

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

INCREASING AND DECREASING FUNCTIONS

Illustration

1. The function $f(x) = 2\log(x-2) - x^2 + 4x + 1$ increases on the interval

A. (1,2)

B. (2,3)

C. (1,3)

D. (2,4)

Answer: B

2. The fucntion
$$f(x) = x^3 - 3x$$
, is

A. increasing on
$$(\,-\infty,\,-1)\cup[1,\infty)$$
 and decresing on (-1,1)

B. decreasing on
$$(-\infty, -1] \cup [1, \infty)$$
 and increasing on (-1,1)

C. increasing on
$$(0,\infty)$$
 and decreaing on $(-\infty,0)$

D. decreasin on
$$(0,\infty)$$
 and increasing on $(-\infty,0)$

Answer: A

A. decreasing in for all x

C. increasing for all x

B. increasing in $(\,-\infty,\,-1)$ and decreasing in $(\,-1,\infty)$

3. The fucntion f defined by $f(x) = (x+2)e^{-x}$ is

D. decreasing in $(\,-1,\infty)$ and increasing in $(\,-\infty,0)$

Answer: B

Watch Video Solution

4. Leg $f(x)=x^3+ax^2+bx+5\sin^2 x$ be an increasing function on the set R. Then find the condition on aandb.

A.
$$a^2 + 3b + 15 > 0$$

B.
$$a^2 + 3b + 15 < 0$$

C.
$$a^2 - 3b - 15 > 0$$

D.
$$a^2 - 3b - 15 < 0$$

Answer: A

5. Let the function $f(x) = \tan^{1-}(\sin x + \cos x)$ be defined on `[0, 2 pi]

Then f(x) is

A. increasing on $\left[0,\pi/4\right)\cup\left[5\frac{\pi}{4},2\pi\right]$

B. decreasing on $(\Pi/4, 2\pi)$

C. increasing on $(0, \pi/4,) \cup (3\pi/4, 2\pi)$

D. decreasing on $[\pi/4, 7\pi/4]$

Answer: A

Watch Video Solution

Section I Solved Mcqs

1. Let
$$h(x) = f(x) - \left(f(x)
ight)^2 + \left(f(x)
ight)^3$$
 for every real $x.$ Then,

A. h is increasing whenever f is increasing

B. h is increasing whenever f is decreasing

- C. h is decreasing whenever f is increasing
- D. nothing can be said in general

Answer: A

Watch Video Solution

- 2. If $f(x)=x/(\sin x)$ and $g(x)=x/(\tan x)$, where 0
 - A. both f(x) and g(x) are increasing functions
 - B. both f(x) and g(x) decreasing functions
 - C. f(x) is an increasing function
 - D. g(x) is an increasing function

Answer: C

3. The interval to which a may belong so that the function

$$f(x)=igg(1-rac{\sqrt{21-4a-a^2}}{a+1}igg)x^3+5x+100$$
 is increasing for $x\in R$

D. all of the above

Answer:

4. The interval of increase of the function $f(x) = x - e^x + an\!\left(rac{2\pi}{7}
ight)$ is

A.
$$(0, \infty)$$

B.
$$(-\infty,0)$$

$$\mathsf{C}.\left(1,\infty\right)$$

D.
$$(5, \infty)$$

Answer: B

Watch Video Solution

- **5.** The function $f(x)=x^x$ decrease on the interval
 - A. (0,e)
 - B. (0,1)
 - C. (0, 1/e)
 - D. none of these

Answer: C

Watch Video Solution

6. The set of all x for which $\log(1+x) \leq x$ is equal to

A.
$$(0,\infty)$$

B. $(-1, \infty)$

C. (-1,0)

D. none of these

Answer: B

Watch Video Solution

7. The function $f(x) = \frac{x}{x \log x}$ increase on the interval

A. $(1, \infty)$

B. (0,e)

 $C.(e,\infty)$

D. none of these

Answer: C

8. The function $f(x) = an^{-1}(\sin x + \cos x)$ is an increasing function in

A.
$$\left(0, \frac{\pi}{2}\right)$$

$$\mathrm{B.}-\left(\frac{\pi}{2},\,\frac{\pi}{2}\right)$$

C.
$$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

$$\mathrm{D.}-\left(\frac{\pi}{2},\,\frac{\pi}{4}\right)$$

Answer: D

Watch Video Solution

9. The set of all x for which $1 + \log x < x$, is

A.
$$(1, \infty)$$

$$\mathsf{C}.\left(0,\infty\right)$$

D. none of these

Answer: C

Watch Video Solution

10. For x>1 and $y=\log x-(x-1)$ which one of the following is not true ?

A.
$$x - 1 > y$$

$$\mathrm{B.}\,x^2-1>y$$

C.
$$y > x - 1$$

D.
$$\frac{x-1}{x} < y$$

Answer: C

11. If the function $f(x)=2x^2-kx+5$ is increasing on $[1,\ 2]$, then klies in the interval

A.
$$(-\infty,4)$$

B.
$$(4, \infty)$$

$$\mathsf{C.}\,(\,-\infty,8)$$

D.
$$(8, \infty)$$

Answer: A

Watch Video Solution

12. Leg $f(x)=x^3+ax^2+bx+5\sin^2 x$ be an increasing function on the set R. Then find the condition on aandb.

A.
$$a^2 - 3b - 15 > 0$$

B.
$$a^2-3b+15>0$$

C.
$$a^2 - 3b + 15 < 0$$

D. a > 0 and b < 0

Answer: C

Watch Video Solution

13. If a,b,c be real, then $f(x)=egin{array}{cccc} x+a^2 & ab & ab \\ ab & x+b^2 & bc \\ ac & bc & x+c^2 \\ \end{array}$ is decreasing

