

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

ALGEBRA OF VECTORS

1. If ABCD is a rhombus whose diagonals cut at the origin O, then proved that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D + \overrightarrow{O}$.

A.
$$\overrightarrow{AB} + \overrightarrow{AC}$$

B. $\overrightarrow{0}$
C. $2\left(\overrightarrow{AB} + \overrightarrow{BC}\right)$
D. $\overrightarrow{AC} + \overrightarrow{BD}$

Answer: B

2. If C is the mid point of AB and P is any point outside AB then

A.
$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$$

B. $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$
C. $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$
D. $\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$

Answer: D

Watch Video Solution

3. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$

A. 1

B. 2

C. $\sqrt{3}$

D. $2\sqrt{3}$

Answer: C

Watch Video Solution

A. 0

B. $\pi/4$

C. $\pi/2$

D. π

Answer: D

5. If ABCDEF is a regular hexagon [नियमित षट्भुज] with $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$, then \overrightarrow{CE} equals

A. $\overrightarrow{b} - \overrightarrow{a}$ B. $-\overrightarrow{b}$ C. $\overrightarrow{b} - 2\overrightarrow{a}$

D. none of these

Answer: C

Watch Video Solution

6. If \overrightarrow{a} and \overrightarrow{b} are position vectors (स्थिति सदिश) of A and B respectively the position vector of a point C on AB produced such that $\overrightarrow{AC} = 3\overrightarrow{AB}$

is

 $A. 3\overrightarrow{a} - 2\overrightarrow{b}$ $B. 3\overrightarrow{b} - 2\overrightarrow{a}$

$$C. 3\overrightarrow{a} + 2\overrightarrow{a}$$
$$D. 2\overrightarrow{a} - 3\overrightarrow{b}$$

Answer: B

7. Let $\overrightarrow{A}D$ be the angle bisector of $\angle A$ of $\triangle ABC$ such that $\overrightarrow{A}D = \alpha \overrightarrow{A}B + \beta \overrightarrow{A}C$, then

Answer: C

8. Let D, EandF be the middle points of the sides BC, CAandAB, respectively of a triangle ABC. Then prove that $\overrightarrow{A}D + \overrightarrow{B}E + \overrightarrow{C}F = \overrightarrow{0}$. A. $\overrightarrow{0}$ B. 0 C. 2 D. none of these

Answer: A

9. G is a point inside the plane of the triangle ABC, $\overrightarrow{G}A + \overrightarrow{G}B + \overrightarrow{G}C = 0$, then show that G is the centroid of triangle ABC.

A. $\overrightarrow{0}$ B. $3\overrightarrow{GA}$ C. $3\overrightarrow{GB}$

D. $3\overrightarrow{GC}$

Answer: A

Watch Video Solution

10. If the vectors $\overrightarrow{A}B=3\hat{i}+4\hat{k}\,\, ext{and}\,\,\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides

of a triangle ABC, then the length of the median through A is

A. $\sqrt{18}$

B. $\sqrt{72}$

C. $\sqrt{33}$

D. $\sqrt{45}$

Answer: C

Watch Video Solution

11. Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =$

Answer: C

12. If O and O' are circumcentre and orthocentre of ABC, then $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C$ equals $2\overrightarrow{O}O'$ b. $\overrightarrow{O}O'$ c. $\overrightarrow{O}'O$ d. $2\overrightarrow{O}'O$ A. $\overrightarrow{O'O}$ B. $\overrightarrow{OO'}$ C. $2\overrightarrow{OO'}$ D. \overrightarrow{O}

Answer: B

Watch Video Solution

13. If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'}$

A. $\overrightarrow{O'O}$ B. $\overrightarrow{OO'}$

 $C.2\overrightarrow{OO'}$

Answer: C

Watch Video Solution

14. Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and $\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{4}$ respectively, then the position vector of the orthocentre of this triangle is

A.
$$\overrightarrow{0}$$

B. $-\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{2}$
C. $\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$
D. $\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{2}$

Answer: D

15. Consider $\triangle ABC$ and $\triangle A_1B_1C_1$ in such a way that $\overline{AB} = \overline{A_1B_1}$ and M, N, M_1, N_1 be the midpoints of AB, BC, A_1B_1 and B_1C_1 respectively, then

A.
$$\overrightarrow{MM_1} = \overrightarrow{NN_1}$$

B. $\overrightarrow{CC_1} = \overrightarrow{MM_1}$
C. $\overrightarrow{CC_1} = \overrightarrow{NN_1}$
D. $\overrightarrow{MM_1} = \overrightarrow{BB_1}$

Answer: D

Watch Video Solution

16. Let ABCD be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = 4\overrightarrow{O}P$.

A.
$$\overrightarrow{OP}$$

B. $2\overrightarrow{OP}$

C. $3\overrightarrow{OP}$

D. $4\overrightarrow{OP}$

Answer: D

Watch Video Solution

17. If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then $\overrightarrow{AB} + \overrightarrow{CB} + \overrightarrow{CD} + \overrightarrow{AD}$ is equal to

D. $3\overrightarrow{FE}$

Answer: B

18. Given that the vectors \overrightarrow{a} and \overrightarrow{b} are non-collinear, the values of x and y for which the vector equality $2\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{w}$ holds true if $\overrightarrow{u} = x\overrightarrow{a} + 2y\overrightarrow{b}, \overrightarrow{v} = -2y\overrightarrow{a} + 3x\overrightarrow{b}, \overrightarrow{w} = 4\overrightarrow{a} - 2\overrightarrow{b}$ are

