

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

Illustration

1. In any
$$\triangle$$
 ABC, \sum a(sin B - sin C) =

A. 2s

B.
$$a^2 + b^2 + c^2$$

C. 0

D. none of these

Answer:

2. In any
$$\triangle$$
 ABC, \sum a sin (B -C) =

C.
$$a^2 + b^2 + c^2$$

Answer:

B.
$$a^2 + b^2 + c^2$$

3. In any $\Delta ABC,\,\sum a^2 \! \left(\sin^2 B - \sin^2 C \right) =$

D. none of these

Answer: C

Watch Video Solution

- **4.** In any $\Delta ABC, \; \sum{(b-c)}{\cot{\text{A/2}}}$ =
 - A. 0
 - B. 1
 - C. -1
 - D. none of these

Answer:

5. If in a
$$\Delta ABC$$
,

 $\sin A\!:\!\sin C=\sin(A-B)\!:\!\sin(B-C), ext{ then } a^2,b^2,c^2$ are in

- A. A.P
- B. G.P.
- C. H.P.
- D. none of these

Answer: A

Watch Video Solution

- **6.** In a ΔABC , if a =2, B = 60°and C =75°, then b=
 - A. $\sqrt{3}$
 - B. $\sqrt{6}$

C. $\sqrt{9}$

D. $1 + \sqrt{2}$

Answer: B

Watch Video Solution

- **7.** In a ΔABC , if A = 45° and C = 60°, then $a+\sqrt{2}C=$
 - A.b
 - B. 2b
 - C. $\sqrt{2}b$
 - D. $\sqrt{3}b$

Answer:

Watch Video Solution

8. If the angles of a triangle are in the ratio 2:3:7, then the sides are in the ratio

A.
$$\sqrt{2}$$
 : 2 : $\sqrt{3}+1$

B.
$$2:\sqrt{2}:\sqrt{3}:1$$

C.
$$\sqrt{2}$$
: $\sqrt{3} + 1$: 2

Answer: A

Watch Video Solution

9. If two angles of a ΔABC are 45 ° and 60°, then the ratio of the smallest and greatest sides are

A.
$$\left(\sqrt{3}-1\right)$$
 : 1

$$\mathsf{B.}\;\sqrt{3}\!:\!\sqrt{2}$$

C. 1:
$$\sqrt{3}$$

D.
$$\sqrt{3}:1$$

Answer: A

10. In a
$$\Delta ABC$$
, if $\frac{\cos A}{a}=\frac{\cos B}{b}=\frac{\cos C}{c}$ and the side a = 2, then area of the triangle is

B. 2

$$\mathsf{C.}\,\sqrt{3}/2$$

D. $\sqrt{3}$

Answer: D

Watch Video Solution

11. The perimeter of a ΔABC is 6 times the arithmetic mean of the sines of its angles. If the side a is 1, then the angle A is

A.
$$\frac{\pi}{6}$$

C.
$$\frac{\pi}{2}$$

D. π

Answer: A

Watch Video Solution

12. If in a ΔABC , c = 3b and C - B = 90°, then tanB=

A.
$$2+\sqrt{3}$$

B.
$$2-\sqrt{3}$$

C. 3

D.1/3

Answer: D

13. If the sides of a triangle are in the ratio 1 : $\sqrt{3}$: 2, then the angles of the triangle are in the ratio

- A. 1:3:5
- B. 2:3:1
- C. 3:2:1
- D. 1:2:3

Answer: D

- **14.** In a $\triangle ABC$, if b + c = 3a, then the value of $\frac{\cot B}{2} \frac{\cot C}{2}$, is
 - **A.** 1
 - B. 2
 - C. $\sqrt{3}$
 - D. 3

Answer: B

Watch Video Solution

15. The angles of a triangle are in the ratio 3 : 5 : 10, the ratio of the smallest side to the greatest side is

- A. $1:\sin 10^{\circ}$
- B. 1: $2\sin 10^{\circ}$
- C. $1:\cos 10^{\circ}$
- D. 1: $2\cos 10^{\circ}$

Answer: D

A.
$$a^2 + b^2 + c^2$$

B. abc

C. a+b+c

D. none of these

Answer:

Watch Video Solution

17. The sides of a triangle are a,b and $\sqrt{a^2+b^2+ab}$ then the greatest angle is

A. 60°

B. 90°

C. 120°

D. none of these

Answer:

18. In a triangle ABC, a= 4, b = 3, $\angle A = 60^{\circ}$. Then, c is the root of the equation

A.
$$c^2 - 3c - 7 = 0$$

B.
$$c^2 + 3c + 7 = 0$$

C.
$$c^2 - 3c + 7 = 0$$

$$\mathsf{D.}\,c^2+3c-7=0$$

Answer:

Watch Video Solution

19. In a $\triangle ABC$, if(c+a+b) (a+b-c) =ab, then the measure of angle C is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\kappa}{6}$$

$$\mathsf{C.}\,\frac{2\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer:

Watch Video Solution

20. In a $\triangle ABC$, if the sides a, b, c are the roots of the equation

$$x^3-11x^2+38x-40=0$$
, then $\dfrac{\cos A}{a}+\dfrac{\cos B}{b}+\dfrac{\cos C}{c}=$

A.
$$\frac{16}{9}$$

$$\mathsf{B.}\;\frac{3}{4}$$

4 C.
$$\frac{4}{3}$$

D.
$$\frac{9}{16}$$

Answer:

21. In a ΔABC ,

$$\frac{b^2-c^2}{a\sec A}+\frac{c^2-a^2}{b\sec B}+\frac{a^2-b^2}{c\sec C}=$$

A. 1

В. О

C. abc

D. none of these

Answer: B

- **22.** In a $\triangle ABC$, if a = 4, b = 5, c = 6 then angle C is equal to
 - A. A
 - B. $\frac{1}{2}A$
 - C. 2A
 - D. 3A

Answer:

Watch Video Solution

23. In a ΔABC , if $\Delta C=60^{\circ}$, then

$$\frac{b}{c^2 - a^2} + \frac{a}{c^2 - b^2} =$$

- A. a+b+c
- $\mathsf{B.}\,\frac{1}{a+b+c}$
- C. abc
- D. 0

Answer:

Watch Video Solution

24. In a triangle ABC, 2ac $\sin\left(\frac{A-B+C}{2}\right)$ =

A.
$$a^2+b^2-c^2$$

B. $c^2 + a^2 - b^2$

C. $b^2 - c^2 - a^2$

Watch Video Solution

then AC is equal to

A. 5 units

B. 7 units

C. 8 units

Answer:

D. none of these

Answer:

D. $c^2 - a^2 - b^2$

25. The angles A, B and C of a triangle are in A.P. If AB= 6 units, BC = 7units,

26. In a triangle ABC, a (b cos C - c cos B) =

- A. a^2
- B. b^2-c^2
- C. 0
- D. none of these

Answer:

Watch Video Solution

27. The straight roads intersect at an angle of 60°. A bus on one road is 2 km away from the intersection and a car on tire other road is 3 km away from the intersection. Then, the direct distance between the two vehicles, is

- A. 1 km
- C. 4 km
 - D. $\sqrt{7}$ km

B. $\sqrt{2}$ km

Answer:

Watch Video Solution

- **28.** In a $\Delta ABC, b rac{\cos^2 C}{2} + c rac{\cos^2 B}{2}$ is equal to
 - A. s
 - B. 2s

C. s/2

D. none of these

Answer:

29. In a
$$\Delta ABC$$
, $\sum{(b+c)\cos{A}} =$

A. a+b+c

B. a+b-c

C. a-b+c

D. none of these

Answer:

Watch Video Solution

30. In a ΔABC , $a\left(\cos^2 B + \cos^2 C\right) + \cos A(c\cos C + b\cos B) =$

A. a

B.b

C. c

Answer:

Watch Video Solution

- **31.** In a $\Delta ABC, \,\,$ if a $\dfrac{\cos^2 B}{2} + b\dfrac{\cos^2 A}{2} = \dfrac{3c}{2}$, then
 - A. a,b,c are in A.P.
 - B. a,c,b are in A.P.
 - C. a,b,c are in G.P.
 - D. none of these

Answer:

Watch Video Solution

32. In any $\Delta ABC, \ \sum \frac{\cos A}{b\cos C + osB}$ is equal to

A.
$$a^2 + b^2 + c^2$$

$$B. \frac{a^2 + b^2 + c^2}{abc}$$

C.
$$\dfrac{a^2+b^2+c^2}{2abc}$$

D. none of these

Answer:

Watch Video Solution

33. In a
$$\Delta ABC$$
, if a=13,b =14, c =15, then $\dfrac{\sin A}{2}=$

A.
$$\frac{1}{\sqrt{5}}$$

$$\text{B.}\ \frac{2}{\sqrt{5}}$$

$$\operatorname{C.}\frac{3}{\sqrt{5}}$$

D.
$$\frac{4}{\sqrt{5}}$$

Answer:

34. If in a ΔABC , Δ = (c + a - b) (a + b - c), then tan A is equal to

A.
$$\frac{2}{\sqrt{3}}$$

$$\text{B.}\ \frac{8}{15}$$

$$\mathsf{C.}\ \frac{15}{16}$$

D. none of these

Answer: B

Watch Video Solution

35. In a $\Delta ABC,\,2arac{\sin^2C}{2}+2crac{\sin^2A}{2}=$

D. s

Answer: B

Watch Video Solution

- **36.** In a ΔABC , if $\dfrac{ an A}{2}=\dfrac{5}{6}$ and $\dfrac{ an B}{2}=\dfrac{20}{37}$ then $\dfrac{ an C}{2}=$
 - A. $\frac{4}{5}$
 - $\mathsf{B.}\;\frac{3}{5}$
 - $\mathsf{C.}\,\frac{2}{5}$

D. none of these

Answer:

Watch Video Solution

37. In a ΔABC , if a =2x, b =2y and $\Delta C=120\,^\circ$, then area of the triangle is

Answer: Watch Video Solution **38.** If the area of ΔABC be λ , then $a^2\sin 2B + b^2\sin 2A$ is equal t,o A. 2λ B. λ $\mathsf{C.}\,4\lambda$ D. none of these **Answer:** Watch Video Solution

A. xy

B. $\sqrt{3}xy$

C. 3xy

D. 2xy

39. In
$$\Delta ABC$$
 , $c^2=a^2+b^2$, then 4s (s -a) (s -b) (s -c) =

A.
$$a^2b^2$$

 $B. c^2 a^2$

 $c \cdot b^2 c^2$

D. s^4

Answer:

Watch Video Solution

40. In a Δ ABC,

$$rac{ig(a^2-b^2ig)\sin A\sin B}{2\sin(A-B)}=$$

A. 2Δ

B. 4Δ

C. Δ

D. 3Δ

Answer:

Watch Video Solution

41. In ΔABC , $(a+b+c)igg(rac{ an A}{2}+rac{ an B}{2}igg)=$

A.
$$2c\frac{\cot C}{2}$$

$$\operatorname{B.}2a\frac{\cot A}{2}$$

$$\mathsf{C.}\,2b\frac{\cot B}{2}$$

D.
$$\frac{\tan C}{2}$$

Answer:

42. In a
$$\Delta ABC$$
, if $an rac{A}{2} = rac{5}{6}$ and $rac{ an C}{2} = rac{2}{5}$, then

A.
$$b^2=ac$$

$$\mathtt{B.}\,2b=ac$$

$$\mathsf{C.}\, 2ac = b(a+c)$$

Answer:

- **43.** In a ΔABC , 2A(cot B + cot C)=
 - A. b^2
 - B. c^2
 - C. a^2
 - D. $2a^2$

Answer:

Watch Video Solution

44. In a $\triangle ABC$,

$$ig(c^2+a^2-b^2ig) an B + ig(a^2+b^2-c^2ig) an C =$$

- A. 4Δ
- B. 8Δ
- $\mathsf{C.}\ 6\Delta$
- D. 12Δ

Answer:

$$\mathsf{B.}\,a^{-1} + b^{-1} + c^{-1}$$

$$\mathsf{C.}\,a^2+b^2+c^2$$

D. none of these

Answer:

Watch Video Solution

46. In any ΔABC , a cos A +b cos B + c cos C =

A.
$$\dfrac{\Delta^2}{abc}$$

 ${\rm B.}~\frac{4\Delta^2}{abc}$

C. $\frac{8\Delta^2}{abc}$

D. none of these

Answer:

47. A triangular park is enclosed on two sides of a fence and on the third side by a straight river bank. The two sides having fence are of same length x. The maximum area enclosed by the park is

A.
$$\frac{3}{2}x^2$$

B.
$$\sqrt{\frac{x^3}{8}}$$

C.
$$\frac{1}{2}x^2$$

D.
$$\pi x^2$$

Answer:

Watch Video Solution

48. In any ΔABC , $\sin A + \sin B + \sin C =$

A.
$$\frac{2s}{R}$$

B.
$$\frac{s}{R}$$

C.
$$\frac{3s}{R}$$

D. none of these

Answer:

Watch Video Solution

49. In a ΔABC

$$\frac{b\sin(C-A)}{c^2-a^2}+\frac{c\sin(A-B)}{a^2-b^2}=$$

A.
$$\frac{1}{2R}$$

$$\mathrm{B.}\,\frac{1}{R}$$

$$\mathsf{C.}\,\frac{2}{R}$$

D. none of these

Answer:

50. If the radius of the circumcircle of an isosceles triangle PQR is equal to

PQ (= PR),then the angle P, is

- A. $\frac{\pi}{6}$
- $\operatorname{B.}\frac{\pi}{3}$
- $\mathsf{C.}\,\frac{2\pi}{3}$

Answer:

D.

