

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

Illustration

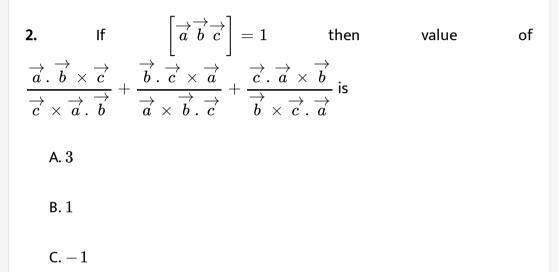
1. Let
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} be three vectors. Then scalar triple product $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$

is equal to

A.
$$\begin{bmatrix} \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \end{bmatrix}$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} \end{bmatrix}$
C. $\begin{bmatrix} \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{a} \end{bmatrix}$
D. $\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix}$

Answer: D



D. None of these

Answer: A

3. If
$$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$$
 are three vectors such that $\left[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}\right] = 1$, then
 $3\left[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}\right] - \left[\overrightarrow{v} \overrightarrow{w} \overrightarrow{u}\right] - 2\left[\overrightarrow{w} \overrightarrow{v} \overrightarrow{u}\right] =$
A. 0
B. 2
C. 3
D. 4

Answer: D

Watch Video Solution

4. If
$$\overrightarrow{r} = x \left(\overrightarrow{a} \times \overrightarrow{b} \right) + y \left(\overrightarrow{b} \times \overrightarrow{c} \right) + z \left(\overrightarrow{c} + \overrightarrow{a} \right)$$

Such that $x + y + z \neq 0$ and $\overrightarrow{r} \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) = x + y + z$, then $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] =$

A. 0

B. 1

C. - 1

D. 2

Answer: B

5. If
$$\overrightarrow{\alpha} = x \left(\overrightarrow{a} \times \overrightarrow{b} \right) + y \left(\overrightarrow{b} \times \overrightarrow{c} \right) + z \left(\overrightarrow{c} \times \overrightarrow{a} \right)$$
 and
 $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] = \frac{1}{8}$, then $x + y + z =$
A. $8\overrightarrow{\alpha} \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
B. $\overrightarrow{\alpha} \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
C. $8 \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$

D. None of these

Answer: A

6. If $\overrightarrow{a}=2\hat{i}+3\hat{j}+\hat{k},$ $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$ and $\overrightarrow{c}=-3\hat{i}+\hat{j}+2\hat{k}$, then	
$\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c} ight] =$	
A. 0.3	
В0.3	
C. 0.15	
D0.15	

Answer: B

Watch Video Solution

7. Let
$$\overrightarrow{a} = \hat{i} - \hat{k}, \ \overrightarrow{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}$$
 and $\overrightarrow{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$, then $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$ depends on

A. neither $x \operatorname{nor} y$

B. both x and y

C. only x

D. only y

Answer: A

8. Volume of the parallelopiped with its edges represented by the vectors

 $\hat{i}+\hat{j},\,\hat{i}+2\hat{j}$ and $\hat{i}+\hat{j}+\pi\hat{k}$, is

A. π

B. $\pi/2$

C. $\pi/3$

D. $\pi/4$

Answer: A

9. Let $\overline{PR} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\overline{SQ} = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram PQRS and $\overline{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors $\overline{PT}, \overline{PQ}$ and \overline{PS} is

A. 5

B. 20

C. 10

D. 30

Answer: A

Watch Video Solution

10. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non coplanar vectors and λ is a real number, then the vectors $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda\overrightarrow{b} + 4^{\rightarrow}$ and $(2\lambda - 1)\overrightarrow{c}$ are non coplanar for

A. no value of λ

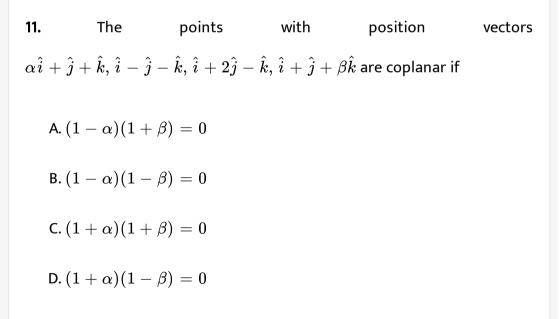
B. all except one value of λ

C. all except two values of λ

D. all values of λ

Answer: C

Watch Video Solution



Answer: A

12. The number of distinct real values of λ for which the vectors $\overrightarrow{a} = \lambda^3 \hat{i} + \hat{k}, \ \overrightarrow{b} = \hat{i} - \lambda^3 \hat{j}$ and $\overrightarrow{c} = \hat{i} + (2\lambda - \sin\lambda)\hat{i} - \lambda\hat{k}$ are coplanar is

A. 0

B. 1

C. 1

D. 3

Answer: B

Watch Video Solution

13. Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{2}k$ and $\overrightarrow{c} = x\hat{i} + (x-2)\hat{j} - \hat{k}$. If the vector \overrightarrow{c} lies in the plane of \overrightarrow{a} and \overrightarrow{b} then x equals

A. -4

 $\mathsf{B.}-2$

C. 0

D. 1

Answer: B

Watch Video Solution

14. If $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$ are non -coplanar vectors and $p, q, \,$ are real numbers then

the equality

$$\left[3\overrightarrow{u}\,p\overrightarrow{v}\,p\overrightarrow{w}
ight]-\left[p\overrightarrow{v}\,\overrightarrow{w}\,q\overrightarrow{u}
ight]-\left[2\overrightarrow{w}\,-q\overrightarrow{v}\,q\overrightarrow{u}
ight]=0$$
 holds for

A. exactly one value of $\left(p,q\right)$

B. exactly two values of (p, q)

C. more than two but not all values of (p, q)

D. all values of (p, q)

Answer: A

15. The value of
$$\overrightarrow{a}$$
. $\left(\overrightarrow{b} + \overrightarrow{c}\right) \times \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right)$, is

A.
$$2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$$

B. $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$

D. None of these

Answer: C

16. The vectors

$$ec{a}=x\hat{i}+(x+1)\hat{j}+(x+2)\hat{k},$$
 $ec{b}=(x+3)\hat{i}+(x+4)\hat{j}+(x+5)\hat{k}$ and $ec{c}=(x+6)\hat{i}+(x+7)\hat{j}+(x+8)\hat{k}$ are coplanar for

A. all values of x

B. x < 0 only

 $\mathsf{C}. x > 0$ only

D. None of these

Answer: A

Watch Video Solution

17. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non coplanar vectors and λ is a real number, then $\left[\lambda\left(\overrightarrow{a} + \overrightarrow{b}\right) \quad \lambda^{2}\overrightarrow{b} \quad \lambda\overrightarrow{c}\right] = \left[\overrightarrow{a} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{b}\right]$ for

A. exactly two values of λ

B. exactly two values of λ

C. no value of λ

D. exacty one value of λ

Answer: C

18. The number of real values of a for which the vectors $\hat{i} + 2\hat{j} + \hat{k}, a\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + a\hat{k}$ are coplanar is