A.
$$x = \frac{4}{7}, y = \frac{6}{7}$$

B. $x = \frac{10}{7}, y = \frac{4}{7}$
C. $x = \frac{8}{7}, y = \frac{2}{7}$
D. $x = 2, y = 3$

Answer: B

Watch Video Solution

19. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-zero vectors such that any two of them are non-collinear. If $\overrightarrow{a} + 2\overrightarrow{b}$ is collinear with \overrightarrow{c} and $\overrightarrow{b} + 3\overrightarrow{c}$ is collinear with \overrightarrow{a} then $\overrightarrow{a} + 2\overrightarrow{b} + 6\overrightarrow{c} =$

 $\mathsf{B}.\,\lambda \overset{\longrightarrow}{b}$

$$\mathsf{C}.\,\lambda\overrightarrow{c}$$

D. $\overrightarrow{0}$

Answer: D

Watch Video Solution

20. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-zero vectors, no two f thich are collinear and the vector $\overrightarrow{a} + \overrightarrow{b}$ is collinear with \overrightarrow{c} , $\overrightarrow{b} + \overrightarrow{c}$ is collinear with \overrightarrow{a} , then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$

A. \overrightarrow{c} B. $\overrightarrow{0}$ C. $\overrightarrow{a} + \overrightarrow{c}$ D. \overrightarrow{a}

Answer: B

21. If
$$\left|\overrightarrow{AO}+\overrightarrow{OB}\right|=\left|\overrightarrow{BO}+\overrightarrow{OC}\right|$$
 , then A,B,C form

A. non-coplanar

B. collinear

C. non-collinear

D. none of these

Answer: B

are

A. collinear

B. non-coplanar

C. non-collinear

D. none of these

Answer: A

Watch Video Solution

23. Three points with position vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ will be collinear if there

exist scalars x, y, z such that

A.
$$x\overrightarrow{a} + y\overrightarrow{b} = z\overrightarrow{c}$$

B. $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = 0$
C. $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = 0$, where $x + y + z = 0$
D. $x\overrightarrow{a} + y\overrightarrow{b} = \overrightarrow{c}$.

Answer: C

24. The position vectors of the vectices A, B, C of a $\triangle ABC$ are $\hat{i} - \hat{j} - 3\hat{k}$, $2\hat{i} + \hat{j} - 2\hat{k}$ and $-5\hat{i} + 2\hat{j} - 6\hat{k}$ respectively. The length of the bisector AD of the angle $\angle BAC$ where D is on the line segment BC, is

A.
$$\frac{15}{2}$$

B. $\frac{11}{2}$
C. $\frac{1}{4}$

D. none of these

Answer: D

25. Consider points A, B, C and D with position vectors $7\hat{i} - 4\hat{j} + 7\hat{k}, \hat{i} - 6\hat{j} + 10\hat{k}, -\hat{i} - 3\hat{j} + 4\hat{k}$ and $5\hat{i} - \hat{j} + \hat{k}$ respectively. Then, ABCD is a A. parallelogram but not a rhombus

B. square

C. rhombus

D. rectangle

Answer: C

Watch Video Solution

26. If the vectors
$$\overrightarrow{A}B = 3\hat{i} + 4\hat{k}$$
 and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is

A. $\sqrt{288}$

 $\mathsf{B.}\,\sqrt{18}$

 $\mathsf{C.}\,\sqrt{72}$

D. $\sqrt{33}$

Answer: D

27. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$, then the unit vector parallel to one of the diagonals is

$$\begin{array}{l} \mathsf{A}.\, \frac{1}{7} \Big(3\hat{i} + 6\hat{j} - 2\hat{k}\Big) \\ \mathsf{B}.\, \frac{1}{7} \Big(3\hat{i} - 6\widehat{K} - 2\hat{k}\Big) \\ \mathsf{C}.\, \frac{1}{7} \Big(-3\hat{i} + 6\hat{j} - 2\hat{k}\Big) \\ \mathsf{D}.\, \frac{1}{7} \Big(3\hat{i} + 6\hat{j} + 2\hat{k}\Big) \end{array}$$

Answer: A

Watch Video Solution

28. If the points $P\left(\overrightarrow{a} + 2\overrightarrow{b} + \overrightarrow{c}\right), Q\left(2\overrightarrow{a} + 3\overrightarrow{b}\right), R\left(\overrightarrow{b} + t\overrightarrow{c}\right)$ are collinear, where $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-coplanar vectors, the value of t is

B. - 1/2

C.1/2

D. 2

Answer: D

Watch Video Solution

29. A vector coplanar with vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ and parallel to the vector $2\hat{i} - 2\hat{j} - 4\hat{k}$, is A. $\hat{i} - \hat{k}$

B. $\hat{i}-\hat{j}-2\hat{k}$

C. $\hat{i}+\hat{j}-\hat{k}$

D. $3\hat{i}+3\hat{j}-6\hat{k}$

Answer: B

30. Let co-ordinates of a point 'p' with respect to the system non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is (3, 2, 1). Then, co-ordinates of 'p'with respect to the system of vectors $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c}$. $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$

A. (3/2, 1/2, 1)

 $\mathsf{B.}\,(3\,/\,2,\,1,\,1\,/\,2)$

 $\mathsf{C}.\,(1\,/\,2,\,3\,/\,2,\,1)$

D. none of these

Answer: C

Watch Video Solution

31. Suppose that \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} non-coplanar vectors in \mathbb{R}^3 . Let the components of a vector \overrightarrow{s} along \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} be 4, 3 and 5 respectively. If the components of this vectors