Watch Video Solution

51. In a ΔABC , R^2 (sin 2A+sin 2B+sin 2C)=

- A. Δ
- ${\rm B.}~3\Delta$
- C. 4Δ
- D. 2Δ

Answer:

Watch Video Solution

52. The diameter of the circumcircle of a triangle with sides 5 cm, 6 cm and 7 cm, is

A.
$$\frac{3\sqrt{6}}{2}$$
 cm

- B. $2\sqrt{6}$ cm
- $\mathsf{C.}\ \frac{35}{48}\ \mathsf{cm}$
- D. none of these

Answer:

Watch Video Solution

53. If Δ denotes the area of ΔABC , then $b^2\sin 2C + c^2\sin 2B$ is equal

A. cos (B-C) B. cos B-cosC C. sin (B - C) D. none of these **Answer:** Watch Video Solution

Watch Video Solution

Α. Δ

B. 2Δ

 $\mathsf{C}.\,3\Delta$

D. 4Δ

Answer:

54. If R denotes the circum-radius of a ΔABC , then $\frac{b^2-c^2}{2aR}$ is equal to

55. If in $\triangle ABC$, $b^2 \sin 2C + c^2 \sin 2B = 2$ bc,then the triangle is

A. equilateral

B. isosceles with $\angle B = \angle C$

C. right angled at A

D. none of these

Answer:

Watch Video Solution

56. If a ΔABC is right angled at B, then the diameter of the incircle of the triangle is

A. 2(c+ a - b)

B. c+a - 2b

C. c + a- b

D. none of these	
Answer:	
Watch Video Solution	

57. In a triangle a = 13, b = 14, c = 15, r =

- A. 4
- B. 8
- C. 2
- D. 6

Answer:

58. In an equilateral triangle the in-radius and the circum-radius are connected by

A. r=4R

$$\operatorname{B.} r = \frac{R}{2}$$

$$\operatorname{C.} r = \frac{R}{3}$$

D. none of these

Answer:

Watch Video Solution

59. In an equilateral triangle, the in-radius, circum-radius and one of the ex-radii are in the ratio

A. 2: 3: 5

B. 1:2:3

C. 1: 3: 7

D. 3:7:9

Answer:

Watch Video Solution

- **60.** If in a triangle $\left(1-rac{r_1}{r_2}
 ight)\left(1-rac{r_1}{r_3}
 ight)=2$, then the triangle is
 - A. right angled
 - B. isosceles
 - C. equilateral
 - D. none of these

Answer:

Watch Video Solution

61. If $\dfrac{r}{r_1}=\dfrac{r_2}{r_3}$, then

A.
$$A=90^\circ$$

B. $B=90^{\circ}$

C. C = 90°

D. none of these

Answer:

Watch Video Solution

62. In a triangle ABC, $r_1+r=r_2+r_3.$ If the measure of angle A is 60°, then $\frac{s}{a} =$

A. $\frac{2}{3}$

B. 2

c. $\frac{4}{3}$

D. $\frac{3}{2}$

Answer:

63. In a triangle with sides a, b, c if r1 gt r2 gt r3 (which are the ex-radii), then

A.
$$a>b>c$$

B.
$$a < b < c$$

C.
$$a>b$$
 and $b< c$

D.
$$a < b$$
 and $b > c$

Answer:

Watch Video Solution

64. If ΔABC is right angled at A,then r_2+r_3 =

A.
$$r_1 - r$$

B.
$$r_1+r$$

 $\mathsf{C}.\,r-r_1$

D. R

Answer:

Watch Video Solution

65. $r + r_3 + r_1 - r_2 =$

A. 4R cos A

B. 4R cos B

C. 4R cos C

D. 4R

Answer:

66. In a $\Delta ABC, r_1+r_2+r_3-r$ =

A. 4R cos A

B. 4R cos B

C. 4R cos C

D. 4R

Answer:

Watch Video Solution

67. In a ΔABC ,with usual notations, observe the two statements given below:

(I)
$$rr_1r_2r_3=\Delta^2$$
 (II) $r_1r_2+r_2r_3+r_3r_1=s^2$

Which one of the following is correct?

A. both I and II are true

B. I is true, II is false

C. I is false, II is true

D. both I and II are false

Answer:

Watch Video Solution

68. The value of $\dfrac{1}{r_1^2} + \dfrac{1}{r_2^2} + \dfrac{1}{r_2^3} + \dfrac{1}{r^2}$, is

A. 0

B. $\dfrac{a^2+b^2+c^2}{\Delta^2}$

C. $rac{\Delta^2}{a^2+b^2+c^2}$

D. $\frac{a^2 + b^2 + c^2}{\Lambda^2}$

Answer:

Section I Solved Mcqs

1. In a ΔABC , $\frac{a+c}{a-c}\frac{\tan B}{2}$ is equal to

A.
$$\tan\!\left(\frac{B}{2}+C\right)$$

B.
$$\tan\left(B + \frac{C}{2}\right)$$

$$\mathsf{C.}\cot\left(rac{B}{2}+C
ight)$$

D. none of these

Answer:

Watch Video Solution

2. In a ΔABC ,which one of the following is true?

A.
$$(b+c)rac{\cos A}{2}=a\sin\!\left(rac{B+C}{2}
ight)$$

$$\mathrm{B.}\,(b+c)\mathrm{cos}\bigg(\frac{B+C}{2}\bigg)=a\frac{\sin A}{2}$$

C.
$$(b-c)\cos\left(rac{B-C}{2}
ight)=arac{\cos A}{2}$$

D.
$$(b-c)rac{\cos A}{2}=a\sin\!\left(rac{B-C}{2}
ight)$$

Watch Video Solution

- 3. In a $\Delta ABC,$ $a \frac{\cos^2 B}{2} + b \frac{\cos^2 A}{2}$ is equal to
 - A. s
 - B. 2s
 - C. s/2
 - D. none of these

Answer:

4. Given an isosceles triangle, whose one angle is- $2\frac{\pi}{3}$ and the radius of its incircle =sqrt3 Then find the area of the triangle

A.
$$7+12\sqrt{3}$$

$$\mathrm{B.}\,12-7\sqrt{3}$$

C.
$$12+7\sqrt{3}$$

D. 4π

Answer:

Watch Video Solution

5. Internal bisector of $\angle A$ of triangle ABC meets side BC at D. A line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F. If a, b, c represent sides of ΔABC , then

A. AE is HM of b and c

$$\mathrm{B.}\,AD = \frac{2bc}{b+c}\frac{\cos A}{2}$$

C.
$$EF = rac{4b}{b+c}rac{\sin A}{2}$$

D. All of these

Answer:

Watch Video Solution

6. In a triangle ABC with fixed base BC, the vertex A moves such that $\cos B + \cos C = 4\sin^2\Bigl(rac{A}{2}\Bigr).$

If a,b,c denote the lengths of the triangle opposite to the angles A, B and

C respectively, then

A. b+c=4a

B. b+c=2a

C. locus of point A is an ellipse

D. locus of point A is a pair of straight lines

Answer: C

7. In a
$$\Delta ABC$$
 , if $\dfrac{ an A}{2}=\dfrac{5}{6}$, and $\dfrac{ an B}{2}=\dfrac{20}{37}$, then

$$\mathtt{B.}\, a > b > c$$

D. none of these

Answer:

Watch Video Solution

8. In
$$\Delta ABC$$
 ,if A:B:C = $3\!:\!5\!:\!4$,then $a+b+\sqrt{2}c=$

A. 2b

B. 2c

C. 3b

Watch Video Solution

- **9.** If the lengths of the sides of a triangle are a b , a + b and $\sqrt{3a^2+b^2},\,(a,b>\,,0), \text{then the largest angle of the triangle , is}$
 - A. $\frac{2\pi}{3}$
 - $\mathsf{B.}\; \frac{3\pi}{4}$
 - $\operatorname{C.}\frac{\pi}{2}$
 - D. $\frac{7\pi}{8}$

Answer:

10. If the angles of the triangle are in A.P. and $3a^2=2b^2$, then angle C ,is

A.
$$\frac{\pi}{6}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{4}$$

D.
$$\frac{5\pi}{12}$$

Answer:

- **11.** In a ΔABC ,a =5 , b= 4 , and $\dfrac{ an C}{2} = \sqrt{\dfrac{7}{9}}$, then c =
 - A. 6
 - B. 3
 - C. 2
 - D. none of these

Watch Video Solution

12. If in a $!ABC \sin A = \frac{4}{5}$ and $\sin B = \frac{12}{13}$, then $\sin C = \frac{12}{13}$

- $\mathsf{A.}\ \frac{33}{65}$
- $\mathsf{B.}\ \frac{56}{65}$
- $\mathsf{C.}\ \frac{33}{56}$

D. none of these

Answer:

Watch Video Solution

13. If in a !ABC , a = 6 , b = 3 and cos (A -B) = $\frac{4}{5}$, then its area in square units, is

- A. 8
- B. 9
- C. 6
- D. none of these

Watch Video Solution

14. The perimeter of a !ABC is 6 times arithmetic mean of the sines of its angles .If a = 1, then A =

- A. $\frac{\pi}{6}$
- $\mathsf{C.}\ \frac{\pi}{2}$
- D. π

Answer:

15. If in a
$$ABC$$
 , a =2b ,and $|A-B|=rac{\pi}{3}$ then C =

A.
$$\frac{\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{6}$$

D. none of these

Answer:

16. If in a ${}^{!}ABC$, \sin A, \sin B and \sin C are in A.P, then

A. the altitudes are in A.P.

B. the altitudes are in H.P.

C. the medians are in G.P.

Answer:
Watch Video Solution
17. If in a ${}^{!}ABC$, the altitudes from the vertices A , B , C on the opposite
sides are in H.P., then sin A, sin B , sin C are in
A. H.P.
B. AGP
C. A.P.
D. G.P.
Answer:
Watch Video Solution

D. the medians are in A.P.

18. In a triangle ABC cos A = $\frac{7}{8}$, cos B = $\frac{11}{16}$.then, cos C is equal to

A.
$$-\frac{1}{4}$$

$$\mathsf{B.}-\frac{1}{2}$$

D. $\frac{1}{4}$

Answer:

- 19. If the angles A , B , C are the solutions of the equations $an^3 - 3k an^2x - 3 anx + k = 0$, then the triangle ABC is
 - A. isosceles
 - B. equilateral
 - C. acute angled
 - D. none of these

Watch Video Solution

20. If the angles of the triangle are in the ratio 4:1:1, then the ratio of the longest side to the perimeter is

A.
$$\sqrt{3}$$
 : $2+\sqrt{3}$

C. 1:
$$2 + \sqrt{3}$$

Answer:

Watch Video Solution

21. In a triangle ABC , let $\angle C=\frac{\pi}{2}.$ If r is the in-radius and R is the circumradius of the triangle , then 2 (r + R) is equal to

A. a+b

B. b+c

C. c+a

D. a+b+c

Answer:

Watch Video Solution

22. Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

A.
$$\sqrt{PQ.~RS}$$

$$\mathsf{B.} \; \frac{PQ + RS}{2}$$

$$\mathsf{C.}\;\frac{2PQ.\;RS}{PQ+RS}$$

D.
$$\sqrt{\frac{PQ^2 + RS^2}{2}}$$

Watch Video Solution

23. If a , b , c denote the sides of a !ABC such that the equation $x^2+\sqrt{2}x+1=0$ and $ax^2+bx+c=0$ have a common root , then C =

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{3}$
- C. $\frac{\pi}{2}$

D. none of these

Answer:

Watch Video Solution

24. If in a !ABC ,b = 12 units , c = 5 units and != 30 sq. units , then the distance between vertex A and incentre of the triangle is equal to

B. $2\sqrt{2}$ units

C. $\sqrt{2}$ units

D. none of these

Answer:

Watch Video Solution

25. In a $\,!ABC$, 2r = r_1 and A=30 , then $\cos\,rac{B-C}{2}$ is equal to

A.
$$\frac{1}{2\sqrt{2}}$$

B.
$$\frac{3\left(\sqrt{3}-1\right)}{2\sqrt{2}}$$

C.
$$\frac{3\left(\sqrt{3}-1\right)}{2\sqrt{3}}$$

D. none of these

Answer:

26. If in a
$$!ABC, a^2\cos^2 A = b^2 + c^2$$
 , then

A.
$$0 < A < rac{\pi}{4}$$

B.
$$\frac{\pi}{4} < A < \frac{\pi}{2}$$

C.
$$rac{\pi}{2} < A < \pi$$

D.
$$A=rac{\pi}{2}$$

Watch Video Solution

27. In a triangle ABC , the sides a , b , c are in G.P., then the maximum value of $\angle B$ is

A. 30°

B. 45°

\mathcal{C}	60°

D. $90\,^\circ$

Answer:

Watch Video Solution

28. The area of a triangle is $\sqrt{3}$ sq. units and $\angle B$ If a^2,b^2,c^2 are in A.P.,

the length of side AC is

A.
$$2\sqrt{3}$$
 units

B. 2 units

C. 3 units

D. $3\sqrt{3}$ units

Answer:

29. If in a !ABC , tan $\frac{A}{2}$ and tan $\frac{B}{2}$ are the roots of the equation

$$6x^2 - 5x + 1 = 0$$
, then

A.
$$a^2+b^2>c^2$$

$$\mathsf{B.}\,a^2-b^2=c^2$$

$$\mathsf{C.}\,a^2+b^2=c^2$$

D. none of these

Answer:

Watch Video Solution

30. In a !ABC the length of the median AD to the side BC is 4 units. If

 $\angle A=60^{\circ}$ and the area of the triangle is $2\sqrt{3}$ sq. units. The length of

side BC, is

B.
$$4\sqrt{3}$$

A. $2\sqrt{3}$

C. 6

D. 8

Answer:

Watch Video Solution

31. Two sides of a triangle are given by the roots of the equation $x^2-2\sqrt{3}x+2=0.$ The angle between the sides is $\pi/3.$ The perimeter of the triangle is

A.
$$6+\sqrt{3}$$

B.
$$2\sqrt{3} + \sqrt{6}$$

C.
$$2\sqrt{3}+\sqrt{10}$$

D. none of these

Answer:

32. If in !ABC, $\frac{c+a}{b} + \frac{c+b}{a} = \frac{c}{r}$ then

A.
$$\angle B = \frac{\pi}{2}$$

B.
$$\angle C = \frac{\pi}{2}$$

C.
$$\angle A = rac{\pi}{2}$$

D. none of these

Answer:

Watch Video Solution

33. In a !ABC , there is a point D on the side BC such that $\frac{BD}{DC}$ = $\frac{1}{3}$.If $\angle B = \frac{\pi}{3}, \angle C = \frac{\pi}{4}$ and $\sin \angle (CAD) = \lambda \sin \angle BAD$ then λ is equal to

A.
$$\frac{1}{\sqrt{6}}$$

B.
$$\sqrt{6}$$

$$\mathsf{C.} \; \frac{1}{\sqrt{3}}$$

D.
$$\sqrt{3}$$

Watch Video Solution

34. If G is the centroid of a ΔABC , then $GA^2+GB^2+GC^2$ is equal to

A.
$$a^2 + b^2 + c^2$$

B.
$$\frac{a^2 + b^2 + c^2}{3}$$

c.
$$\frac{a^2 + b^2 + c^2}{2}$$

D.
$$\frac{\left(a+b+c\right)^2}{3}$$

Answer:

Watch Video Solution

35. In an equilateral triangle the ratio of circum-radius and in-radius is

A. 3:1

B. 1:1

 $\mathsf{C.}\,2\!:\!\sqrt{3}$

37. In a scalene triangle ABC , AD and CF are the altitudes drawn from A and C on the sides BC and AB respectively. If the area of the triangle ABC and BDF are 18sq.units and 2 sq. units respectively and DF = $2\sqrt{2}$, then R =

- A. $\frac{9}{4}$
- B. $\frac{9}{2}$
- C. 9

D. none of these

Answer:

Watch Video Solution

38. The sides of a !ABC are in A.P. such that a lt minimum (b,c). Then , \cos

A may be equal to

A.
$$\frac{3c-4b}{2b}$$

B. $\frac{3c-4b}{2c}$

C. $\frac{4c-3b}{2b}$

D. $\frac{4c-3b}{2c}$

Answer:

Watch Video Solution

39. If a right angled triangle ABC of maximum Δ area is inscribed in a circle of radius R, then

A.
$$\Delta=2R^2$$

C.
$$rac{1}{r_1} + rac{1}{r_2} + rac{1}{r_3} = rac{\sqrt{2}-1}{R}$$

D.
$$s=\left(\sqrt{2}-1
ight)R$$

B. $r=\left(\sqrt{2}-1
ight)R$

Answer:

40. In
$$\triangle ABC, \ \angle A=rac{\pi}{2}, \ b=4, \ c=3$$
, then the value of $rac{R}{r}$ is equal to

A.
$$\frac{5}{2}$$

$$\mathsf{B.}\;\frac{7}{2}$$

$$\mathsf{C.}\,\frac{9}{2}$$

D.
$$\frac{35}{24}$$

Watch Video Solution

41. If in a !ABC ,CD is the bisector of $\angle ACB$, then CD =

A.
$$rac{a+b}{2ab}rac{\cos C}{2}$$

B.
$$\frac{a+b}{ab} \frac{\cos C}{2}$$

$$\mathsf{C.}\,\frac{2ab}{a+b}\,\frac{\cos C}{2}$$

D.
$$\dfrac{b\sin A}{\sin\!\left(B+rac{C}{2}
ight)}$$

Watch Video Solution

- **42.** Let ABC be a triangle and O be its orthocentre .If R and R_1 are the circum-radii of triangle ABC and AOB, then
 - A. $R_1 > R$
 - $B.R_1 = R$
 - $\mathsf{C}.\,R_1 < R$
 - D. none of these

Answer: B

43. If the area(!) and an $angle(\theta)$ of a triangle are given , when the side opposite to the given angle is minimum , then the length of the remaining two sides are

A.
$$\sqrt{\frac{2!}{\sin \theta}}$$
, $\sqrt{\frac{3!}{\sin \theta}}$
B. $\sqrt{\frac{2!}{\sin \theta}}$, $\sqrt{\frac{2!}{\sin \theta}}$
C. $\sqrt{\frac{4!}{\sin \theta}}$, $\sqrt{\frac{4!}{\sin \theta}}$
D. $\sqrt{\frac{6!}{\sin \theta}}$, $\sqrt{\frac{6!}{\sin \theta}}$

Answer:

44. If the sides of a triangle are in A.P. and the greatest angle of the triangle exceeds the least by 90° , then sine of the third angle is

A.
$$\frac{\sqrt{5}}{4}$$

$$\mathsf{B.}\,\frac{\sqrt{6}}{4}$$

C.	$\sqrt{7}$
	4

D. none of these

Answer:

Watch Video Solution

- **45.** In the !ABC , the altitudes are in H.P., then
 - A. angles A,B,C are in A.P.
 - B. sides a,b,c are in A.P.
 - C. sinA,sinB,sinC are in A.P
 - D. none of these

Answer:

46. In a ΔABC , $\angle B=\frac{2\pi}{3}$ and cos A + cos c = λ . Then , the exhaustive set of value of λ is

A.
$$(1, 3/2]$$

B.
$$\left(3/2,\sqrt{3}\right)$$

C.
$$\left(1/2,\sqrt{3}/2\right)$$

D. none of these

Answer:

47. In
$$!ABC$$
 , least value of $\frac{e^A}{A} + \frac{e^B}{B} + \frac{e^C}{C}$ is equal to

A.
$$rac{9}{\pi}e^{\pi/3}$$

B.
$$rac{\pi}{3}e^{\pi/3}$$

C.
$$rac{\pi}{9}e^{\pi/3}$$

D. none of these
Answer:
Watch Video Solution
48. If circum-radius and in-radius of a triangle ABC be 10 and 3 units
respectively , then a cot A + cot B + cot C is equal to
A. 13

B. 26

C. 39

Answer:

D. none of these

49. In ΔABC , x , y , and z are the distance of incentre from angular points A , B ,and C respectively . If $\dfrac{xyz}{abc}=\dfrac{\lambda r}{s}$, then λ =

A. 1

B. 2

C. 3

D. none of these

Answer: A

Watch Video Solution

50. If ! denote the area of any triangle with semi-perimeter, then

A.
$$!<rac{s^2}{2}$$

$$\mathrm{B.}~!>\frac{s^2}{4}$$

C.
$$!<rac{s^2}{4}$$

D.
$$! < s^2$$

Watch Video Solution

51. In any !ABC, $\sin \frac{A}{2}$ is

- A. less than $\frac{b+c}{a}$
- B. less than or equal to $\frac{a}{b+c}$
- C. greater than $\dfrac{2a}{a+b+c}$
- D. none of these

Answer:

Watch Video Solution

52. In a !ABC, AB=2, BC=4, CA=3. If D is the mid-point of BC, then the correct statement(s) is/are

B.
$$\cos C
eq rac{7}{8}$$
C. $AD
eq 2.4$

A. $\cos B
eq \frac{11}{16}$

D.
$$AD^2 = 2.5$$

Answer:

Watch Video Solution

A. equilateral

B. right angled and isosceles

53. If in a ${}^{1}\!ABC$, $a^2+b^2+c^2=ac+\sqrt{3}ab$ then the triangle is

C. right angled and not isosceles

D. none of these

Answer:

54. In a !ABC bisector of angle C meets the side AB at D and circumcricle at E. The maximum value of CD . DE is equal to

- A. $\frac{b^2}{4}$
- B. $\frac{c^2}{4}$
- C. $\frac{a^2}{4}$

D. none of these

Answer:

Watch Video Solution

55. In triangle ABC,AD and BE are the medians drawn through the angular points A and B respectively. $\angle DAB=2\angle ABE=36^\circ$ and AD=6 units then circumradius of the triangle is equal to

A.
$$(3-\sqrt{5})\cos ecC$$

B.
$$(3+\sqrt{5})\cos ecC$$

C.
$$2(3-\sqrt{5})\cos ecC$$

D.
$$2(3+\sqrt{5})$$
 cosecC

Watch Video Solution

56. If the median AM, angle bisector AD and altitude AH drawn from vertex A of a triangle ABC divide angle A into four equal (D lying between

H and M), then

A.
$$A=\frac{\pi}{3}$$

$$\operatorname{B.}A = \frac{\pi}{2}$$

$$\mathsf{C.}\,\frac{AC}{AB}=\sqrt{2}+1$$

D.
$$rac{AC}{AB}=rac{1}{\sqrt{2}+1}$$

Answer:

57. Which of the following pieces of data does not uniquely determine an acute-angled triangle ABC (R being the radius of the circumcircle)?