- A. 1
- B. 2
- C. 3
- D. 0

Answer: A

Watch Video Solution

19. The number of distinct values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is

B. 1

C. 2

D. 3

Answer: C

Watch Video Solution

20. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit coplanar vectors, then $\begin{bmatrix} 2\overrightarrow{a} - 3\overrightarrow{b} & 7\overrightarrow{b} - 9\overrightarrow{c} & 10\overrightarrow{c} - 23\overrightarrow{a} \end{bmatrix}$ A. 0 B. $\frac{1}{2}$ C. 24

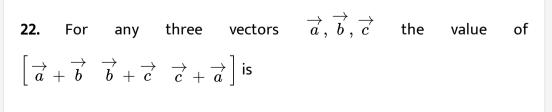
 $\mathsf{D}.\,32$

Answer: A

21. If the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non -coplanar and l, m, n are distinct scalars such that $\begin{bmatrix} l\overrightarrow{a} + m\overrightarrow{b} + n\overrightarrow{c} & l\overrightarrow{b} + m\overrightarrow{c} + n\overrightarrow{a} & l\overrightarrow{c} + m\overrightarrow{a} + n\overrightarrow{b} \end{bmatrix} = 0 \text{ then}$ A. lm + mn + nl = 0B. l + m + n = 0C. $l^2 + m^2 + n^2 = 0$ D. $l^3 + m^3 + n^3 = 0$

Answer: B

Watch Video Solution



A. 0

$$B. 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
$$C. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
$$D. - \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

Answer: B

23. For any three vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 the value of
 $\begin{bmatrix} \overrightarrow{a} - \overrightarrow{b} & \overrightarrow{b} - \overrightarrow{c} & \overrightarrow{c} - \overrightarrow{a} \end{bmatrix}$, is
A.0
B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
C. $-\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
D. $-2\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

Answer: A

24. If
$$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$$
 are three non-coplanar vectors, the $(\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}).(\overrightarrow{u} - \overrightarrow{v}) \times (\overrightarrow{v} - \overrightarrow{w})$ equals
A. $\overrightarrow{u}.(\overrightarrow{v} \times \overrightarrow{w})$
B. $\overrightarrow{u}.(\overrightarrow{v} \times \overrightarrow{v})$
C. $3\overrightarrow{u}.(\overrightarrow{c} \times \overrightarrow{w})$
D. 0

Answer: A

25. If
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} are unit coplanar vectors, then the scalar triple product $\begin{bmatrix} 2\overrightarrow{a} & -\overrightarrow{b} & 2\overrightarrow{b} & -\overrightarrow{c} & 2\overrightarrow{c} & -\overrightarrow{a} \end{bmatrix} =$

A. 0

B. 1

$$C. - \sqrt{3}$$

D. $\sqrt{3}$

Answer: A

Watch Video Solution

26. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three non-zero non coplanar vectors and $\overrightarrow{p}, \overrightarrow{q}$ and \overrightarrow{r} be three vectors given by $\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}, \overrightarrow{q} = 3\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{r} = \overrightarrow{a} - 4vcb + 2\overrightarrow{c}$ If the volume of the parallelopiped determined by $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} is V_1 and that of the parallelopiped determined by $\overrightarrow{a}, \overrightarrow{q}$ and \overrightarrow{r} is V_2 , then $V_2: V_1 =$

A. 3:1

B. 7:1

C. 11:1

D. 15:1

Answer: D

27. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are three non-zero non-null vectors are \overrightarrow{r} is any vector in

space then

$$\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{r} \end{bmatrix} \overrightarrow{a} + \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{r} \end{bmatrix} \overrightarrow{b} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{r} \end{bmatrix} \overrightarrow{c} \text{ is equal to}$$

$$A. 2\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$$

$$B. 3\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$$

$$C.\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

D. None of these

Answer: C

28. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of $\left(\overrightarrow{a} + \overrightarrow{b}\right)$. $\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{b} + \overrightarrow{c}\right)$. $\left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{c} + \overrightarrow{a}\right)$. $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$, is A. 12

B. 4

 $\mathsf{C.}\pm12$

D. 0

Answer: C

Watch Video Solution

29. The three concurrent edges of a parallelopiped represent the vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ such that $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = V$. Then the volume of the parallelopiped whose three concurrent edges are the three diagonals of three faces of the given parallelopiped is

A. 2V

 $\mathsf{B.}\,3V$

 $\mathsf{C}.\,V$

 $\mathsf{D.}\,6V$

Answer: A

Watch Video Solution

30. The edges of a parallelopiped are of unit length and a parallel to noncoplanar unit vectors \hat{a} , \hat{b} , \hat{c} such that \hat{a} . $\hat{b} = \hat{b}$. $\hat{c} = \hat{c}$. $\overrightarrow{a} = 1/2$. Then the volume of the parallelopiped in cubic units is

A.
$$\frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{2\sqrt{2}}$$

C.
$$\frac{\sqrt{3}}{2}$$

D.
$$\frac{1}{\sqrt{3}}$$

Answer: A

31. Let \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} be three non coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. lf $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{x} = p \overrightarrow{a} + q \overrightarrow{b} + r \overrightarrow{c}$ where p,q,r are scalars then the value of $\displaystyle rac{p^2+2q^2+r^2}{q^2}$ is A. 2 **B**. 4 C. 6 D. 8

Answer: B

32. The volume of the tetrahedron whose vertices are the points $\hat{i}, \hat{i} + \hat{j}, \hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} + \lambda\hat{k}$ is 1/6 units,

Then the values of λ

A. does not exist

B. is 7

C. is -1

D. is any real value

Answer: D

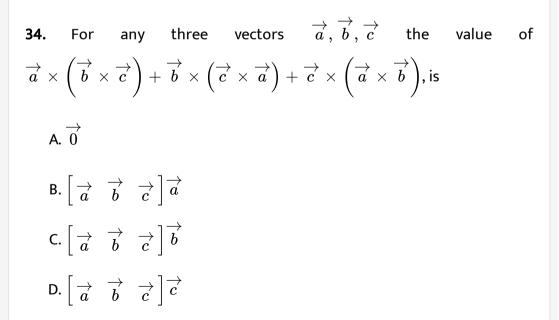
Watch Video Solution

33. Let G_1, G_2, G_3 be the centroids of the triangular faces OBC, OCA, OAB of a tetrahedron OABC. If V_1 denote the volume of the tetrahedron OABC and V_2 that of the parallelopiped with OG_1, OG_2, OG_3 as three concurrent edges, then

A. $4V_1 = 9V_2$ B. $9V_1 = 4V_2$ C. $3V_1 = 2V_2$ D. $3V_2 = 2V_1$

Answer: A

Watch Video Solution



Answer: A

35. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be any three vectors. Then vectors
 $\overrightarrow{u} = \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right), \overrightarrow{v} = \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)$ and
 $\overrightarrow{w} = \overrightarrow{c} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)$ are such that they are

