びdoubtnut

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS
 VOLI (HINGLISH)

AREAS OF BOUNDED REGIONS

Section I Solved Mcqs

$$
\begin{aligned}
& \text { 1. The area bounded by the curve } \\
& y=|x|-1 \text { and } y=-|x|+1 \text { is }
\end{aligned}
$$

A. 1
B. 2
C. $\sqrt{2}$
D. 4

Answer: B

- Watch Video Solution

2. The area bounded by the curve
$y=\left[\frac{x^{2}}{64}+2\right], y=x-1, y=x-1$ and $x=0$ above the x-axis will be-(Where [] represents greatest integer function)
A. 2
B. 3
C. 4
D. none of these

Answer: C

- Watch Video Solution

3. Find the area bounded by $y=x e^{|x|}$ and lines
$|x|=1, y=0$.
A. 4
B. 6
C. 1
D. 2

Answer: D

- Watch Video Solution

4. The area bounded by the curves $y=\ln x, y=\ln |x|$,
$y=|\ln x|$ and $y=|\ln | x| |$ is
A. 5
B. 2
C. 4

D. none of these

Answer: B

D Watch Video Solution

5. Let $f(x)$ be a continuous function such that the area bounded by the curve $y=f(x)$, the x -axis, and the lines $x=0$ and $x=a i s 1+\frac{a^{2}}{2} \sin$ a. Then,
A. $\left(\frac{\pi}{2}\right)=1+\frac{\pi^{2}}{8}$
B. $f(a)=1+\frac{a^{2}}{2} \sin a$
C. $f(a)=a \sin a+\frac{1}{2} \cos a$
D. none of these

Answer: c

- Watch Video Solution

6. Area bounded by $|x-1| \leq 2$ and $x^{2}-y^{2}=1$,
is
A. $6 \sqrt{2}+\frac{1}{2} \ln |3+2 \sqrt{2}|$
B. $6 \sqrt{2}+\frac{1}{2} \ln |3-2 \sqrt{2}|$
C. $6 \sqrt{2}-\ln |3+2 \sqrt{2}|$

D. none of these

Answer: C

- Watch Video Solution

7. The area bounded by the curve $f(x)=x+\sin x$ and its inverse function between the ordinates

$$
x=0 \text { and } x=2 \pi \text { is }
$$

A. 4π
B. 8π
C. 4
D. 8

Answer: D

- Watch Video Solution

8. Area bounded by $f(x)=\frac{(x-1)(x+1)}{x-2} x$-axis and ordinates $x=0$ and $x=\frac{3}{2}$ is
A. $\frac{4}{5}$
B. $\frac{7}{8}$
C. 1
D. none of these

Answer: B

D Watch Video Solution

9.

The
area
of
the
region
$R=\left\{(x, y):|x| \leq|y|\right.$ and $\left.x^{2}+y^{2} \leq 1\right\}$ is
A. $\frac{3 \pi}{8}$
B. $\frac{5 \pi}{8}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{8}$

- Watch Video Solution

10. If $f(x)=\max \left\{\sin x, \cos x, \frac{1}{2}\right\}$, then the area of the region bounded by the curves
$y=f(x), x$-axis, Y-axis and $x=\frac{5 \pi}{3}$ is
A. $\sqrt{2}-\sqrt{3}+\frac{5 \pi}{12}$
B. $\sqrt{2}+\frac{\sqrt{3}}{2}+\frac{5 \pi}{12}$
C. $\sqrt{2}+\sqrt{3}+\frac{5 \pi}{12}$
D. none of these

Answer: b
11. The area bounded by the x-axis, the curve $y=f(x)$, and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$ for all $b>1$, then $f(x)$ is $\sqrt{x-1}$
(b) $\sqrt{x+1} \sqrt{x^{2}+1}$ (d) $\frac{x}{\sqrt{1+x^{2}}}$
A. $\sqrt{x-1}$
B. $\sqrt{x+1}$
C. $\sqrt{x^{2}-1}$
D. $\frac{x}{\sqrt{x^{2}+1}}$

Answer: d

12. Ify $=f(x)$ makes positive intercepts of 2 and 1 unit on x and coordinate axes and encloses an area of $3 / 4$ square unit with the axes, then $\int_{0}^{2} x f^{\prime}(x) d x$, is
A. $\frac{3}{2}$
B. 1
C. $\frac{5}{4}$
D. $\frac{-3}{4}$

Answer: d
13. If a curve $y=a \sqrt{x}+b x$ passes through the point $(1,2)$ and the area bounded by the curve, line $x=4$ and x-axis is 8 square units, then
A. $a=3, b=-1$
B. $a=3, b=1$
C. $a=-3, b=1$
D. $a=-3, b=-1$

Answer: A

14. If the area enclosed between the curves
$y=a x^{2} a n d x=a y^{2}(a>0)$ is 1 square unit, then
find the value of a.
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

15. The area of the region bounded by the curve $y=|x-2|, x=1, x=3$ and the x -axis is
A. 4
B. 2
C. 3
D. 1

Answer: D

- Watch Video Solution

16. Sketch the region bounded by the curves
$y=\sqrt{5-x^{2}}$ and $y=|x-1|$ and find its area.

$$
\begin{aligned}
& \text { A. } \frac{5 \pi}{4}-2 \\
& \text { B. } \frac{5 \pi-2}{4} \\
& \text { C. } \frac{5 \pi-2}{2} \\
& \text { D. } \frac{\pi}{2}-5
\end{aligned}
$$

Answer: B

- Watch Video Solution

17. The area enclosed between the curves
$y=x$ and $y=2 x-x^{2}$ (in square units), is

> A. $\frac{1}{2}$
> B. $\frac{1}{6}$
> C. $\frac{1}{3}$
> D. $\frac{1}{4}$

Answer: B

- Watch Video Solution

18. The area enclosed between the curve $y=\log _{e}(x+e)$ and the coordinate axes is
A. 4
B. 3
C. 2
D. 1

Answer: D
19. The parabolas $y^{2}=4 x a n d x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If S_{1}, S_{2}, S_{3} are the areas of these parts numbered from top to bottom, respectively, then $S_{1}: S_{2} \equiv 1: 1$ (b) $S_{2}: S_{3} \equiv 1: 2$ $S_{1}: S_{3} \equiv 1: 1$ (d) $S_{1}:\left(S_{1}+S_{2}\right)=1: 2$
A. 1:1:1
B. $2: 1: 2$
C. 1:2:3
D. $1: 3: 2$
20. The area enclosed between the curves

$$
y^{2}=x \text { and } y=|x| \text { is }
$$

A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. 1

Answer: A
21. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 3
B. 6
C. 9
D. 12

