

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

AREAS OF BOUNDED REGIONS

Section I Solved Mcqs

 $y = |x| - 1 \, ext{ and } \, y = \, - \, |x| + 1 \, \mathsf{is}$

A. 1

 $\mathsf{B.}\,2$

 $\mathsf{C.}\,\sqrt{2}$

 $\mathsf{D.}\,4$

Answer: B

Watch Video Solution

2. The area bounded by the curve
$$y = \left[\frac{x^2}{64} + 2\right], y = x - 1, y = x - 1$$
 and $x = 0$ above the x-axis will be-(Where [] represents greatest integer function)

A. 2

B. 3

C. 4

D. none of these

Answer: C

3. Find the area bounded by $y = x e^{|x|}$ and lines

$$|x|=1,y=0.$$

B. 6

C. 1

D. 2

Answer: D

Watch Video Solution

4. The area bounded by the curves y=lnx, y=ln|x|,y=|lnx| and y=|ln|x|| is

A. 5

B. 2

C. 4

D. none of these

Answer: B

Watch Video Solution

5. Let f(x) be a continuous function such that the area bounded by the curve y = f(x), the x-axis, and the lines x = 0 and $x = ais1 + \frac{a^2}{2}sin$ a. Then,

A.
$$\left(rac{\pi}{2}
ight) = 1 + rac{\pi^2}{8}$$

B. $f(a) = 1 + rac{a^2}{2} \sin a$

$$\mathsf{C}.\, f(a) = a \sin a + \frac{1}{2} {\cos a}$$

D. none of these

Answer: c

Watch Video Solution

6. Area bounded by $|x-1| \leq 2 ext{ and } x^2 - y^2 = 1,$

is

A.
$$6\sqrt{2} + rac{1}{2} \ln \left| 3 + 2\sqrt{2} \right|$$

B. $6\sqrt{2} + rac{1}{2} \ln \left| 3 - 2\sqrt{2} \right|$
C. $6\sqrt{2} - \ln \left| 3 + 2\sqrt{2} \right|$

D. none of these

Answer: C

Watch Video Solution

7. The area bounded by the curve $f(x) = x + \sin x$ and its inverse function between the ordinates x = 0 and $x = 2\pi$ is

A. 4π

B. 8π

C. 4

D. 8

Answer: D

Watch Video Solution

8. Area bounded by
$$f(x)=rac{(x-1)(x+1)}{x-2}$$
 x-axis and ordinates $x=0$ and $x=rac{3}{2}$ is

A.
$$\frac{4}{5}$$

B. $\frac{7}{8}$

C. 1

D. none of these

Answer: B

A.
$$\frac{3\pi}{8}$$

B. $\frac{5\pi}{8}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{8}$

Answer: C

10. If
$$f(x) = \max\left\{\sin x, \cos x, \frac{1}{2}\right\}$$
, then the area of the region bounded by the curves $y = f(x)$, x-axis, Y-axis and $x = \frac{5\pi}{3}$ is

A.
$$\sqrt{2} - \sqrt{3} + \frac{5\pi}{12}$$

B. $\sqrt{2} + \frac{\sqrt{3}}{2} + \frac{5\pi}{12}$
C. $\sqrt{2} + \sqrt{3} + \frac{5\pi}{12}$

D. none of these

Answer: b

11. The area bounded by the x-axis, the curve y = f(x), and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1, then f(x) is $\sqrt{x - 1}$ (b) $\sqrt{x + 1} \sqrt{x^2 + 1}$ (d) $\frac{x}{\sqrt{1 + x^2}}$

B.
$$\sqrt{x+1}$$

C.
$$\sqrt{x^2-1}$$

D.
$$rac{x}{\sqrt{x^2+1}}$$

Answer: d

12. Ify = f(x) makes positive intercepts of 2 and 1 unit on x and coordinate axes and encloses an area of 3/4 square unit with the axes, then $\int_0^2 x f'(x) dx$, is A. $\frac{3}{2}$ **B**. 1 $\mathsf{C}.\,\frac{5}{4}$ D. $\frac{-3}{4}$

Answer: d

13. If a curve $y = a\sqrt{x} + bx$ passes through the point (1,2) and the area bounded by the curve, line x=4 and x-axis is 8 square units, then

A.
$$a=3, b=\,-1$$

B.
$$a = 3, b = 1$$

C.
$$a = -3, b = 1$$

D.
$$a = \, - \, 3, b = \, - \, 1$$

Answer: A

14. If the area enclosed between the curves $y = ax^2 andx = ay^2(a > 0)$ is 1 square unit, then find the value of a_i

A.
$$\frac{1}{\sqrt{3}}$$

B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

Answer: A

15. The area of the region bounded by the curve y=|x-2|, x=1, x=3 and the x-axis is A. 4 B. 2 C. 3 D.1 Answer: D

Watch Video Solution

16. Sketch the region bounded by the curves $y = \sqrt{5 - x^2}$ and y = |x - 1| and find its area. A. $\frac{5\pi}{4} - 2$ B. $\frac{5\pi - 2}{4}$ C. $\frac{5\pi - 2}{2}$

D.
$$\frac{\pi}{2} - 5$$

Answer: B

17. The area enclosed between the curves y = x and $y = 2x - x^2$ (in square units), is A. $\frac{1}{2}$ B. $\frac{1}{6}$ C. $\frac{1}{3}$

Answer: B

D. $\frac{1}{4}$

18. The area enclosed between the curve $y = \log_e(x+e)$ and the coordinate axes is A. 4 B. 3 C. 2 D.1 Answer: D Watch Video Solution