on

A.
$$\Big(-rac{2}{3}ig(a^2+b^2+c^2ig),0\Big)$$

B.
$$0,\left(-rac{2}{3}ig(a^2+b^2+c^2ig)
ight)$$

$$\operatorname{C.}\left(\frac{a^2+b^2+c^2}{3}\right)$$

D. none of these

Answer: A

14. Let f(x) be the function given by

$$f(x) = 3x^5 - 5x^3 + 21x + 3\sin x + \cos x + 5$$
. Then ,

A. f(x) is increasing on R and f(x) = 0 has exactaly one negative root

B. f(x) is increasing on R and f(x) = 0 has excatly one positive root

C. f(x) is an increasing and f(x) = 0 has excatly one negative root

D. f(x) is an increasing and f(x) = 0 has excatly one positive root

Answer: A::C

Watch Video Solution

15. If the function $f(x)=2\tan x+(2a+1)\mathrm{log}_e|\sec x|+(a-2)x$ is increasing on R, the

A.
$$(a\in(1/2,\infty)$$

B.
$$(a\in (-1/2,1/2)$$

C.
$$a = 1/2$$

D.
$$(a \in R)$$

Answer: C

Watch Video Solution

16. If $f'ig(x^2-4x+3ig)>0$ for all $x\in(2,3)$ then f(sinx) is increasing on

A.
$$\bigcup_{n\in Z} \left(2n \ \pi, (4n+1)\frac{\pi}{2} \right)$$

$$\mathsf{B.} \ \mathop{\cup}_{n \,\in\, Z} \, \Big((4n-1)\frac{\pi}{2}, \quad 2\mathbf{n} \quad \pi \Big)$$

C. R

D. none of these

Answer: A

17. Let $f(x) = an^{-1}(g(x))$, where g(x) is monotonically increasing for $0 < x < \frac{\pi}{2}$.

A. increasing on
$$(0,\pi/2)$$

B. decreasing on $(0, \pi/2)$

C. increasing on $(0,\pi/4)$ and decreasing on $(\pi/4,\pi/2)$

D. none of these

Answer: A

18. Let
$$f(x)=\int\!\!e^x(x-1)(x-2)dx,\,$$
 then f(x) decrease in the interval

A.
$$(-\infty, -2)$$

D.
$$(2,\infty)$$

Answer: C

Watch Video Solution

19. Consider the following statements in S and R S: Both $\sin x$ and $\cos x$ are decrerasing function in the interval $\left(\frac{\pi}{2},\pi\right)$ R: If a differentiable function decreases in an interval (a,b), then its derivative also decrease in a,b. Which of the following it true? Both S and R are wrong. Both S and R are correct, but R is not the correct explanation of S. S is correct and R is the correct explanation for S. S is correct and R is wrong.

A. Both S and R are wrong

- B. Both S and R are correct but R is not correct explanation for S
- C. S is correct and R wrong
- D. d

Answer: D

20. The length of the longest interval, in which the function $3\sin x - 4\sin^3 x$ is increasing is

A.
$$\frac{\pi}{3}$$

$$\operatorname{B.}\frac{\pi}{2}$$

C.
$$3\frac{\pi}{2}$$

D. π

Answer: A

Watch Video Solution

21. If $f(x)=x^3+4x^2+ax+5$ is a monotonically decreasing function of x in the largest possible interval `(-2,-2//3), then the value of a is

A. 4

B. 2

C. -1

D. none of these

Answer: A

Watch Video Solution

22. Let $f(x)=2\sin^3x-3\sin^2+12\sin x+5, 0\leq x\leq rac{\pi}{2}$ Then f(x)is

A. decreasing on $[0,\pi/2]$

B. increasing on $[0,\pi/2]$

C. increasing on $(0,\pi/4)$ and decreasing on $(\pi/4,\pi/2)$

D. none of these

Answer: B

23. Let f'(x) > 0 and g'(x) < 0 for all $x \in R$ Then

A.
$$f\{g(x)>f(g(X+1)\}$$

$$\operatorname{B.} f\{g(x) > f(g(X-1))\}$$

$$\mathsf{C.}\,g\{f(x)>g(f(X+1)\}$$

D.
$$g\{f(x) > g(f(X-1))\}$$

Answer: A::C

Watch Video Solution

24. If $f(x)=\left(ab+b^2+1\right)x+\int_0^x\left(\cos^4\theta+\sin^4\theta\right)\;\mathrm{d}\theta$ is an incrasing

function of x for all $x \in R$ and $b \in R$, b being independent of x then

A.
$$a\in \left(0,\sqrt{6}
ight)$$

B.
$$a \in \left(\sqrt{6}, \sqrt{6}\right)$$

C.
$$a\in ig(-\sqrt{6},0ig)$$

D. none of these

Answer: B

Watch Video Solution

25. If $f(x)=rac{a^2-1}{a^2+1}x^3-3x+2\log_e 5$ is a decreasing function of x for all $x\in R$ then the set of possible values of a is

A. [-1,1]

 $\mathrm{B.}\left[1,\infty\right]$

 $\mathsf{C.}\,[\,-\infty,\;-1]$

D. none of these

Answer: A

26. If g(x) is a continous function at x=a such that g(a)>0 and

$$f'(x) = g(x)ig(x^2 - ax + a^2ig) \;\; ext{for all}\;\; x \in K$$
 then f(x) is

A. increasing in the nieghbourhod of x=a

B. decreasing in the nieghbourhod of x=a

C. constant in the nieghbourhod of x=a

D. maximum at x=a

Answer: A

Watch Video Solution

27. Let $g(x)=2f\Big(\frac{x}{2}\Big)+f(2-x)andf^x<0\,\forall x\in(0,2).$ Then g(x) increases in $\left(\frac{1}{2},2\right)$ (b) $\left(\frac{4}{3},2\right)$ (0,2) (d) $\left(0,\frac{4}{3}\right)$

A. increasing on (4/3, 2) and increasing on (0,4/3)

B. decreasing on (0,4/3) and decreasing on (4,3,2)

C. increasing (0,4/3) and decreasing on (4,3,2)

D. non of these

Answer: C

Watch Video Solution

28. The set of all values of a for which the function

$$f(x) = igg(rac{a^2-1}{3}igg)x^3 + (a-1)x^2 + 2x + 1$$

increases on R, is

A.
$$(-3, 1)$$

B.
$$R-[-3,1]$$

C.
$$(-\infty, -3)$$

D.
$$[1, \infty]$$

Answer: B

29. Let $f(x) = \left\{ egin{aligned} xe^{ax}, & x \leq 0 \ x + ax^2 - x^3, & x > 0 \end{aligned}
ight.$,where is a

positive constant .Then the interval in which f' (x) is increasing is

A.
$$\left(0, \frac{a}{3}\right)$$

B. (-2 /a,0)

C. (-2/a,a/3)

D. non of these

Answer: C

Watch Video Solution

30. Let f(x) be a function given by $f(x) = rac{x^2+1}{[x]}$

where [] denotes the greatest interger function .Then f(x) is monotonically

A. increasing on [1,4)

B. decreasing [1,4)

C. increasing on [1,2)

D. decreasing on [2,3)

Answer: C

Watch Video Solution

31. If the function f(x)=3 cos |x| -6 ax +b increases for all $x \in R$ then the range of value of a given by

A.
$$\left(-\frac{1}{2},\infty\right)$$

B.
$$(-\infty, -1/2)$$

C.
$$(-\infty, -2)$$

D.
$$(-2,\infty)$$

Answer: B

32. Let f(x) and g(x) be increasing and decreasing functions respectively

from $[0,\infty)\mathrm{to}[0,\infty)$ Let h (x) = fog (x) If h(0) =0 then h(x) is