Answer: c
22. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$ and $x=\frac{3 \pi}{2}$ is
A. $4 \sqrt{2}-1$
B. $4 \sqrt{2}+1$
C. $4 \sqrt{2}-2$
D. $4 \sqrt{2}+2$

Answer: C

- Watch Video Solution

23. Let $f:[1,2] \rightarrow[0, \infty)$ be a continuous function such that $f(x)=f(1-x)$ for all $x \in[-1,2]$. Let $R_{1}=\int_{-1}^{2} x f(x) d x$, and R_{2} be the area of the region bounded by $y=f(x), x=-1, x=2$ and the x-axis. Then,

$$
\text { A. } 2 R_{1}=R_{2}
$$

B. $R_{1}=3 R_{2}$
C. $2 R_{1}=3 R_{2}$
D. $3 R_{1}=R_{2}$

Answer: A
24. If $R_{1}=\{(x, y) \mid y=2 x+7$, where $x \in R$ and
$-5 \leq x \leq 5\}$ is a relation. Then find the domain and Range of R_{1}.

> A. $\frac{3}{4}$
> B. $\frac{1}{2}$
> C. $\frac{1}{3}$
> D. $\frac{1}{4}$

Answer: b
25. The area (in sqaure units) of the region enclosed by the curves $y=x, x=e, y=\frac{1}{x}$ and the positive x-axis is
A. $\frac{1}{2}$
B. 1
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: C

- Watch Video Solution

26. The area of the region bounded by the curve $y=x^{3}$, and the lines, $\mathrm{y}=8$ and $\mathrm{x}=0$, is
A. 16
B. 8
C. 10
D. 12

Answer: D

- Watch Video Solution

27. Let S be the area of the region enclosed by

$$
y=e^{-x \wedge} 2, y=0, x=0, a n d x=1 .
$$

$$
\begin{equation*}
S \geq \frac{1}{e} \quad \text { (b) } \quad S \geq 1=\frac{1}{e} \quad S \leq \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right) \tag{d}
\end{equation*}
$$

$S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& \text { A. } S \geq \frac{1}{e} \\
& \text { B. } S \geq-\frac{1}{e} \\
& \text { C. } S \leq \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right) \\
& \text { D. } S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Answer: c
28. The area bounded by the curves $y=\sqrt{x}, 2 y-x+3=0, \quad \mathrm{X}$-axis and lying in the first quadrant is
A. 9
B. 36
C. 18
D. $27 / 4$

Answer: A

29. The area enclosed by the curves
$y=\sin x+\cos x$ and $y=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$
A. $4(\sqrt{2}-1)$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $2 \sqrt{2}(\sqrt{2}+1)$

Answer: B

- Watch Video Solution

30. Find the ratio in which the area bounded by the curves $y^{2}=12 x$ and $x^{2}=12 y$ is divided by the line $x=3$.

$$
\begin{aligned}
& \text { A. } \frac{245}{4} \\
& \text { B. } \frac{147}{4} \\
& \text { C. } \frac{45}{4} \\
& \text { D. } \frac{137}{4}
\end{aligned}
$$

Answer: B
31. The area of the region described by

$$
A=\left\{(x, y): x^{2}+y^{2} \leq 1 \text { and } y^{2} \leq 1-x\right\} \text { is : }
$$

$$
\text { A. } \frac{\pi}{2}-\frac{2}{3}
$$

B. $\frac{\pi}{2}+\frac{2}{3}$
C. $\frac{\pi}{2}+\frac{4}{3}$
D. $\frac{\pi}{2}-\frac{4}{3}$

Answer: C
32. The area (in square units) of the region bounded by $y^{2}=2 x$ and $y=4 x-1$, is
A. $\frac{15}{64}$
B. $\frac{9}{32}$
C. $\frac{7}{32}$
D. $\frac{5}{64}$

Answer: B

- Watch Video Solution

33. Suppose that $F(\alpha)$ denotes the area of the region bounded by $x=0, x=2, y^{2}=4 x$ and $y=|\alpha x-1|+|\alpha x-2|+\alpha x$, where $\alpha \in\{0,1\}$.
Then the value of $F(\alpha)+\frac{8 \sqrt{2}}{3}$ when $\alpha=0$ is (A) 4 (B) 5 (C) 6 (D) 9
A. 4
B. 5
C. 6
D. 9

Answer: c
34. Suppose that $F(\alpha)$ denotes the area of the region bounded by $x=0, x=2, y^{2}=4 x$ and $y=|\alpha x-1|+|\alpha x-2|+\alpha x$, where $\alpha \in\{0,1\}$. Then the value of $F(\alpha)+\frac{8 \sqrt{2}}{3}$ when $\alpha=0$ is (A) 4 (B) 5 (C) 6 (D) 9
A. 5
B. 6
C. 7
D. 9

- Watch Video Solution

35. Let $F(x)=\int_{x}^{x^{2}+\pi / 6} 2 \cos ^{2} d t$ for all $x \in R$ and $F:[0,1 / 2] \rightarrow[0, \infty]$ be continuous function. For $a \in[0,1 / 2]$, if $F^{\prime}(a)+2$ is the area of the region bounded by $x=0, y=0, y=f(x)^{\prime}$ and $x=a$, then $f(0)$, is
A. 1
B. 2
C. 3
D. 6
36. The area of the region bounded by the curve C
$: y=\frac{x+1}{x^{2}+1}$ nad the line $\mathrm{y}=1$, is
A. $\mathrm{ml}-\frac{1}{2} \operatorname{In} 2+\frac{\pi}{4}$
B. $\operatorname{In} 2-\frac{\pi}{4}+1$
C. $\frac{1}{2} \operatorname{In} 2+\frac{\pi}{4}-1$
D. $\ln 2-\frac{\pi}{2}+1$

Answer: c

- Watch Video Solution

37. The graph of $f(x)=x^{2}$ and $g(x)=c x^{3}$ intersect at two points, If the area of the region over the interval $\left[0, \frac{1}{c}\right]$ is equal to $\frac{2}{3}$, then the value of $\left(\frac{1}{c}+\frac{1}{c^{2}}\right)$ is
A. 20
B. 2
C. 6
D. 12