 $\overrightarrow{s} \text{ along } -\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}, \overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r} \text{ and } -\overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r} \text{ are } x,$ y and z respectively, then the value of 2x - y + z, is A. 7 B. 8 C. 9 D. 6 Answer: A

Watch Video Solution

32.

$$egin{aligned} &(x,y,z)
eq(0,0,0) \ ext{and} \ \Big(\hat{i}+\hat{j}+3\hat{k}\Big)x+\Big(3\hat{i}-3\hat{j}+\hat{k}\Big)y+\Big(-4\hat{i}+5\hat{j}\ &=a\Big(x\hat{i}+y\hat{j}+z\hat{k}\Big), ext{ then the values of a are} \end{aligned}$$

If

A. 0, -2

B. 2, 0

C. 0, -1

D. 1, 0

Answer: C

Watch Video Solution

33. The vector $\overrightarrow{a} = \alpha \hat{i} + 2\hat{j} + \beta \hat{k}$ lies in the plane of the vectors $\overrightarrow{b} = \hat{i} + \hat{j}$ and $\overrightarrow{c} = \hat{j} + \hat{k}$ and bisects the angle between \overrightarrow{b} and \overrightarrow{c} .

Then which one of the following gives possible values of α and β ?

A.
$$lpha=2, eta=2$$

B.
$$\alpha = 1, \beta = 2$$

C. $\alpha=2, \beta=1$

D.
$$\alpha = 1, \beta = 1$$

Answer: D

34. If \overrightarrow{a} , \overrightarrow{b} are the vectors forming consecutive sides of a regular of a regular hexagon *ABCDEF*, then the vector representing side *CD* is

A. $\overrightarrow{a} + \overrightarrow{b}$ B. $\overrightarrow{a} - \overrightarrow{b}$ C. $\overrightarrow{b} - \overrightarrow{a}$ D. $-\left(\overrightarrow{a} + \overrightarrow{b}\right)$

Answer: C

35. In a regualr hexagon ABCDEF,

$$\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{BC} = \overrightarrow{b} \text{ and } \overrightarrow{CD} = \overrightarrow{c}.$$
 Then $\overrightarrow{AE} =$
A. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$
B. $2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$
C. $\overrightarrow{a} + \overrightarrow{c}$

$$\mathsf{D}.\overrightarrow{a}+2\overrightarrow{b}+2\overrightarrow{c}$$

Answer: C

36. If ABCDEF is a regular hexagon , then $A\overrightarrow{D}+E\overrightarrow{B}+F\overrightarrow{C}$ equals

A. $2A\overrightarrow{B}$ B. $\overrightarrow{0}$ C. $3A\overrightarrow{B}$ D. $4A\overrightarrow{B}$

Answer: D

37. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, then ABCD is a

A. rhombus

B. rectangle

C. square

D. parallelogram

Answer: D

Watch Video Solution

38. ABCDEF si a regular hexagon with centre at the origin such that $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = \lambda \overrightarrow{ED}$. Then, λ equals

A. 2

B. 4

C. 6

D. 3

Answer: B

Watch Video Solution

39. ABCD is a parallelogram with AC and BD as diagonals. Then, $\overrightarrow{AC} - \overrightarrow{BD} =$

- A. $4A\overrightarrow{B}$
- $\mathrm{B.}\, 3A\vec{B}$
- $\mathsf{C.}\,2A\overset{\longrightarrow}{B}$
- D. $A\overrightarrow{B}$

Answer: C

40. If OACB is a parallelogram with $\overrightarrow{OC} = \overrightarrow{a}$ and $\overrightarrow{AB} = \overrightarrow{b}$, then \overrightarrow{OA}

is equal to

A. $\overrightarrow{a} + \overrightarrow{b}$ B. $\overrightarrow{a} - \overrightarrow{b}$ C. $\frac{1}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right)$ D. $\frac{1}{2} \left(\overrightarrow{a} - \overrightarrow{b} \right)$

Answer: B

Watch Video Solution

41. If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$

A. $2\overrightarrow{OG}$

 $\mathrm{B.}\, 4 \overrightarrow{OG}$

C. $\overrightarrow{5OG}$

Answer: B

Watch Video Solution

42. Let G be the centroid of Δ ABC, If $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}$, then the \overrightarrow{AG} , in terms of \overrightarrow{a} and \overrightarrow{b} , is

A.
$$\frac{2}{3} \left(\overrightarrow{a} + \overrightarrow{b} \right)$$

B. $\frac{1}{6} \left(\overrightarrow{a} + \overrightarrow{b} \right)$
C. $\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} \right)$
D. $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} \right)$

Answer: C

- **43.** The position vectors of the points A, B, C are $2\hat{i} + \hat{j} \hat{k}, 3\hat{i} 2\hat{j} + \hat{k}$ and $\hat{i} + 4\hat{j} 3\hat{k}$ respectively. These points
 - A. form an isosceles triangle
 - B. form a right triangle
 - C. are collinear
 - D. form a scalene triangle

Answer: C

Watch Video Solution

44. If the points with position vectors $20\hat{i} + p\hat{j}$, $5\hat{i} - \hat{j}$ and $10\hat{i} - 13\hat{j}$ are collinear, then p =

A. 7

B. -37

C. -7

D. 37

Answer: B

Watch Video Solution

45. If the position vector of a point A is $\vec{a} + 2\vec{b}$ and \vec{a} divides AB in the ratio 2: 3, then the position vector of B, is