A. collinear

B. non-coplanar

C. coplanar

D. none of these

Answer: C

Watch Video Solution

36. For an vector \overrightarrow{a} the value of

$$\hat{i} imes \left(\overrightarrow{a} imes \overrightarrow{i}
ight) + \hat{j} imes \left(\overrightarrow{a} imes \hat{j}
ight) + \hat{k} imes \left(\overrightarrow{a} imes \overrightarrow{k}
ight)$$
, is

A. \overrightarrow{a}
$B. 2\overrightarrow{a}$
C. $3\overrightarrow{a}$
D. $\overrightarrow{0}$

Answer: B

37. Let
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} be three unit vectors such that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \frac{\sqrt{3}}{2} \left(\overrightarrow{b} + \overrightarrow{c}\right)$. If \overrightarrow{b} is not parallel to \overrightarrow{c} , then the angle between \overrightarrow{a} and \overrightarrow{b} is

A.
$$\frac{3\pi}{4}$$

B. $\frac{\pi}{2}$
C. $\frac{2\pi}{3}$
D. $\frac{5\pi}{6}$

Answer: D

38. If
$$\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)$$
 and $\left[\overrightarrow{,} \overrightarrow{b} \quad \overrightarrow{c}\right] \neq 0$
then $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ is equal to
A. $\overrightarrow{0}$
B. $\overrightarrow{a} \times \overrightarrow{b}$

$$\mathsf{C}.\overrightarrow{b}\times\overrightarrow{c}$$

D.
$$\overrightarrow{c} \times \overrightarrow{a}$$

Answer: A

39. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three vectors, then

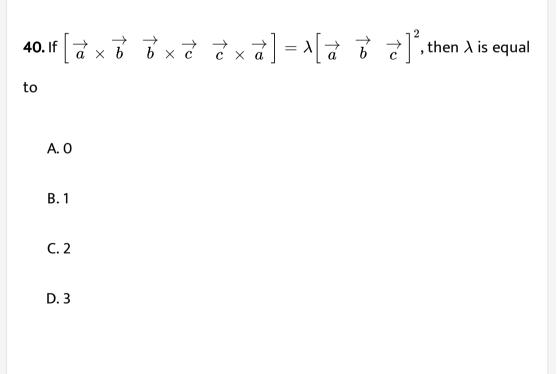
 $\left[\stackrel{
ightarrow}{a} imes \stackrel{
ightarrow}{b} \stackrel{
ightarrow}{b} imes \stackrel{
ightarrow}{c} \stackrel{
ightarrow}{c} rightarrow rightarrow}{c}
ightarrow \left[\stackrel{
ightarrow}{a} imes \stackrel{
ightarrow}{a}
ight] =$

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

B. $2\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
C. $3\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
D. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$

Answer: D

Watch Video Solution



Answer: B

41. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non coplanar non null vectors such that $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right] = 2$ then $\left\{ \left[\overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b} \times \overrightarrow{c} \quad \overrightarrow{c} \times \overrightarrow{a}\right] \right\}^2 =$ A.4 B.16 C.8

D. none of these

Answer: B

42. If
$$(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$$
 where $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are any three vectors such that $\overrightarrow{a}, \overrightarrow{b} \neq 0, \overrightarrow{b}, \overrightarrow{c} \neq 0$ then \overrightarrow{a} and \overrightarrow{c} are

A. inclined at angle
$$rac{\pi}{3}$$
 between them

B. inclined at angle of $\frac{\pi}{6}$ between them

C. perpendicular

D. parallel

Answer: D

Watch Video Solution

43. Unit vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar. A unit vector \overrightarrow{d} is perpendicular to them.If $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right) = \frac{1}{6}\hat{i} - \frac{1}{3}\hat{j} + \frac{1}{3}\hat{j}k$ and the angle between \overrightarrow{a} and \overrightarrow{b} is 30°, then \overrightarrow{c} is/are

$$egin{aligned} \mathsf{A}.\,rac{1}{3}\Big(-2\hat{i}-2\hat{j}\hat{k}\Big) \ \mathsf{B}.&\pmrac{1}{3}\Big(-\hat{i}-2\hat{j}+2\hat{k}\Big) \ \mathsf{C}.\,rac{1}{3}\Big(2\hat{i}+\hat{j}-\hat{k}\Big) \ \mathsf{D}.&\pmrac{1}{3}\Big(-\hat{i}+2\hat{j}-2\hat{k}\Big) \end{aligned}$$

Answer: D

44. Let $\overrightarrow{x}, \overrightarrow{y}$ and \overrightarrow{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If \overrightarrow{a} is a non-zero vector perpendicular to \overrightarrow{x} and $\overrightarrow{y} \times \overrightarrow{z}$ and \overrightarrow{b} is a non zero vector perpendicular to \overrightarrow{y} and $\overrightarrow{z} \times \overrightarrow{x}$ then

$$A. \overrightarrow{b} = \left(\overrightarrow{b}. \overrightarrow{z}\right) \left(\overrightarrow{z} - \overrightarrow{x}\right)$$
$$B. \overrightarrow{a} = \left(\overrightarrow{a}. \overrightarrow{y}\right) \left(\overrightarrow{y} - \overrightarrow{z}\right)$$
$$C. \overrightarrow{a}. \overrightarrow{b} = -\left(\overrightarrow{a}. \overrightarrow{y}\right) \left(\overrightarrow{b}. \overrightarrow{z}\right)$$
$$D. \overrightarrow{a} = \left(\overrightarrow{a}. \overrightarrow{y}\right) \left(\overrightarrow{z} - \overrightarrow{y}\right)$$

Answer: A::B::C

45. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and $\overrightarrow{a}', \overrightarrow{b}', \overrightarrow{c}'$ form a reciprocal system of vectors

then

$$\overrightarrow{a}$$
. \overrightarrow{a} ' + \overrightarrow{b} . \overrightarrow{b} ' + \overrightarrow{c} . \overrightarrow{c} ' =

A. 0

B. 1

C. 2

D. 3

Answer: D

Watch Video Solution

46. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , form a reciprocal system of vectors

then \overrightarrow{a} . \overrightarrow{a} ' + \overrightarrow{b} . \overrightarrow{b} ' + \overrightarrow{c} . \overrightarrow{c} ' = A. $\overrightarrow{0}$

 $\mathsf{B}.\stackrel{\longrightarrow}{a}\times b$

 $\mathsf{C}.\stackrel{\longrightarrow}{b}\times\stackrel{\longrightarrow}{c}$

 $\mathsf{D}.\, \overrightarrow{c} \times \overrightarrow{a}$

Answer: A

Watch Video Solution

47. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and $\overrightarrow{a'}$, $\overrightarrow{b'}$, $\overrightarrow{c''}$ form a reciprocal system of vectors then $\left[\overrightarrow{a'}, \overrightarrow{b'}, \overrightarrow{c'}\right] =$ A. $\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c'}\right]$ B. $\frac{1}{\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c'}\right]}$ C. $\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c'}\right]^2$ D. $\frac{-1}{\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c'}\right]}$

Answer: B

48. If $\overrightarrow{a} = -\hat{i} + \hat{j} + \hat{k}$, $\hat{b} = 2\hat{i} + 0\hat{j} + \hat{k}$, then a vector \overrightarrow{X} satisfying the conditions:

(i) that it is coplanar with \overrightarrow{a} and \overrightarrow{b} . (ii) that is perpendicular to \overrightarrow{b} (iii) that \overrightarrow{a} . $\overrightarrow{X} = 7$, is

$$egin{aligned} \mathsf{A}. & -3\hat{i}\,+5\hat{j}\,+6\hat{k} \ \mathsf{B}.\,rac{1}{2}\Big(-3\hat{i}\,+5\hat{j}\,+6\hat{k}\Big) \ \mathsf{C}.\,3\hat{i}\,-5\hat{j}\,+6\hat{k} \ \mathsf{D}.\,rac{1}{2}\Big(3\hat{i}\,+5\hat{j}\,-6\hat{k}\Big) \end{aligned}$$

Answer: B

Watch Video Solution

49. A solution of the vector equation $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b}$, where $\overrightarrow{a}, \overrightarrow{b}$

are two given vectors is

where λ is a parameter.