- A. always 0
- B. always positive
- C. always negative
- D. strictly increasing

Answer: A

Watch Video Solution

33. The interval in which $2x^3+5$ and $g(x)=9x^2-12x$ is

- A. $(-\infty,1)$
- B. (1,2)
- $\mathsf{C}.\left(2,\infty
 ight)$
- D. none of these

Answer: B

View Text Solution

34. If $f(x) = \left\{ egin{array}{l} 3x^2 + 12, x - 1 \ 37 - x, 2 < x \leq 3 \end{array}
ight.$ then

A. f(X) increasing on [-1,2]

B. f(x) is continuos on [-1,3]

C. f(2) does not exist

D. all of these

Answer: D

View Text Solution

35. Given that f(x)>g(x) for all $x\in R$ and f(0)=g(0)then

A.

$$f(x)>g(x)f ext{ or } all x\in (0,\infty) ext{ and } f(x)>g(x)f ext{ or } all x\in (-\infty)$$

f(x) < g(x)f or $all x \in (0, \infty)$ and f(x) > g(x)f or $all x \in (-\infty)$

f(x) > g(x) > f or $all x \in (-\infty, 0)$ and f(x) < g(x)f or $all x \in$ D. none of these

Answer: A

36. The fucntion
$$f(x) = \frac{\sin x}{x}$$
 is decreasing in the interval

$$\ell = \pi$$

A.
$$\Big(-rac{\pi}{2},0\Big)$$

B.
$$(0, \pi/2)$$

C.
$$(0, \pi)$$

D. none of these

Answer: B

Watch Video Solution

37. [If $0 < x < \frac{\pi}{2}$ then 1) $\frac{2}{\pi} > \frac{\sin x}{x}$ (2) $(\pi) < \frac{\sin x}{x}$ 3) $\frac{\sin x}{x} > 1$, 4)

 $2<\frac{\sin x}{x}$

A. $\frac{2}{\pi} < \frac{\sin x}{x}$

 $\mathrm{B.}\,\frac{\sin x}{x}<1$

 $\mathsf{C.}\,\frac{\sin x}{x}>1$

 $\text{D.}\,\frac{\sin x}{x} > 1$

Answer: B::C

38. If O alpha It beta It pi/2` then

A.
$$\frac{ an eta}{ an lpha} < rac{lpha}{eta}$$

$$\operatorname{B.}\frac{\tan\beta}{\tan\alpha}>\frac{\alpha}{\beta}$$

$$\operatorname{C.}\frac{\tan\beta}{\tan\alpha}>\frac{\alpha}{\beta}$$

$$\mathrm{D.}\,\frac{\tan\alpha}{\tan\beta}\leq\frac{\alpha}{\beta}$$

Answer: B

View Text Solution

39. $If0 \leq x \leq \frac{\pi}{2} then$

 $\mathsf{A.}\,2\sin x + \tan x < 3x$

 $\mathtt{B.}\,2\sin x + \tan x < 2x$

 $\mathsf{C.}\,2\sin x + \tan x \leq 3x$

 $\mathsf{D.}\,2\sin x + \tan x \leq 3x$

Answer: C

Watch Video Solution

- **40.** If $f(x) = xe^{x\,(\,1\,-\,x\,)}$ then f(x) is
 - A. incresing on [-1/2,1]
 - B. decresing on R
 - C. increcasing on R
 - D. decreasing on [-1/2,1]

Answer: A

- **41.** For all $x \in (0,1)$
 - A. $e^x < 1 + x$

B.
$$\log_{e}(1+x) < x$$

$$\mathsf{C}.\sin x > x$$

$$D.\log x > x$$

Answer: B

Watch Video Solution

42. If $0 < x < \frac{\pi}{2}$ then

A.
$$\cos x > 1 - \frac{2x}{\pi}$$

$$\mathrm{B.}\cos x < \ - \ \frac{2x}{\pi}$$

$$\operatorname{C.}\cos x>\frac{2x}{\pi}$$

$$\mathsf{D.}\cos x<\frac{2x}{x}$$

Answer: A

43.
$$If0 < x < rac{\pi}{2}$$
 then

A.
$$\tan x < x < \sin x$$

$$\mathsf{B.}\,x < \sin x < \tan x$$

$$\mathsf{C.}\sin x < \tan x < x1$$

D. none of these

Answer: D

Watch Video Solution

44. Let $f\!:\!R o R$ be a fucntion such that $f(x)=ax+3\sin x+4\cos x$

Then f(x) is invertible if

A.
$$a\in(\,-5,5)$$

B.
$$a\in (\,-\infty,\,-5)$$

C.
$$a\in (5,\infty)$$

D. none of these

Answer: B

Watch Video Solution

45. if the function $f\!:\!R o R$ given be $f(x)=x^3+ax^2+5x+\sin 2x$ is invertible then

A.
$$a\in (\,-\infty,\,-3)$$

B.
$$a\in(\,-3,3)$$

C.
$$a\in(3,\infty)$$

D. none of these

Answer: C

Watch Video Solution

46. If f(x)=sin x,x in $[-\pi/2,\pi/2]$ then which one of the following is not correct ?

A. f(x) is increasing on the
$$[\,-\pi/2,\pi/2]$$

B. fof (x) is increasing on
$$[\,-\pi/2,\pi/2]$$

C. fof (x) is increasing on
$$[\,-\pi/2,\pi/2]$$

D. fof (x) is decreasing on
$$[\,-\pi/2,0]$$
 and is increasing on

$$[\,-\pi/2,\pi/2]$$

Answer: A

Watch Video Solution

47. If f:
$$R \to R$$
 defined by f(x) = 3x+2a cos x -5 is invertible then 'a' belongs to

B.
$$(-\infty,3/2]\cup[3/2,\infty]$$

D. R

Watch Video Solution

48. Let f(x) be a function defined by

$$f(x) = ig(ab - a^2 - 2ig)x - \cos^4 t + \sin^2 t - 2dt$$

If (x) is a decreasing function for all $x \in R$ and a in R where a is independent of x, then