Answer: c
38. The area of the region bounded by the curves
$y=x^{2}, y=\left|2-x^{2}\right|$ and $\mathrm{y}=2$ which lies to the right of the line $x=1$, is
A. $\left(\frac{12-20 \sqrt{3}}{2}\right)$ sq. units
B. $\left(\frac{20-\sqrt{2}}{3}\right)$ sq. units
C. $\left(\frac{20-12 \sqrt{2}}{3}\right)$ sq. units
D. $\left(\frac{12-20 \sqrt{2}}{3}\right)$ sq. units

Answer: c

39. The area (in sq. units) of the region
$\left\{(x, y): y^{2} \leq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \leq 0\right\}$,
is

> A. $\pi-\frac{4}{3}$
> B. $\pi-\frac{8}{3}$
> C. $\pi-\frac{4 \sqrt{2}}{3}$
> D. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$

Answer: B
40. If the line $x=a$ bisects the area under the
curve $y=\frac{1}{x^{2}}, 1 \leq x \leq 9$, then a is equal to
A. $\frac{4}{9}$
B. $\frac{9}{5}$
C. $\frac{5}{9}$
D. $\frac{9}{4}$

Answer: B

- Watch Video Solution

41. The area (in sq. units) of the region described by

$$
A=\left\{(x, y): y \geq x^{2}-5 x+4, x+y>1, y \leq 0\right\}
$$

is

$$
\begin{aligned}
& \text { A. } \frac{7}{2} \\
& \text { B. } \frac{13}{6} \\
& \text { C. } \frac{17}{6} \\
& \text { D. } \frac{19}{6}
\end{aligned}
$$

Answer: d
42. Area of region
$\left\{(x, y) \in R^{2}: y \geq \sqrt{|x+3|}, 5 y \leq x+9 \leq 15\right\}$
A. $\frac{1}{6}$
B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$

Answer: c

- Watch Video Solution

43. The area (in sqaure units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right.$ and $\left.y \leq 1+\sqrt{x}\right\}$
is

$$
\begin{aligned}
& \text { A. } \frac{59}{12} \\
& \text { B. } \frac{3}{2} \\
& \text { C. } \frac{7}{3} \\
& \text { D. } \frac{5}{2}
\end{aligned}
$$

Answer: d
44. If the line $x=\alpha$ divides the area of region
$R=\left\{(x, y) \in R^{2}: x^{3} \leq y \leq x, 0 \leq x \leq 1\right\} \quad$ into
two equal parts, then

$$
\begin{aligned}
& \text { A. } 0<\alpha \frac{1}{2} \\
& \text { B. } \frac{1}{2}<\alpha<1 \\
& \text { C. } 2 \alpha^{4}-4 \alpha^{2}+1=0 \\
& \text { D. } \alpha^{2}+4 \alpha^{2}-1=0
\end{aligned}
$$

Answer: b,c

- Watch Video Solution

1. Using integration, find the area bounded by the curves $y=|x-1|$ and $y=3-|x|$.
A. 2
B. 3
C. 4
D. 1

Answer: C
2. The area of the figure bounded by the curves
$y^{2}=2 x+1$ and $x-y-1=0$, is
A. $2 / 3$
B. $4 / 3$
C. $8 / 3$
D. $16 / 3$

Answer: D
3. Find the area bounded by the curve $y=2 x-x^{2}$ and the straight line $y=-x$
A. $9 / 2$
B. $43 / 6$
C. $34 / 6$
D. $\frac{11}{2}$

Answer: A
4. The area of the region bounded by $y=|x-1|$
and $y=1$ is
A. 1
B. 2
C. $1 / 2$
D. $3 / 2$

Answer: A

- Watch Video Solution

5. The area bounded by the curve $y=x|x|$, x -axis and the ordinates $x=1, x=-1$ is given by
A. 0
B. $1 / 3$
C. $2 / 3$
D. 1

Answer: C

- Watch Video Solution

6. Area of the region bounded by the curves
$y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given
by :
A. $\frac{3}{\log 2}-\frac{4}{3}$
B. $\frac{3}{\log 2}+\frac{4}{3}$
C. $2 \log 2-\frac{4}{3}$
D. $2 \log ^{2}-\frac{4}{3}$

Answer: D

Watch Video Solution

7. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ the line $x=\sqrt{3} y$ and x-axis, is
A. π
B. $\pi / 2$
C. $\pi / 3$
D. $\pi / 4$

Answer: C

- Watch Video Solution

8. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$. Then find the area between the arc $A B$ and the chord $A B$ of the ellipse.

$$
\begin{aligned}
& \text { A. } \frac{1}{2} a b(\pi+2) \\
& \text { B. } \frac{1}{4} a b(\pi-4) \\
& \text { C. } \frac{1}{4} a b(\pi-2)
\end{aligned}
$$

D. none of these

Answer: C

9. The area of the region lying between the line $x-y+2=0$ and the curve $x=\sqrt{y}$ and $y-a \xi s$, is
A. 9
B. $9 / 2$
C. $10 / 3$
D. $5 / 2$

Answer: C
10. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?
A. $1 / 2$
B. $1 / 3$
C. $2 / 3$
D. 1

Answer: C

- Watch Video Solution

11. Area between the curve $y=4+3 x-x^{2}$ and x axis in square units, is
A. $125 / 3$
B. $125 / 4$
C. $125 / 6$
D. 25

Answer: C

- Watch Video Solution

12. If A is the area between the curve $y=\sin x$ and
x-axis in the interval $[0, \pi / 4]$, then in the same interval, area between the curve $y=\cos x$ and x axis, is
A. A
B. $\pi / 2-A$
C. $1-A$
D. $A-1$

Answer: C

- Watch Video Solution

13. If A is the area lying between the curve $y=\sin x$ and x -axis between $\mathrm{x}=0$ and $x=\pi / 2$.

Area of the region between the curve
$y=\sin 2 x$ and x-axis in the same interval is given
by
A. $A / 2$
B. A
C. $2 A$
D. $3 / 2 A$

Answer: B
14. The area of the loop between the curve $y=a \sin x$ and x-axis is (A) a (B) $2 a$ (C) $3 a$ (D) none of these
A. a
B. 2a
C. 3a
D. 4 a

Answer: B

- Watch Video Solution

15. Area (in square units) of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$, is
A. 2
B. $9 / 4$
C. $6 \sqrt{3}$
D. none of these