A.
$$\overrightarrow{r} = \lambda \overrightarrow{b}$$

B. $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$
C. $\overrightarrow{r} = \overrightarrow{b} + \lambda \overrightarrow{a}$
D. $\overrightarrow{r} = \lambda \overrightarrow{a}$

Answer: B

50. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-coplanar vectors, then a vector \overrightarrow{r} satisfying $\overrightarrow{r}, \overrightarrow{a} = \overrightarrow{r}, \overrightarrow{b} = \overrightarrow{r}, \overrightarrow{c} = 1$, is

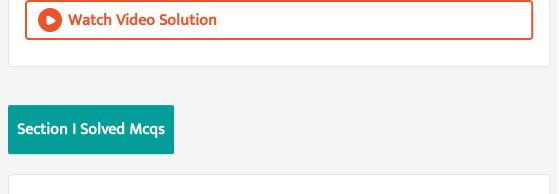
$$A. \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$$

$$B. \frac{1}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]} \left\{ \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{+} \overrightarrow{c} \times \overrightarrow{a} \right\}$$

$$C. \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] \left\{ \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{\times} \overrightarrow{a} \right\}$$

D. none of these

Answer: B



1. Which of the following expressions are meaningful?

A.
$$\overrightarrow{u}$$
. $\left(\overrightarrow{v} \times \overrightarrow{w}\right)$
B. $\left(\overrightarrow{u} \cdot \overrightarrow{v}\right)$. \overrightarrow{w}
C. $\left(\overrightarrow{u} \cdot \overrightarrow{v}\right) \overrightarrow{w}$
D. $\overrightarrow{u} \times \left(\overrightarrow{v} \cdot \overrightarrow{w}\right)$

Answer: A::C

Watch Video Solution

2. For three vectors \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} which of the following expressions is not eqal to any of the remaining three?

A.
$$\overrightarrow{u}$$
. $(\overrightarrow{v} \times \overrightarrow{w})$
B. $(\overrightarrow{u} \times \overrightarrow{w})$. \overrightarrow{u}
C. \overrightarrow{v} . $(\overrightarrow{u} \times \overrightarrow{w})$
D. $(\overrightarrow{u} \times \overrightarrow{v})$. \overrightarrow{w}

Answer: C

Watch Video Solution

3. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$
are linearly dependent vectors and $\left|\overrightarrow{c}\right| = \sqrt{3}$ then

A. lpha=1, eta=-1

 $\texttt{B.}\,\alpha=1,\beta=~\pm\,1$

$$\mathsf{C}.\,\alpha=\,-\,1,\beta=\,\pm\,1$$

 ${\rm D.}\,\alpha=~\pm 1,\beta=1$

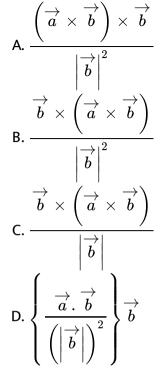
Answer: D

4. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$, $5\hat{i} - \hat{j} + \hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 cubic units if the value of λ is

- A. -1, 7
- B. 1, 7
- $\mathsf{C}.-7$
- D. -1, -7

Answer: B

5. If a vector \overrightarrow{a} is expressed as the sum of two vectors $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ along and perpendicular to a given vector \overrightarrow{b} then $\overrightarrow{\beta}$ is equal to



Answer: B

6. \overrightarrow{a} and \overrightarrow{b} are two given vectors. On these vectors as adjacent sides a parallelogram is constructed. The vector which is the altitude of the parallelogram and which is perpendicular to \overrightarrow{a} is not equal to

$$A. \left\{ \frac{\left(\overrightarrow{a}, \overrightarrow{b}\right)}{\left|\overrightarrow{a}\right|^{2}} \right\} \overrightarrow{a} - \overrightarrow{b}$$

$$B. \frac{1}{\left|\overrightarrow{a}\right|^{2}} \left\{ \left(\overrightarrow{a}, \overrightarrow{b}\right) \overrightarrow{a} - \left(\overrightarrow{a}, \overrightarrow{a}\right) \overrightarrow{b} \right\}$$

$$C. \frac{\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)}{\left|\overrightarrow{a}\right|^{2}}$$

$$D. \frac{\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{a}\right)}{\left|\overrightarrow{b}\right|^{2}}$$

Answer: D

Watch Video Solution

7. Let \hat{a} be a unit vector and \hat{b} a non zero vector non parallel to \overrightarrow{a} . Find the angles of the triangle tow sides of which are represented by the vectors. $\sqrt{3}\left(\widehat{\times b}\right)$ and $\overrightarrow{b} - \left(\widehat{a}, \overrightarrow{b}\right)\widehat{a}$

A.
$$\pi/4, \pi/4, \pi/2$$

B. $\pi/4, \pi/3, \pi/12$

C. $\pi/6, \pi/3, \pi/2$

D. none of these

Answer: C

Watch Video Solution

8. The three vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

A. $\frac{1}{3}$

 $\mathsf{B.4}$

C.
$$\frac{3\sqrt{3}}{4}$$

D. $\frac{4}{3\sqrt{3}}$

Answer: D

9. Let $\overrightarrow{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + \hat{j}$. If \overrightarrow{c} is a vector such that $\overrightarrow{a} = \overrightarrow{c} |\overrightarrow{c}|, |\overrightarrow{c} - \overrightarrow{a}| = 2\sqrt{2}$ and the angle between $\overrightarrow{a} \times \overrightarrow{b}$ and \overrightarrow{c} is 30° , then $\left| \left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \overrightarrow{c} \right| = .$

A. 2/3

B. 3/2

C. 2

D.3

Answer: B

10. Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} be two non-collinear unit vectors. If
 $\overrightarrow{u} = \overrightarrow{a} - (\overrightarrow{a}, \overrightarrow{b}) \overrightarrow{b}$ and $\overrightarrow{v} = \overrightarrow{a} \times \overrightarrow{b}$, then $|\overrightarrow{v}|$ is
A. $|\overrightarrow{u}| + |\overrightarrow{u}, (\overrightarrow{a} \times \overrightarrow{b})|$