A.
$$be \in (1,\infty)$$

B.
$$b\in (-1,1)$$

C.
$$b\in (-\infty,]$$

D. non of these

Answer: C

View Text Solution

49. Let f(x) and g(x) be defined and differntiable for all

$$x \geq x_0$$
 and $f(x_0) = g(x_0)f(x) \geq (x)f$ or $x > x_0$ then

A.
$$f(x) < g(x) nx > x_0$$

$$\mathsf{B.}\, f(x) = g(x)x = x_0$$

C.
$$f(x) > g(x), x \leq x_0$$
j

D. none of these

Answer: C

50. If $a \le 0 f(x) = e^{ax} + e^{-ax}$ and S={x:f(x) is monotonically increasing then S equals

A.
$$f\{x : x > 0\}$$

B.
$$\{x : x < 0\}$$

C.
$$\{x : x < 1\}$$

D.
$$\{x : x < 1\}$$

Answer: A

Watch Video Solution

51. If $f(x) = \int_x^{x^2} \frac{1}{\left(\log t\right)^2} dt, \, x eq 1$ then f(x)is monotomically

A. increasing on $(2, \infty)$

B. incrasing on (1,2)

C. decreasing on $2(\infty)$

D. decreasing on (0,3)

Answer: A

52. The interval in which the function

$$f(x) = \int_0^x \left(rac{t}{t+2} - rac{1}{t}
ight) dt$$
 will be non-increasing is

A. (
$$-2, -1$$
] \cup (0, 3]

B. (
$$-\,2,\;-\,1]\,\cup\,[0,\,3]$$

D.
$$(-2, -1] \cup (0, 2]$$

Answer: D

Watch Video Solution

53. If
$$f(x) = x^3 + bx^3 + cx + d$$
 and $0 < b^2 < c$ then in $(-\infty, \infty)$

A. f(x) is strictly increasing function

B. f(x) has a local maxima

C. f(x) is a strcrly decreasing function

D. f(x) is unbounded

Answer: A

Watch Video Solution

54. For the fucntion $f(x)=x\cos\frac{1}{x}, x\geq 1$ which one of the following is incorrect ?

A. for at least one x in the interval $[1,\infty),$ f(x+2)-f(x)<2

B. $\lim_{x o \infty} \ f'(x) = 1$

C. for all x in the interval $[1,\infty),$ f(x+2)-f(x)>2

D. f(x) is strictly decreasing in the interval $[1,\infty)$

Answer: A

55. Let the function $\mathsf{g}{:}(\,-\infty,\infty) o (\,-\pi/2,\pi/2)$ be given by $\mathsf{g}(\mathsf{u})$

$$=2 an^{-1}(e^u)-rac{\pi}{2}$$
 Then g is

A. even and is strictly increasing in $(0,\infty)$

B. odd and is strictly decreasing $(\,-\infty,\infty)$

C. odd and is strictly increasing in $(-\infty,\infty)$

D. neither even nor odd , but is stictly increasing in $(-\infty,\infty)$

Answer: C

56. Consider the function f: R o R given by

$$f(x) = \frac{x^2 - ax + 1}{x^2 + ax + 1}, 0 \le a \le 2.$$

A. g'(x) is postitive on $(\,-\infty,0)$ and negative on $(0,\infty)$

B. f'(x) is negative on $(-\infty,0)$ and postive on $(0,\infty)$

C. g'(x) chages sing on both $(-\infty,0)$ and $(0,\infty)$

D. g'(x) does not change not change sign on $(-\infty, \infty)$

Answer: B

Watch Video Solution

- **57.** Consider the polynomial $f(x) = 1 + 2x + 3x^2 + 4x^3$ for all $x \in R$
 - A. (-1/4,0)
 - B. (-11, -3/4)
 - C. (-3/4, -1/2)
 - D. (0, 1/4)

Answer: C

View Text Solution

58. Consider the polynomial $f(x)=1+2x+3x^2+4x^3.$ Let s be the sum of all distinct real roots of f(x) and let t=|s|.

A. increasing in
$$(-t,-1/4)$$
 and decreasing in $(-1/4t)$

B. decreasing (-t,-1/4) and increasing in (-1/4,t)

C. incresing in (-t,t)

D. decreasing (-t, t)

Answer: B

59. If
$$f(x)=x^{rac{3}{2}}(3x-10), x\geq 0, ext{ then } f(x) ext{ is increasing in } ___.$$

A.
$$(-\infty, -1) \cup (1, \infty)$$

B.
$$[2,\infty)$$

$$\mathsf{C.}\,(\,-\infty,\,-1)\cup[1,\infty)$$

D.
$$(\,-\infty,0]\cup(2,\infty)$$

Answer: B

Watch Video Solution

60. Let $f(x) = \log(\sin x + \cos x), x \in x\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$ Then f is strictly increasing in the interval

A.
$$\Big(-\frac{\pi}{4},\frac{\pi}{4}\Big)$$

B.
$$\left(0, \frac{3\pi}{8}\right)$$
C. $\left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$

D.
$$\left(-\frac{\pi}{8}, \frac{\pi}{8}\right)$$

Answer: A

Watch Video Solution

 $f(x) = (1-x)^2 \sin^2 x + x^2 \text{ for all } x \in R,$ 61. and $0 \leq t g(X) = \int_{0}^{x} \left\{ rac{2(t-1)}{t+1} - \log_e t
ight\} f(t) f \,\, ext{or} \,\, all x \in (1,\infty)$ Then which of the following is ture?