A. a,sinA,sinB

B. a,b,c

C. a,sinB,R

D. a,sinA,R

Answer:

Watch Video Solution

58. If a chord AB of a circle subtends an angle $heta(\neq \pi/3)$ at a point C on the circumference such that the triangle ABC has maximum area , then

A.
$$A=rac{\pi}{3}+rac{ heta}{2}, B=rac{2\pi}{3}-rac{3 heta}{2}$$

C. $A=rac{\pi}{6}+ heta, B=rac{5\pi}{6}+2 heta$

B. $A = \frac{\pi}{4} + \frac{\theta}{2}, B = \frac{3\pi}{4} - \frac{3\theta}{2}$

D. none of these

Answer:

Watch Video Solution

59. In a ${!ABC}$, medians AD and BE are drawn. If AD = 4, $\angle DAB = \pi/6$ and $\angle ABE = \pi/3$ then the area of !ABC is

A.
$$\frac{64}{3\sqrt{3}}$$

B.
$$\frac{8}{3\sqrt{3}}$$
 C.
$$\frac{16}{3\sqrt{3}}$$

D.
$$\frac{32}{3\sqrt{3}}$$

Answer:

60. In a !ABC if $\sin A \cos B = \frac{1}{4}$ and 3 $\tan A = B$, then the triangle is

A. right angled at A

B. right angled at B

C. right angled at C

D. not right angled

Answer:

Watch Video Solution

61. In a !ABC if $r_1=36, r_2=18$ and $r_3=12$, then the area of the triangle , in square units, is

A. 216

B. 316

C. 326

D. none of these

Answer:

Watch Video Solution

- **62.** In a ${}^{1}\!\!\!/ABC$ if r_1 = 36 , $r_2=18$ and $r_3=12$, then the perimeter of the triangle , is
 - A. 36
 - B. 18
 - C. 72
 - D. none of these

Answer:

63. If in a ΔABC , AD, BE and CF are the altitudes and R is the circumradius, then find the radius of the DEF.

A.
$$\frac{R}{2}$$

B. 2R

C.R

D. none of these

Answer:

Watch Video Solution

64. In a !ABC if a = 7 , b = 8 and c = 9 , then the length of the line joining

B to the mid-points of AC is

A. 6

B. 7

C. 5

D. none of these	
nswer:	
Watch Video Solution	
5. If the perimeter of a triangle and the diameter of an ex-circle are equal then the triangle is	
A. right angled isosceles	
B. right angled	

C. equilateral

D. isosceles

Watch Video Solution

Answer:

66. If D id the mid-point of the side BC of a triangle ABC and AD is perpendicular to AC , then

A.
$$b^2=a^2-c^2$$

B.
$$a^2 + b^2 = 5c^2$$

C.
$$3b^2 = a^2 - c^2$$

D.
$$3a^2=b^2-3c^2$$

Answer:

67. ABC is a triangle. D is the middle point of BC. If AD is perpendicular to

AC, The value of cos A cos C, is

A.
$$\left(3\frac{c^2-a^2}{ac}\right)$$

B.
$$\dfrac{a^2-c^2}{2ac}$$

$$\operatorname{C.}\left(2\frac{c^2-a^2}{3ac}\right.$$

D. none of these

Watch Video Solution

- **68.** If the median of a triangle through A is perpendicular to AB, then
 - A. 2tanA+tanB=0
 - B. 2tanA-tanB=0
 - C. tanA-2tanB=0
 - D. tanA+2tanB=0

Answer:

A. a > b > cB. a < b < c $\mathsf{C}.\,a < c < b$ D. none of these Answer: Watch Video Solution

Watch Video Solution

A. 3:4:5

B.5:3:4

C.5:4:3

Answer:

D. none of these

70. In a ABC if $r_1 < r_2 < r_3$, then

71. In a ABC if $r_1=8,\,r_2=12$ and $r_3=24,\,$ then a =

A. 16

B. 20

C. 12

D. none of these

Answer:

Watch Video Solution

72. If I is the incentre of a ΔABC such that $\angle A=60^{\circ}$, then AI =

A. r

B. $\frac{r}{2}$

C. 2r

D. none of these

Answer: C

Watch Video Solution

73. If I_1 is the centre of the escribed circle touching side BC of ΔABC in which $\angle A=60^\circ$, then I_1 A =

A. r_1

B. $\frac{r_1}{2}$

 $\mathsf{C.}\ 2r_1$

D. none of these

Answer: C

74. In a ${}^{1}\!ABC$, if 2R + r = r_{1} , then

A.
$$\angle A=\pi/2$$

B.
$$\angle B = \pi/2$$

C.
$$\angle C = \pi/2$$

D. none of these

Answer:

75. The sides of the triangle are $\sin\alpha$, $\cos\alpha$ and $\sqrt{1+\sin\alpha\cos\alpha}$ for some $0<\alpha<\frac{\pi}{2}$. Then the greatest angle of the triangle is

A.
$$150^{\circ}$$

C.
$$120^{\circ}$$

D.
$$60^\circ$$

Watch Video Solution

- **76.** In a !ABC , if 3a = b + c , then cot $\frac{B}{2}$ cot $\frac{C}{2}$ =
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer:

- 77. In $\,!ABC$, if $\,rac{\sin^2A}{2},\,rac{\sin^2B}{2},\,rac{\sin^2C}{2}$ be in H.P., then a , b , c will be in
 - A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer:

Watch Video Solution

78. In a !ABC , if $\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{3}{a+b+c}$, then $\angle C$ =

 $A.90^{\circ}$

B. 60°

 $\rm C.\,45^{\circ}$

D. 30°

Answer:

(I)

 $!ABC, brac{\cos^2C}{2} + \mathrm{o}s^2rac{B}{2} = s$

(II)

In

In

 $!ABC \frac{\cot A}{2} = \frac{b+c}{2} \Rightarrow B = 90^{\circ}$

Which of the following is correct?

A. both I and II are true

B. I is true, II is false

C. I is false, II is true

D. both I and II are false

Answer:

Watch Video Solution

80. In a triangle , if $r_1=2r_2=3r_3$, then $rac{a}{b}$ + $rac{b}{c}$ + $rac{c}{a}$ is equal to

A.
$$\frac{75}{60}$$

$$155 \frac{155}{60}$$

c.
$$\frac{176}{60}$$

D. $\frac{191}{60}$

Watch Video Solution

81. Sides a , b , c of
$$!ABC$$
 are in A.P. and $\cos\theta_1=rac{a}{b+c}\cos\theta_2=rac{b}{a+c},\cos\theta_3=rac{c}{a+b}$, then

$$\frac{\tan^2(\theta_1)}{2} + \frac{\tan^2(\theta_3)}{2} =$$

A.
$$2/3$$

c. $\sqrt{5}/3$

B. 1

D. none of these

Answer:

82. Consider a triangle ABC and let a , b , and c denote the lengths of the sides opposite to vertices A , B and C respectively. suppose a = 6 , b = 10 and the area of the triangle is $15\sqrt{3}$. If $\angle ACB$ is obtuse and if r denotes the radius of the in circle of the triangle , then r^2 is equal to

- A. 2
- B. 4
- C. 3
- D. 6

Answer:

Watch Video Solution

83. If the angle A, B and C of a triangle are in arithmetic progession and if a, b and c denote the lengths of the sides to A, B and C respectively, then the value of the expression $\frac{a}{b} \sin 2C + \frac{c}{a} \sin 2A is$

A.
$$\frac{1}{2}$$

B.
$$\frac{\sqrt{3}}{2}$$

D. $\sqrt{3}$

Answer:

Watch Video Solution

84. Let ABC be a triangle such that
$$\angle ACB = \frac{\pi}{6}$$
 and let a , b and c denote the lengths of the side opposite to A ,B and C respectively. The

value of x for which $a=x^2+x+1, b=x^2-1$ and c=2x+1 is

A.
$$-\left(2+\sqrt{3}\right)$$

B.
$$1+\sqrt{3}$$

C.
$$2+\sqrt{3}$$

D.
$$4\sqrt{3}$$

85. For a regular polygon, let r and R be the radii of the inscribed and circumscribed circles. A false statement among the following is

- A. There is a regular polygon with $rac{r}{R}=rac{2}{3}$
- B. There is a regular polygon with $\dfrac{r}{R}=\dfrac{\sqrt{3}}{2}$
- C. There is a regular polygon with $\frac{r}{R}=\frac{1}{2}$
- D. There is a regular polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$

Answer:

Watch Video Solution

86. Let PQR be a triangle of ! area with a = 2 , b = $\frac{7}{2}$ and c = $\frac{5}{2}$, where a , b and c are the lengths of the sides of the triangle opposite to the angles P

, Q and R respectively. Then ,
$$\dfrac{2\sin P - \sin 2P}{2\sin P + \sin P}$$
 equals

A.
$$\frac{3}{4!}$$
B. $\frac{45}{4!}$

D.
$$\frac{4!}{4!}$$
C. $\left(\frac{3}{4!}\right)^2$
D. $\left(\frac{45}{4!}\right)^2$

87. ABCD is a trapezium such that AB and CD are parallel and
$$BC \perp CD$$
.

if
$$\angle ADB = heta$$
,BC=p and CD=q, then AB is equal to

A.
$$rac{\left(p^2+q^2
ight)\!\sin heta}{p\cos heta+q\sin heta}$$

B.
$$\dfrac{p^2+q^2\cos heta}{p\cos thet+q\sin heta}$$

C.
$$\dfrac{p^2+q^2}{p^2\cos heta+q^2\sin heta}$$
D. $\dfrac{\left(p^2+q^2
ight)\sin heta}{\left(p\cos heta+q\sin heta
ight)^2}$

Watch Video Solution

88. In a triangle PQR ,P is the largest angle and cos $P = \frac{1}{3}$. further the triangle toches the side PQ. QR and RP at N , L and M respectively , such that the lengths of PN , QL , and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is(are)

- A. 16,18
- B. 18,22
- C. 22,24
- D. 16,20

Answer:

89. In a triangle the sum of two sides is x and the product of the same two sides is y .If $x^2-c^2=y$, where c is the third side of the triangle , then the ratio of the in-radius to the circum-radius of the triangle is

A.
$$\dfrac{3y}{2x(x+c)}$$

B.
$$\frac{3y}{2c(x+c)}$$

C.
$$\dfrac{3y}{4x(x+c)}$$

D.
$$\frac{3y}{4c(x+c)}$$

Answer:

Watch Video Solution

90. In !ABC, if $\frac{\sin A}{c\sin B} + \frac{\sin B}{c} + \sin C\frac{1}{b} = \frac{c}{ab} + \frac{b}{ac} + \frac{a}{bc}$ then the value of A, is

A.
$$120^{\circ}$$

B.
$$90^{\circ}$$

C. 60°

D. 30°

Answer:

Watch Video Solution

91. In !ABC , if 2b = a + c and A - C = 90° , then sin B equals

A. $\frac{\sqrt{7}}{5}$ B. $\frac{\sqrt{5}}{8}$

 $\mathsf{C.}\ \frac{\sqrt{7}}{4}$

D. $\frac{\sqrt{5}}{3}$

Answer:

92. In a
$$!XYZ$$
 ,let x , y , z be the length of the side opposite to angles. X ,

Y, Z respectively and 2s = x + y + z. If
$$\frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2}$$
 and area of the incircle of the triangle XYZ is $\frac{8\pi}{3}$, the area of ΔXYZ is

93. If s-x/4= s-y/3=s-z/2 and area of incircle of the triangle XYZ is 8(pi)/3

- A. $6\sqrt{6}$ sq. units
- B. $3\sqrt{6}$ sq. units
- C. $12\sqrt{6}$ sq. units
- D. $6\sqrt{3}$ sq. units

Answer:

- thenThe radius of the circumcircle of !XYZ
 - A. $\frac{35}{\sqrt{6}}$
 - $\sqrt{rac{35}{2\sqrt{6}}}$

C.
$$\frac{35}{4\sqrt{6}}$$
D. $\frac{35}{6\sqrt{6}}$

Watch Video Solution

94. If $r=\sqrt{\frac{8}{3}}$ and $R=\frac{35}{4\sqrt{6}}$ then the value of $\sin\frac{X}{2}\sin\frac{Y}{2}\sin\frac{Z}{2}$ =

- A. $\frac{6}{35}$
- B. $\frac{4}{35}$
- $\mathsf{C.}\;\frac{2}{35}$
- D. $\frac{8}{35}$

Answer:

95. If x=5,y=6,z=7.The value of
$$\sin^2\left(\frac{X+Y}{2}\right)$$
, is

- A. $\frac{3}{5}$
- $\mathsf{B.}\,\frac{4}{5}$
- $\mathsf{C.}\,\frac{2}{5}$
- D. $\frac{1}{5}$

Watch Video Solution

Solved Mcq

- **1.** P is a point on the altitude of !ABC such that $\angle CBP = \frac{B}{3}$,then A.P.is equal to
- A. $2a\frac{\sin C}{3}$

D.
$$2crac{\sin C}{3}$$

 $\operatorname{B.}2b\frac{\sin A}{^{2}}$

 $\mathsf{C.}\,2c\frac{\sin B}{3}$

Answer:

View Text Solution

respectively of a $\,!ABC$, then

2. If p , q , r are the legths of the internal bisectors of angles A ,B , C

- A. $\frac{1}{a} + \frac{1}{b} \frac{1}{c}$

 $\mathsf{B.}\,\frac{1}{a}+\frac{1}{c}-\frac{1}{b}$

- $C. \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$
- D. $\frac{1}{h} + \frac{1}{c} \frac{1}{a}$

Answer:

Section Ii Assertion Reason Type

1. Statement-1: In a triangle ABC, if $\sin^2 A + \sin^2 B + \sin^2 C = 2$, then one of the angles must be 90 °.

 $\cos 2A + \cos 2B + \cos 2C = -1 - 4 \cos A \cos B \cos C$

Statement-2: In any triangle ABC

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a

correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer:

2. Statement-1: In any ΔABC if A is obtuse, then tanBtanC < 1

Statement-2: In any !ABC, we have

tan A + tan B + tan C = tan A tan B tan C

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a

C. Statement-1 is True, Statement-2 is False.

correct explanation for Statement-1.