19. The parabolas $y^2 = 4xandx^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S_1, S_2, S_3 are the areas of these parts numbered from top to bottom, respectively, then $S_1: S_2 \equiv 1:1$ (b) $S_2: S_3 \equiv 1:2$ $S_1: S_3 \equiv 1:1$ (d) $S_1: (S_1 + S_2) = 1:2$

A. 1:1:1

B. 2:1:2

C. 1: 2: 3

D. 1:3:2

Answer: a

20. The area enclosed between the curves $y^2 = x$ and y = |x| is A. $\frac{1}{6}$ B. $\frac{1}{3}$ C. $\frac{2}{3}$

D. 1

Answer: A

21. The area of the region bounded by the parabola $\left(y-2
ight)^2=x-1$, the tangent to the parabola at the point (2,3) and the x-axis is

A. 3

B. 6

C. 9

D. 12

Answer: c

Watch Video Solution

22. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinates x = 0 and $x=rac{3\pi}{2}$ is A. $4\sqrt{2}-1$ B. $4\sqrt{2} + 1$ $\mathsf{C.}\,4\sqrt{2}-2$ D. $4\sqrt{2} + 2$

Answer: C

23. Let $f:[1,2] \to [0,\infty)$ be a continuous function such that f(x) = f(1-x) for all $x \in [-1,2]$. Let $R_1 = \int_{-1}^2 x f(x) dx$, and R_2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the x-axis . Then,

A. $2R_1=R_2$ B. $R_1=3R_2$ C. $2R_1=3R_2$

D. $3R_1=R_2$

Answer: A

24. If $R_1 = \{(x,y) \mid y = 2x + 7, ext{ where } x \in R ext{ and } -5 \leq x \leq 5\}$ is a relation. Then find the domain and Range of R_1 .

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: b

Watch Video Solution

25. The area (in sqaure units) of the region enclosed by the curves $y = x, x = e, y = \frac{1}{x}$ and the positive x-axis is

A.
$$\frac{1}{2}$$

B. 1
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: C

Watch Video Solution

26. The area of the region bounded by the curve $y=x^3$, and the lines , y=8 and x=0, is A. 16 B. 8 C. 10 D. 12 Answer: D

Answer: c

28. The area bounded by the curves $y=\sqrt{x},\,2y-x+3=0,\,$ X-axis and lying in the first quadrant is

A. 9

B. 36

C. 18

 $\mathsf{D.}\,27\,/\,4$

Answer: A

29. The area enclosed by the curves $y = \sin x + \cos x$ and $y = |\cos x - \sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$

A. $4\left(\sqrt{2}-1
ight)$ B. $2\sqrt{2}\left(\sqrt{2}-1
ight)$ C. $2\left(\sqrt{2}+1
ight)$

D.
$$2\sqrt{2}(\sqrt{2}+1)$$

Answer: B

Watch Video Solution

30. Find the ratio in which the area bounded by the curves $y^2 = 12x$ and $x^2 = 12y$ is divided by the line x = 3.

A.
$$\frac{245}{4}$$

B. $\frac{147}{4}$
C. $\frac{45}{4}$
D. $\frac{137}{4}$

Answer: B

Watch Video Solution

31. The area of the region described by

$$A = \{(x, y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$$
 is :
A. $\frac{\pi}{2} - \frac{2}{3}$
B. $\frac{\pi}{2} + \frac{2}{3}$
C. $\frac{\pi}{2} + \frac{4}{3}$
D. $\frac{\pi}{2} - \frac{4}{3}$

Answer: C

32. The area (in square units) of the region bounded

by $y^2=2x \; ext{ and } \; y=4x-1$, is

A.
$$\frac{15}{64}$$

B. $\frac{9}{32}$
C. $\frac{7}{32}$
D. $\frac{5}{64}$

Answer: B

33. Suppose that $F(\alpha)$ denotes the area of the region bounded by $x = 0, x = 2, y^2 = 4x$ and $y = |\alpha x - 1| + |\alpha x - 2| + \alpha x$, where $\alpha \in \{0, 1\}$. Then the value of $F(\alpha) + \frac{8\sqrt{2}}{3}$ when $\alpha = 0$ is (A) 4 (B) 5 (C) 6 (D) 9

A. 4

B. 5

C. 6

D. 9

Answer: c

34. Suppose that $F(\alpha)$ denotes the area of the region bounded by $x = 0, x = 2, y^2 = 4x$ and $y = |\alpha x - 1| + |\alpha x - 2| + \alpha x$, where $\alpha \in \{0, 1\}$. Then the value of $F(\alpha) + \frac{8\sqrt{2}}{3}$ when $\alpha = 0$ is (A) 4 (B) 5 (C) 6 (D) 9

A. 5

B. 6

C. 7

D. 9

Answer: a

35. Let $F(x) = \int_x^{x^2 + \pi/6} 2\cos^2 dt$ for all $x \in R$ and $F: [0, 1/2] \to [0, \infty]$ be continuous function . For $a \in [0, 1/2]$, if F'(a)+2 is the area of the region bounded by x=0, y=0, y=f(x)` and x=a , then f(0), is

A. 1

B. 2

C. 3

D. 6

Answer: c

36. The area of the region bounded by the curve C

$$x : y = rac{x+1}{x^2+1}$$
 nad the line y=1 , is

A. ml
$$-rac{1}{2} ext{In}2+rac{\pi}{4}$$

$$\mathsf{B}.\,\mathrm{In}2-\frac{\pi}{4}+1$$

C.
$$\frac{1}{2}$$
In2 + $\frac{\pi}{4}$ - 1

D. In
$$2-rac{\pi}{2}+1$$

Answer: c
37. The graph of $f(x) = x^2$ and $g(x) = cx^3$ intersect at two points, if the area of the region over the interval $\left[0, \frac{1}{c}\right]$ is equal to $\frac{2}{3}$, then the value of $\left(\frac{1}{c} + \frac{1}{c^2}\right)$ is