A. $2\overrightarrow{a} - \overrightarrow{b}$ B. $\overrightarrow{b} - 2\overrightarrow{a}$ C. $\overrightarrow{a} - 3\overrightarrow{b}$ D. \overrightarrow{b}

Answer: C

46. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non-zero vectors, no two of which are collinear and the vectors $\overrightarrow{a} + \overrightarrow{b}$ is collinear with \overrightarrow{b} , $\overrightarrow{b} + \overrightarrow{c}$ is collinear with \overrightarrow{a} , then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$

A. \overrightarrow{a} B. \overrightarrow{b}

 $\mathsf{C}.\overrightarrow{c}$

D. none of these

Answer: D

Watch Video Solution

47. If points
$$A\left(60\overrightarrow{i}+3\overrightarrow{j}\right), B\left(40\overrightarrow{i}-8\overrightarrow{j}\right) \text{ and } C\left(a\overrightarrow{i}-52\overrightarrow{j}\right)$$

are collinear then a is equal to

A. 40

B. -40

C. 20

D. -20

Answer: B

Watch Video Solution

48. Let
$$\overrightarrow{OA} = \hat{i} + 3\hat{j} - 2\hat{k}$$
 and $\overrightarrow{OB} = 3\hat{i} + \hat{j} - 2\hat{k}$. Then vector \overrightarrow{OC} biecting the angle AOB and C being a point on the line AB is

A.
$$4ig(\hat{i}+\hat{j}-\hat{k}ig)$$

B. $2ig(\hat{i}+\hat{j}-\hat{k}ig)$
C. $\hat{i}+\hat{j}-\hat{k}$

D. none of these

Answer: B

49. If the vector $-\hat{i} + \hat{j} - \hat{k}$ bisects the angle between the vector \overrightarrow{c} and the vector $3\hat{i} + 4\hat{j}$, then the vector along \overrightarrow{c} is

$$\begin{aligned} &\mathsf{A}.\,\frac{1}{15} \Big(11\hat{i}\,+\,10\hat{j}\,+\,2\hat{k}\Big) \\ &\mathsf{B}.\,-\,\frac{1}{15} \Big(11\hat{i}\,-\,10\hat{j}\,+\,2\hat{k}\Big) \\ &\mathsf{C}.\,-\,\frac{1}{15} \Big(11\hat{i}\,+\,10\hat{j}\,-\,2\hat{k}\Big) \\ &\mathsf{D}.\,-\,\frac{1}{15} \Big(11\hat{i}\,+\,10\hat{j}\,+\,2\hat{k}\Big) \end{aligned}$$

Answer: D

Watch Video Solution

50. If
$$\overrightarrow{r} = 3\hat{i} + 2\hat{j} - 5\hat{k}, \ \overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 3\hat{j} - 2\hat{k}$$

and $\overrightarrow{c} = 2\hat{i} + \hat{j} - 3\hat{k}$ such that $\hat{r} = x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c}$ then

A. x, y, z are in AP

B. x, y, z are in GP

C. x, y, z are in HP

D.
$$y, \frac{x}{2}, z$$
 are in AF

Answer: D

Watch Video Solution

51. Let $\overrightarrow{A}B = 3\hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{A}C = \hat{i} - \hat{j} + 3\hat{k}$ and a point P on the line segment BC is equidistant from AB and AC, then \overrightarrow{AP} is

A. $2\hat{i}-\hat{k}$

- B. $\hat{i}-2\hat{k}$
- $\mathsf{C.}\,2\hat{i}+\hat{k}$

D. none of these

Answer: C

52. The vector \overrightarrow{c} , directed along the internal bisector of the angle

between the vectors

$$\overrightarrow{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$$
 and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\overrightarrow{c}| = 5\sqrt{6}$, is
A. $\frac{5}{3}(\hat{i} - 7\hat{j} + 2\hat{k})$
B. $\frac{5}{3}(5\hat{i} + 5\hat{j} + 2\hat{k})$
C. $\frac{5}{3}(\hat{i} + 7\hat{j} + 2\hat{k})$
D. $\frac{5}{2}(-5\hat{i} + 5\hat{j} + 2\hat{k})$

Answer: A

Watch Video Solution

53. If ABCD is quadrilateral and EandF are the mid-points of ACandBD respectively, prove that $\overrightarrow{A}B + \overrightarrow{A}D + \overrightarrow{C}B + \overrightarrow{C}D = 4\overrightarrow{E}F$.

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.
B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

Watch Video Solution

54. Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =$

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

Watch Video Solution

55. If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'}$

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

56. Let O, O' and G be the circumcentre, orthocentre and centroid of a ΔABC and S be any point in the plane of the triangle.

Statement -1: $\overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C} = 2\overrightarrow{O'O}$ Statement -2: $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} = 3\overrightarrow{SG}$

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

57. Statement -1 : If \overrightarrow{a} and \overrightarrow{b} are non- collinear vectors, then points having position vectors $x_1\overrightarrow{a} + y_1\overrightarrow{b}, x_2\overrightarrow{a} + y_2\overrightarrow{b}$ and $x_3\overrightarrow{a} + y_3\overrightarrow{b}$ are collinear if

$$egin{array}{cccc} x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \ 1 & 1 & 1 \end{array}
ight| = 0$$

Statement -2: Three points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are collinear iff there exist scalars x, y, z not all zero such that $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0}$, where x + y + z = 0.

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

- C. Statement 1 is True, Statement 2 is False.
- D. Statement 1 is False, Statement 2 is True.