D. Statement-1 is False, Statement- 2 is True.

Answer:

- **3.** Let a and b denote llie lengths of the legs of a right triangle with following properties:
- (i) All three sides of the triangle are integers.
- (ii) The perimeter of the triangle is numerically equal to its area.
- (iii) a ltb.

Statement-1: The number of such triangle is 2

Statement-2: Maximum possible perimeter of the triangle is 30°.

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

- B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.
- C. Statement-1 is True, Statement-2 is False.
- D. Statement-1 is False, Statement- 2 is True.

Answer:

4. Statement-1: If the measures of two angles of a triangle are 45 $^{\rm o}$ and 60

°, then the ratio of the smallest and the greatest sides are $(\sqrt{3}-1)$: 1

Statement-2: The greatest side of a triangle is opposite to its greatest angle.

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

 $\hbox{C. Statement-1 is True, Statement-2 is False.}\\$

D. Statement-1 is False, Statement- 2 is True.

Answer:

5. Statement-1: In a !ABC,

$$(a+b+c)igg(rac{ an A}{2}+rac{ an B}{2}igg)=2crac{\cot C}{2}$$

Statement-2: In a !ABC, a = b cos C + c cos B

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer:

Watch Video Solution

6. Statement-1: In a !ABC, if

$$2a^2+4b^2+c^2=4ab+2ac$$
, then $\cos A=rac{1}{4}$

Statement-2: In a ΔABC if $\cos A=rac{1}{4}$, then $(a+b+c)(b+c-a)=rac{5}{2}bc$

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer:

7. Statement-1: If the lengths of two sides of a triangle are roots of the equation $x^2-12x+35$ =0 and the angle opposite to third side is obtuse, then the square of the length of the third side is greater than 74.

Statement- 2: In a
$$!ABC, \cos C = rac{a^2 + b^2 - c^2}{2ab}$$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer:

8. Statement-1: In a !ABC, if

tan A: tan B: tan C = 1: 2: 3, then A = 45°

Statement-2: If p: q: r = 1 : 2 : 3, then p = 1

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement-2 is True.

Answer:

Watch Video Solution

9. Statement-1: In any !ABC, if a : b : c = 4 : 5 : 6, then R:r=16:17.

Statement-2: In any $!ABC, rac{R}{r} = rac{abc}{4s}$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer:

Watch Video Solution

- **10.** Statement-1: In any !ABC, a cos A + b cos B + c cos C \leq s
- Statement-2 : In any $!ABC, rac{\sin A}{2} rac{\sin B}{2} rac{\sin C}{2} \leq rac{1}{8}$
 - A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.
 - B. Statement-1 is True, Statement-2 is True, Statement-2 is not a
 - correct explanation for Statement-1.
 - C. Statement-1 is True, Statement-2 is False.
 - D. Statement-1 is False, Statement- 2 is True.

Answer:

11. Statement-1: In ABC, $r_1 + r_2 + r_3 - r = 4R$

Statement-2: In ABC, $r_1r_2+r_2r_3+r_3r_1=!^2$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer:

Watch Video Solution

12. Statement- 1: If the sines of the angles of a triangle are in A.P., then the altitudes ef the triangle are also in A.P.

Statement-2: Twice the area of a triangle is equal to the product of the

lengths of a side and the altitude on it.

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer: D

13. In !ABC it is given that a:b:c = cos A:cos B:cos C

Statement-1: !ABC is equilateral.

Statement-2: $b^2+c^2-a^2 \qquad \qquad c^2+a^2-b^2 \qquad \qquad a^2+b^2-c^2$

cosA

$$=rac{b^2+c^2-a^2}{2bc},\cos B=rac{c^2+a^2-b^2}{2ac},\cos C=rac{a^2+b^2-c^2}{2ab}$$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct

explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a

correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Answer:

Exercise

1. In triangle ABC, $b=\sqrt{3}$ c=1 and $\angle A=30^\circ$ then the measure of the

largest angle of the triangle,is

A. 60°

B. 135 $^{\circ}$

		_
	വ	O
٠.,	90	

D. 120°

Answer: D

Watch Video Solution

- **2.** The area of the triangle ABC,in which a=1,b= $2\angle C=60^\circ$ is
 - A. 4sq.units
 - B. $\frac{1}{2}$ sq.units
 - C. $\frac{\sqrt{3}}{2}$ sq. units
 - D. $\sqrt{3}$ sq. units

Answer: C

3. In a triangle ABC, vertex angles A,B,C and side BC are given .The area of

$$\Delta ABC$$
 is

A.
$$\frac{s(s-a)(s-b)(s-c)}{2}$$

B. $\frac{b^2 \sin C \sin A}{\sin B}$

C. ab sin C

D. $\frac{1}{2} \frac{a^2 \sin B \sin C}{\sin A}$

Answer: D

4. The area of the circle and the area of a regular polygon of n sides and the perimeter equal to the circle are in the ratio of

A.
$$\tan\left(\frac{\pi}{n}\right):\frac{\pi}{n}$$

$$\mathsf{B.}\cos\!\left(\frac{\pi}{n}\right)\!:\!\frac{\pi}{n}$$

$$\mathsf{C.}\sin\!\left(\frac{\pi}{n}\right)\!:\!\frac{\pi}{n}$$

$$\mathsf{D.}\cot\left(\frac{\pi}{n}\right)\colon\frac{\pi}{n}$$

Answer: A

Watch Video Solution

5. If
$$\cot \dfrac{A}{2} = \dfrac{b+c}{a}$$
 ,then the ΔABC ,is

A. isosceles

B. equliteral

C. right angled

D. none of these

Answer: C

6. In a
$$\Delta ABC, an\!\left(rac{A}{2}
ight) = rac{5}{6}, an\!\left(rac{C}{2}
ight) = rac{2}{5}$$
,then

- A. a,b,c are in H.P B. a,b,c are in A.P
 - C. b,a,c are in A.P
 - D. a,b,c are in G.P

Answer: B

Watch Video Solution

- 7. In a triangle ABC, the line joining the circumcentre and incentre is parallel to BC, then cos B + cos C is equal to:
 - A. 3/2
 - $\mathsf{C.}\,3/4$

B. 1

D.1/2

Answer: B

A.
$$(s-a)\frac{\tan B}{2}$$

B.
$$(s-b)\frac{\tan B}{2}$$

$$\mathsf{C.}\,(s-b)rac{ an C}{2}$$

D.
$$(s-a)\frac{\tan C}{2}$$

Answer: B

Watch Video Solution

9. The ex-radii of a triangle $r_1,\,r_2,\,r_3$ are the hamonic progression ,then

the sides a,b,c are

A. inH.P.

B. in A.P.

C. in G.P.

D. none of these

Answer: B

Watch Video Solution

10. In any triangle ABC, prove that:

$$a^{3}\cos(B-C) + b^{3}\cos(C-A) + c^{3}\cos(A-B) = 3abc$$

A. 3abc

B. 3(a+b+c)

C. abc(a+b+c)

D. 0

Answer: A

11. If $c^2=a^2+b^2,$ 2s=a+b+c, then 4s(s-a)(s-b)(s-c)

- A. s^4
- B. b^2c^2
- $\mathsf{C}.\,c^2a^2$
- D. a^2, b^2

Answer: D

Watch Video Solution

12. The sides of a triangle are 13,14,15, then the radius of its in-circle is

A. 67/8

B.65/4

C. 4

D. 24

Answer: C

Watch Video Solution

13. If a cos A=b cos B, then the triangle, is

A. equliteral

B. right angled

C. isosceles

D. isosceles or right angled

Answer: D

Watch Video Solution

14. The in-radius of the triangle whose sides are 3,5,6,is

A.
$$\sqrt{8/7}$$

 $\mathrm{C.}~\sqrt{7}$

D. $\sqrt{7/8}$

Answer: A

Watch Video Solution

15. In an equilaterial triangle of side $2\sqrt{3}$ cms, the circum-radius ,is

A. 1cm

B. $\sqrt{3}$ cm

C. 2cm

D. $2\sqrt{3}$ cm

Answer: C

16. If the angles of a triangle are in the ratio 1:2:3,the corresponding sides are in the ratio

- A. 2:3:1
- B. $\sqrt{3}$: 2:1
- $C. 2: \sqrt{3}: 1$
- D. 1: $\sqrt{3}$: 2

Answer: D

Watch Video Solution

17. In any !ABC, $(\Sigma) \left(rac{\sin^2 A + \sin A + 1}{\sin A}
ight)$ is always greater than

- A. 9
- B. 3
- C. 27

D. none of these

Answer: A

Watch Video Solution

- **18.** In any !ABC, $(\Sigma) \left(\dfrac{\sin^2 A + \sin A + 1}{\sin A} \right)$ is always greater than
 - A. 9
 - B. 3
 - C. 27
 - D. none of these

Answer: A

- **19.** In a right angled $!ABC\sin^2A+\sin^2B+\sin^2C$ =
 - A. 0

B. 1

C. -1

D. none of these

Answer: D

Watch Video Solution

20. In any ΔABC if 2 $\cos B = rac{a}{c}$,then the triangle ,is

A. right angled

B. equilaterial

C. isosceles

D. none of these

Answer: C

21. If in a ΔABC ,a sin A=b sin B, then the triangle, is

A. right angled

B. equilaterial

C. isosceles

D. none of these

Answer: A

Watch Video Solution

22. In any !ABC ,If $\cot\left(\frac{A}{2}\right)$, $\cot\left(\frac{B}{2}\right)$, $\cot\left(\frac{C}{2}\right)$ are in A.P.,then a,b,c are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

- **23.** In any $!ABCb^2\sin 2C + c^2\sin 2B =$
 - A. !
 - B. 2!
 - C. 3!
 - D. 4!

Answer: D

- **24.** If in a triangle ABC, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$, then the triangle is
 - A. right angled

B. obtuse angled

C. equilaterial

D. isosceles

Answer: C

Watch Video Solution

25. If in a $\ \bigtriangleup \ ABC, \Delta = a^2 - (b-c)^2,$ then tan A=

 $\mathsf{A.}\ \frac{15}{16}$

 $\mathsf{B.}\;\frac{8}{15}$

c. $\frac{8}{17}$

D. $\frac{1}{2}$

Answer: B

26. If the angles A,B,C of a triangle are in A.P.and sides a,b,c are in G.P. ,then a2,b2,c2 are in

A. A.P.

B. H.P.

C. G.P.

D. none of these

Answer: A

Watch Video Solution

27. In a triangle the lengths of the two larger are 10 and 9 respectively.If the angles are in A.P., the , length of the third side can be (A) $5-\sqrt{6}$ (B) $3\sqrt{3}$ (C) 5 (D) $5+\sqrt{6}$

A.
$$5\pm\sqrt{6}$$

 $\mathrm{B.}~3\sqrt{3}$

C. 5

D. $\sqrt{5}\pm 6$

Answer: A

Watch Video Solution

28. There can exist a triangle ABC satisfying the conditions:

A.
$$b\sin A=a, A<rac{\pi}{2}$$

B.
$$b\sin A>a, A>rac{\pi}{2}$$

C.
$$b\sin A>a, A<rac{\pi}{2}$$

D.
$$b\sin A>a, A>rac{\pi}{2}, b>a$$

Answer: A

29. In a triangle the length of the two larger sides are 24 and 22, respectively. If the angles are in A.P., then the third side, is

A.
$$12+2\sqrt{13}$$

B.
$$12-\sqrt{13}$$

$$\mathsf{C.}\,2\sqrt{13}+2$$

D.
$$2\sqrt{13}-2$$

Answer: A

Watch Video Solution

30. If in a triangles $a\cos^2\left(\frac{C}{2}\right)+c\cos^2\left(\frac{A}{2}\right)=\frac{3b}{2}$, then the sides of the triangle are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

31. If twice the square of the diameter of the circle is equal to half the sum of the squares of the sides of incribed triangle ABC,then $\sin^2 A + \sin^2 B + \sin^2 C$ is equal to

