hat{i} + 3 \hat{j} + 6 \hat{k} \Big)$$

(B)
$$\pm \left(2\hat{i}+3\hat{j}-6\hat{k}
ight)$$

(C)
$$\pm 21 \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big)$$

(D)
$$\pm 21 \Big(\hat{i} + \hat{j} + \hat{k}\Big)$$

A.
$$\pm 3igl(2\hat{i}\,+3\hat{j}\,+6\hat{k}igr)$$

B.
$$\pm \left(2\hat{i}\,+3\hat{j}-6\hat{k}
ight)$$

C.
$$\pm 21 \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big)$$

D.
$$\pm 21ig(\hat{i}+\hat{j}+\hat{k}ig)$$

Answer: A

2. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-zero vectors (no two of which are collinear), such that the pairs of vectors $(\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c})$ and $(\overrightarrow{b} + \overrightarrow{c}, \overrightarrow{a})$ are collinear, then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$

A.
$$\overrightarrow{a}$$

$$\mathsf{B.}\stackrel{\displaystyle\rightarrow}{b}$$

$$\mathsf{C}.\stackrel{\displaystyle
ightarrow}{c}$$

D.
$$\overrightarrow{0}$$

Answer: D

Watch Video Solution

3. Vectors \overrightarrow{a} and \overrightarrow{b} are non-collinear. Find for what value of x vectors

$$\overrightarrow{c}=(x-2)\overrightarrow{a}+\overrightarrow{b}$$
 and $\overrightarrow{d}=(2x+1)\overrightarrow{a}-\overrightarrow{b}$ are collinear?

A.
$$1/3$$

D. 0

Answer: A

Watch Video Solution

4. If the diagonals of a parallelogram are $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k},$ then the lengths of its sides are

A.
$$\sqrt{8}$$
, $\sqrt{10}$

B.
$$\sqrt{6}$$
, $\sqrt{14}$

C.
$$\sqrt{5}$$
, $\sqrt{12}$

D. none of these

Answer: B

5. If ABCD is a quadrilateral, then
$$\overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} =$$

A.
$$2\overrightarrow{BA}$$

B.
$$2\overrightarrow{AB}$$

C.
$$2\overrightarrow{AC}$$

$$\operatorname{D.}2(BC)$$

- **6.** If the points with position vectors $60\hat{i}+3\hat{j}, 40\hat{i}-8\hat{j}$ and $a\hat{i}-52\hat{j}$ are collinear, then a =
 - A. -40
 - B. 40
 - C. 20
 - D. 30

Watch Video Solution

- **7.** If ABCDEF is a regualr hexagon, then $\overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{EA} + \overrightarrow{FA} =$
 - A. $2\overrightarrow{AB}$
 - B. $3\overrightarrow{AB}$
 - $\mathsf{C.} \, \overrightarrow{AB}$
 - D. $\overrightarrow{0}$

Answer: B

Watch Video Solution

8. ABCDEF is a regular hexagon. Find the vector $\overrightarrow{A}B + \overrightarrow{A}C + \overrightarrow{A}D + \overrightarrow{A}E + \overrightarrow{A}F$ in terms of the vector $\overrightarrow{A}D$

A.
$$3\overrightarrow{AG}$$

B.
$$2\overrightarrow{AG}$$

C.
$$6\overrightarrow{AG}$$

D.
$$4\overrightarrow{AG}$$

Answer: C

Watch Video Solution

9. If P, Q , R are the mid-points of the sides AB, BC and CA of
$$\Delta ABC$$
 and O is point whithin the triangle, then $\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=$

A.
$$2 igg(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR} igg)$$

$$\operatorname{B.}\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}$$

$$\mathsf{C.}\,4\bigg(\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}\bigg)$$

D.
$$6 \Biggl(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR} \Biggr)$$

Answer: B

10. If G is the centroid of $\triangle ABC$ and G' is the centroid of

$$\Delta A'B'C'$$
 then $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} =$