Answer: A

58. Statement -1 : If a transversal cuts the sides OL, OM and diagonal ON

of a parallelogram at A, B, C respectively, then

$$\frac{OL}{OA} + \frac{OM}{OB} = \frac{ON}{OC}$$
Statement -2 : Three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ are collinear iff there exist scalars x, y, z not all zero such that
 $x\vec{a} + y\vec{b} + z\vec{c} = \vec{0}$, where $x + y + z = 0$.

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

1. A point O is the centre of a circle circumscribed about a triangle ABC.

ABC

Then,

$$\overrightarrow{OA}\sin 2A + \overrightarrow{OB}\sin 2B + \overrightarrow{OC}\sin 2C$$
 is equal to

A.
$$\left(\overrightarrow{Oa} + \overrightarrow{OB} + \overrightarrow{OC}\right) \sin 2A$$

B. \overrightarrow{OG} , where G is the centroid of triangle

D. none of these

Answer: C

View Text Solution

2. The vectors $2\hat{i} + 3\hat{j}, 5\hat{i} + 6\hat{j}$ and $8\hat{i} + \lambda\hat{j}$ have their initial points at

(1, 1). The value of λ so that the vectors terminate on one straight line, is

В	3

C. 6

D. 9

Answer: D

Watch Video Solution

3. If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B and C respectively of triangle ABC. The position vector of the point where the bisector of angle A meets BC, is

A.
$$rac{2}{3}\Big(-6\hat{i}-8\hat{j}-6\hat{k}\Big)$$

B. $rac{2}{3}\Big(6\hat{i}+8\hat{j}+6\hat{k}\Big)$
C. $rac{1}{3}\Big(6\hat{i}+13\hat{j}+18\hat{k}\Big)$
D. $rac{1}{3}\Big(5\hat{j}+12\hat{k}\Big)$

Answer: C

4. If \overrightarrow{a} is a non zero vecrtor iof modulus \overrightarrow{a} and m is a non zero scalar such that ma is a unit vector, write the value of m.

A. $m = \pm 1$ B. $m = \left| \overrightarrow{a} \right|$ C. $m = \frac{1}{\left| \overrightarrow{a} \right|}$ D. $m = \pm 2$

Answer: C

Watch Video Solution

5. D, E and F are the mid-points of the sides BC, CA and AB respectively of ΔABC and G is the centroid of the triangle, then $\overrightarrow{GD} + \overrightarrow{GE} + \overrightarrow{GF} =$

 $\mathsf{B.}\, 2 \overrightarrow{AB}$

 $\mathsf{C.}\, 2\overrightarrow{GA}$

D. $2\overrightarrow{GC}$

Answer: A

Watch Video Solution

6. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then

A.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$

B. $\left|\overrightarrow{a}\right|^2 = \left|\overrightarrow{b}\right|^2 + \left|\overrightarrow{c}\right|^2$
C. $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$

D. none of these

Answer: A

7. If P, Q, R are three points with respective position vectors $\hat{i} + \hat{j}, \, \hat{i} - \hat{j}$ and $a\hat{i} + b\hat{j} + c\hat{k}$. The points P, Q, R are collinear, if

A.
$$a = b = c = 1$$

B. a = b = c = 0

 $\mathsf{C}.\,a=1,b,c\in R$

D.
$$a=1, c=0, b\in R$$

Answer: D

Watch Video Solution

8. Let ABC be a triangle, the position vectors of whose vertices are respectively

 $7\hat{j} + 10\hat{k}, \ -\hat{i} + 6\hat{j} + 6\hat{k} \ ext{ and } \ -4\hat{i} + 9\hat{j} + 6\hat{k}. \ ext{ Then, } \ \Delta ABC$ is

A. isosceles and right angled

B. equilateral

C. right angled but not isosceles

D. none of these

Answer: A

Watch Video Solution

9. If $\overrightarrow{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + 6\hat{j} + 2\hat{k}$ then the vector in the direction of \overrightarrow{a} and having mgnitude as $\left|\overrightarrow{b}\right|$ is

A.
$$7\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$$

B. $rac{7}{9}\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$
C. $rac{7}{3}\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$

D. none of these

Answer: C

10. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-coplanar vectors and $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0}$ then

A. at least of one of x, y, z is zero

B. x, y, z are necessarily zero

C. none of them are zero

D. none of these

Answer: B

Watch Video Solution

11. The vector \overrightarrow{c} , directed along the internal bisector of the angle between the vectors $\overrightarrow{c} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\overrightarrow{c}| = 5\sqrt{6}$, is A. $\pm \frac{5}{3}(2\hat{i} + 7\hat{j} + \hat{k})$ B. $\pm \frac{3}{5}(\hat{i} + 7\hat{j} + 2\hat{k})$

$$\mathsf{C}.\pmrac{5}{3}ig(\hat{i}-2\hat{j}+7\hat{k}ig)$$
D $.\pmrac{5}{3}ig(\hat{i}-7\hat{j}+2\hat{k}ig)$

Answer: D

Watch Video Solution

12. A, B have vectors \overrightarrow{a} , \overrightarrow{b} relative to the origin O and X, Y divide \overrightarrow{AB} internally and externally respectively in the ratio 2:1. Then, $\overrightarrow{XY} =$

A.
$$\frac{3}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right)$$

B. $\frac{4}{3} \left(\overrightarrow{a} - \overrightarrow{b} \right)$
C. $\frac{5}{6} \left(\overrightarrow{b} - \overrightarrow{a} \right)$
D. $\frac{4}{3} \left(\overrightarrow{b} - \overrightarrow{a} \right)$