Watch Video Solution

62. $f(x) = x |{
m log}_e \, x|, \, x < 0$ is monotonically decreasig in

A.
$$(e,\infty)$$

B. (0, 1/e)

 $\mathsf{C.}\,(\,-\infty,\,-1)\cup[1,\infty)$

D. (1,e)

Answer: C

View Text Solution

63. Let F:R-R be a thrice differentiable function. Suppose that

F(1)=0, F(3)= - 4 and F(x)<0 for all $x\in \left(rac{1}{2},3
ight)$. Let

f(x) = xF(x) for all $x \in R$ The correct statement is

A.
$$f(1) < 0$$

B. f(2) < 0

C. $f(x) \neq 0f$ or $all x \in (1,3)$

D. f(x) = 0f or $somex \in$

Answer: A::B::C

Watch Video Solution

64. Let $f(x) = 1 - x - x^3$. Find all real values of x satisfying the inequality, $1-f(x)-f^3(x)>f(1-5x)$

A.(0,2)

B.(-2,2)

 $C.(-2,1) \cup (1,\infty)$

D. $(-\infty, -2) \cup (0, 2)$

Answer: D

65. Let $f(\sin x) < 0 \, \text{ and } \, f(\sin x) < 0 \, \text{for all x in}$

A.
$$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

$$\mathrm{B.}\left(0,\frac{\pi}{4}\right)$$

$$\mathsf{C.}\left(0,\frac{\pi}{2}\right)$$

D.
$$\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Answer: B

View Text Solution

66. Let f(x) be a monotic ploynomial of degree (2m-1) where $m \in N$ Then the equation

$$f(x)-f(3x)+f(5x)+\ldots \ +f((2m-1)$$
 has

A. at least one real root

B. (2m - 1) real roots

C. exactly one real root

D. none of these

Answer: C

Watch Video Solution

67. Let $f(x) = \sin^4 x + \cos^4 x$. Then f is increasing function in the interval

A.
$$\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

$$\mathsf{B.}\left(\frac{5\pi}{8},\frac{3\pi}{4}\right)$$

$$\mathsf{C.}\left(0,\frac{\pi}{4}\right)$$

D.
$$\left(\frac{\pi}{2}, \frac{5\pi}{8}\right)$$

Answer: A

68. If $f\colon R\to R$ is a twice differentiable function such that f''(x)>0 for all $x\in R,\ \ {\rm and}\ \ f\Bigl(\frac12\Bigr)=\frac12.$ $f(1)=1,\ {\rm then}$

A.
$$f(1) \leq 0$$

$$\mathtt{B.}\, 0 \leq f'(1) \leq \frac{1}{2}$$

C.
$$rac{1}{2} < f'(1) \leq 1$$

D.
$$f(1) > 1$$

Answer: D

Watch Video Solution

69. If $f\!:\!\mathbb{R} o \mathbb{R}$ is a differentiable function such that f(x) > 2f(x) for

all $x \in \mathbb{R}$ and $f(0) = 1, ext{ then}$

A. f(x) is incresing in $(0, \infty)$

B. f(x) is decereasing in $(0, \infty)$

$$\mathsf{C}.\, f(x) < e^{2x} \ \ \mathrm{in} \ \ (0,\infty)$$

D.
$$f(x) < e^{2x} \in (0,\infty)$$

Answer: A::C

Watch Video Solution

Section Ii Assertion Reason Type

1. Statement-1 $e^\pi > \pi^e$

Statement -2 The function $x^{1/x}(x>0)$ is strictly decreasing in $[e,\infty)$

(w > 0) is strictly activating in $[v, \infty)$

statement -2 is a correct explanation for Statement-1

A. Statement-1 True statement -1 is True, Statement -2 is True

B. Statement -1 is True, Statement -2 is True

statement -2 is not a correct explanation for Statement-1

C. Statement-1 True statement -1 is True, Statement -2 is False

D. Statement-1 is False ,Statement -2 is True

Watch Video Solution

2.
$$Let f(x) = \tan^{-1} x - x + \frac{x^3}{6}$$

Statement -1: f(x) < g(x)f or $0 < x \le 1$

Statement -2:
$$h(X) = an^{-1}x - x + rac{x^3}{6}$$
 decreases on [-1,1]

A. Statement-1 True statement -1 is True, Statement -2 is True statement -2 is a correct explanation for Statement-2

B. Statement -1 True statement -1 is True, Statement -2 is True statement -2 is not a correct explanation for Statement-2

C. Statement -1 True statement -1 is True, Statement -2 is False

D. Statement -2 is True

Answer: A

3. Statement-1 $e^x + e^{-x} > 2 + x^2$ is an increasing function on R.

A. Statement-1 True statement -1 is True, Statement -2 is True statement -2 is a correct explanation for Statement-3

B. Statement-1 True statement -1 is True, Statement -2 is True statement -2 is not a correct explanation for Statement-3

C. Statement-1 True statement -1 is True, Statement -2 is False

D. Statement-1 is False ,Statement -2 is True

Answer: A

View Text Solution

4. Statement-2 $f(x)=rac{\sin x}{x}<1f$ or $< x<rac{\pi}{2}$ Statement -2 $f(x)=rac{\sin x}{x}$ is decreasing function on $(0,\pi/2)$

A. Statement-1 True statement -1 is True, Statement -2 is True statement -2 is a correct explanation for Statement-4

B. Statement -1 is True, Statement -2 is True

statement -2 is not a correct explanation for Statement-4

C. Statement-1 True statement -1 is True, Statement -2 is False

D. Statement-1 is False ,Statement -2 is True

Answer: A

Watch Video Solution

5. Let $f(x) = 2 an^{-1}igg(rac{1-x}{1+x}igg)$

A. Statement-1 True statement -1 is True, Statement -2 is True statement -2 is a correct explanation for Statement-5

B. Statement-1 True statement -1 is True, Statement -2 is True statement -2 is not a correct explanation for Statement-5

C. Statement -1 True statement -1 is True, Statement -2 is False

D. Statement -2 is True

Answer: A

View Text Solution

6. Let
$$f(x) = rac{20}{4x^2 - 9x^2 + 6x}$$

Statement -1: Range of f=[6,20]

Statement -2 f(x) increases (1/2,1) and decrease on $(1,\infty) \cup (-\infty,0) \cup (0,1/2)$

A. Statement-1 True statement -1 is True, Statement -2 is True

B. Statement -1 is True, Statement -2 is True

statement -2 is a correct explanation for Statement-6

statement -2 is not a correct explanation for Statement-6

C. Statement -1 True statement -1 is True, Statement -2 is False

D. Statement-1 is False , Statement -2 is True

Answer: D

7. Statement-1 : For $0 \leq p < 1$ and for any positive a and b the intequality $(a+b)^p < a^p + b^p$ is valid

Staement - 2: F or $0 \leq p \leq 1$ the function $f(x) = 1 + x^p - (1+x)^p$ decreases on $[0,\infty)$

A. Statement-1 True statement -1 is True, Statement -2 is True statement -2 is a correct explanation for Statement-7

B. Statement -1 True statement -1 is True, Statement -2 is True statement -2 is not a correct explanation for Statement-7

C. Statement -1 True statement -1 is True, Statement -2 is False

D. Statement -2 is True

Answer: C

8. Statement-1: Let f(x) and g(x) be two real functions connected by the

relation

Answer: A

$$g(x) = f(x) - 2(f(x))^{2} + 4(f(x))^{3}$$

Then f(x) and g(x) increase or decrease together.