A. 20

B. 2

C. 6

D. 12

Answer: c

38. The area of the region bounded by the curves $y = x^2, y = \left|2 - x^2\right|$ and y=2 which lies to the right of the line x=1, is

Answer: c

39. The area (in sq. units) of the region

$$ig\{(x,y)\!:\!y^2\leq 2x ext{ and } x^2+y^2\leq 4x, x\geq 0, y\leq 0ig\},$$
is

A.
$$\pi - \frac{4}{3}$$

B. $\pi - \frac{8}{3}$
C. $\pi - \frac{4\sqrt{2}}{3}$
D. $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$

Answer: B

40. If the line
$$x = a$$
 bisects the area under the curve $y = \frac{1}{x^2}, 1 \le x \le 9$, then a is equal to
A. $\frac{4}{9}$
B. $\frac{9}{5}$
C. $\frac{5}{9}$
D. $\frac{9}{4}$

41. The area (in sq. units) of the region described by $A = ig\{(x,y) : y \geq x^2 - 5x + 4, x + y > 1, y \leq 0ig\}$ is

A.
$$\frac{7}{2}$$

B. $\frac{13}{6}$
C. $\frac{17}{6}$
D. $\frac{19}{6}$

Answer: d

42. Area of region $\left\{ (x, y) \in R^2 : y \ge \sqrt{|x + 3|}, 5y \le x + 9 \le 15 \right\}$ A. $\frac{1}{6}$ B. $\frac{4}{3}$ C. $\frac{3}{2}$ D. $\frac{5}{3}$

Answer: c

43. The area (in sqaure units) of the region $ig\{(x,y): x \geq 0, x+y \leq 3, x^2 \leq 4y ext{ and } y \leq 1+\sqrt{x}ig\}$ is

Answer: d

44. If the line x=lpha divides the area of region $R=ig\{(x,y)\in R^2\colon x^3\leq y\leq x, 0\leq x\leq 1ig\}$ into two equal parts, then

A.
$$0
B. $rac{1}{2}
C. $2lpha^4-4lpha^2+1=0$
D. $lpha^2+4lpha^2-1=0$$$$

Answer: b,c

Exercise

1. Using integration, find the area bounded by the curves y = |x - 1| and y = 3 - |x|.

A. 2

B. 3

C. 4

D. 1

2. The area of the figure bounded by the curves $y^2=2x+1$ and x-y-1=0 , is A. 2/3B. 4/3C.8/3D. 16/3Answer: D

3. Find the area bounded by the curve $y = 2x - x^2$

and the straight line y = -x

A. 9/2

B. 43/6

C.34/6

D.
$$\frac{11}{2}$$

Answer: A

4. The area of the region bounded by y = |x - 1|and y = 1 is A. 1 B. 2 C. 1/2D. 3/2

Answer: A

5. The area bounded by the curve y = x|x|, x-axis and the ordinates x=1,x=-1 is given by

A. 0

B. 1/3

C. 2/3

D. 1

6. Area of the region bounded by the curves $y = 2^x, y = 2x - x^2, x = 0$ and x = 2 is given by:

A.
$$\frac{3}{\log 2} - \frac{4}{3}$$

B. $\frac{3}{\log 2} + \frac{4}{3}$
C. $2\log 2 - \frac{4}{3}$
D. $2\log^2 - \frac{4}{3}$

Answer: D

7. Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ the line $x=\sqrt{3}y$ and x-axis , is

Α. π

B. $\pi/2$

C. $\pi/3$

D.
$$\pi/4$$

Answer: C

8. AOB is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in which OA = a, OB = b. Then find the area between the arc AB and the chord AB of the ellipse.

A.
$$rac{1}{2}ab(\pi+2)$$

B. $rac{1}{4}ab(\pi-4)$
C. $rac{1}{4}ab(\pi-2)$

D. none of these

9. The area of the region lying between the line x-y+2=0 and the curve $x=\sqrt{y}$ and $y-a\xi s$, is

A. 9

B. 9/2

C. 10/3

D. 5/2

Answer: C

10. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k?

A. 1/2

B. 1/3

C. 2/3

D. 1

11. Area between the curve $y = 4 + 3x - x^2$ and x-

axis in square units , is

A. 125/3

B. 125/4

C. 125/6

 $\mathsf{D.}\,25$

12. If A is the area between the curve $y = \sin x$ and x-axis in the interval $[0, \pi/4]$, then in the same interval, area between the curve $y = \cos x$ and x-axis, is

A. A

- B. $\pi/2 A$
- C. 1 A
- D. A 1

13. If A is the area lying between the curve $y = \sin x$ and x-axis between x=0 and $x = \pi/2$. Area of the region between the curve $y = \sin 2x$ and x-axis in the same interval is given by

A. A/2

B.A

 $\mathsf{C.}\,2A$

D. 3/2A

14. The area of the loop between the curve $y = a \sin x$ and x-axis is (A) a (B) 2a (C) 3a (D) none of these

A. a

B. 2a

C. 3a

D. 4a

15. Area (in square units) of the region bounded by the curve $y^2=4x,$ y-axis and the line y=3 , is

A. 2

B. 9/4

C. $6\sqrt{3}$

D. none of these

16. If A_1 is the area of the parabola $y^2 = 4ax$ lying between vertex and the latusrectum and A_2 is the area between the latusrectum and the double ordinate x = 2a, then $\frac{A_1}{A_2}$ is equal to