B.
$$\left| \overrightarrow{u} \right| + \left| \overrightarrow{u} \cdot \overrightarrow{a} \right|$$

C. $\left| \overrightarrow{u} \right| + \left| \overrightarrow{u} \cdot \overrightarrow{b} \right|$
D. $\left| \overrightarrow{u} \right| + \overrightarrow{u} \cdot \left(\overrightarrow{a} + \overrightarrow{b} \right)$

Answer: C

Watch Video Solution

11. If the vectots $p\hat{i}+\hat{j}+\hat{k},\,\hat{i}+q\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+r\hat{k}(p
eq q
eq r
eq 1)$ are coplanar, then the value of pqr-(p+q+r), is

A. 0

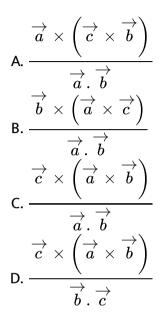
 $\mathsf{B.}-1$

 $\mathsf{C}.-2$

 $\mathsf{D.}\,2$

Answer: C

12. If $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{r} \perp \overrightarrow{a}$ then \overrightarrow{r} is equal to



Answer: A

13. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are any three vectors such that $\left(\overrightarrow{a} + \overrightarrow{b}\right). \overrightarrow{c} = \left(\overrightarrow{a} - \overrightarrow{b}\right) = \overrightarrow{c} = 0$ then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$ is
A. $\overrightarrow{0}$

 $\mathsf{B}.\stackrel{\rightarrow}{a}$

 $\mathsf{C}.\stackrel{\rightarrow}{b}$

D. none of these

Answer: A

Watch Video Solution

14. Let $\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} + 3\hat{k}$. Then, the value of λ for which the vector $\overrightarrow{c} = \lambda\hat{i} + \hat{j} + (2\lambda - 1)\hat{k}$ is parallel to the plane containing \overrightarrow{a} and \overrightarrow{b} . Is

A. 1

B.0

C. −1

D. 2

Answer: B

15. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $\overrightarrow{a}, \overrightarrow{b} = \overrightarrow{a}, \overrightarrow{c} = 0$, If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$ then the volume of the parallelopiped whose three coterminous edges are $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ is

A.
$$\frac{\sqrt{3}}{2}$$
 cubic units
B. $\frac{1}{2}$ cubit unit

C.1 cubic unit

D. none of these

Answer: A

Watch Video Solution

16. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non coplanar, non zero vectors then $\left(\overrightarrow{a}, \overrightarrow{a}\right)\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{a}, \overrightarrow{b}\right)\left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{a}, \overrightarrow{c}\right)\left(\overrightarrow{a} \times \overrightarrow{b}\right)$ is

equal to

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{c}$$

B. $\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} \overrightarrow{a}$
C. $\begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix} \overrightarrow{b}$

D. none of these

Answer: B

Watch Video Solution

17. If the acute angle that the vector $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ makes with the plane of the two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is $\frac{\tan^{-1}1}{\sqrt{2}}$ then

- A. $lpha(eta+\gamma)=eta\gamma$
- $\mathsf{B}.\,\beta(\gamma+\alpha)=\gamma\alpha$
- $\mathsf{C}.\,\gamma(\alpha+\beta)=\alpha\beta$
- D. $\alpha\beta=\beta\gamma+\gamma\alpha=0$

Answer: A

18. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non coplanar vectors and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are reciprocal

vectors, then

$$\left(l\overrightarrow{a} + m\overrightarrow{b} + n\overrightarrow{c}
ight) . \left(l\overrightarrow{p} + m\overrightarrow{q} + n\overrightarrow{r}
ight)$$
 is equal to

A. $l^2+m^2+n^2$

 $\mathsf{B}.\,lm+mn+nl$

C. 0

D. none of these

Answer: A

Watch Video Solution

19. If $\overrightarrow{a} \overrightarrow{b}$ are non zero and non collinear vectors, then $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{k} \end{bmatrix} \hat{k}$ is equal to

A.
$$\overrightarrow{a} + \overrightarrow{b}$$

B. $\overrightarrow{a} \times \overrightarrow{b}$
C. $\overrightarrow{a} - \overrightarrow{b}$
D. $\overrightarrow{b} \times \overrightarrow{a}$

Answer: B

Watch Video Solution

20. If \overrightarrow{r} is a unit vector such that $\overrightarrow{r} = x \left(\overrightarrow{b} \times \overrightarrow{c}\right) + y \left(\overrightarrow{c} \times \overrightarrow{a}\right) + z \left(\overrightarrow{a} \times \overrightarrow{b}\right)$, then $\left| \left(\overrightarrow{r} \cdot \overrightarrow{a}\right) \left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{r} \cdot \overrightarrow{b}\right) \left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{r} \cdot \overrightarrow{c}\right) \left(\overrightarrow{c} \times \overrightarrow{b}\right) \right|$ is

equal to

 $A. \left| \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \right|$ B. 1

 $\mathsf{C}.\left|\left[\begin{array}{cc} \rightarrow & \rightarrow \\ a & b & c \end{array}\right]\right|$

D. 0

Answer: A

21. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be three vectors such that $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 2$. If $\overrightarrow{r} = l \left(\overrightarrow{b} \times \overrightarrow{c} \right) + m \left(\overrightarrow{c} \times \overrightarrow{a} \right) + n \left(\overrightarrow{a} \times \overrightarrow{b} \right)$ be perpendicular to $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$, then the value of $l + m + n$ is

A. 2

B. 1

C. 0

D. none of these

Answer: C

22. If \overrightarrow{b} is a unit vector, then $\left(\overrightarrow{a}, \overrightarrow{b}\right)\overrightarrow{b} + \overrightarrow{b} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)$ is a equal

to

A.
$$\left| \overrightarrow{a} \right|^2 \overrightarrow{b}$$

B. $\left(\overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{a}$
C. \overrightarrow{a}

$$\mathsf{D}.\left(\overrightarrow{a}.\overrightarrow{b}\right)\overrightarrow{b}$$

Answer: C

23. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are any three non coplanar vectors, then $\left[\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{a} - \overrightarrow{c} \quad \overrightarrow{a} - \overrightarrow{b}\right]$ is equal to

A. 0

$$B. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
$$C. 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

$$\mathsf{D.} = 3 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

Answer: D

24. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are any three non coplanar vectors, then $\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right)$. $\left(\overrightarrow{b} + \overrightarrow{c}\right) \times \left(\overrightarrow{c} + \overrightarrow{a}\right)$

B.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

C. 2 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
D. 3 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

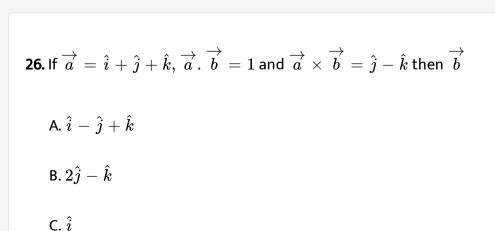
Answer: B

25. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three having magnitude 1,1 and 2 respectively such that $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$, then the acute angle between \overrightarrow{a} and \overrightarrow{c} is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: C