Answer: B

- Watch Video Solution

16. If A_{1} is the area of the parabola $y^{2}=4 a x$ lying between vertex and the latusrectum and A_{2} is the area between the latusrectum and the double ordinate $x=2 a$, then $\frac{A_{1}}{A_{2}}$ is equal to
A. $2 \sqrt{2}-1$
B. $(2 \sqrt{2}+1) / 7$
C. $(2 \sqrt{2}-1) / 7$
D. none of these

Answer: B

17. The area of the region bounded by $y=\sin x$, $y=\cos x$ and x-axis in the first quadrant is
A. $\sqrt{2}(\sqrt{2}-1)$
B. $\sqrt{3}+1$
C. $2(\sqrt{3}-1)$
D. none of these

Answer: A

- Watch Video Solution

18. The area bounded by the curves
$y=x e^{x}, y=x e^{-x}$ and the line $x=1$ is $\frac{2}{e}$ squinits
(b) $1-\frac{2}{e}$ sqünits $\frac{1}{e}$ sqünits (d) $1-\frac{1}{e}$ sqünits
A. $\frac{2}{e}$
B. $1-\frac{2}{e}$
C. $\frac{1}{e}$
D. $1-\frac{1}{e}$

Answer: A

D Watch Video Solution

19. The value of k for which the area of the figure bounded by the curve $y=8 x^{2}-x^{5}$, the straight line $x=1$ and $x=k$ and the x-axis is equal to $16 / 3$
A. 2
B. $3 \sqrt{8-\sqrt{17}}$
C. 3
D. -1

Answer: B

- Watch Video Solution

20. The figure into which the curve $y^{2}=6 x$ divides
the circle $x^{2}+y^{2}=16$ are in the ratio

$$
\begin{aligned}
& \text { A. } \frac{2}{3} \\
& \text { B. } \frac{4 \pi-\sqrt{3}}{8 \pi+\sqrt{3}} \\
& \text { C. } \frac{4 \pi+\sqrt{3}}{8 \pi-\sqrt{3}}
\end{aligned}
$$

D. none of these

Answer: C

- Watch Video Solution

21. What is the area bounded by the curves
$y=e^{x}, y=e^{-x}$ and the straight line $x=1 ?$

> A. $e+\frac{1}{e}$
> B. $e-\frac{1}{e}$
> C. $e+\frac{1}{e}-2$
D. none of these

Answer: C

- Watch Video Solution

22. The area bounded by the y-axis, $y=\cos x$ and $y=\sin x, 0 \leq x \leq \pi / 4$, is
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

23. The positive value of the parmeter 'a' for which the area of the figure founded by $y=\sin a s, y=0, x=\pi / a$ and $x=\pi / 3 a$ is 3 , is equal to
A. 2
B. $1 / 2$
C. $\frac{2+\sqrt{3}}{3}$
D. $3 / 2$

Answer: B

- Watch Video Solution

24. If area bounded by the curve $y^{2}=4 a x$ and $y=m x$ is $a^{2} / 3$, then the value of m, is

- Watch Video Solution

25. The area (in square units) bounded by the curve $y=x^{3}$, the x-axis and the ordinates at $x=-2$ and $x=1$ is
A. $17 / 2$
B. $15 / 2$
C. $15 / 4$
D. $17 / 4$

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 26. The area bounded by } \\
& y=x^{2}, y=[x+1], x \leq 1 \text { and the } \mathrm{y} \text { axis is }
\end{aligned}
$$

A. $1 / 3$
B. $2 / 3$
C. 1
D. $7 / 3$

Answer: B

D Watch Video Solution

27. Find the area bounded by the x-axis, part of the
curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates at
$x=2 a n d x=4$. If the ordinate at $x=a$ divides
the area into two equal parts, then find a.
A. $2 \sqrt{2}$
B. $\pm 2 \sqrt{2}$
C. $\pm \sqrt{2}$
D. ± 2

Answer: B

- Watch Video Solution

28. The area bounded by the curve $y=f(x)$ (where
$f(x) \geq 0$), the co-ordinate axes $\&$ the line $x=x_{1}$ is given by $x_{1} \cdot e^{x_{1}}$. Therefore $f(x)$ equals
A. e^{x}
B. $x e^{x}$
C. $x e^{x}-e^{x}$
D. $x e^{x}+e^{x}$

Answer: C

29. The area enclosed within the curve $|x|+|y|=1$, is
A. 1
B. 1.5
C. 2
D. 3

Answer: C

- Watch Video Solution

30. The area of the triangle formed by the positive $x-a \xi s$ and the normal and tangent to the circle $x^{2}+y^{2}=4 \quad$ at $\quad(1, \sqrt{3}) \quad$ is $\quad 2 \sqrt{3}$ squinits
$3 \sqrt{2}$ squinits $\sqrt{6}$ squinits (d) none of these
A. $\sqrt{3}$
B. $1 / \sqrt{3}$
C. $2 \sqrt{3}$
D. $3 \sqrt{3}$

Answer: C

- Watch Video Solution

31. The area of the region for which $o<y<3-2 x-x^{2}$ and $x>0$, is

$$
\begin{aligned}
& \text { A. } \int_{1}^{3}\left(3-2 x-x^{2}\right) d x \\
& \text { B. } \int_{0}^{3}\left(3-2 x-x^{2}\right) d x \\
& \text { C. } \int_{0}^{1}\left(3-2 x-x^{2}\right) d x \\
& \text { D. } \int_{-1}^{3}\left(3-2 x-x^{2}\right) d x
\end{aligned}
$$

Answer: C

32. The area between the curve $y=2 x^{4}-x^{2}$, the axis, and the ordinates of the two minima of the curve is $11 / 60$ sq. units (b) $7 / 120$ sq. units $1 / 30$ sq. units (d) 7/90 sq. units
A. $7 / 120$
B. $9 / 120$
C. $11 / 120$
D. $13 / 120$

Answer: A
33. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.
A. $3 / 8$
B. $5 / 8$
C. $7 / 8$
D. $9 / 8$

Answer: D

D Watch Video Solution
34. The area of the region bounded by the curve $\left(a^{4}\right)\left(y^{2}\right)=(2 a-x)\left(x^{5}\right)$ is to that of the circle whose radius is a, is given by the ratio (a) 4:5 (b) 58 (c) 23 (d) 3:2.
A. $4: 5$
B. 5:8
C. 2:3
D. $3: 2$