A. $2\sqrt{2}-1$

B.
$$\left(2\sqrt{2}+1\right)/7$$

C.
$$\left(2\sqrt{2}-1\right)/7$$

D. none of these

17. The area of the region bounded by $y = \sin x$, $y = \cos x$ and x-axis in the first quadrant is

A.
$$\sqrt{2}ig(\sqrt{2}-1ig)$$

B.
$$\sqrt{3}+1$$

- $\mathsf{C.}\,2\big(\sqrt{3}-1\big)$
- D. none of these

Answer: A

18. The area bounded by the curves

$$y = xe^{x}, y = xe^{-x}$$
 and the line $x = 1$ is $\frac{2}{e}squal nits$
(b) $1 - \frac{2}{e}squal nits$ $\frac{1}{e}squal nits$ (d) $1 - \frac{1}{e}squal nits$
A. $\frac{2}{e}$
B. $1 - \frac{2}{e}$
C. $\frac{1}{e}$
D. $1 - \frac{1}{e}$

Answer: A

19. The value of k for which the area of the figure bounded by the curve $y = 8x^2 - x^5$, the straight line x = 1 and x = k and the x-axis is equal to 16/3

B.
$$3\sqrt{8-\sqrt{17}}$$

20. The figure into which the curve $y^2 = 6x$ divides the circle $x^2 + y^2 = 16$ are in the ratio

A.
$$\frac{2}{3}$$

B. $\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$
C. $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$

D. none of these

21. What is the area bounded by the curves $y = e^x, y = e^{-x}$ and the straight line x = 1?

D. none of these

22. The area bounded by the y-axis, y=cos x and $y=\sin x, 0\leq x\leq \pi/4$, is A. $2(\sqrt{2}-1)$ B. $\sqrt{2} - 1$ $C.\sqrt{2} + 1$ D. $\sqrt{2}$ **Answer: B**

23. The positive value of the parmeter 'a' for which the area of the figure founded by $y = \sin as, y = 0, x = \pi/a$ and $x = \pi/3a$ is 3, is equal to

A. 2

B. 1/2C. $rac{2+\sqrt{3}}{3}$

D. 3/2

24. If area bounded by the curve $y^2 = 4ax$ and y = mx is $a^2/3$, then the value of m, is

Watch Video Solution

25. The area (in square units) bounded by the curve

 $y=x^3$, the x-axis and the ordinates at x=-2 and x=1 is

A. 17/2

B. 15/2

C. 15/4

D. 17/4

Answer: D

27. Find the area bounded by the x-axis, part of the curve $y = \left(1 - \frac{8}{x^2}\right)$, and the ordinates at x = 2andx = 4. If the ordinate at x = a divides the area into two equal parts, then find a.

A.
$$2\sqrt{2}$$

B. $\pm 2\sqrt{2}$
C. $\pm \sqrt{2}$
D. ± 2

28. The area bounded by the curve y = f(x) (where $f(x) \ge 0$), the co-ordinate axes & the line $x = x_1$ is given by x_1 . e^{x_1} . Therefore f(x) equals

A. e^x

B. xe^x

 $\mathsf{C.} x e^x - e^x$

D. $xe^x + e^x$

29. The area enclosed within the curve |x|+|y|=1,

is

A. 1

B. 1.5

C. 2

D. 3

Answer: C
30. The area of the triangle formed by the positive $x - a\xi s$ and the normal and tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is $2\sqrt{3}square$ (b) $3\sqrt{2}square$ $\sqrt{6}square$ (d) none of these

A. $\sqrt{3}$

B. $1/\sqrt{3}$

C. $2\sqrt{3}$

D. $3\sqrt{3}$

Answer: C

31. The area of the region for which $o < y < 3 - 2x - x^2$ and x > 0, is

A.
$$\int\limits_{1}^{3} \left(3-2x-x^2\right) dx$$

B. $\int\limits_{0}^{3} \left(3-2x-x^2\right) dx$
C. $\int\limits_{0}^{1} \left(3-2x-x^2\right) dx$
D. $\int\limits_{-1}^{3} \left(3-2x-x^2\right) dx$

Answer: C

Watch Video Solution

32. The area between the curve $y = 2x^4 - x^2$, the axis, and the ordinates of the two minima of the curve is 11/60 sq. units (b) 7/120 sq. units 1/30 sq. units (d) 7/90 sq. units

A. 7/120

B. 9/120

C. 11/120

D. 13/120

33. Find the area bounded by the curve $x^2 = 4y$ and

the straight line x = 4y - 2.

A. 3/8 B. 5/8 C. 7/8

D. 9/8

Answer: D

34. The area of the region bounded by the curve $(a^4)(y^2) = (2a - x)(x^5)$ is to that of the circle whose radius is a, is given by the ratio (a) 4:5 (b) 5 8 (c) 2 3 (d) 3:2.

A. 4:5

B. 5:8

C. 2: 3

D. 3:2

Answer: B

Watch Video Solution

35. The area between
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 and the straight line $\frac{x}{a} + \frac{y}{b} = 1$ is (A) $\frac{1}{2}\pi ab$ (B) $\frac{1}{2}ab$ (C) $\frac{\pi ab}{4} - \frac{ab}{2}$ (D) $\frac{1}{4}ab$
A. $\frac{1}{2}ab$
B. $\frac{1}{2}\pi ab$
C. $\frac{1}{4}ab$

D.
$$rac{1}{4}\pi ab - rac{1}{2}ab$$

Answer: D

Watch Video Solution

36. The area induced between the curves $y = rac{x^2}{4a}$

and
$$y=rac{8a^3}{x^2+4a^2}$$
 is given by
A. $a^2\left(2\pi-rac{4}{3}
ight)$
B. $a^2\left(\pi-rac{4}{3}
ight)$
C. $a^2\left(2\pi+rac{1}{3}
ight)$
D. $a^2\left(\pi+rac{4}{3}
ight)$

37. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k?