Answer: C

Watch Video Solution

27. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar non-zero vectors, then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times \overrightarrow{c}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \left(\overrightarrow{b} \times \overrightarrow{a}\right) + \overrightarrow{c} \times \overrightarrow{a} \times \left(\overrightarrow{c}\right) \times \left(\overrightarrow{c}\right)$

is equal to

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2 \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
C. $\overrightarrow{0}$

D. none of these

Answer: B

28. If the vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and \overrightarrow{d} are coplanar vectors, then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right)$ is equal to A. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}$ B. $\overrightarrow{0}$ C. $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c} + \overrightarrow{d}$

D. none of these

Answer: B

29.
$$\left(\overrightarrow{a} \times \overrightarrow{b}\right)$$
. $\left(\overrightarrow{c} \times \overrightarrow{d}\right)$ is not equal to
A. \overrightarrow{a} . $\left\{\overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{d}\right)\right\}$
B. $\left\{\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right\}\overrightarrow{d}$
C. $\left(\overrightarrow{d} \times \overrightarrow{c}\right)$. $\left(\overrightarrow{b} \times \overrightarrow{a}\right)$
D. $\left(\overrightarrow{a} . \overrightarrow{c}\right)\left(\overrightarrow{b} . \overrightarrow{d}\right) - \left(\overrightarrow{a} . \overrightarrow{d}\right)\left(\overrightarrow{b} . \overrightarrow{c}\right)$

Answer: B

30. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + \hat{j}$. If \overrightarrow{c} is a vector such that
 $\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{c}|, |\overrightarrow{c} - \overrightarrow{a}| = 2\sqrt{2}$ and the angle between $\overrightarrow{a} \times \overrightarrow{b}$ and \overrightarrow{c}
is 30°. Then $|(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c})$ is equal to
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer: B

31. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non colanar, non =null vectors, and \overrightarrow{r} is any vector in space, then

$$\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{r}\times\overrightarrow{c}\right)+\left(\overrightarrow{b}\times\overrightarrow{c}\right)\times\left(\overrightarrow{r}\times\overrightarrow{a}\right)+\left(\overrightarrow{c}\times\overrightarrow{a}\right)\times\left(\overrightarrow{r}$$

is equal to

A.
$$2\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$$

B. $3\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$
C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$

D. none of these

Answer: A

Watch Video Solution

32. The acute angle betwene any two faces of a regular tetrahedron is

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B. $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

$$\mathsf{C.}\cos^{-1}\left(\frac{2}{3}\right)$$

D. none of these

Answer: A

View Text Solution

33. The acute angle that the vector $2\hat{i} - 2\hat{j} + 2\hat{k}$ makes with the plane determined by the vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is

A.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

B. $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\tan^{-1}(\sqrt{2})$
D. $\cot^{-1}(\sqrt{3})$

Answer: B

34. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-null non coplanar vectors, then $\left[\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{b} - 2\overrightarrow{c} + \overrightarrow{a} \quad \overrightarrow{c} - 2\overrightarrow{a} + \overrightarrow{b}\right] =$ **A.** $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$ **B.** $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$ **C.** 0 **D.** $12\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$

Answer: C

Watch Video Solution

35. The three vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ taken two at a time form three planes. The three unit vectors drawn perpendicular to these three planes form a parallelopiped of volume.

A.
$$\frac{1}{3}$$

 $\mathsf{B.4}$

C.
$$\frac{3\sqrt{3}}{4}$$

D. $\frac{4}{3\sqrt{3}}$

Answer: B

Watch Video Solution

36. Let G_1, G_2, G_3 be the centroids of the triangular faces OBC, OCA, OAB of a tetrahedron OABC. If V_1 denote the volume of the tetrahedron OABC and V_2 that of the parallelopiped with OG_1, OG_2, OG_3 as three concurrent edges, then

A. $4V_1 = 9V_2$

 $\mathsf{B.}\,9V_1=4V_2$

 ${\sf C}.\, 3V_1 = 2V_2$

D. $3V_2=2V_1$

Answer: A

37. Let
$$\overrightarrow{r}, \overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} be four non-zero vectors such that
 $\overrightarrow{r}. \overrightarrow{a} = 0, |\overrightarrow{r} \times \overrightarrow{b}| = |\overrightarrow{r}| |\overrightarrow{b}|, |\overrightarrow{r} \times \overrightarrow{c}| = |\overrightarrow{r}| |\overrightarrow{c}|$ then
 $[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] =$
A. -1
B. 0
C. 1
D. 2

Answer: B

Watch Video Solution

38. Let $\overrightarrow{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{W} = \hat{i} + 3\hat{k}$. It \overrightarrow{U} is a unit vector, then the maximum value of the scalar triple product $\begin{bmatrix} \overrightarrow{U} & \overrightarrow{V} & \overrightarrow{W} \end{bmatrix}$ is

$$A. -1$$

 $\mathsf{B.}\,\sqrt{10}+\sqrt{6}$

C. $\sqrt{59}$

D. $\sqrt{60}$

Answer: C

39. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are two unit vectors, then the vector $\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)$ is parallel to the vector
A. $\overrightarrow{a} + \overrightarrow{b}$
B. $\overrightarrow{a} - \overrightarrow{b}$
C. $2\overrightarrow{a} + \overrightarrow{b}$
D. $2\overrightarrow{a} - \overrightarrow{b}$

Answer: **B**

40. If
$$\overrightarrow{\alpha} = 2\hat{i} + 3\hat{j} - \hat{k}, \overrightarrow{\beta} = -\hat{i} + 2\hat{j} - 4\hat{k}, \overrightarrow{\gamma} = \hat{i} + \hat{j} + \hat{k}$$
, then
 $\left(\overrightarrow{\alpha} \times \overrightarrow{\beta}\right). \left(\overrightarrow{\alpha} \times \overrightarrow{\gamma}\right)$ is equal to
A. -74
B. 74
C. 64
D. 60

Answer: A

Watch Video Solution

41. Let
$$\overrightarrow{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$$
, $\overrightarrow{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\overrightarrow{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$
be three coplnar vectors with $a \neq b$, and $\overrightarrow{v} = \hat{i} + \hat{j} + \hat{k}$. Then \overrightarrow{v} is perpendicular to

A. $\overrightarrow{\alpha}$

 $\mathbf{B}. \overrightarrow{\beta}$

 $\mathsf{C}.\overrightarrow{\gamma}$

D. all of these

Answer: D

Watch Video Solution

42. Given
$$\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = 1$$
 and $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$. If \overrightarrow{c} be a vector such that $\overrightarrow{c} - \overrightarrow{a} - 2\overrightarrow{b} = 3\left(\overrightarrow{a} \times \overrightarrow{b}\right)$, then $\overrightarrow{c} \cdot \overrightarrow{b}$ is equal to

A.
$$-\frac{1}{2}$$

B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: D

43. If \overrightarrow{u} and \overrightarrow{v} be unit vectors. If \overrightarrow{w} is a vector such that $\overrightarrow{w} + (\overrightarrow{w} \times \overrightarrow{u}) = \overrightarrow{v}$ then $\overrightarrow{u}. (\overrightarrow{v} \times \overrightarrow{w})$ will be equal to A. $1 - \overrightarrow{v}. \overrightarrow{w}$ B. $1 - |\overrightarrow{w}|^2$ C. $|\overrightarrow{w}|^2 - (\overrightarrow{v}. \overrightarrow{w})^2$