Statement-2:

statement -2 is a correct explanation for Statement-8

statement -2 is not a correct explanation for Statement-8

C. Statement -1 True statement -1 is True, Statement -2 is False

D. Statement-1 is False , Statement -2 is True

Watch Video Solution

 $b^2-4ac < 0 \, ext{ and } \, a > 0thenax^2+bx+c > 0 ext{for all statement -2} \, \, \, x \in R$

A. Statement-1 True statement -1 is True, Statement -2 is True

B. Statement -1 True statement -1 is True, Statement -2 is True

if

1. If and g are two increasing function such that fog is defined then

A. gor is an increasing functions

B. gof is a decreasing function

C. gof is neither inceasing nor decreasing

D. none of these

Answer: A

Watch Video Solution

2. If and g are deppcreasing functions such that gof exists then gof is

A. an increasing function

B. a decreasing function

C. neither increasing nor decreasing

D. none of these

Answer: A

Watch Video Solution

- **3.** if f is an increasing function and g is a decreasing function on an interval I such that fog exists then
 - A. fog is an incresing function on I
 - B. fog is a decreasing function on I
 - C. fog is neither increasing nor decreasing on I
 - D. none of these

Answer: B

4. Let $y=x^2e^{-x}$ then the interval in which y increases with respect to x is

A.
$$(-\infty,\infty)$$

B.
$$(-2,0)$$

$$\mathsf{C}.\left(2,\infty\right)$$

Answer: D

5. The interval in which the function $f(x)=x^{e^{2-x}}$ increases is

A.
$$(-\infty,0)$$

B.
$$(2, \infty)$$

D. none of these

Watch Video Solution

6. The function $f(x) = \cos\left(\frac{\pi}{x}\right), (x \neq 0)$ is increasing in the interval

A.
$$(2n+1,2n), n\in N$$

B.
$$\left(rac{1}{2n+1},2n
ight),n\in N$$

$$\mathsf{C.}\left(\frac{1}{2n+2},\frac{1}{2n+1}\right)$$

D. none of these

Answer: D

Watch Video Solution

7. The value of b for which the function f(x)=sin x-bx+c is decreasing in the interval $(-\infty,\infty)$ is given by

A.
$$b < 1$$

 $\mathrm{B.}\,b\geq 1$

c. b > 1

 $b.b \leq 1$

Answer: C

8. For what values of
$$a$$
, the function $f(x) = \left\{ \left(rac{\sqrt{a+4}}{1-a}
ight) x^5 - 3x + \log(5) ext{ decreases for all real } x
ight.$

A.
$$(\infty, \infty)$$

B.
$$\left| \ -4, rac{3-\sqrt{21}}{2}
ight| \cup [1, \infty)$$

C.
$$\left(-3,5-rac{\sqrt{27}}{2}
ight)\cup(2,\infty)(d)[1,\infty)$$

D.
$$(1, \infty)$$

Answer: B

Watch Video Solution

- **9.** Find the least value of $\,'a'$ such that the function $f(x)=x^2+ax+1$ is increasing on $[1,\ 2]$. Also, find the greatest value of $\,'a'$ for which f(x) is decreasing on $[1,\ 2]$.
 - A. $(-2,\infty)$
 - B. $[-4,\infty)$
 - $\mathsf{C}.[-\infty, -2)$
 - D. $(-\infty, 2]$

Answer: A

10. On which of the following intervals is the function f given by

$$f(x)=x^{100}+\sin x-1$$
strictly decreasing ?(A) (0, 1) (B) $\left(rac{\pi}{2},\pi
ight)$ (C) $\left(0,rac{\pi}{2}
ight)$ (D) None of these

A.
$$\left(0, \frac{\pi}{2}\right)$$

B. (0, 1)

C. $(\pi/2,\pi)$

D. none of these

Answer: D

Watch Video Solution

11. Which of the following functions is not decreasing on $(0, \pi/2)$?

A. cos x

B. cos 2 x

 $\mathsf{C.}\cos^2 x$

D. tan x

Answer: D

Watch Video Solution

12. If $f'(x) = g(x)(x-a)^2$, where g(a) $\neq 0$ and g is continuous at x = a,

then:

A. f is increasing in the nbd of a

B. f is decreasing in the nbd

C.f increases of decreases in the nbd of a according as

$$g(a) > 0 \text{ or } g(a) < 0$$

D. none of these

Answer: C

13. If $f(x) = 2x\cot^{-1}x + \log\Bigl(\sqrt{1+x^2} - x$ then f(x)

A. increases on R

B. decreases in $[0,\infty)$

C. neither increasing nor decreasing in $(0, \infty)$

D. none of these

Answer: A

- **14.** The function $f(x) = \log(1+x) (2+x)$ is increasing in
 - A. `(-1,0)
 - B. $(-\infty,0)$
 - $\mathsf{C}.\,(\,-\infty,\infty)$
 - D. none of these

Watch Video Solution

15. On which of the following intervals in the function $f(x) = 2x^2 - \log \lvert x \rvert, \, x
eq 0$ increasing ?

A.
$$\left(\frac{1}{2},\infty\right)$$

B.
$$(-\infty, -1/2) \cup (0, 1/2)$$

C.
$$(-\infty, -1/2) \cup (1/2, \infty)$$

D.
$$(-1/2,0) \cup (0,1/2) \cup (1/2,\infty)$$

Answer: D

Watch Video Solution

16. If the function $f(x)=rac{K\sin x+2\cos x}{\sin x+\cos x}$ is strictly increasing for all values of $x,\$ then K<1 (b) K>1 K<2 (d) K>2