A. 2/3 B. 3/2

C.1/3

D. 3

38. Area bounded by the curve $y = \sin x$ between .

x=0 and $x=2\pi$ is

A. 2π

 $\mathrm{B.}\,2\pi$

C. 4π

D. π

Answer: C

39. The slope of the tangent to a curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2) then the area of the region bounded by the curve, the x-axis and the line x = 1 is (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) 1

A. 5/6

B. 6/5

C.1/6

D. 6

40. The area of the ellipse $\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$ is

A. πab

B.
$$rac{\pi}{4}ig(a^2+b^2ig)$$
C. $\pi(a+b)$

D.
$$\pi a^2 b^2$$

41. Smaller area enclosed by the circle $x^2 + y^2 = 4$

and line x+y=2 is

A. $2(\pi-2)$

 $\mathrm{B.}\,\pi-2$

 $\mathsf{C.}\,2\pi-1$

D. $\pi-1$

42. The area cut off a parabola $4y = 3x^2$ by the straight line 2y = 3x + 12 in square units, is

A. 16

B. 41

C. 27

D. 36

43. Find the area of the region bounded by the parabola $\mathrm{x}^2 = 4\mathrm{y} \setminus$ and the line $\mathrm{x} = 4\mathrm{y} - 2$ A. 9/8 B. 9/4C.9/2D. 9/7

44. Find the area lying in the first quadrant and bounded by the curve $y = x^3$ and the line y = 4x.

A. 2

B. 3

C. 4

D. 5

Answer: C

45. The area in square units of the region bounded by the curve $x^2 = 4y$, the line x=2 and the x-axis, is

A. 1

B. 2/3

 $\mathsf{C.}\,4/3$

 $\mathsf{D.}\,8/3$

46. The area bounded by the x-axis and the curve $y = 4x - x^2 - 3$ is A. 4/3B. 3/4C. 7 D. 3/2

47. Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx.

A.
$$\frac{5a^2}{3}$$

B. $\frac{8a^2}{3m^3}$
C. $\frac{7a^2}{4m^2}$
D. $\frac{3a^2}{5m}$

48. The area bounded by $y = an x, y = ext{cot} x, \,$ X-axis in $0 \leq x \leq rac{\pi}{2}$ is A. log 2

B.
$$\frac{1}{2}\log 2$$

C. 2 $\log \left(\frac{1}{\sqrt{2}}\right)$
D. $\frac{3}{2}\log 2$

49. Area lying between the curves $y^2 = 4x$ and y = 2xis(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

A. 2/3

- B. 1/3
- C.1/4
- $\mathsf{D.}\,1/2$

50. Area common to the circle $x^2 + y^2 = 64$ and the parabola $y^2 = 4x$ is

A.
$$\frac{16}{3} (4\pi + \sqrt{3})$$

B. $\frac{16}{3} (8\pi - \sqrt{3})$
C. $\frac{16}{3} (4\pi - \sqrt{3})$

D. none of these

51. The area of the figure bounded by the curve $|y|=1-x^2,$ is A. 2/3B. 4/3C.8/3D. -5/3

Answer: C

52. Find the area of the figure bounded by the parabolas $x=\ -2y^2, x=1-3y^2.$ A. 8/3B. 6/3C.4/3D. 2/3Answer: C

53. The area bounded by $y = x |\sin x|$ and x - axis

between $x=0, x=2\pi$ is

A. 2π

 $\mathsf{B.}\,3\pi$

C. 4π

D. 5π

Answer: C

54. The area of the region bouned by the curve $y=2x-x^2$ and the line y=x is A. 1/2B. 1/3C.1/4D. 1/6Answer: D

55. Find the area bounded by the curve y = (x - 1)(x - 2)(x - 3) lying between the ordinates x = 0 and x = 3.

A. 9/4B. $\frac{11}{4}$ C. 11/2

D.
$$7/4$$

56. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is (A) 1 (B) $rac{2}{3}$ (C) $rac{1}{3}$ (D) none of these

A. 1

B. 2/3

C.1/3

D. 4/3

Answer: C

57. The equation of the common tangent to the parabolas $y^2 = 4ax$ and $x^2 = 4by$ is given by

A. (8/3) ab

B. (16/3) ab

C. (4/3) ab

D. (5/3) ab

58. Area (in square units) of the region bounded by $[x]^2=[y]^2$ for $x\in [1,5]$,(where [\cdot] denotes the greatest integer function) is

A. 4

B. 8

C. 5

D. 10

Answer: B

View Text Solution

59. If denotes the area bounded by $f(x) = \left|rac{\sin x + \cos x}{x}
ight|$ x-axis , $x = \pi$ and x = 3x ,

then

A.
$$1 < A < 2$$

- $\mathrm{B.}\, 0 < A < 2$
- $\mathsf{C.}\, 2 < A < 3$
- D. none of these

Answer: D

60. Find the area of the region bounded by the curves $y = x^2$ and $y = \sec^{-1} \left[-\sin^2 x \right]$, where [.] denotes G.I.F.