Answer: B

- Watch Video Solution

35. The area between $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight line $\frac{x}{a}+\frac{y}{b}=1$ is (A) $\frac{1}{2} \pi a b$ (B) $\frac{1}{2} a b$ (C) $\frac{\pi a b}{4}-\frac{a b}{2}$ (D) $\frac{1}{4} a b$
A. $\frac{1}{2} a b$
B. $\frac{1}{2} \pi a b$
C. $\frac{1}{4} a b$
D. $\frac{1}{4} \pi a b-\frac{1}{2} a b$

Answer: D

- Watch Video Solution

36. The area induced between the curves $y=\frac{x^{2}}{4 a}$ and $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}$ is given by
A. $a^{2}\left(2 \pi-\frac{4}{3}\right)$
B. $a^{2}\left(\pi-\frac{4}{3}\right)$
C. $a^{2}\left(2 \pi+\frac{1}{3}\right)$
D. $a^{2}\left(\pi+\frac{4}{3}\right)$

Answer: A

- Watch Video Solution

37. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?
A. $2 / 3$
B. $3 / 2$
C. $1 / 3$
D. 3

Answer: A

- Watch Video Solution

38. Area bounded by the curve $y=\sin x$ between.

$$
x=0 \text { and } x=2 \pi \text { is }
$$

A. 2π
B. 2π
C. 4π
D. π

Answer: C

- Watch Video Solution

39. The slope of the tangent to a curve $y=f(x)$ at
$(x, f(x))$ is $2 x+1$. If the curve passes through the point $(1,2)$ then the area of the region bounded by the curve, the x -axis and the line $x=1$ is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1
A. $5 / 6$
B. $6 / 5$
C. $1 / 6$
D. 6

Answer: A
40. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. $\pi a b$
B. $\frac{\pi}{4}\left(a^{2}+b^{2}\right)$
C. $\pi(a+b)$
D. $\pi a^{2} b^{2}$

Answer: A
41. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and line $x+y=2$ is
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $\pi-1$

Answer: B

- Watch Video Solution

42. The area cut off a parabola $4 y=3 x^{2}$ by the straight line $2 y=3 x+12$ in square units, is
A. 16
B. 41
C. 27
D. 36

Answer: B

- Watch Video Solution

43. Find the area of the region bounded by the parabola $\mathrm{x}^{2}=4 \mathrm{y} \backslash$ and the line $\mathrm{x}=4 \mathrm{y}-2$
A. $9 / 8$
B. $9 / 4$
C. $9 / 2$
D. $9 / 7$

Answer: A
44. Find the area lying in the first quadrant and bounded by the curve $y=x^{3}$ and the line $y=4 x$.
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

45. The area in square units of the region bounded by the curve $x^{2}=4 y$, the line $\mathrm{x}=2$ and the x -axis, is
A. 1
B. $2 / 3$
C. $4 / 3$
D. $8 / 3$

Answer: B
46. The area bounded by the x-axis and the curve $y=4 x-x^{2}-3$ is
A. $4 / 3$
B. $3 / 4$
C. 7
D. $3 / 2$

Answer: A
47. Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$.
A. $\frac{5 a^{2}}{3}$
B. $\frac{8 a^{2}}{3 m^{3}}$
C. $\frac{7 a^{2}}{4 m^{2}}$
D. $\frac{3 a^{2}}{5 m}$

Answer: B

48. The area bounded by $y=\tan x, y=\cot x, \mathrm{X}$ axis in $0 \leq x \leq \frac{\pi}{2}$ is
A. $\log 2$
B. $\frac{1}{2} \log 2$
C. $2 \log \left(\frac{1}{\sqrt{2}}\right)$
D. $\frac{3}{2} \log 2$

Answer: A
49. Area lying between the curves $y^{2}=4 x$ and

$$
y=2 x \text { is(A) } \frac{2}{3} \text { (B) } \frac{1}{3} \text { (C) } \frac{1}{4} \text { (D) } \frac{3}{4}
$$

A. $2 / 3$
B. $1 / 3$
C. $1 / 4$
D. $1 / 2$

Answer: B
50. Area common to the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=4 x$ is

$$
\begin{aligned}
& \text { A. } \frac{16}{3}(4 \pi+\sqrt{3}) \\
& \text { B. } \frac{16}{3}(8 \pi-\sqrt{3}) \\
& \text { C. } \frac{16}{3}(4 \pi-\sqrt{3})
\end{aligned}
$$

D. none of these

Answer: B
51. The area of the figure bounded by the curve $|y|=1-x^{2}$, is
A. $2 / 3$
B. $4 / 3$
C. $8 / 3$
D. $-5 / 3$

Answer: C

- Watch Video Solution

52. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.
A. $8 / 3$
B. $6 / 3$
C. $4 / 3$
D. $2 / 3$

Answer: C

- Watch Video Solution

53. The area bounded by $y=x|\sin x|$ and x - axis between $x=0, x=2 \pi$ is
A. 2π
B. 3π
C. 4π
D. 5π

Answer: C

- Watch Video Solution

54. The area of the region bouned by the curve $y=2 x-x^{2}$ and the line $y=x$ is
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. $1 / 6$

Answer: D
55. Find the area bounded by the curve $y=(x-1)(x-2)(x-3)$ lying between the ordinates $x=0$ and $x=3$.
A. $9 / 4$
B. $\frac{11}{4}$
C. $11 / 2$
D. $7 / 4$

Answer: B
56. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is (A) 1 (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) none of these
A. 1
B. $2 / 3$
C. $1 / 3$
D. $4 / 3$

Answer: C

- Watch Video Solution

57. The equation of the common tangent to the parabolas $y^{2}=4 a x$ and $x^{2}=4 b y$ is given by
A. $(8 / 3) \mathrm{ab}$
B. $(16 / 3) a b$
C. $(4 / 3) \mathrm{ab}$
D. $(5 / 3) \mathrm{ab}$

Answer: B
58. Area (in square units) of the region bounded by $[x]^{2}=[y]^{2}$ for $x \in[1,5]$,(where [$\left.\cdot\right]$ denotes the greatest integer function) is
A. 4
B. 8
C. 5
D. 10

Answer: B

D View Text Solution
59. If denotes the area bounded by $f(x)=\left|\frac{\sin x+\cos x}{x}\right| x$-axis , $x=\pi$ and $x=3 x$, then
A. $1<A<2$
B. $0<A<2$
C. $2<A<3$
D. none of these

Answer: D

D View Text Solution
60. Find the area of the region bounded by the
curves $y=x^{2}$ and $y=\sec ^{-1}\left[-\sin ^{2} x\right]$, where [.] denotes G.I.F.