A.
$$K < 1$$

 $\mathsf{B}.\,K>1$

$$\mathsf{C.}\,K < 2$$

D. K>2

Answer: D

Watch Video Solution

17. The function $f(x) = rac{a \sin x + b \cos x}{c \sin x + d \cos x}$ is decreasing, if

A.
$$ad-bc>0$$

B. ad - bc < 0

C. ab - cd > 0

 $\mathsf{D}.\,ab-cd<0$

Answer: B

18. If
$$f(x) = kx^3 - 9x^2 + 9x + 3$$
 is increasing on R then

A.
$$K < 3$$

$$\mathrm{B.}\,K>3$$

$$\mathsf{C}.\,k \leq 3$$

D. none of these

Answer: B

Watch Video Solution

19. The values of a for which the function $(a+2)x^3-3x^2+9ax-1$ decreases monotonically throughout for all real x are :-

A.
$$a<-2$$

$$\mathrm{B.}\,a>\,-\,2$$

$$\mathsf{C.} - 3 < a < 0$$

D.
$$-\infty < a \le -3$$

Answer: D

Watch Video Solution

20. The function $y=x^3-3x^2+6x-17$

A. increases everywhere

B. decreases everywhere

C. increases for positive x and decreases for negative x

D. increases for negative x and decreases for positive x

Answer: A

21. The interval in which the function x^3 increases less rapidly than

$$6x^2 + 15x + 5$$

A.
$$(-\infty, -1)$$

B.
$$(-5, 1)$$

$$\mathsf{C.}\,(\,-1,5)$$

D.
$$(5, \infty)$$

Answer: C

22. The interval in which the function $f(x)=\sin x\cos x - ax + b$ decreases for all real values of x is given by

A.
$$a \geq \sqrt{2}$$

B.
$$a \leq 1$$

C.
$$a<\sqrt{2}$$

Answer: A

Watch Video Solution

- **23.** The function $y=\cot^{-1}x-\log\Bigl(x+\sqrt{x^2+1}\Bigr)$ is increasing in
 - A. $(-\infty,0)$
 - B. $(-\infty,0)$
 - $\mathsf{C}.\left(0,\infty\right)$
 - D. $(-\infty, \infty)$

Answer: D

Watch Video Solution

24. the function $\frac{|x-1|}{x^2}$ is monotonically decreasing at the point

A.
$$(2, \infty)$$

B.(0,1)

C. $(-\infty, 1)$

 $D.(\infty,\infty)$

Answer: C

Watch Video Solution

25. Find the value of a in order that $f(x) = \sqrt{3}\sin x - \cos x - 2ax + b$ decreases for all real values of $x\cdot$

A. a < 1

B. $a \leq 1$

C. $a \leq \sqrt{2}$

D. $a<\sqrt{2}$

Answer: B

26. A function is matched below against an interval where it is supposed to be increasing. Which of the following parts is incorrectly matched? Interval, Function $[2, \infty)$, $2x^3 - 3x^2 - 12x + 6$ $(-\infty, \infty)$,

$$x^3=3x^2+3x+3$$
 $(-\infty-4)$, x^3+6x^2+6 $\left(-\infty,rac{1}{3}
ight)$,

$$3x^2 - 2x + 1$$

A.
$$(a) \quad (-\infty, \ -4] \quad f(x) = x^3 + 6x^2 + 6$$

B.
$$(a) \ \ (-\infty, 1/3] \ \ g(x) = 3x^3 - 2x + 1$$

C.
$$\begin{array}{cc} ext{interval} & ext{Function} \ (a) & (2,\infty] & h(x) = 2x^3 - 3x^2 + 12x + 6 \end{array}$$

D.
$$\begin{array}{cc} ext{interval} & ext{Function} \ (a) & (-\infty,\infty] & q(x) = x^3 - 3x^2 + 3x + 3 \end{array}$$

Answer: B

A. defined for all x

B. continuous for all x

C. strictly monotone and continuous in the domain

D. an even function

Answer: C

Watch Video Solution

28. Let g(x)=f(x)+f'(1-x) and $f''(x)<0, 0 \le x \le 1$ Then

A. g(x) increases on [0,1]

B. g(x) increases on [0,1]

C. g(x) increases on [0,1]

D. g(x) increases on [0,1/2] and decreases on [1/2,1]

Answer: B

29. The function
$$f(x)=\frac{\ln(\pi+x)}{\ln(e+x)}$$
 is increasing in $(0,\infty)$ decreasing in $(0,\infty)$ increasing in $\left(0,\frac{\pi}{e}\right)$, decreasing in $\left(\frac{\pi}{e},\infty\right)$ decreasing in $\left(0,\frac{\pi}{e}\right)$, increasing in $\left(\frac{\pi}{e},\infty\right)$

A. increasing function on $[0,\infty)$

B. decreases on [1/2,1]

C. increasing on $[0,\pi/e]$ and increasing on $[\pi/e,\infty)$

D. decreasing on $[0,\pi/e)$ and increasing on $[\pi/e,\infty)$

Answer: B

Watch Video Solution

30. $f(x) = rac{e^{2x}-1}{e^{2x}+1}$ is

A. an increasing function R

B. a decreasing function on R

C. an even function on R

D. none of these

Answer: A

Watch Video Solution

31. $y = \left\{ x(x-3)^2 ext{ increases for all values of x lying in the interval }
ight.$

$$\text{A.}\, 0 < x < \frac{3}{2}$$

 $B.0 < x < \infty$

 $\mathsf{C}.-\infty < x < 0$

D. 1 < x < 3

Answer: A

32. If a < 0, the function $f(x) = e^{ax} + e^{-ax}$ is a monotonically decreasing function for values of x given by

A.
$$x > 0$$

B. x < 0

c. x < 1

D. x < 1

Answer: B

Watch Video Solution

33. The function $f(x) = \tan x - x$

A. always increases

B. always decreases

C. neverdecreases

D. some times increases and some time decreases

Answer: A

Watch Video Solution

34. The function $f(x) = \cot^{-1} x + x$ increases in the interval (a) $(1, \infty)$

(b)
$$(-1, \infty)$$
 (c) $(-\infty, \infty)$ (d) $(0, \infty)$

A.
$$(1, \infty)$$

B.
$$(-1,\infty)$$

$$\mathsf{C}.\,(\,-\infty,\infty)$$

$$D.(0,\infty)$$

Answer: A

Watch Video Solution

35. The function $f(x) = (\log)_e \left(x^3 + \sqrt{x^6 + 1} \right)$ is of the following types:

A. even and increasing

B. odd and increasing

C. even and decreasing

D. odd and decreasing

Answer: B

Watch Video Solution

36. Let $f(x)=x^3-6x^2+15x+3$. Then, (a) f(x)>0 for all $x\in R$ (b) f(x)>f(x+1) for all $x\in R$ (c) f(x) is invertible (d) f(x)<0 for all $x\in R$