- A. 1
- B. 2
- C. 4
- D. 8

Answer: C

32. In a triangle ABC ,angle A is greater than B.If the measures of angles

Aand B satisfy the equation $3\sin x - 4\sin^3 x - k = 0, \, 0 < k < 1$, then the measure of angle C, is

A.
$$\pi/3$$

B.
$$\pi/2$$

C.
$$2\pi/3$$

D.
$$5\pi/6$$

Answer: C

Watch Video Solution

33. If in a triangle ABC,

$$2\frac{\cos A}{a} + \frac{\cos B}{b} + 2\frac{\cos C}{c} = \frac{a}{bc} + \frac{b}{ca},$$

then the value of the angle A, is

A.
$$\pi/3$$

B.
$$\pi/4$$

$$\mathsf{C}.\,\pi/2$$

D. $\pi/6$

Answer: C

Watch Video Solution

34. If A gt 0 ,B gt 0 and A+B= $\frac{\pi}{3}$, then the maximum value of tan A tan B , is

A. 1/3

B. 1

 $\mathsf{C}.\,\infty$

D. $1/\sqrt{3}$

Answer: A

35. If $\cos(\theta-\alpha), \cos\theta, \cos(\theta+\alpha)$ are in H.P.,then $\cos\theta\sec(\alpha/2)$ is equal to

 $B.\pm\sqrt{2}$

 $\mathsf{C}.\pm 2$

D. ± 3

Answer: B

Watch Video Solution

36. If $\sin \beta$ is the GM between $\sin \alpha$ and $\cos \alpha$, then $\cos 2\beta$ is equal to

A.
$$2\sin^2\!\left(rac{\pi}{4}-lpha
ight)$$

B.
$$2\cos^2\left(\frac{\pi}{4} - \alpha\right)$$

C.
$$2\cos^2\!\left(rac{3\pi}{4}+2lpha
ight)$$

D.
$$2\sin^2\Bigl(\dfrac{\pi}{4}+lpha\Bigr)$$

Answer: A

Watch Video Solution

37. If sinA=sin^2Band2cos^2A=3cos^2B then the triangle ABC is right angled (b) obtuse angled (c)isosceles (d) equilateral

- A. right angled
- B. obtuse angled
- C. isosceles
- D. equilateral

Answer: B

Watch Video Solution

38. If in a !ABC,

(sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB`then

A.
$$A=60^\circ$$

B. $B=60^{\circ}$

C.
$$C=60^\circ$$

D. none of these

Answer: C

Watch Video Solution

39. In a !ABC , \sin A + \sin B + \sin C = 1+ $\sqrt{2}$ and , \cos A + \cos B + \cos C = $\sqrt{2}$ if

,the triangle is

A. equilateral

B. isosceles

C. right angled

D. right angled isosceles

Answer: D

40. Point D,E are taken on the side BC of an acute angled triangle ABC,

such that

$$BD = DE = EC$$
.

If

 $\angle BAD = x, \angle DAE = y ext{ and } \angle EAC = z ext{ then } ext{ then } ext{ value } ext{ of }$

$\frac{\sin(x+y)\sin(y+z)}{\sin(y+z)}$	ic	
$\sin x \sin z$	13	

A. 1

B. 2

C. 4

D. none of these

Answer: C

Watch Video Solution

41. In a triangle ABC, if $3a=b+c, \,\,$ then the value of $\cot \, \frac{B}{2} \cot \, \frac{C}{2}$ is-

B. $\sqrt{3}$ C. 2

D. none of these

Answer: C

A. 1

Watch Video Solution

- **42.** If A+ B+ C= π , n \in Z,then tan nA+ tan +nB +tan nC is equal to
 - A. 0
 - B. 1
 - C. tan nA tan nB tan nC
 - D. none of these

Answer: C

43. If A,B,C are angles of a triangle ,then the minimum value of
$$\tan^2\left(\frac{A}{2}\right)+\tan^2\left(\frac{B}{2}\right)+\tan^2\left(\frac{C}{2}\right)$$
 , is

B. 1

C.1/2

D. none of these

Answer: B

- **44.** In a triangle ABC ,cos A + cos B + cos C = $\frac{3}{2}$, then the triangle ,is
 - A. isosceles
 - B. right angled
 - C. equilaterial

D. none of these			
Answer: C			
Watch Video Solution			
45. In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove that			
the triangle in an isosceles right angled.			

A. isosceles

B. right angled

D. equilateral

Answer: C

C. isosceles right angles

46. If in a triangle ABC , $\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$ then cosA is equal to

A.
$$\frac{1}{5}$$

$$\mathsf{B.}\;\frac{5}{7}$$

c.
$$\frac{19}{35}$$

D. none of these

Answer: A

Watch Video Solution

47. If $p_1,\,p_2,\,p_3$ are altitudes of a triangle ABC from the vertices A,B,C and !

the area of the triangle, then $p_1^2+p_2^{-\,2}+p_3^{-\,2}$ is equal to

A.
$$\frac{a+b+c}{\Lambda}$$

B.
$$\frac{a^2 + b^2 + c^2}{4\Delta^2}$$

c.
$$\frac{a^2 + b^2 + c^2}{\Lambda^2}$$

D. none of these

Answer: B

Watch Video Solution

48. If $p_1,\,p_2,\,p_3$ are altitudes of a triangle ABC from the vertices A,B,C and! the area of the triangle, then $p_1,\,p_2,\,p_3$ is equal to

A. abc

B. 8R

 $\mathsf{C.}\,a^2b^2c^2$

D. $\frac{a^2 \cdot b^2 \cdot c^2}{8R^3}$

Answer: D

Watch Video Solution

49. P_1, P_2, P_3 are altitudes of a triangle ABC from the vertices A, B, C and Δ is the area of the triangle,

The value of $P_1^{\,-1}+P_2^{\,-1}+P_3^{\,-1}$ is equal to-

A.
$$\frac{s-a}{!}$$

$$\operatorname{B.}\frac{s-b}{!}$$

$$\mathsf{C.}\,\frac{s-c}{!}$$

D. $\frac{s}{!}$

Answer: C

Watch Video Solution

50. If median of the Δ ABC through A is perpendicular to BC, then which one of the following is correct ?

A. tanA+tanB=0

B. 2tanA+tanB=0

C. tanA+2tanB=0

D. none of these

Answer: C

Watch Video Solution

51. In ΔABC if $\dfrac{\sin A}{\sin C}=\dfrac{\sin (A-B)}{\sin (B-C)}$, then a^2,b^2,c^2 are in :

A. a,b,c are in A.P

 $\mathrm{B.}\,a^2,b^2,c^2$ are in A.P

C. a,b,c are in H.P

D. a^2 , b^2 , c^2 are in H.P

Answer: B

Watch Video Solution

52. If in a $!ABC, a an A + b an B = (a+b) an \left(rac{A+B}{2}
ight)$, then

A. A = B

B.A = -B

C.A = 2B

D.B = 2A

Answer: A

Watch Video Solution

53. If in a $!ABC, \cos A = \frac{\sin B}{2\sin C}$ then the !ABC , is

A. equilateral

B. isosceles

C. right angled

D. none of these

Answer: B

54. If in a triangle ABC, $\frac{a^2-b^2}{a^2+b^2}$ then the triangle is

A. right angled or isosceles

B. right angled and isosceles

C. equilaterial

D. none of these

Answer: A

- **55.** If in a triangle ABC, b + c = 3a, then $\tan\left(\frac{B}{2}\right)\tan\left(\frac{C}{2}\right)$ is equal to
 - A. 1/2
 - B. 1/3
 - C. 1/4
 - D. 1/5

Answer: A

Watch Video Solution

56. Let ABC be a triangle such that $\angle A=45^{\circ}, \angle B=75^{\circ}, ext{ then } a+c\sqrt{2}$

A. 0

is equal to

B.b

C. 2b

D.-b

Answer: C

Watch Video Solution

57. If in a ΔABC , $\cos A + 2\cos B + \cos C = 2$, then a,b, c are in

A. A.P.
B. H.P.
C. G.P
D. none of these
Answer: A
Watch Video Solution
58. If the altitudes of a triangle are in A.P,then the sides of the triangle are in
A. A.P.
B. G.P.
C. H.P.
D. none of these
D. none of these

59. In any !ABC ,the distance of the orthocentre from the vertices A, B,C are in the ratio

A. sin A: sin B: sin C

B. cos A: cos B: cos C

C. tan A: tan B: tan C

D. none of these

Answer: B

Watch Video Solution

60. If R is the radius of circumscribing circle of a regular polygon of n-sides,then R =

A.
$$\frac{a}{2}\sin\left(\frac{\pi}{n}\right)$$

$$B. \frac{a}{2} \cos \left(\frac{\pi}{n} \right)$$

$$\mathsf{C.}\,\frac{a}{2}\!\cos ec\!\left(\frac{\pi}{n}\right)$$

D.
$$\frac{a}{2}\cos ec\left(\frac{\pi}{n}\right)$$

Answer: C

Watch Video Solution

61. If r is the radius of inscribed circle of a regular polygon of n-sides ,then r is equal to

A.
$$\frac{a}{2}\cot\left(\frac{\pi}{2n}\right)$$

$$B. \frac{a}{2} \cot \left(\frac{\pi}{n}\right)$$

C.
$$\frac{a}{2} \tan \left(\frac{\pi}{n} \right)$$

D.
$$\frac{a}{2}\cos\left(\frac{\pi}{n}\right)$$

Answer: B

62. The area of a regular polygon of n sides is (where r is inradius, R is circumradius, and a is side of the triangle) $\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$ (b) $nr^2\tan\left(\frac{\pi}{n}\right)\frac{na^2}{4}\frac{\cot\pi}{n}$ (d) $nR^2\tan\left(\frac{\pi}{n}\right)$

A.
$$\frac{nR^2}{2} \mathrm{sin} \bigg(\frac{2\pi}{n} \bigg)$$

B.
$$nr^2 an \left(rac{2\pi}{2n}
ight)$$

C.
$$\frac{nr^2}{2}\sin\left(\frac{2\pi}{n}\right)$$

D.
$$nR^2 \tan\left(\frac{\pi}{n}\right)$$

Answer: A

Watch Video Solution

63. If r, r_1, r_2, r_3 have their usual meanings , the value of $\dfrac{1}{r_1}+\dfrac{1}{r_2}+\dfrac{1}{r_3}$, is

A. 1

В. О

 $c.\frac{1}{r}$

D. none of these

Answer: C

Watch Video Solution

64. If p_1, p_2, p_3 are respectively the perpendicular from the vertices of a triangle to the opposite sides, then find the value of $p_1p_2p_3$.

A.
$$\dfrac{a^2b^2c^2}{R^2}$$

B.
$$\dfrac{a^2b^2c^2}{4R^2}$$

C.
$$\frac{4a^2b^2c^3}{R^2}$$

D.
$$\displaystyle rac{a^2b^2c^2}{8R^2}$$

Answer: D

65. If p_1, p_2, p_3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides , then $\frac{\cos A}{p_1} + \frac{\cos B}{p_2} + \frac{\cos C}{p_3}$ is equal to

- A. 1/r
- B. 1/R
- C. 1 / !
- D. none of these

Answer: B

Watch Video Solution

66. If in ΔABC , $8R^2=a^2+b^2+c^2$, then the triangle ABC is

A. right angled

B. isosceles

C. equilaterial

D.	none	of	these
┍.		\circ .	CIICOC

Answer: A

Watch Video Solution

67. If $A_1,\,A_2,\,A_3$ denote respectively the areas of an inscribed polygon of 2n sides , inscribed polygon of n sides and circumscribed poylgon of n sides ,then $A_1,\,A_2,\,A_3$ are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: B

68. If the angles of a triangle are in A.P.with common difference equal 1/3

of the least angle ,the sides are in the ratio

A.
$$\sqrt{2}$$
 : $2\sqrt{3}$: $\sqrt{6}+\sqrt{2}$

B.
$$2\sqrt{2}$$
: $\sqrt{3}$: $\sqrt{6}-\sqrt{2}$

C.
$$2\sqrt{2}$$
: $2\sqrt{3}$: $\sqrt{6}-\sqrt{2}$

D.
$$2\sqrt{2}$$
 : $2\sqrt{3}$: $\sqrt{6}+\sqrt{2}$

Answer: D

- **69.** In a triangle ABC, A = 8, b = 10 and c = 12. What is the angle C equal to ?
 - A. A/2
 - B. 2A
 - C. 3A
 - D. none of these

Watch Video Solution

70. If the sides a, b, c of a triangle ABC are the roots of the equation $x^3-13x^2+54x-72=0$, then the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$ is equal to :

- A. $\frac{169}{144}$
- B. $\frac{61}{72}$
- c. $\frac{61}{144}$
- D. $\frac{169}{72}$

Answer: C

 $\mathsf{B.}\;\frac{3}{4}$

C. 8/15

D. none of these

Answer: C

Watch Video Solution

- **72.** In a ΔABC , $\dfrac{\sin A}{\sin C}=\dfrac{\sin (A-B)}{\sin (B-C)}$, then a^2,b^2,c^2 are in
 - A. A.P.
 - B. G.P.
 - C. H.P.
 - D. none of these

Answer: A

73. If in a triangle $ABC, 3\sin A = 6\sin B = 2\sqrt{3}\sin C$, then the angle A

is

A. $0\,^\circ$

B. 30°

C. 60°

D. 90°

Answer: D

Watch Video Solution

74. The side of a Δ are in AP. And its area is $\frac{3}{5}$ × (area of an equilateral triangle of the same perimeter). Find the ratio of its sides.