Answer: D

13. If a vector of magnitude 50 is collinear with vector $\vec{b} = 6\hat{i} - 8\hat{j} - \frac{15}{2}\hat{k}$ and makes an acute anlewih positive z-axis then: A. $24\hat{i} - 32\hat{j} - 30\hat{k}$ B. $-24\hat{i} + 32\hat{j} + 30\hat{k}$ C. $12\hat{i} - 16\hat{j} - 15\hat{k}$

D. none of these

Answer: B

Watch Video Solution

14. The vector \overrightarrow{c} , directed along the internal bisector of the angle

between the vectors $\overrightarrow{c} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $\left|\overrightarrow{c}\right| = 5\sqrt{6}$, is A. $\hat{i} - 7\hat{j} + 2\hat{k}$ B. $\hat{i} + 7\hat{j} - 2\hat{k}$

C.
$$-\hat{i}+7\hat{j}+2\hat{k}$$

D.
$$\hat{i}-7\hat{j}-2\hat{k}$$

Answer: A

15. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors such that $\overrightarrow{r}_1 = \overrightarrow{a} + \overrightarrow{c}$, $\overrightarrow{r}_2 = \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}$, $\overrightarrow{r}_3 = \overrightarrow{c} + \overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{r} = 2\overrightarrow{a} - 3\overrightarrow{b}$ If $\overrightarrow{r} = \lambda_1 \overrightarrow{r}_1 + \lambda_2 \overrightarrow{r}_2 + \lambda_3 \overrightarrow{r}_3$, then A. $\lambda_1 = 7$ B. $\lambda_1 + \lambda_3 = 3$ C. $\lambda_1 + \lambda_2 + \lambda_3 = 3$ D. $\lambda_3 + \lambda_2 = 2$

Answer: B,A

16. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non- coplanar vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \alpha \overrightarrow{d}$ and $\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = \beta \overrightarrow{a}$, then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}$ to equal to $\overrightarrow{A}, \overrightarrow{0}$

- $\mathsf{B}.\,\alpha \overset{\longrightarrow}{a}$
- $\mathsf{C}.\beta \overset{\longrightarrow}{b}$
- D. $(\alpha + \beta) \overrightarrow{c}$

Answer: A

Watch Video Solution

17. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non zero vectors no two of which are collonear and the vectors $\overrightarrow{a} + \overrightarrow{b}$ be collinear with \overrightarrow{c} , $\overrightarrow{b} + \overrightarrow{c}$ to collinear with \overrightarrow{a} then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ the equal to ? (A) \overrightarrow{a} (B) \overrightarrow{b} (C) \overrightarrow{c} (D) None of these

B.
$$\overrightarrow{b}$$

C. \overrightarrow{c}
D. $\overrightarrow{0}$

Answer: D

Watch Video Solution

18. Let α, β, γ be distinct real numbers. The points with position vectors

$$lpha \hat{i} + eta \hat{j} + \gamma \hat{k}, eta \hat{i} + \gamma \hat{j} + lpha \hat{k}, \gamma \hat{i} + lpha \hat{j} + eta \hat{k}$$

A. are collinear

B. form an equilateral triangle

C. form a scalene triangle

D. form a right angled triangle

Answer: B

19. The points with position vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}, 40\hat{i} - 8\hat{j}, a\hat{i} - 52\hat{j}$ are collinear iff (A) a = -40 (B) a = 40 (C) a = 20 (D) none of these

A. a = -40

 $\mathsf{B.}\,a=40$

 ${\sf C}.\,a=20$

D. none of these

Answer: A

Watch Video Solution

20. If the points with position vectors $10\hat{i} + 3\hat{j}, 12\hat{i} - 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear, find the value of a.

B. 4

C. 8

D. 12

Answer: D

Watch Video Solution

21. If C is the middle point of AB and P is any point outside AB, then

A.
$$\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$$

B. $\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$
C. $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$
D. $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$

Answer: B

22. The median AD of the triangle ABC is bisected at E and BE meets AC at

F. Find AF:FC.

A. 3/4

B. 1/3

C.1/2

D. 1/4

Answer: B

Watch Video Solution

23. In a trapezium ABCD the vector $\overrightarrow{BC} = \lambda \overrightarrow{AD}$. If $\overrightarrow{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is coillinear with \overrightarrow{AD} such that $\overrightarrow{p} = \mu \overrightarrow{AD}$, then

A. $\mu=\lambda+1$

B. $\lambda=\mu+1$

 $\mathsf{C}.\,\lambda+\mu=1$

D. $\mu=2+\lambda$

Answer: A

24. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b) \overrightarrow{x} + (15b-12c) \overrightarrow{y} + (12c-20a) $\overrightarrow{x} \times \overrightarrow{y}$ is:

A. an acute angle triangle

B. an obtuse angle triangle

C. a right angle triangle

D. an isosceles triangle

Answer: C

25. If D, E, F are respectively the mid-points of AB, AC and BC respectively in a $\triangle ABC$, then $\overrightarrow{BE} + \overrightarrow{AF} =$

A.
$$\overrightarrow{DC}$$

B. $\frac{1}{2}\overrightarrow{BF}$
C. $2\overrightarrow{BF}$
D. $\frac{3}{BF}\overrightarrow{BF}$

2

Answer: A

Watch Video Solution

26. Forces $3O\overrightarrow{A}, 5O\overrightarrow{B}$ act along OA and OB. If their resultant passes

through C on AB, then

A. C is a mid-point of AB

B. C divides AB in the ratio 2:1

 $\mathsf{C.}\, 3AC = 5CB$

D.2AC = 3CB

Answer: C

27. If ABCDEF is a regular hexagon with $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$, then \overrightarrow{CE} equals