$$
\begin{aligned}
& \text { A. } \frac{1}{3}(4-\pi)^{3 / 2} \\
& \text { B. }\left(8(4-\pi)^{3 / 2}\right. \\
& \text { C. } \frac{8}{3}(4-\pi)^{3 / 2} \\
& \text { D. } \frac{8}{3}(4-\pi)^{1 / 2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

61. The area of the region included between the regions satisfying $\quad \min (|x|,|y|) \geq 1 \quad$ and $x^{2}+y^{2} \leq 5$ is

$$
\begin{aligned}
& \text { A. } \frac{5}{2}\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4 \\
& \text { B. } 10\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4 \\
& \text { C. } \frac{2}{5}\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4 \\
& \text { D. } 15\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4
\end{aligned}
$$

Answer: B

- Watch Video Solution

62. If $f(x) \geq 0$ all $x \in(0,2)$ and $\mathrm{y}=\mathrm{f}(\mathrm{x})$ makes positive intercepts of 2 and 1 unit on x and y axes respectively and enclose an area of $\frac{3}{4}$ sq. units with axes, then $\int_{0}^{2} x f^{\prime}(x) d x$ is
A. $\frac{3}{4}$
B. 1
C. $\frac{5}{4}$
D. $-\frac{3}{4}$

Answer: D

1. Area bounded by the curves $y=|x-1|, y=0$ and $|x|=2$ is (A) 4 (B) 8 (C) 5 (D) 9
A. 4
B. 5
C. 3
D. 6

Answer: B

- Watch Video Solution

2. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0$ is
$12 \sqrt{3}$ squinits $\quad 6 \sqrt{3}$ squinits $\quad 8 \sqrt{3}$ squinits
$4 \sqrt{3}$ squnits
A. $12 \sqrt{3}$
B. $6 \sqrt{3}$
C. $8 \sqrt{3}$
D. $4 \sqrt{3}$

Answer: A
3. The area bounded by the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2 a$ is
A. $3 \pi a^{2}$
B. $\frac{3 \pi a^{2}}{2}$
C. $\frac{3 \pi a^{2}}{4}$
D. $\frac{\pi a^{2}}{4}$

Answer: A

- Watch Video Solution

4. Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and the y-axis is
A. $\pi a^{2} / 2$
B. πa^{2}
C. $3 \pi a^{2}$
D. $2 \pi a^{2}$

Answer: B
5. The area of the loop of the curve $a y^{2}=x^{2}(a-x)$ is $4 a^{2}$ squints \quad (b) $\frac{8 a^{2}}{15}$ squints
$16 a^{2}$ 9 squints (d) None of these
A. $\frac{4 a^{2}}{15}$
B. $\frac{8}{15} a^{2}$
C. $\frac{16}{15} a^{2}$
D. $\frac{32}{5} a^{2}$

Answer: B

- Watch Video Solution

6. Find the area common to the circle

$$
\begin{aligned}
& x^{2}+y^{2}=16 a^{2} \quad \text { and } \quad \text { the parabola } \\
& y^{2}=6 a x, a>0 .
\end{aligned}
$$

$$
\text { A. } \frac{4 a^{2}}{3}(4 \pi-\sqrt{3})
$$

$$
\text { B. } \frac{4 a^{2}}{3}(8 \pi-3)
$$

$$
\text { C. } \frac{2 a^{2}}{3}(4 \pi+\sqrt{3})
$$

D. none of these

Answer: C

Watch Video Solution

7. The line $y=m x$ bisects the area enclosed by the curve $y=1+4 x-x^{2}$ and the lines
$x=0, x=\frac{3}{2} a n d y=0$. Then the value of m is
A. $13 / 8$
B. $13 / 32$
C. $13 / 6$
D. $13 / 14$

Answer: C

- Watch Video Solution

8. The area between the curve $y=x \sin x$ and x-axis

where $o \leq x \leq 2 \pi$, is

A. 2π
B. 3π
C. 4π
D. π

Answer: C
(D) Watch Video Solution
9. The area bounded by the curves $y=e^{x}, y=e^{-x}$
and $y=2$, is
A. $\log \left(\frac{16}{e}\right)$
B. $\log (4 / e)$
C. $2 \log (4 / e)$
D. $\log (8 / e)$

Answer: C
10. The area bounded by the curve $x=a \cos ^{3} t,, y=a \sin ^{3} t$, is :
A. $\frac{3 \pi a^{2}}{8}$
B. $\frac{3 \pi a^{2}}{16}$
C. $\frac{3 \pi a^{2}}{32}$
D. $3 \pi a^{2}$

Answer: A
11. If A_{1} is the area enclosed by the curve $x y=1, x-$ axis and the ordinates $x=1, x=2$, and A_{2} is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=2, x=4$, then
A. $A_{1}=2 A_{2}$
B. $A_{2}=2 A_{1}$
C. $A_{2}=3 A_{1}$
D. $A_{1}=A_{2}$

Answer: D

12. If area bounded by the curve $y^{2}=4 a x$ and $y=m x$ is $a^{2} / 3$, then the value of m, is
A. 1
B. 2
C. 3
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

13. The value of a for which the area between the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ is 1 unit is
A. $\sqrt{3}$
B. 4
C. $4 \sqrt{3}$
D. $\sqrt{3} / 4$

Answer: D

- Watch Video Solution

14. The area bounded by the curves $y=f(x)$, the x axis, and the ordinates $x=1 a n d x=b$ is
$(b-1) \sin (3 b+4)$.
Then
$f(x)$
is.
$(x-1) \cos (3 x+4)$ $\sin (3 x+4)$
$\sin (3 x+4)+3(x-1) \cos (3 x+4)$ None of these
A. $(x-1) \cos (3 x+4)$
B. $\sin (3 x+4)$
C. $\sin (3 x+4)+3(x-1)$
D. none of these

Answer: C

15. The area bounded by the curve $y=\sin 2 x$, axis and $y=1$, is
A. 1
B. $1 / 4$
C. $\pi / 4$
D. $\pi / 4-1 / 2$

Answer: D

> 16. The area between the curve $x=-2 y^{2}$ and $x=1-3 y^{2}$, is
A. $4 / 3$
B. $3 / 4$
C. $3 / 2$
D. $2 / 3$

Answer: A
17. The area between the curves $y=\cos x, x$-axis and the line $y=x+1$, is
A. $1 / 2$
B. 1
C. 3
D. 2