A. 1:2:3

B.3:5:7

C. 1:3:5

D. none of these

Answer: B

75.

Watch Video Solution

а

 $\sin^4 A + \sin^4 B + \sin^4 C = \sin^2 B \sin^2 C + 2 \sin^2 C \sin^2 A + 2 \sin^2 A \sin^2 B$

In

triangle

, then its angle A is equal to-

$$5\pi$$

A.
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$
B. $\frac{\pi}{3}$, $\frac{5\pi}{6}$

$$\mathsf{C.}\,\frac{5\pi}{6},\frac{2\pi}{3}$$

D. none of these

Answer: A

76. In any triangle ABC, $\frac{\frac{\tan A}{2} - \frac{\tan B}{2}}{\frac{\tan A}{2} + \frac{\tan B}{2}}$ is equal to

A.
$$\frac{a-b}{a+b}$$

B.
$$\frac{a-b}{c}$$

$$\mathsf{C.}\,\frac{a-b}{a+b+c}$$

D.
$$\frac{c}{a+b}$$

Answer: B

Watch Video Solution

77. If the sides a,b and c of a !ABC are in A.P.,then

$$\left(rac{ an A}{2} + rac{ an C}{2}
ight)$$
: $rac{\cot B}{2}$, is

A. 3:2

B.1:2

C.3:4

D. none of these

Answer: D

Watch Video Solution

78. If the sides of the triangle are the roots of the equation x^3-2x^2-x-16 =0, then the product of the in-radius and circumradius of the triangle, is

- A. 3
- B. 6
- C. 4
- D. 2

Answer: C

If AD, BE and CF are the medians of a ABC ,then

$$\left(AD^2+BE^2+CF^2
ight)$$
 : $\left(BC^2+CA^2+AB^2
ight)$ is equal to

- A. 4:3
- B.3:2
- C.3:4
- D. 2:3

Answer: C

80. If a $\triangle ABC$ is right angled at B, then the diameter of the incircle of the triangle is

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{3}$

D. none of these

Answer: C

Watch Video Solution

- **81.** If a^2 , b^2 , c^2 are in A.P., then which of the following is also in A.P.?
 - A. $\sin A$, $\sin B$, $\sin C$
 - B. tan A, tan B, tan C
 - C. cot A, cot B, cot C
 - D. none of these

Answer: C

82. If in a
$$!ABC$$
,

$$\sin^3 A + \sin^3 B + \sin^3 C = 3 \sin A \sin B \sin C$$
, then

$$\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$

B.
$$(a + b + c)^3$$

D. none of these

Answer: A

Watch Video Solution

83. If the ex-radii of a triangle are in H.P., then the corresponding sides are

A. A.P.

in

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

84. If I is the incentre of a !ABC , then $IA\!:\!IB\!:\!IC$ is equal to

A. $\cos ec \frac{A}{2}$: $\cos ec \frac{B}{2}$: $\cos ec \frac{C}{2}$

 $\mathsf{B.}\ \frac{\sin A}{2} : \frac{\sin B}{2} : \frac{\sin C}{2}$

 $\operatorname{C.}\frac{\operatorname{sec} A}{2} : \frac{\operatorname{sec} B}{2} : \frac{\operatorname{sec} C}{2}$

D. none of these

Answer: A

85. In a !ABC, the HM of the ex-radii is equal to

A. 3r

B. 2R

C.R+r

D. none of these

Answer: A

Watch Video Solution

86. In a !ABC if $r_1:r_2:r_3=2\!:\!4\!:\!6$, then $a\!:\!b\!:\!c\!=\!$

A. 3:5:7

B. 1:2:3

C.5:8:7

D. none of these

Answer: C

Watch Video Solution

87. If in a $ABC, \angle A = \pi/3$ and AD is a median , then

A.
$$2AD^2=b^2+c^2+bc$$

$${\rm B.}\,4AD^2 = b^2 + c^2 + bc$$

C.
$$6AD^2 = b^2 + c^2 + bc$$

D. none of these

Answer: B

88. In a
$$!ABC \frac{\cos^2 A}{2} + \frac{\cos^2 B}{2} + \frac{\cos^2 C}{2} =$$

A.
$$2-rac{r}{R}$$

$${\tt B.}\,2-\frac{r}{2R}$$

$$\mathsf{C.}\,2+\frac{r}{2R}$$

D. none of these

Answer: C

Watch Video Solution

89. The base of a triangle is 80cm and one of the base angles is 60° .If the sum of the lenghts of the other two sides is 90cm, then the length of the shortest side is

A. 15cm

B. 19cm

C. 21cm

D. 17cm

Answer: D

90. In a ABC if $r_1=16,\,r_2=48$ and $r_3=24$, then its in-radius ,is

B. 8

C. 6

D. none of these

Answer: B

91. किसी
$$\triangle$$
 ABC में सिद्ध करे कि

$$rac{(a+b+c)^2}{a^2+b^2+c^2} = rac{\cotrac{A}{2}+\cotrac{B}{2}+\cotrac{C}{2}}{\cot A+\cot B+\cot C}$$

A.
$$\frac{(a+b+c)^2}{a^2+b^2+c^2}$$

B.
$$\frac{a^2 + b^2 + c^2}{(a+b+c)^2}$$

C. s

D.!

Answer: A

Watch Video Solution

- **92.** In a !ABC if a =26, b= 30 and \cos C = $\frac{63}{65}$, then r_2 =
 - A. 84
 - B. 45
 - C. 48
 - D. 24

Answer: C

93. In a !ABC if a = 13, b =14 and c = 15, then reciprocals of $r_1,\,r_2,\,r_3$ are in the ratio

A. 6:7:8

B. 6:7:8

C. 8:7:6

D. none of these

Answer: C

94. In a ABC , if $\sin Aand\sin B$ are the roots of the equation $c^2x^2-c(a+b)x+ab=0,$ then find $\angle C$.

95. If a,b,c denote the sides of a !ABC and the equations $ax^2+bx+c=0$ and $x^2+\sqrt{2}x+1=0$ have a common root, then

$$^{\circ}C=$$

A. 30°

B. 45°

C. 90°

D. 60°

Answer: B

- **96.** In a ΔABC if b+c=2a and $\angle A=60^\circ$ then ΔABC is
 - A. equilateral
 - B. right angled
 - C. isosceles

D. scalene

Answer: A

Watch Video Solution

- **97.** In a ΔABC , if b=20, c=21 and $\sin A=rac{3}{5},$ then the value of a is
 - A. 12
 - B. 13
 - C. 14
 - D. 15

Answer: B

98. Let A, B and C are the angles of a plain triangle and $an\!\left(rac{A}{2}
ight)=rac{1}{3}, an\!\left(rac{B}{2}
ight)=rac{2}{3}$.then $an\!\left(rac{C}{2}
ight)$ is equal to

A.
$$7/9$$

B.2/9

C.1/3

D.2/3

Answer: A

Watch Video Solution

Chapter Test

- **1.** If the sides of a triangle are in the ratio 3:7:8, then find R:r
 - A.2:7
 - B.7:2

C. 3:7

D.7:3

Answer: B

Watch Video Solution

2. The area of the reactangle polygen of n sides is (where R is the radius of the circumpolygon)

A.
$$\frac{1}{2}R^2\sin\left(\frac{2\pi}{n}\right)$$

$$\mathsf{B.}\; \frac{n}{2} R^2 \sin\!\left(\frac{\pi}{n}\right)$$

$$\operatorname{C.}\frac{n}{2}R\sin\!\left(\frac{2\pi}{n}\right)$$

D.
$$\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$$

Answer: D

3. If the angles of a rectangle are $30^\circ~{
m and}~45^\circ$ and the included side of $(\sqrt{3}+1)$ cms, then the area of the triangle, is

A.
$$\frac{1}{\sqrt{3}-1}$$

B.
$$\sqrt{3}+1$$

$$\mathsf{C.}\,\frac{1}{\sqrt{3}+1}$$

D. none of these

Answer: A

Watch Video Solution

4. In a triagnle ABC, $\angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$ let D divide BC internally in the ratio 1:3 .Then $\frac{\sin(\angle BAD)}{(\sin(\angle CAD))}$ is equal to

A.
$$\frac{1}{\sqrt{6}}$$

$$\sqrt{6}$$

$$\mathsf{B.}\,\frac{1}{3}$$

$$\mathsf{C.}\ \frac{1}{\sqrt{3}}$$

$$\int \sqrt{\left(\frac{2}{3}\right)}$$

Answer: A

Watch Video Solution

5. If A is the area and 2s the sum of the sides of a triangle, then

A.
$$A \leq rac{s^2}{3\sqrt{3}}$$
B. $A \leq rac{s^2}{2}$

$$\texttt{B.}\, A \leq \frac{s^2}{2}$$

$$\mathsf{C.}\,A > \frac{s^2}{\sqrt{3}}$$

D. none of these

Answer: A

6. If in a triangle ABC, right angled at B, s-a=3, s-c=2, then the values of a and c are respectively

- A. 2,3
- B. 3,4
- C. 4,3
- D. 6,8

Answer: B

7. If the sides of a triangle are a, b and $\sqrt{a^2+ab+b^2}$, then find the greatest angle

- A. 60°
 - B. 90°
 - C. 120°

D.
$$135^{\circ}$$

Answer: C

Watch Video Solution

- **8.** In a $\Delta ABC\sum{(b+c)rac{ an A}{2} anigg(rac{B-C}{2}igg)}=$
 - A. a
 - B.b
 - C. c
 - D. 0

Answer: D

9. In $\triangle ABC, \angle A=\frac{\pi}{3}$ and $b:c=2:3, \tan\theta=\frac{\sqrt{3}}{5}, 0<\theta<\frac{\pi}{2}$

then

A.
$$B=60^{\circ}+ heta$$

B.
$$C=60^{\circ}+ heta$$

C.
$$C=60^{\circ}- heta$$

D.
$$C=60^\circ- heta$$

Answer: B

Watch Video Solution

10. In a $\Delta ABC, AD$ is the altitude from A. $b>c, \angle C=23^\circ \;\; ext{and} \;\; AD=rac{abc}{h^2-c^2}$, then $\angle B=....$

Given

A.
$$53^{\circ}$$

B.
$$113^{\circ}$$

$$\mathsf{C.\,87}^\circ$$

D. none of these

Answer: B

Watch Video Solution

- 11. If the angles A,B,C (in that order) of triangle ABC are in arithmetic progression, and $L=\lim_{A o C} \frac{\sqrt{3-4\sin A\sin C}}{|A-C|}$ then find the value of $100L^2.$
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: A

12. If the radius of the incircle of a triangle withits sides 5k, 6k and 5k is 6, then k is equal to

- A. 3
- B. 4
- C. 5
- D. 6

Answer: B

Watch Video Solution

13. Two sides of a triangle are $2\sqrt{2}$ and $2\sqrt{3}cm$ and the angle opposite to the shorter side of the two is $\frac{\pi}{4}$. The largest possible length of the third side is

A.
$$\left(\sqrt{6}+\sqrt{2}\right)cm$$

B. $\left(\sqrt{6}+\sqrt{2}\right)cm$

B.
$$(\sqrt{6} + \sqrt{2})cm$$

C.
$$(\sqrt{6}-\sqrt{2})cm$$

D. none of these

Answer: A

Watch Video Solution

14. In a $\triangle ABC$, a=13cm, b=12 and c=5cm The distance of A

from BC is

A.
$$\frac{144}{13}$$

B.
$$\frac{65}{12}$$

$$\mathsf{C.}\ \frac{60}{13}$$

$$\mathsf{D.}\;\frac{25}{13}$$

Answer: C

15. In a $\ \bigtriangleup \ ABC, B=rac{\pi}{8}, C=rac{5\pi}{8}.$ The altitude from A to the side BC, is

A.
$$\frac{a}{2}$$

B. 2a

C.
$$\frac{1}{2}(b+c)$$

D. b+c

Answer: A

Watch Video Solution

In a ΔABC , $A=rac{2\pi}{3}, b-c=3\sqrt{3}cm$ 16.