A. $\overrightarrow{b} - \overrightarrow{a}$ B. $-\overrightarrow{b}$ C. $\overrightarrow{b} - 2\overrightarrow{a}$ D. $\overrightarrow{b} + \overrightarrow{a}$

Answer: C

28. If A, B, C are vertices of a triangle whose position vectors are $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} respectively and G is the centroid of ΔABC , then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$, is

A.
$$\overrightarrow{0}$$

B. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$
C. $\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3}$
D. $\frac{\overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c}}{3}$

Answer: A

29. Let

$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \quad \overrightarrow{b} = 3\hat{i} + 3\hat{j} - \hat{k} \text{ and } \quad \overrightarrow{c} = d\hat{i} + \hat{j} + (2d-1)\hat{k}.$$
 If
is parallel to the plane of the vectors \overrightarrow{a} and \overrightarrow{b} , then $11d =$

D		1
D	٠	

C. -1

D. 0

Answer: C

Watch Video Solution

30. If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$

A. $3\overrightarrow{OM}$ B. $4\overrightarrow{OM}$ C. $2\overrightarrow{OM}$

 $\mathsf{D}.\,\overrightarrow{OM}$

Answer: B

Chapter Test

1. If the vectors
$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$$
 and \overrightarrow{b} are collinear and
 $\left|\overrightarrow{b}\right| = 21$, then $\overrightarrow{b} =$
(A) $\pm 3(2\hat{i} + 3\hat{j} + 6\hat{k})$
(B) $\pm (2\hat{i} + 3\hat{j} - 6\hat{k})$
(C) $\pm 21(2\hat{i} + 3\hat{j} + 6\hat{k})$
(D) $\pm 21(\hat{i} + \hat{j} + \hat{k})$
A. $\pm 3(2\hat{i} + 3\hat{j} + 6\hat{k})$
B. $\pm (2\hat{i} + 3\hat{j} - 6\hat{k})$
C. $\pm 21(2\hat{i} + 3\hat{j} + 6\hat{k})$
D. $\pm 21(\hat{i} + \hat{j} + \hat{k})$

Answer: A

2. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-zero vectors (no two of which are collinear), such that the pairs of vectors $\left(\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c}\right)$ and $\left(\overrightarrow{b} + \overrightarrow{c}, \overrightarrow{a}\right)$ are collinear, then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$

A. \overrightarrow{a} B. \overrightarrow{b} C. \overrightarrow{c} D. $\overrightarrow{0}$

Answer: D

Watch Video Solution

3. Vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are non-collinear. Find for what value of x vectors
 $\overrightarrow{c} = (x-2)\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{d} = (2x+1)\overrightarrow{a} - \overrightarrow{b}$ are collinear?
A. $1/3$

B. 1/2

C. 1

D. 0

Answer: A

Watch Video Solution

4. If the diagonals of a parallelogram are $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k},$

then the lengths of its sides are

A. $\sqrt{8}, \sqrt{10}$

 $\mathsf{B}.\sqrt{6},\sqrt{14}$

 $\mathsf{C}.\sqrt{5},\sqrt{12}$

D. none of these

Answer: B

5. If ABCD is a quadrilateral, then $\overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} =$

A. $2\overrightarrow{BA}$ B. $2\overrightarrow{AB}$

 $\mathsf{C.}\, 2 \overrightarrow{AC}$

D.2(BC)

Answer: A

Watch Video Solution

6. If the points with position vectors $60\hat{i} + 3\hat{j}$, $40\hat{i} - 8\hat{j}$ and $a\hat{i} - 52\hat{j}$ are collinear, then a =

A. -40

B.40

C. 20

D. 30

Answer: A

Answer: B

8. ABCDEF is a regular hexagon. Find the vector $\overrightarrow{A}B + \overrightarrow{A}C + \overrightarrow{A}D + \overrightarrow{A}E + \overrightarrow{A}F$ in terms of the vector $\overrightarrow{A}D$ A. 3 \overrightarrow{AG}

 $\mathrm{B.}\, 2 \overrightarrow{AG}$

 $\mathsf{C.}\, \overrightarrow{6AG}$

D. $4\overrightarrow{AG}$

Answer: C

Watch Video Solution

9. If P, Q, R are the mid-points of the sides AB, BC and CA of ΔABC and O is point whithin the triangle, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} =$

A.
$$2\left(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}\right)$$

B. $\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}$
C. $4\left(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}\right)$
D. $6\left(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}\right)$

Answer: B

10. If G is the centroid of ΔABC and G' is the centroid of $\Delta A'B'C'$ then $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} =$

A. $2\overrightarrow{GG}$ '

B. $3\overrightarrow{GG}$ '

 $\mathsf{C}.\overrightarrow{GG'}$

D. $4\overrightarrow{GG}$ '

Answer: B

Watch Video Solution

11. In a quadrilateral ABCD, $\overrightarrow{AB} + \overrightarrow{DC} =$

A.
$$\overrightarrow{AB} + \overrightarrow{CB}$$

B. $\overrightarrow{AC} + \overrightarrow{BD}$

$$\mathbf{C}. \overrightarrow{AC} + \overrightarrow{DB}$$
$$\mathbf{D}. \overrightarrow{AD} - \overrightarrow{CB}$$

Answer: C

Watch Video Solution

Answer: C

13. If ABCD is a parallelogram, then $\overrightarrow{AC} - \overrightarrow{BD} =$

A. $4\overrightarrow{AB}$ B. $3\overrightarrow{AB}$ $\mathsf{C.}\, 2\overrightarrow{AB}$

 $\mathsf{D}.\overrightarrow{AB}$

Answer: C

Watch Video Solution

14.