D. all of these

Answer: D

44. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors of magnitude $\sqrt{3}, 1, 2$ such that $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + 3\overrightarrow{b} = \overrightarrow{0}$ if θ angle between \overrightarrow{a} and \overrightarrow{c} then $\cos^2 \theta$ is equal to

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$ C. $\frac{1}{4}$

D. none of these

Answer: A

Watch Video Solution

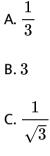
45. If the vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other then a vector \overrightarrow{v} in terms of \overrightarrow{a} and \overrightarrow{b} satisfying the equations \overrightarrow{v} . $\overrightarrow{a} = 0$, \overrightarrow{v} . $\overrightarrow{b} = 1$ and $\begin{bmatrix} \overrightarrow{v} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix} = 1$ is A. $\frac{\overrightarrow{b}}{|\overrightarrow{v}|^2} + \frac{\overrightarrow{a} \times \overrightarrow{b}}{|\overrightarrow{v} + \overrightarrow{v}|^2}$

$$\begin{vmatrix} b \\ \hline a \\ \hline b \\ \hline a \\ \hline b \\ \hline b \\ \hline \hline b \\ \hline c. \frac{\overrightarrow{b}}{\left| \overrightarrow{b} \right|^{2}} + \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left| \overrightarrow{a} \times \overrightarrow{b} \right|^{2}}$$
$$\frac{\overrightarrow{a} \times \overrightarrow{b}}{\left| \overrightarrow{a} \times \overrightarrow{b} \right|^{2}}$$

D. none of these

Answer: A

46. The value of a so that the volume of the paralelopiped formed by $\hat{i} + a\hat{j} + \hat{k}, \hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum is



D.
$$\sqrt{3}$$

Answer: C

47. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors having magnitudes 1,1 and 2 resectively. If $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$ then the acute angel between

$$\overrightarrow{a}$$
 and \overrightarrow{c} is

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$

D. none of these

Answer: B

48. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are vectors such that $\left|\overrightarrow{b}\right| = \left|\overrightarrow{c}\right|$ then $\left\{\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{c}\right)\right\} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) \cdot \left(\overrightarrow{b} + \overrightarrow{c}\right) =$

A. 1

 $\mathsf{B.}-1$

C. 0

D. none of these

Answer: C

49. If the magnitude of the moment about the pont $\hat{j} + \hat{k}$ of a force $\hat{i} + \alpha \hat{j} - \hat{k}$ acting through the point $\hat{i} + \hat{j}$ is $\sqrt{8}$, then the value of α is

A. 1

 $\mathsf{B.}\,2$

C. 3

D. 4

Answer: B

50. If the volume of the parallelopiped formed by the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} as three coterminous edges is 27 units, then the volume of the

parallelopiped having $\overrightarrow{a} = \overrightarrow{a} + 2\overrightarrow{b} - \overrightarrow{c}$, $\overrightarrow{\beta} = \overrightarrow{a} - \overrightarrow{b}$ and $\overrightarrow{\gamma} = \overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c}$ as three coterminous edges, is

A. 27 cubic units

B. 9 cubic units

C. 81 cubic units

D. none of these

Answer: C

Watch Video Solution

51. If $|\overrightarrow{a}| = 5$, $|\overrightarrow{b}| = 3$, $|\overrightarrow{c}| = 4$ and \overrightarrow{a} is perpendicular to \overrightarrow{b} and \overrightarrow{c} such that angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{5\pi}{6}$, then the volume of the parallelopiped having \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} as three coterminous edges is

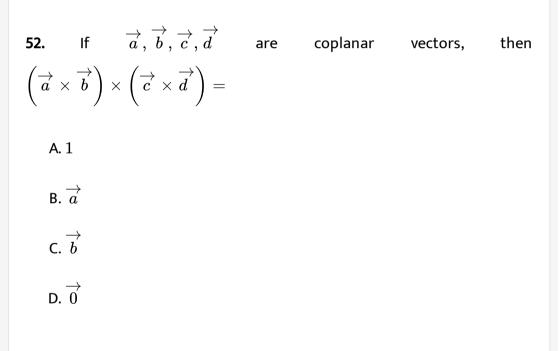
A. 30 cubit units

B. 60 cubic units

C. 20 cubic units

D. none of these

Answer: A



Answer: D

53.
$$\left\{ \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \widehat{i} \right) \right\} \widehat{i} + \left\{ \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \widehat{j} \right) \right\} \widehat{j} + \left\{ \overrightarrow{a} \cdot \left(\overrightarrow{b} \times \widehat{k} \right) \right\} \widehat{k} =$$

A. $2 \left(\overrightarrow{a} \times \overrightarrow{b} \right)$
B. $3 \left(\overrightarrow{a} \times \overrightarrow{b} \right)$
C. $\overrightarrow{a} \times \overrightarrow{b}$
D. $- \left(\overrightarrow{a} \times \overrightarrow{b} \right)$

Answer: C

Watch Video Solution

54. The unit vector which is orhtogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and is coplanar with vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$, is

A.
$$rac{1}{\sqrt{41}} \Bigl(2 \hat{i} - 6 \hat{j} + \hat{k} \Bigr)$$

B. $rac{1}{\sqrt{13}} \Bigl(2 \hat{i} - 3 \hat{j} \Bigr)$
C. $rac{1}{\sqrt{10}} \Bigl(3 \hat{j} - \hat{k} \Bigr)$

D.
$$rac{1}{\sqrt{34}} \Big(4 \hat{i} + 3 \hat{j} - 3 \hat{k} \Big)$$

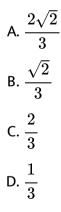
Answer: C

55. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be non-zero vectors such that no two are collinear

and

$$\left(\overrightarrow{a} imes \overrightarrow{b}
ight) imes \overrightarrow{c} = rac{1}{3} \left|\overrightarrow{b}
ight| \left|\overrightarrow{c}
ight| \overrightarrow{a}$$

If θ is the acute angle between the vectors \overrightarrow{b} and \overrightarrow{c} then $\sin \theta$ equals



Answer: A

56. Let $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ be three mutually perpendicular vectors of the same magnitude. If a vector \overrightarrow{x} satisfies the equation

$$\left. \overrightarrow{p} imes \left\{ \overrightarrow{x} - \overrightarrow{q}
ight\} imes \overrightarrow{p}
ight\} + \overrightarrow{q} imes \left\{ \overrightarrow{x} - \overrightarrow{r}
ight) imes \overrightarrow{q}
ight\} + \overrightarrow{r} imes \left\{ \overrightarrow{x} - \overrightarrow{p}
ight) imes \overrightarrow{r}$$

then \overrightarrow{x} is given by

,

A.
$$\frac{1}{2} \left(\overrightarrow{p} + \overrightarrow{q} - 2\overrightarrow{r} \right)$$

B. $\frac{1}{2} \left(\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r} \right)$
C. $\frac{1}{3} \left(\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r} \right)$
D. $\frac{1}{3} \left(2\overrightarrow{p} + \overrightarrow{q} - \overrightarrow{r} \right)$