A.
$$rac{1}{3}(4-\pi)^{3/2}$$

B. $\left(8(4-\pi)^{3/2}
ight)$
C. $rac{8}{3}(4-\pi)^{3/2}$
D. $rac{8}{3}(4-\pi)^{1/2}$

Answer: C

Watch Video Solution

61. The area of the region included between the regions satisfying $\min{(|x|, |y|)} \ge 1$ and $x^2 + y^2 \le 5$ is

62. If $f(x) \ge 0$ all $x \in (0, 2)$ and y=f(x) makes positive intercepts of 2 and 1 unit on x and y axes respectively and enclose an area of $\frac{3}{4}$ sq. units with axes, then $\int_0^2 x f'(x) dx$ is

A.
$$\frac{3}{4}$$

B. 1

C.
$$\frac{5}{4}$$

D. $-\frac{3}{4}$

Answer: D

Watch Video Solution

Chapter Test

1. Area bounded by the curves y=|x-1|, y=0and |x|=2 is (A) 4 (B) 8 (C) 5 (D) 9

A. 4

B. 5

C. 3

D. 6

2. The area inside the parabola $5x^2-y=0$ but outside the parabola $2x^2-y+9=0$ is $12\sqrt{3}square$ $6\sqrt{3}square$ $8\sqrt{3}square$ (d) $4\sqrt{3}square$

- A. $12\sqrt{3}$
- B. $6\sqrt{3}$
- C. $8\sqrt{3}$
- D. $4\sqrt{3}$

3. The area bounded by the curve $y^2(2a-x)=x^3$

and the line x = 2a is

A.
$$3\pi a^2$$

B. $\frac{3\pi a^2}{2}$
C. $\frac{3\pi a^2}{4}$
D. $\frac{\pi a^2}{4}$

4. Area bounded by the curve $xy^2 = a^2(a-x)$ and

the y-axis is

A. $\pi a^2/2$

B. πa^2

C. $3\pi a^2$

D. $2\pi a^2$

5. The area of the loop of the curve

$$ay^2 = x^2(a - x)$$
 is $4a^2squarts$ (b) $\frac{8a^2}{15}squarts$
 $\frac{16a^2}{9}squarts$ (d) None of these

A.
$$\frac{4a^2}{15}$$

B. $\frac{8}{15}a^2$
C. $\frac{16}{15}a^2$
D. $\frac{32}{5}a^2$

6. Find the area common to the circle $x^2+y^2=16a^2$ and the parabola $y^2=6ax, a>0.$

D. none of these

7. The line y = mx bisects the area enclosed by the

curve $y=1+4x-x^2$ and the lines $x=0,\,x=rac{3}{2}andy=0.$ Then the value of m is

- A. 13/8
- B. 13/32
- C. 13/6
- D. 13/14

8. The area between the curve $y = x \sin x$ and x-axis

where $o \leq x \leq 2\pi$, is

A. 2π

 $\mathsf{B.}\,3\pi$

C. 4π

D. π

9. The area bounded by the curves $y = e^x, y = e^{-x}$

and y=2, is

A.
$$\log\left(\frac{16}{e}\right)$$

B. log(4/e)

- C. 2log(4/e)
- D. log(8/e)

10. The area bounded by the curve $x = a \cos^3 t$, $y = a \sin^3 t$, is : A. $\frac{3\pi a^2}{2}$

8
B.
$$\frac{3\pi a^2}{16}$$

C. $\frac{3\pi a^2}{32}$

D.
$$3\pi a^2$$

Answer: A

11. If A_1 is the area enclosed by the curve xy = 1, xaxis and the ordinates x = 1, x = 2, and A_2 is the area enclosed by the curve xy = 1, x-axis and the ordinates x = 2, x = 4, then

A.
$$A_1=2A_2$$

 $\mathsf{B.}\,A_2=2A_1$

$$\mathsf{C}.\,A_2=3A_1$$

D.
$$A_1=A_2$$

Answer: D

12. If area bounded by the curve $y^2 = 4ax$ and y = mx is $a^2/3$, then the value of m, is

A. 1

B. 2

C. 3

D. $\sqrt{3}$

13. The value of a for which the area between the curves $y^2 = 4ax$ and $x^2 = 4ay$ is 1 unit is A. $\sqrt{3}$ B.4 C. $4\sqrt{3}$ D. $\sqrt{3}/4$ Answer: D

14. The area bounded by the curves
$$y = f(x)$$
, the x-
axis, and the ordinates $x = 1$ and $x = b$ is
 $(b-1)\sin(3b+4)$. Then $f(x)$ is.
 $(x-1)\cos(3x+4)$ $\sin(3x+4)$ $\sin(3x+4)$
 $\sin(3x+4) + 3(x-1)\cos(3x+4)$ None of these

A. $(x-1)\mathrm{cos}(3x+4)$

$$B.\sin(3x+4)$$

 $C.\sin(3x+4) + 3(x-1)$

D. none of these

15. The area bounded by the curve $y=\sin 2x,\;$ axis and $y=1,\;$ is

A. 1

B. 1/4

C. $\pi/4$

D.
$$\pi/4-1/2$$

Answer: D

Watch Video Solution

16.	The	area	between	the	curve
x =	$-2y^2$	and $x = 1$	$-\ 3y^2,$ is		
ļ	A. 4/3				
E	3.3/4				
(2.3/2				
۵	0.2/3				

Answer: A

17. The area between the curves $y = \cos x$, x-axis and the line y = x + 1, is A. 1/2B. 1 C. 3 D. 2

Answer: A

18. The area bounded by $y=x^2+1$ oand the tangents to it drawn from the origin, is

A. 8/2 sq. units

B. 1/3 sq. units

C. 2/3 sq. units

D. none of these

19. The positive value of the parmeter 'a' for which the area of the figure bounded by $y = \sin as, y = 0, x = \pi/a$ and $x = \pi/3a$ is 3, is equal to