In а $\Delta ABC, ~~ ext{if}~~\overrightarrow{AB} = \hat{i} - 7\hat{j} + \hat{k}~~ ext{and}~~\overrightarrow{BC} = 3\hat{j} + \hat{j} + 2\hat{k}, ~~ ext{then}~~\left|\overrightarrow{CA}
ight|$ =

A. $\sqrt{61}$

B. $\sqrt{52}$

C. $\sqrt{51}$

D. $\sqrt{41}$

Answer: A

15. In a Δ ABC, if $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}, \overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$, then the length of median through A , is

A. $3\sqrt{2}$

 $\mathsf{B.}\,6\sqrt{2}$

C. $5\sqrt{2}$

D. $\sqrt{33}$

Answer: D

16. The position vectors of P and Q are respectively \overrightarrow{a} and \overrightarrow{b} . If R is a point on \overrightarrow{PQ} such that $\overrightarrow{PR} = 5\overrightarrow{PQ}$, then the position vector of R, is

A.
$$5\overrightarrow{b} - 4\overrightarrow{a}$$

B. $5\overrightarrow{b} + 4\overrightarrow{a}$
C. $4\overrightarrow{b} - 5\overrightarrow{a}$
D. $4\overrightarrow{b} + 5\overrightarrow{a}$

Answer: A

Answer: B
18. The ratio in which $\hat{i}+2\hat{j}+3\hat{k}$ divides the join of $-2\hat{i}+3\hat{j}+5\hat{k}$ and $7\hat{i}-\hat{k},$ is

 $\mathsf{A.1:2}$

B. 2:3

C.3:4

D.1:4

Answer: A

B.
$$\overrightarrow{q} - \overrightarrow{b}$$

C. $\frac{1}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right)$
D. $\frac{1}{2} \left(\overrightarrow{a} - \overrightarrow{b} \right)$

Answer: D

Watch Video Solution

20. The position vectors of the points A, B, C are $2\hat{i} + \hat{j} - \hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$ and $\hat{i} + 4\hat{j} - 3\hat{k}$ respectively. These points

A. form an isosceles triangle

B. form a right triangle

C. are collinear

D. form a scalene triangle

Answer: A

21. If ABCDEF is a regular hexagon then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ equals :

D. $4\overrightarrow{AB}$

Answer: D

Watch Video Solution

22. If the points with position vectors $20\hat{i} + p\hat{j}, 5\hat{i} - \hat{j}$ and $10\hat{i} - 13\hat{j}$ are collinear, then p =

A. 7

B. -37

C. -7

Answer: B

Watch Video Solution

23. If the position vector of a point A is $\overrightarrow{a} + 2\overrightarrow{b}$ and \overrightarrow{a} divides AB in the ratio 2: 3, then the position vector of B, is

A. $\overrightarrow{a} - \overrightarrow{b}$ B. $\overrightarrow{b} - 2\overrightarrow{a}$ C. $\overrightarrow{a} - 3\overrightarrow{b}$ D. \overrightarrow{b}

Answer: C

24. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, then ABCD is a a. rhombus b. rectangle c. square

d. parallelogram

A. rhombus

B. rectangle

C. square

D. parallelogram

Answer: D

Watch Video Solution

25. Let G be the centroid of Δ ABC, If $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}$, then the \overrightarrow{AG} , in terms of \overrightarrow{a} and \overrightarrow{b} , is

A.
$$\frac{2}{3} \left(\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} \right)$$

B.
$$\frac{1}{6} \left(\overrightarrow{a} + \overrightarrow{b} \right)$$

C. $\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} \right)$
D. $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} \right)$

Answer: C

Watch Video Solution

26. If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$

A. $2\overrightarrow{OG}$

 $\mathrm{B.}\, 4 \overrightarrow{OG}$

C. $\overrightarrow{5OG}$

D. $3\overrightarrow{OG}$

Answer: B

27. The vector $\coslpha\coseta\hat{i}+\coslpha\sineta\hat{j}+\sinlpha\hat{k}$ is a

A. null vector

B. unit vector

C. constant vector

D. none of these

Answer: B

28. In a regular hexagon ABCDEF,

$$\overrightarrow{A}B = a, \overrightarrow{B}C = b \text{ and } \overrightarrow{C}D = c. Then, \overrightarrow{A}E =$$

A. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$
B. $2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$
C. $\overrightarrow{b} + \overrightarrow{c}$

$$\mathsf{D}.\overrightarrow{a}+2\overrightarrow{b}+2\overrightarrow{c}$$

Answer: C

29. If three points A, B and C have position vectors $\hat{i} + x\hat{j} + 3\hat{k}$, $3\hat{i} + 4\hat{j} + 7\hat{k}$ and $y\hat{i} - 2\hat{j} - 5\hat{k}$ respectively are collinear, then (x, y) =

A. (2, -3)

B. (-2, 3)

C. (-2, -3)

D. (2, 3)

Answer: A

30. If the position vectors of the vertices of a triangle of a triangle are $2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$, then the triangle is

A. equilateral

B. isosceles

C. right angled but not isosceles

D. right angled

Answer: D