A.
$$2\overrightarrow{GG}$$
 '

B.
$$3\overrightarrow{GG}$$
 '

C.
$$\overrightarrow{GG}'$$

D.
$$4\overrightarrow{GG}$$
 '

Answer: B

11. In a quadrilateral ABCD,
$$\overrightarrow{AB} + \overrightarrow{DC} =$$

A.
$$\overrightarrow{AB} + \overrightarrow{CB}$$

$$\operatorname{B.}\overrightarrow{AC}+\overrightarrow{BD}$$

$$\mathsf{C.}\overrightarrow{AC}+\overrightarrow{DB}$$

$$\operatorname{D.}\overrightarrow{AD}-\overrightarrow{CB}$$

Answer: C

Watch Video Solution

12. If ABCDE is a pentagon, then

$$\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC}$$
 is equal to

A.
$$4\overrightarrow{AC}$$

B.
$$2\overrightarrow{AC}$$

C.
$$3\overrightarrow{AC}$$

D.
$$5\overrightarrow{AC}$$

Answer: C

13. If ABCD is a parallelogram, then $\overrightarrow{AC}-\overrightarrow{BD}=$

A.
$$4\overrightarrow{AB}$$

B.
$$3\overrightarrow{AB}$$

C.
$$2\overrightarrow{AB}$$

D.
$$\overrightarrow{AB}$$

Answer: C

14.

Watch Video Solution

 $\Delta ABC, \;\; ext{if} \;\; \overrightarrow{AB} = \hat{i} - 7\hat{j} + \hat{k} \; ext{and} \;\; \overrightarrow{BC} = 3\hat{j} + \hat{j} + 2\hat{k}, \;\; ext{then} \;\; \left|\overrightarrow{CA}
ight|$

A.
$$\sqrt{61}$$

B.
$$\sqrt{52}$$

$$\mathsf{C.}\,\sqrt{51}$$

D.
$$\sqrt{41}$$

Watch Video Solution

15. In a Δ ABC, if $\overrightarrow{AB}=3\hat{i}+4\hat{k},$ $\overrightarrow{AC}=5\hat{i}+2\hat{j}+4\hat{k},$ then the length of median through A , is

- A. $3\sqrt{2}$
- B. $6\sqrt{2}$
- $\mathsf{C.}\,5\sqrt{2}$
- D. $\sqrt{33}$

Answer: D

Watch Video Solution

16. The position vectors of P and Q are respectively \overrightarrow{a} and \overrightarrow{b} . If R is a point on \overrightarrow{PQ} such that $\overrightarrow{PR}=5\overrightarrow{PQ}$, then the position vector of R, is

A.
$$5\overrightarrow{b}-4\overrightarrow{a}$$

$$egin{aligned} ext{B.} \, 5 \, \overrightarrow{b} \, + 4 \, \overrightarrow{a} \ & \\ ext{C.} \, 4 \, \overrightarrow{b} \, - 5 \, \overrightarrow{a} \end{aligned}$$

C.
$$4b - 5a$$

$$\overrightarrow{D} \cdot 4\overrightarrow{b} + 5\overrightarrow{a}$$

Watch Video Solution

A. 2

B. 4

D. 8

Answer: B

17. If the points whose position vectors
$$2\hat{i}+\hat{j}+\hat{k}, 6\hat{i}-\hat{j}+2\hat{k}$$
 and $14\hat{i}-5\hat{j}+p\hat{k}$ are collinear, then p =

vectors

are

C. 6

18. The ratio in which
$$\hat{i}+2\hat{j}+3\hat{k}$$
 divides the join of $-2\hat{i}+3\hat{j}+5\hat{k}$ and $7\hat{i}-\hat{k},$ is

19.

Watch Video Solution

$$\overrightarrow{OC} = \overrightarrow{a} \ ext{ and } \overrightarrow{AB} = \overrightarrow{b} \,, \ ext{ then } \overrightarrow{OA} =$$

A.
$$\overrightarrow{a} + \overrightarrow{b}$$

If

OACB is

parallelogramwith

a

B.
$$\overrightarrow{q}-\overrightarrow{b}$$

$$\mathsf{C.}\,\frac{1}{2} \bigg(\overrightarrow{b} - \overrightarrow{a} \bigg)$$