A. 2

B. 1/2C. $\frac{2+\sqrt{3}}{3}$ D. $\sqrt{3}$

20. The area in square units bounded by the curves $y=x^3, y=x^2$ and the ordinates x=1, x=2 is A. 17/12B. 12/13 C. 2/7D. 7/2Answer: A Watch Video Solution

21. The area bounded by the curve $y^2 = x$ and the ordinate x = 36 is divided in the ratio 1:7 by the ordinate x=a. Then a=

A. 8

B. 9

C. 7

D. 0

Answer: B

Watch Video Solution

22. The area contained between the x-axis and one

area of the curve $y = \cos 3x$, is

A. 1/3

B. 2/3

C. 2/7

 $\mathsf{D.}\,2\,/\,5$

23. The area of the figure bounded by $|y|=1-x^2$ is in square units,

A. 4/3

B. 8/3

C. 16/3

D. 5/3

24.	The	area	of	the	figure	bounded	by
y =	$e^{x-1},$	y=0,	x =	0 and	x=2	is	
A	A. < 2						
E	3.>2						
C	9						
, c	— 4						
C). none	ofthe	se				

25. The area of the region on place bounded by max

$$(|x|,|y|) \leq rac{1}{2}$$
 is

A.
$$1/2 + \ln 2$$

- ${\tt B.3}+\ln 2$
- C.31/4
- $\mathsf{D.}\,1+2\ln 2$

26. The area of the closed figure bounded by $y = \frac{x^2}{2} - 2x + 2$ and the tangents to it at $\left(1, \frac{1}{2}\right)and(4, 2)$ is $\frac{9}{8}square{inits}$ (b) $\frac{3}{8}square{inits}$ $\frac{3}{2}square{inits}$ (d) $\frac{9}{4}square{inits}$

A. 9/8

B. 3/8

C. 3/2

D. 9/4

Answer: A

27. The area of the closed figure bounded by $y = 1/\cos^2 x, x = 0, y = 0 \text{ and } x = \pi/4, \text{ is}$ A. $\pi/4$ B. $1 + \pi/4$ C. 1 D. 2 Answer: C

28. The area (in square units) of the closed figure bounded by $(-x^2 + 2.x \le 1)$

$$x = -1, x = 2 ext{ and } y = egin{cases} -x^2 + 2, x \leq 1 \ 2x - 1, x > 1 \end{bmatrix}$$
 and

the abscissa axis, is

A. 16/3

B. 13/3

C. 13/3

D. 7/3

Answer: A

29. The area boundd by
$$y = 2 - |2 - x|$$
 and $y = \frac{3}{|x|}$, is

A.
$$rac{4+3\ln 3}{2}$$

B. 2+3ln(3sqrt(3)/4)

C.
$$\frac{3}{2} \ln 3$$

D. $\frac{1}{2} + \ln 3$

_

30. The area of the region bounded by $x^2 + y^2 - 2y - 3 = 0$ and y = |x| + 1, is A. π B. 2π C. 4π D. $\pi/2$ Answer: A Watch Video Solution

31.	The	area	of	the	region	bounded	by	
$y= x-1 \hspace{0.1 cm} ext{and} \hspace{0.1 cm} y=3- x , \hspace{0.1 cm} ext{is}$								
ļ	A. 2							
E	3.3							
(2.4							
[D. 1							
Answer: C								

O Watch Video Solution

32. Find the area of the closed figure bounded by the curves $y=\sqrt{x}, y=\sqrt{4-3x} and y=0$ A. 4/9B. 8/9C. 19/9D. 5/9**Answer: B** Watch Video Solution

33. The area of the closed figure bounded by the

curves

$$y=\cos x, y=1+rac{2}{\pi}x ext{ and } x=\pi/2, ext{ is }$$

A.
$$\frac{\pi + 4}{4}$$

B. $\frac{3\pi - 4}{4}$
C. $\frac{3\pi}{4}$
D. $\frac{\pi}{4}$

Answer: B

Watch Video Solution

34. For which of the following values of m is the area of the regions bounded by the curve $y = x - x^2$ and the line y = mx equal $\frac{9}{2}$? -4 (b) -2 (c) 2 (d) 4

- $\mathsf{A.}-4.4$
- B. -2, 2
- C. 2, 4
- D. -2, 3

35. The area bound by the curve $y = \sec x$, then x-axis and the lines x = 0 and $x = \pi/4$, is

A.
$$\log(\sqrt{2}+1)$$

B. $\log(\sqrt{2}-1)$
C. $\frac{1}{2}\log 2$

D.
$$\sqrt{2}$$

Answer: A

36. The area bounded by the parabola $y^2=8x,\;$ the

x-axis and the latusrectum, is

A.
$$\frac{16}{3}$$

B. $\frac{23}{3}$
C. $\frac{32}{3}$
D. $\frac{16\sqrt{2}}{3}$

37. The area (in square units) bounded by the curve

 $y^2 = 8x$ and $x^2 = 8y$, is

A. `64(3*sqrt(2)-1/3)

B.
$$\frac{3}{16}$$

C. $\frac{14}{3}$
D. $\frac{3}{14}$

Answer: A

38. If the area bounded by the curve y=f(x), x-axis and the ordinates x=1 and x=b is (b-1) sin(3b+4), then-

A.
$$(x-1)\cos(3x+4)$$

 $B.\sin(3x + 4)$

 $C.\sin(3x+4) + 3(x-1)\cos(3x+4)$

D. none of these

39. The area in square units of the region bounded by the curve $x^2 = 4y$, the line x=2 and the x-axis, is

A. 1

- B. 2/3
- $\mathsf{C.}\,4/3$
- $\mathsf{D.}\,8/3$

40. The area enclosed between the curve $y^2(2a - x) = x^3$ and the line x = 2 above the $x - a\xi s$ is $\pi a^2 squares$ (b) $\frac{3\pi a^2}{2} squares$ $2\pi a^2 squares$ (d) $3\pi a^2 squares$