A. $f(x) < 0f ext{ or } all x \in R$

 $\mathtt{B.}\, f(x) > f(x+1)f \,\, \mathrm{or} \,\, all x \in R$

C. f(x) is invertible

D. none of these

Answer: C

Watch Video Solution

Chapter Test

1. the function $f(x) = \frac{\log x}{x}$ is increasing in the interval

A. (1, 2e)

 $\mathrm{B.}\left(0,e\right)$

C. (2,2e)

D. (1/e,2e)

Answer: B

2. If the function
$$f(x)=\cos|x|-2ax+b$$
 increases along the entire number scale, then (a) $a=b$ (b) $a=\frac12b$ (c) $a\le-\frac12$ (d) $a>\frac32$

A.
$$a \leq b$$

B.
$$a=rac{b}{2}$$

C.
$$a < -\frac{1}{2}$$

D.
$$a>-rac{3}{2}$$

Answer: C

Watch Video Solution

3. If $f(x) = kx - \sin x$ is monotonically increasing then

A.
$$k>1$$

$$\mathrm{B.}\,k>-1$$

$$\mathsf{C.}\,k<1$$

D.
$$k<-1$$

Answer: A

Watch Video Solution

- **4.** The function $f(x)=x\sqrt{ax-x^2}, a<0$
 - A. increases on the interval (0,3a/4,a)
 - B. decreases on the interval (,3a/4)
 - C. decreases on the interval (0,3a/4)
 - D. increases on the inteval (3a/4,a)

Answer: A

- **5.** The function $f(x) = \sin^4 x + \cos^4 x \in creases$ if
 - A. $0 < x < \pi/8$

B. $\pi/4 < x < 3\pi/8$

C. $3\pi/8 < x < 5\pi/8$

D. $5\pi/8 < x < 3\pi/4$

Answer: B

Watch Video Solution

6. Let $f(x) = \cot^{-1} g(x)$ where g(x) is an increasing function on the interval $(0, \pi)$ Then f(x) is

A. increasing on $(0, \pi)$

B. decreasing on $(0, \pi)$

C. increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$

D. none of these

Answer: B

7. The valuses of x for which

$$1+x\log_e\Bigl(x+\sqrt{x^2+1}\Bigr) \leq \sqrt{x^2+1}$$
 are

A.
$$x < 0$$

$$\mathsf{B.}\, 0 \leq x \leq 1$$

D. none of these

Answer: C

Watch Video Solution

8. Let $\mathsf{g}(\mathsf{x}) = f(x) - 2\{f(x)\}^2 + 9\{f(x)\}^3$ for all $x \in R$ Then

A. g(x) and f(x) increase and decrease together

B. g(x) increases whenever f(x) decreases and vice-versa

C. g(x) increases for all $x \in R$

D. g(x) decreases for all $x \in R$

Answer: A

Watch Video Solution

- **9.** If $f(x)=u
 eq rsetig(x^2ig)^{x^{2+1}-t^2}$ dt then f(x) increases on
 - A. (-2, 2)
 - $B.(0,\infty)$
 - C. $(-\infty, 0)$
 - D. none of these

Answer: C

View Text Solution

10. The function $f(x)=x^{1/x}$ is increasing in the interval

$$A.(e,\infty)$$

B.
$$(-\infty,e)$$

C.
$$(-e, e)$$

D. none of these

Answer: B

Watch Video Solution

11. If $\phi(x)$ is continuous at $x = \alpha$ such that

$$f(x) = ig(ax - a^2 - x^2ig)\phi(x)$$
 for all x, then f(x) is

A. increasing in the neighbourhood of
$$x=lpha$$

B. decresing in the neighbourhood of
$$x=apha$$

C. constant in the neighbourhood of
$$x=lpha$$

D. minimum at
$$x=lpha$$

Answer: A

12. The function f(x) given by
$$f(x)=egin{array}{c|c} x+1&1&1\ 1&x+1&1\ 1&1&x+1 \end{array}$$
 is increasing on

A.R

B. (-2,0)

C. R-[-2,0]

D. none of these

Answer: C

Watch Video Solution

13. If $f(x)=2x^3+9x^2+\lambda x+20$ is a decreasing function of x in the largest possible interval (-2,-1) then λ =

A. 12

B. -12

C. 6

D. none of these

Answer: A

Watch Video Solution

14. The set of values of a for which the function

$$f(x)=2e^x-ae^{-x}+(2a+1)x-3ig)$$
 is increasing on R,is

A.
$$[0,\infty)$$

B.
$$(-\alpha,0)$$

C.
$$(-\infty,\infty)$$

D. none of these

Answer: A

15. The function $f(x) = xe^{1-x}$ stricly

A. increases in interval $(0,\infty)$

B. decreases in the interval (0,2)

C. increases in the interval (1/2,2)

D. decreases in the interval $(1,\infty)$

Answer: D

Watch Video Solution

16. The function $f(x) = an^{-1} x - x$ is decreasing on the set

A.R

B. $(0, \infty)$

C. R-[0]

D. none of these

Answer: A

Watch Video Solution

17. If $0 < x < \frac{\pi}{2}$ then

A. $\cos(\sin x) > \cos x$

 $\mathsf{B.}\cos(\sin x)<\cos x$

 $\mathsf{C.}\cos(\sin x) = \sin(\cos x)$

 $D.\cos(\sin x) < \sin(\cos x)$

Answer: A

Watch Video Solution

18. $(1+x)^n \le 1+x^n$ where

A. n > 1

 $\mathsf{B.}\, 0 \leq n \leq 1 \,\, \mathrm{and} \,\, x > 0$

 $\mathsf{C.}\,n<1\,\,\mathrm{and}\,\,x<0$

 $\mathsf{D}.\,x<0$

Answer: B

Watch Video Solution

19. If f is real-valued differentiable function such that f(x)f'(x) < 0 for all real x, then

A. f(x) is increasing

B. f(x) is decereasing

C. |f (x)|is increasing

D. |f(x)| is decreasing

Answer: D

20. For what value of a, $f(x) = \, - \, x^3 + 4ax^2 + 2x - 5$ decreasing for all

х.

A. (1,2)

B. (3,4)

C. R

D. no value of a

Answer: D