D.
$$rac{1}{2}igg(\overrightarrow{a} - \overrightarrow{b} igg)$$

Answer: D

Watch Video Solution

- vectors of the points A, B, 20. position
- $2\hat{i}+\hat{j}-\hat{k}, 3\hat{i}-2\hat{j}+\hat{k} ~~ ext{and}~~ \hat{i}+4\hat{j}-3\hat{k}$ respectively . These points
 - A. form an isosceles triangle
 - B. form a right triangle
 - C. are collinear
 - D. form a scalene triangle

Answer: A

21. If ABCDEF is a regular hexagon then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ equals :

A.
$$2\overrightarrow{AB}$$

$$\operatorname{B.} \overset{\rightarrow}{0}$$

$$\mathsf{C.}\ 3\overrightarrow{AB}$$

D.
$$4\overrightarrow{AB}$$

Answer: D

Watch Video Solution

22. If the points with position vectors $20\hat{i}+p\hat{j}, 5\hat{i}-\hat{j}$ and $10\hat{i}-13\hat{j}$ are collinear, then p =

A. 7

B. -37

C. -7

Answer: B

Watch Video Solution

23. If the position vector of a point A is $\overrightarrow{a} + 2\overrightarrow{b}$ and \overrightarrow{a} divides AB in the ratio 2: 3, then the position vector of B, is

A.
$$\overrightarrow{a} - \overrightarrow{b}$$

B.
$$\overrightarrow{b}-2\overrightarrow{a}$$

C.
$$\overrightarrow{a} - 3\overrightarrow{b}$$

D.
$$\overset{\displaystyle \rightarrow}{b}$$

Answer: C

24. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are the position vectors of points $A,B,\ C,\ D$ such collinear that three of them nο and are $\overrightarrow{a}+\overrightarrow{c}=\overrightarrow{b}+\overrightarrow{d},\;then\;ABCD$ is a a. rhombus b. rectangle c. square d. parallelogram

A. rhombus

B. rectangle

C. square

D. parallelogram

Answer: D

Watch Video Solution

25. Let G be the centroid of Δ ABC , If $\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b},$ then the

$$\overrightarrow{AG}$$
, in terms of \overrightarrow{a} and \overrightarrow{b} , is

A.
$$\dfrac{2}{3}igg(\overset{
ightarrow}{a} + \overset{
ightarrow}{b} igg)$$

C.
$$\dfrac{1}{3}igg(\overrightarrow{a}+\overrightarrow{b}igg)$$
D. $\dfrac{1}{2}igg(\overrightarrow{a}+\overrightarrow{b}igg)$

B. $\frac{1}{6} \left(\overrightarrow{a} + \overrightarrow{b} \right)$

Answer: C

26. If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then $\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=$

A.
$$2\overrightarrow{OG}$$

B.
$$4\overrightarrow{OG}$$

C. $5\overrightarrow{OG}$

D. $3\overrightarrow{OG}$

Answer: B

27. The vector
$$\cos lpha \cos eta \hat{i} + \cos lpha \sin eta \hat{j} + \sin lpha \hat{k}$$
 is a

A. null vector

B. unit vector

C. constant vector

D. none of these

Answer: B

28.

Watch Video Solution

$$\overrightarrow{A}B=a, \overrightarrow{B}C=b \ \ ext{and} \ \ \overrightarrow{C}D=c. \ Then, \overrightarrow{A}E=$$

In a regular hexagon

ABCDEF,

A.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\mathtt{B.}\, 2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

$$\mathsf{C.}\stackrel{\longrightarrow}{b} + \stackrel{\longrightarrow}{c}$$

D.
$$\overrightarrow{a} + 2\overrightarrow{b} + 2\overrightarrow{c}$$

Answer: C

Watch Video Solution

- 29. If three points A, B and C have position vectors $\hat{i}+x\hat{j}+3\hat{k}, 3\hat{i}+4\hat{j}+7\hat{k}$ and $y\hat{i}-2\hat{j}-5\hat{k}$ respectively are collinear, then (x, y) =
 - A.(2, -3)
 - B.(-2,3)
 - C. (-2, -3)
 - D.(2,3)

Answer: A

30. If the position vectors of the vertices of a triangle of a triangle are

 $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}-5\hat{k}\,\,\, ext{and}\,\,\,3\hat{i}-4\hat{j}-4\hat{k},\,\, ext{then the triangle is}$

A. equilateral

B. isosceles

C. right angled but not isosceles

D. right angled

Answer: D