A. πa^2

B. $3/2\pi a^2$

C. $2\pi a^2$

D. $3\pi a^2$

41. The area bounded by the curve $y = 4x - x^2$ and x-axis is (A) $\frac{30}{7}$ sq. units (B) $\frac{31}{7}$ sq. units (C) $\frac{32}{3}$ sq. units (D) $\frac{34}{3}$ sq. units

A.
$$\frac{30}{7}$$

B. $\frac{31}{7}$
C. $\frac{32}{3}$
D. $\frac{34}{3}$

Answer: C

Watch Video Solution

42. Area bounded by the parabola $y^2 = x$ and the line 2y = x is (A) $\frac{4}{3}$ (B) 1 (C) $\frac{2}{3}$ (D) $\frac{1}{3}$

A. 4/3

B. 1

C. 2/3

D. 1/3

Answer: A

43. Area between the x-axis and the curve $y = \cos x$,

when $0 \leq x \leq 2\pi$ is

A. 0

B. 2

C. 3

D. 4

Answer: D

- 44. The ratio of the areas between the curves $y = \cos x$ and $y = \cos 2x$ and x-axis from x = 0 to $x = \frac{\pi}{3}$ is (A) 1:3 (B) 2:1 (C) $\sqrt{3}$:1 (D) none of these A. 1:2 B. 2:1
 - C. $\sqrt{3}:1$
 - D. none of these

45. Find the area bounded by the parabola $y = x^2 + 1$ and the straight line x + y = 3.

A.
$$\frac{45}{7}$$

B. $\frac{3}{2}$
C. $\frac{32}{3}$
D. $\frac{3}{32}$

. . .

Answer: D

46. The area common to the parabolas $y = 2x^2$ and $y = x^2 + 4$ (in square units) is (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{32}{3}$ (D) $\frac{3}{32}$

A.
$$\frac{2}{3}$$

B. $\frac{3}{2}$
C. $\frac{32}{3}$
D. $\frac{3}{32}$

Answer: C

> Watch Video Solution

Answer: D

48. Examples: Find the area bounded by the parabola $y^2=4ax$ and its latus rectum.

A. 0

B.
$$\frac{4}{3}a^{2}$$

C. $\frac{8}{3}a^{2}$
D. $\frac{a^{2}}{3}$

Answer: C

49. The area bounded by the curve $y = x^4 - 2x^3 + x^2 + 3$ with x-axis and ordinates corresponding to the minima of y, is

A. 1

B.
$$\frac{91}{30}$$

C. $\frac{30}{9}$

D. 4

50. Find the area common to two parabolas $x^2 = 4ay$ and $y^2 = 4ax$, using integration.

A.
$$\frac{8a^3}{3}$$

B. $\frac{16a^2}{3}$
C. $\frac{32a^2}{3}$
D. $\frac{64a^2}{3}$

Answer: B

Watch Video Solution

51. The area (in square units) bounded by curves y=sinx between the ordinates x=0, $x=\pi$ and the x-axis , is

A. 2

B.4

C. 3

D. 1

Answer: A

52. The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2,3) and the x-axis is

A. 3

B. 6

C. 7

D. none of these

Answer: C

53. Find the area enclosed between the curves:

$$y = \log_e(x+e), x = \log_eigg(rac{1}{y}igg)$$
 & the x-axis.

A. 2

B. 1

C. 4

D. none of these

Answer: A

C. $\frac{\pi}{6} - \frac{\sqrt{3} - 1}{8}$

D. none of these

Answer: C

- **55.** Let A_n be the area bounded by the curve $y=\left(an x
 ight)^n$ and the lines $x=0,\,y=0,$ and $x = \frac{\pi}{4}$. Prove that for n>2, $A_n+A_{n-2}=rac{1}{n-1}$ and deduce `1/(2n+2)
- - A. $A_n + A_{n-2} = rac{1}{n-1}$ B. $A_n + A_{n-2} < \frac{1}{n-1}$
 - C. $A_n A_{n-2} = \frac{1}{n-1}$

D. none of these

Answer: A

56. The area bounded by the parabola $y^2 = x$, straight line y = 4 and y-axis is

A.
$$\frac{3}{32}$$

B. $\frac{64}{3}$
C. $\frac{33}{2}$
D. $\frac{16}{3}$

57. The area (in square units), bounded by $y = 2 - x^2$ and x + y = 0, is A. $rac{7}{2}$ sq. units

B.
$$\frac{9}{2}$$
 sq. units

C. 9 sq. units

D. none of these

58. The area bounded by the curve $y = \log_e x$, the x-

axis and the line x=e is (A) e sq. units (B) 1 sq. unit

(C)
$$\left(1-rac{1}{e}
ight)$$
 sq. units (D) $\left(1+rac{1}{e}
ight)$ sq. units

A. e

B. 1

$$\mathsf{C.} \ 1 - rac{1}{e}$$
 $\mathsf{D.} \ 1 + rac{1}{e}$

Answer: B

Watch Video Solution

59. Find the area included between the curves $x^2 = 4y$ and $y^2 = 4x$. A. 4/3B. 1/3C. 16/3D. 8/3**Answer: C**

60. If the area above the x-axis, bounded by the curves $y = 2^{kx}$ and x = 0, and x = 2 is $\frac{3}{\log_e(2)}$, then

the value of k is

A. 1/2

B. 1

C. -1

D. 2