Answer: A
18. The area bounded by $y=x^{2}+1$ oand the tangents to it drawn from the origin, is
A. $8 / 2$ sq. units
B. $1 / 3$ sq. units
C. $2 / 3$ sq. units
D. none of these

Answer: C

- Watch Video Solution

19. The positive value of the parmeter 'a' for which the area of the figure bounded by $y=\sin a s, y=0, x=\pi / a$ and $x=\pi / 3 a$ is 3, is equal to
A. 2
B. $1 / 2$
C. $\frac{2+\sqrt{3}}{3}$
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

20. The area in square units bounded by the curves

$$
y=x^{3}, y=x^{2} \text { and the ordinates } x=1, x=2 \text { is }
$$

A. $17 / 12$
B. $12 / 13$
C. $2 / 7$
D. $7 / 2$

Answer: A

- Watch Video Solution

21. The area bounded by the curve $y^{2}=x$ and the ordinate $x=36$ is divided in the ratio $1: 7$ by the ordinate $\mathrm{x}=\mathrm{a}$. Then $\mathrm{a}=$
A. 8
B. 9
C. 7
D. 0

Answer: B
22. The area contained between the x-axis and one area of the curve $y=\cos 3 x$, is
A. $1 / 3$
B. $2 / 3$
C. $2 / 7$
D. $2 / 5$

Answer: B

- Watch Video Solution

23. The area of the figure bounded by $|y|=1-x^{2}$ is in square units,
A. $4 / 3$
B. $8 / 3$
C. $16 / 3$
D. $5 / 3$

Answer: B

- Watch Video Solution

24. The area of the figure bounded by $y=e^{x-1}, y=0, x=0$ and $x=2$ is
A. <2
B. >2
C. $=2$
D. none of these

Answer: B
25. The area of the region on place bounded by max $(|x|,|y|) \leq \frac{1}{2}$ is
A. $1 / 2+\ln 2$
B. $3+\ln 2$
C. $31 / 4$
D. $1+2 \ln 2$

Answer: B

- Watch Video Solution

26. The area of the closed figure bounded by $y=\frac{x^{2}}{2}-2 x+2$ and the tangents to it at $\left(1, \frac{1}{2}\right) \operatorname{and}(4,2) \quad$ is $\quad \frac{9}{8}$ squnits \quad (b) $\quad \frac{3}{8}$ squnits $\frac{3}{2}$ squints (d) $\frac{9}{4}$ squints
A. $9 / 8$
B. $3 / 8$
C. $3 / 2$
D. $9 / 4$

Answer: A
27. The area of the closed figure bounded by $y=1 / \cos ^{2} x, x=0, y=0$ and $x=\pi / 4$, is
A. $\pi / 4$
B. $1+\pi / 4$
C. 1
D. 2

Answer: C

- Watch Video Solution

28. The area (in square units) of the closed figure bounded by
$x=-1, x=2$ and $y=\left\{\begin{array}{l}-x^{2}+2, x \leq 1 \\ 2 x-1, x>1\end{array}\right.$ and
the abscissa axis, is
A. $16 / 3$
B. $13 / 3$
C. $13 / 3$
D. $7 / 3$

Answer: A
$y=2-|2-x|$ and $y=\frac{3}{|x|}$, is

$$
\text { A. } \frac{4+3 \ln 3}{2}
$$

B. $2+3 \ln (3 \mathrm{sqrt}(3) / 4)$
C. $\frac{3}{2} \ln 3$
D. $\frac{1}{2}+\ln 3$

Answer: B

- Watch Video Solution

30. The area of the region bounded by $x^{2}+y^{2}-2 y-3=0$ and $y=|x|+1$, is
A. π
B. 2π
C. 4π
D. $\pi / 2$

Answer: A
31. The area of the region bounded by $y=|x-1|$ and $y=3-|x|$, is
A. 2
B. 3
C. 4
D. 1

Answer: C

- Watch Video Solution

32. Find the area of the closed figure bounded by
the curves $y=\sqrt{x}, y=\sqrt{4-3 x}$ and $y=0$
A. $4 / 9$
B. $8 / 9$
C. $19 / 9$
D. $5 / 9$

Answer: B

- Watch Video Solution

33. The area of the closed figure bounded by the

curves

$$
y=\cos x, y=1+\frac{2}{\pi} x \text { and } x=\pi / 2, \text { is }
$$

A. $\frac{\pi+4}{4}$
B. $\frac{3 \pi-4}{4}$
C. $\frac{3 \pi}{4}$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

34. For which of the following values of m is the area of the regions bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equal $\frac{9}{2} ?-4(\mathrm{~b})$ -2 (c) 2 (d) 4
A. -4.4
B. $-2,2$
C. 2,4
D. $-2,3$

Answer: B

- Watch Video Solution

35. The area bound by the curve $y=\sec x$, then x axis and the lines $x=0$ and $x=\pi / 4$, is
A. $\log (\sqrt{2}+1)$
B. $\log (\sqrt{2}-1)$
C. $\frac{1}{2} \log 2$
D. $\sqrt{2}$

Answer: A

D Watch Video Solution
36. The area bounded by the parabola $y^{2}=8 x$, the x-axis and the latusrectum, is

$$
\begin{aligned}
& \text { A. } \frac{16}{3} \\
& \text { B. } \frac{23}{3} \\
& \text { C. } \frac{32}{3} \\
& \text { D. } \frac{16 \sqrt{2}}{3}
\end{aligned}
$$

Answer: C

- Watch Video Solution

37. The area (in square units) bounded by the curve $y^{2}=8 x$ and $x^{2}=8 y$, is
A. ${ }^{`} 64\left(3^{*} \mathrm{sqrt}(2)-1 / 3\right)$
B. $\frac{3}{16}$
C. $\frac{14}{3}$
D. $\frac{3}{14}$

Answer: A
38. If the area bounded by the curve $y=f(x), x$-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+4)$, then-

$$
\text { A. }(x-1) \cos (3 x+4)
$$

B. $\sin (3 x+4)$
C. $\sin (3 x+4)+3(x-1) \cos (3 x+4)$
D. none of these

Answer: C

- Watch Video Solution

39. The area in square units of the region bounded by the curve $x^{2}=4 y$, the line $\mathrm{x}=2$ and the x -axis, is
A. 1
B. $2 / 3$
C. $4 / 3$
D. $8 / 3$