and

 $area(\Delta ABC)=rac{9\sqrt{3}}{2}cm^2.$ Then a is

A.
$$6\sqrt{3}$$

B. 9cm

C. 18cm

D. 12cm

Answer: B

Watch Video Solution

17. In ΔABC if $a=(b-c){
m sec}\, heta$ then ${2\sqrt{bc}\over b-c}{
m sin}igg({A\over 2}igg)=$

A. $\cos \theta$

B. $\cot \theta$

 $\mathsf{C}. an heta$

 $\mathrm{D.}\sin\theta$

Answer: C

Watch Video Solution

18. In a ΔABC , $(a+b+c)(b+c-a)=\lambda bc$. (where symbols have their usual meaning)& $\lambda\in I$, then greatest value of λ is

A. $\lambda < 0$

B. $\lambda > 4$

 $\mathsf{C}.\,\lambda>0$

D. $0 < \lambda < 4$

Answer: D

Watch Video Solution

19. If in ΔABC , a=2b and A=3B, then A is equal to

A. 90°

B. 60°

C. 30°

D. 45°

Answer: A

20. Let the angles A,B and C of triangle ABC be in $A\dot{P}$ and let $b\!:\!c$ be $\sqrt{3}\!:\!\sqrt{2}$. Find angle A

- A. 75°
- B. 45°
- C. 60°
- D. 15°

Answer: A

Watch Video Solution

21. If in a ΔABC , AD, BE and CF are the altitudes and R is the circumradius, then find the radius of the DEF.

- A. $\frac{R}{2}$
- B. 2R

C. R

D. $\frac{3}{2}R$

Answer: A

Watch Video Solution

- **22.** If in a $\triangle ABC = \frac{a}{\cos A} = \frac{b}{\cos B}$, then
 - A. 2 sin A sin B sin C=1
 - $\mathsf{B.}\sin^2 A + \sin^2 B = \sin^2 C$
 - C. 2 sin A cos B=sin C
 - D. none of these

Answer: C

23. In a
$$\triangle ABC, \frac{s}{R} =$$

A. sin A+sin B+ sin C

B. cos A +cos B+ cos C

C.

D. none of these

Answer: A

Watch Video Solution

24. If in a $\triangle ABC$, $A=\frac{\pi}{3}$ and AD is the median, then

A.
$$2AD^2=b^2+c^2+bc$$

$$\mathtt{B.}\,4AD^2=b^2+c^2+bc$$

$$\mathsf{C.}\,6AD^2=b^2+c^2+bc$$

D. none of these

Answer: B

Watch Video Solution

- 25. If any \triangle ABC, the value of
- $aig(b^2+c^2ig)\cos A+big(c^2+a^2ig)\cos B+cig(a^2+b^2ig)\cos C=$
 - A. $3abc^2$
 - $B. 3a^2bc$
 - C. 3abc
 - D. $3ab^2C$

Answer: C

Watch Video Solution

26. If the angle of a right angled triangle are in A.P. then the ratio of the in -radius and the perimeter, is

A.
$$\left(2-\sqrt{3}\right)$$
 : $2\sqrt{3}$

B.
$$1:8\sqrt{3}(2+\sqrt{3})$$

C.
$$\left(2+\sqrt{3}\right)$$
: $4\sqrt{3}$

D. none of these

Answer: A

Watch Video Solution

regular polygon of side a is

27. The sum of the radii of inscribed and circumscribed circle of an n sides

A.
$$\frac{a}{4}\cot\frac{\pi}{2n}$$

B.
$$a \cot \frac{\pi}{n}$$

$$\mathsf{C.}\;\frac{a}{2}\mathrm{\cot}\;\frac{\pi}{2n}$$

D.
$$a \cot \frac{\pi}{2n}$$

Answer: D

28. If $0 < x < \frac{\pi}{2}$ then the largest angle of a triangle whose sides are 1, $\sin x, \cos x$ is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{2}$$

D.
$$\frac{\pi}{2}-x$$

Answer: B

Watch Video Solution

29. The sides of a tringle are 3x+4y, 3y and 5x+5y where x,y>0, then the triangle is-

A. right angled

B. obtuse angled C. equilateral D. none of these **Answer: B Watch Video Solution** 30. The perimeter of a triangle is 16 cm. One of the sides is of length 6 cm. If the area of the triangle is 12 sq. cm, then the triangle is A. right angled B. isoscles C. equilateral D. scalene **Answer: B Watch Video Solution**

31. In a
$$riangle ABC$$
, if $rac{a}{b^2-c^2}+rac{c}{b^2-a^2}=0$, then $riangle B=$

A.
$$\frac{\pi}{2}$$

$$\operatorname{B.}\frac{\pi}{4}$$

$$\mathsf{C.}\,\frac{2\pi}{3}$$

D. $\frac{\pi}{3}$

Answer: D

Watch Video Solution

32. In a $\triangle ABC$, $a^2\sin 2C + c^2\sin 2A =$

A. Δ

B. 2Δ

C. 3Δ

D. 4Δ

Answer: D

Watch Video Solution

- **33.** In a $\triangle ABC$, $\frac{\cos C + \cos A}{c+a} + \frac{\cos B}{b} =$
 - A. $\frac{1}{a}$
 - $\mathsf{B.}\; \frac{1}{b}$
 - c. $\frac{1}{c}$
 - D. $\frac{c+a}{b}$

Answer: B

- **34.** In in a \triangle ABC, sides a,b,c are in A.P. then $\tan \frac{A}{2} \tan \frac{C}{2}$
 - A. 1/4

B.1/3

C. 3

D. 4

Answer: B

Watch Video Solution

35. In a triangle ABC, cos A+cos B+cos C=

A.
$$1+rac{r}{R}$$

$$\mathrm{B.}\,1-\frac{r}{R}$$

$$\mathsf{C.}\,1-\frac{R}{r}$$

$$\mathsf{D.}\,1+\frac{R}{r}$$

Answer: A

 $A + B + C = \pi$, and $\cos A = \cos B \cdot \cos C$, 36. then $\cot B. \cot C =$

In

ABC, $aig(b^2+c^2ig)\cos A+big(c^2+a^2ig)\cos B+cig(a^2+b^2ig)\cos C=$

triangle

A. 2

B. 3

C.1/2

D. 5

Answer: C

A. abc

37.

B. 2abc

C. 3abc

D.	4abc	
ν.	Table	

Answer: C

Watch Video Solution

38. The sides of a triangle are $x^2+x+1,\,2x+1,\,andx^2-1$. Prove that the greatest angle is 120°

A. 120°

B. 60°

C. 40°

D. 30°

Answer: A

39. In a
$$riangle ABC$$
, if $C=60^{\circ}$, then $\dfrac{a}{b+c}+\dfrac{b}{c+a}=$

- A. 2
- B. 1
- C. 4
- D. none of these

Answer: B

- **40.** In a $\ \triangle \ ABC$, if a,c,b are in A.P. then the value of $\dfrac{a\cos B b\cos A}{a-b}$, is
 - **A.** 3
 - B. 2
 - C. 1
 - D. none of these

Answer: B

Watch Video Solution

41. If a triangle is right angled at B, then the diameter of the incircle of the triangle, is

- A. c+a-b
- B. 2(c+a-b)
- C. c+a-2b
- D. c+a+2b

Answer: A

Watch Video Solution

42. If the angle of a righta angled triangle are in A.P. then the ratio of the in -radius and the perimeter, is

A.
$$\left(2+\sqrt{3}\right), 2\sqrt{3}$$

B.
$$\left(2+\sqrt{3}
ight),\sqrt{3}$$

$$\mathsf{C.}\left(2-\sqrt{3}\right):2\sqrt{3}$$

D.
$$\left(2-\sqrt{3}
ight)$$
 : $4\sqrt{3}$

Answer: C

Watch Video Solution

43. If the angles of a triangle are in the ratio 7:2:1, then prove that the ratio of smallest side to the largest side is $\sqrt{5}-1$: $\sqrt{5}+1$.

A.
$$\left(\sqrt{5}+1\right)$$
 : $\left(\sqrt{5}-1\right)$

B.
$$\left(\sqrt{5}-1\right)$$
: $\left(\sqrt{5}+1\right)$

C.
$$\left(\sqrt{5}+2\right)$$
: $\left(\sqrt{5}-2\right)$

D.
$$\left(\sqrt{5}-2\right)$$
: $\left(\sqrt{5}+2\right)$

Answer: B

44. If in
$$\triangle ABC$$
, $a=5, b=4$ and $\cos(A-B)=\frac{31}{32}$, then

45. In a $\triangle ABC$ if $\mathbf{c}=(a+b)\sin\theta$ and $\cos\theta=\dfrac{k\sqrt{a}b}{a+b}$, then k=

A.
$$1/4$$

D.1/2

Answer: B

A.
$$2\cos{rac{C}{2}}$$

$$B. 2 \cos \frac{B}{2}$$

$$\mathsf{C.}\ 2\cos\frac{A}{2}$$

D.
$$\cos \frac{C}{2}$$

Answer: A

Watch Video Solution

- **46.** In $\triangle ABC$, if $\frac{s-a}{\Lambda}=\frac{1}{8}$, $\frac{s-b}{\Lambda}=\frac{1}{12}$ and $\frac{s-c}{\Lambda}=\frac{1}{24}$, then b =
 - A. 16
 - B. 20
 - C. 24
 - D. 28

Answer: A

47. In a triangle ABC if $2a=\sqrt{3}b+c$, then possible relation is

A.
$$c^2=a^2+b^2-ab$$

B.
$$a^2 = b^2 + c^2$$

C.
$$b^2=a^2+c^2-\sqrt{3}ac$$

D. none of these

Answer: B

Watch Video Solution

48. If in a triangle ABC, $a\cos^2\left(\frac{C}{2}\right)\cos^2\left(\frac{A}{2}\right)=\frac{3b}{2}$, then the sides

a,b,andc are in A.P. b. are in G.P. c. are in H.P. d. satisfy $a+b=\cdot$

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

- **49.** The sides of a right angled triangle arein A. P, then they are in the ratio
 - A. 3:4:5
 - B. 4:5:6
 - C. 3:4:6
 - D. none of these

Answer: A

50. In a triangle $ABC, B=90^\circ$ then the value of $an\Bigl(rac{A}{2}\Bigr)=$

A.
$$\sqrt{rac{b+c}{b-c}}$$

B.
$$\sqrt{rac{b-c}{b+c}}$$

$$\mathsf{C.}\,\sqrt{\frac{a+c}{a-c}}$$

D.
$$\sqrt{rac{a-c}{a+c}}$$

Answer: B

Watch Video Solution

51. In a triangle $ABC, B=90^\circ$ then the value of $an\Bigl(rac{A}{2}\Bigr)=$

A. xyz

B. x^2yz

C. $x^2y^2z^2$

D. none of these

Answer: D

Watch Video Solution

- **52.** In a \triangle ABC if a=5, b=4 and $an \frac{C}{2} = \frac{\sqrt{7}}{3} thenc =$
 - A. $\sqrt{6}$
 - B. $\sqrt{5}$
 - C. 6
 - D. 5

Answer: C

- **53.** In a riangle ABC, if $riangle C=60^\circ$ then $rac{a}{b+c}+rac{b}{c+a}$ =
 - A. 2

B. 4

C. 3

D. 1

Answer: D

Watch Video Solution

54. If $p_1,\,p_2,\,p_3$ are altitude of a triangle ABC from the vertices A,B,C and Δ

the area of the triangle, then $\dfrac{1}{p_1^2}+\dfrac{1}{p_2^2}+\dfrac{1}{p_3^2}=$

A.
$$\dfrac{\cot A + \cos B + \cot C}{\Delta}$$

 $\mathsf{B.} \; \frac{\Delta}{\cot A + \cos B + \cot C}$

C. $\Delta(\cot A + \cos B + \cot C)$

D. none of these

Answer: A

55. In ΔABC with usual notation $rac{r_1}{bc}+rac{r_2}{ca}+rac{r_3}{ab}$ is

A.
$$\dfrac{1}{2R}-\dfrac{1}{r}$$

B. 2R-r

C. r-2R

$$\text{D.}\ \frac{1}{r}-\frac{1}{2R}$$

Answer: D