Answer: B
40. The area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2$ above the $x-a \xi s \quad$ is $\quad \pi a^{2}$ squinits \quad (b) $\quad \frac{3 \pi a^{2}}{2}$ squinits $2 \pi a^{2}$ sqünits (d) $3 \pi a^{2}$ squinits
A. πa^{2}
B. $3 / 2 \pi a^{2}$
C. $2 \pi a^{2}$
D. $3 \pi a^{2}$

Answer: B
41. The area bounded by the curve $y=4 x-x^{2}$ and
x-axis is (A) $\frac{30}{7}$ sq. units (B) $\frac{31}{7}$ sq. units (C) $\frac{32}{3}$ sq.
units (D) $\frac{34}{3}$ sq. units

> A. $\frac{30}{7}$
> B. $\frac{31}{7}$
> C. $\frac{32}{3}$
> D. $\frac{34}{3}$

Answer: C

Watch Video Solution

42. Area bounded by the parabola $y^{2}=x$ and the line $2 y=x$ is (A) $\frac{4}{3}$ (B) 1 (C) $\frac{2}{3}$ (D) $\frac{1}{3}$
A. $4 / 3$
B. 1
C. $2 / 3$
D. $1 / 3$

Answer: A
43. Area between the x-axis and the curve $y=\cos x$, when $0 \leq x \leq 2 \pi$ is
A. 0
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

44. The ratio of the areas between the curves
$y=\cos x$ and $y=\cos 2 x$ and x-axis from $x=0$ to
$x=\frac{\pi}{3}$ is (A) $1: 3$ (B) $2: 1$ (C) $\sqrt{3}: 1$ (D) none of these
A. $1: 2$
B. 2:1
C. $\sqrt{3}: 1$
D. none of these

Answer: B
45. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.

$$
\begin{aligned}
& \text { A. } \frac{45}{7} \\
& \text { B. } \frac{3}{2} \\
& \text { C. } \frac{32}{3} \\
& \text { D. } \frac{3}{32}
\end{aligned}
$$

Answer: D
46. The area common to the parabolas $y=2 x^{2}$ and $y=x^{2}+4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$
(D) $\frac{3}{32}$
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{32}{3}$
D. $\frac{3}{32}$

Answer: C

- Watch Video Solution

47.

The area of
the
region
$\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$, is
A. $\frac{\pi}{5}$
B. $\frac{\pi}{4}$
C. $\frac{\pi^{2}}{4}$
D. $\frac{\pi}{4}-\frac{1}{2}$

Answer: D

- Watch Video Solution

48. Examples: Find the area bounded by the parabola $y^{2}=4 a x$ and its latus rectum.
A. 0
B. $\frac{4}{3} a^{2}$
C. $\frac{8}{3} a^{2}$
D. $\frac{a^{2}}{3}$

Answer: C

- Watch Video Solution

49. The area bounded by the curve $y=x^{4}-2 x^{3}+x^{2}+3$ with x-axis and ordinates corresponding to the minima of y , is
A. 1
B. $\frac{91}{30}$
C. $\frac{30}{9}$
D. 4

Answer: B

- Watch Video Solution

50. Find the area common to two parabolas $x^{2}=4 a y$ and $y^{2}=4 a x$, using integration.
A. $\frac{8 a^{3}}{3}$
B. $\frac{16 a^{2}}{3}$
C. $\frac{32 a^{2}}{3}$
D. $\frac{64 a^{2}}{3}$

Answer: B
51. The area (in square units) bounded by curves
$\mathrm{y}=\sin \mathrm{x}$ between the ordinates $\mathrm{x}=0, x=\pi$ and the x axis , is
A. 2
B. 4
C. 3
D. 1

Answer: A
52. The area of the region bounded by the parabola
$(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x-axis is
A. 3
B. 6
C. 7
D. none of these

Answer: C

Watch Video Solution

53. Find the area enclosed between the curves:
$y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right) \&$ the x -axis.
A. 2
B. 1
C. 4
D. none of these

Answer: A

- Watch Video Solution

54. Find the area of the region formed by

$$
x^{2}+y^{2}-6 x-4 y+12 \leq 0 . y \leq x \text { and } x \leq \frac{5}{2}
$$

A. $\frac{\pi}{6}-\frac{\sqrt{3}+1}{8}$
B. $\frac{\pi}{6}+\frac{\sqrt{3}+1}{8}$
C. $\frac{\pi}{6}-\frac{\sqrt{3}-1}{8}$
D. none of these

Answer: C
55. Let A_{n} be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0$, and $x=\frac{\pi}{4}$. Prove that for
$n>2, A_{n}+A_{n-2}=\frac{1}{n-1}$ and deduce ${ }^{1} /(2 \mathrm{n}+2)$

$$
\begin{aligned}
& \text { A. } A_{n}+A_{n-2}=\frac{1}{n-1} \\
& \text { B. } A_{n}+A_{n-2}<\frac{1}{n-1} \\
& \text { C. } A_{n}-A_{n-2}=\frac{1}{n-1}
\end{aligned}
$$

D. none of these

Answer: A

56. The area bounded by the parabola $y^{2}=x$, straight line $y=4$ and y-axis is
A. $\frac{3}{32}$
B. $\frac{64}{3}$
C. $\frac{33}{2}$
D. $\frac{16}{3}$

Answer: B

- Watch Video Solution

57. The area (in square units), bounded by
$y=2-x^{2}$ and $x+y=0$, is
A. $\frac{7}{2}$ sq. units
B. $\frac{9}{2}$ sq. units
C. 9 sq. units
D. none of these

Answer: B

- Watch Video Solution

58. The area bounded by the curve $y=\log _{e} x$, the x axis and the line $x=e$ is (A) e sq. units (B) 1 sq. unit
(C) $\left(1-\frac{1}{e}\right)$ sq. units (D) $\left(1+\frac{1}{e}\right)$ sq. units
A. e
B. 1
C. $1-\frac{1}{e}$
D. $1+\frac{1}{e}$

Answer: B

59. Find the area included between the curves

$$
x^{2}=4 y \text { and } y^{2}=4 x
$$

A. $4 / 3$
B. $1 / 3$
C. $16 / 3$
D. $8 / 3$

Answer: C
60. If the area above the x-axis, bounded by the
curves $y=2^{k x}$ and $\mathrm{x}=0$, and $\mathrm{x}=2$ is $\frac{3}{\log _{e}(2)}$, then the value of k is
A. $1 / 2$
B. 1
C. -1
D. 2

Answer: B