Answer: B

57. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are vectors in space given by $\overrightarrow{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$
 $\overrightarrow{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$ then the value of

$$\left(2\overrightarrow{a}+\overrightarrow{b}\right)$$
. $\left[\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{a}-2\overrightarrow{b}\right)\right]$, is

A. 2

B. 3

C. 4

D. 5

Answer: D

Watch Video Solution

58. Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' make a right angle withe the side AB then the cosine of the angle α is given by

A.
$$\frac{8}{9}$$

B. $\frac{\sqrt{17}}{9}$

C.
$$\frac{1}{9}$$

D. $\frac{4\sqrt{5}}{9}$

Answer: B

59. Let
$$\overrightarrow{a} = \hat{j} - \hat{k}$$
 and $\overrightarrow{c} = \hat{i} - \hat{j} - \hat{k}$. Then the vector \overrightarrow{b} satisfying $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$ is

- A. $\hat{i}-\hat{j}-2\hat{k}$
- B. $\hat{i}+\hat{j}-2\hat{k}$
- $\mathsf{C}.-\hat{i}+\hat{j}-2\hat{k}$
- D. $2\hat{i}-\hat{j}+2\hat{k}$

Answer: C

60. The vector (s) which is (are) coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$, is/are

A. $\hat{j} - \hat{k}$ and $-\hat{j} + \hat{k}$ B. $-\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$ C. $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ D. $-\hat{j} + \hat{k}$ and $-\hat{i} + \hat{j}$

Answer: Minimum value at $(\alpha)^{lpha}$ $\hat{}$ (x) + alpha^(1-(alpha)^x)` is

Watch Video Solution

61. Let
$$\overrightarrow{a} = -\hat{i} - \hat{k}$$
, $\overrightarrow{b} = -\hat{i} + \hat{j}$ and $\overrightarrow{c} = \hat{i} + 2\hat{j} + 3\hat{k}$
be three given vectors. If \overrightarrow{r} is a vector such that $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{r} \cdot \overrightarrow{a} = 0$, then the value of $\overrightarrow{r} \cdot \overrightarrow{b}$ is

A. 4

B. 8

C. 6

D. 9

Answer: D

62. If
$$\overrightarrow{a} = \frac{1}{\sqrt{10}} (3\hat{i} + \hat{k}), \ \overrightarrow{b} = \frac{1}{7} (2\hat{i} + 3\hat{j} - 6\hat{k}), \ \text{then the value of}$$

 $(2\overrightarrow{a} - \overrightarrow{b}). \left\{ (\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{a} + 2\overrightarrow{b}) \right\} \text{ is}$
A. -5
B. -3
C. 5
D. 3

Answer: A

63. If $\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{c} = r\hat{i} + \hat{j} + (2r - 1)\hat{k}$ are three vectors such that \overrightarrow{c} is parallel to the plane of \overrightarrow{a} and \overrightarrow{b} then r is equal to,

- **B**. 0
- $\mathsf{C.}\,2$
- $\mathsf{D.}-1$

Answer: B

64. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 are non zero vectors, then
 $\left(\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{a}\right). \left(\left(\overrightarrow{b} \times \overrightarrow{a}\right) \times \overrightarrow{b}\right)$ equals
 $A. - \left(\overrightarrow{a}. \overrightarrow{b}\right) |\left(\overrightarrow{a} \times \overrightarrow{b}\right)|$
 $B. |\overrightarrow{a} \times \overrightarrow{b}|^2 \overrightarrow{a}^2$

$$\begin{array}{l} \mathsf{C}. \left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 \overrightarrow{b}^2 \\ \mathsf{D}. \left(\overrightarrow{a}. \overrightarrow{b} \right) \left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 \end{array}$$

Answer: A

Watch Video Solution

Section li Assertion Reason Type

1. Statement 1: Let \overrightarrow{r} be any vector in space. Then, $\overrightarrow{r} = (\overrightarrow{r} \cdot \hat{i})\hat{i} + (\overrightarrow{r} \cdot \hat{j})\hat{j} + (\overrightarrow{r} \cdot \hat{k})\hat{k}$ Statement 2: If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors and \overrightarrow{r} is any vector in space then

$$\vec{r} = \left\{ \frac{\left[\overrightarrow{r} \quad \overrightarrow{b} \quad \overrightarrow{c} \right]}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right]} \right\} \vec{a} + \left\{ \frac{\left[\overrightarrow{r} \quad \overrightarrow{c} \quad \overrightarrow{a} \right]}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right]} \right\} \vec{b} + \left\{ \frac{\left[\overrightarrow{r} \quad \overrightarrow{a} \quad \overrightarrow{b} \right]}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right]} \right\} \vec{b}$$

A. 1

 $\mathsf{B.}\,2$

C. 3

D. 4

Answer: A

Watch Video Solution

2. Statement 1: If \overrightarrow{a} , \overrightarrow{b} are non zero and non collinear vectors, then $\overrightarrow{a} \times \overrightarrow{b} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{k} \end{bmatrix} \hat{k}$ Statement 2: For any vector \overrightarrow{r} $\overrightarrow{r} = (\overrightarrow{r} \cdot \hat{i}) \hat{i} + (\overrightarrow{r} \cdot \hat{j}) \hat{j} + (\overrightarrow{r} \cdot \hat{k}) \hat{k}$ A.1 B.2 C.3 D.4

Answer: A

3. Statement 1: Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three coterminous edges of a parallelopiped of volume 2 cubic units and \overrightarrow{r} is any vector in space then $\left| \left(\overrightarrow{r}, \overrightarrow{a} \right) \left(\overrightarrow{b} \times \overrightarrow{c} \right) + \left(\overrightarrow{r}, \overrightarrow{b} \right) \left(\overrightarrow{c} \times \overrightarrow{a} \right) + \left(\overrightarrow{c}, \overrightarrow{c} \right) \left(\overrightarrow{a} \times \overrightarrow{b} \right) = 2 |\overrightarrow{r}|$ Statement 2: Any vector in space can be written as a linear combination

of three non-coplanar vectors.

A. 1	
B. 2	
C. 3	
D. 4	

Answer: A

4. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be any three vectors, Statement 1: $\left[\overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$ Statement 2: $\left[\overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b} \times \overrightarrow{c} \quad \overrightarrow{c} \times \overrightarrow{a}\right] = \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]^2$ A. 1 B. 2 C. 3 D. 4

Answer: B

Watch Video Solution

5. Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors.

Stetement 2: If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors and \overrightarrow{r} is any vector in space then $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{c} + \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{r} \end{bmatrix} \overrightarrow{a} + \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{r} \end{bmatrix} \overrightarrow{b} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$

A	١.	1

- B. 2
- C. 3
- D. 4

Answer: B

Watch Video Solution

6. Statement 1: Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three coterminous edges of a parallelopiped of volume V. Let V_1 be the volume of the parallelopiped whose three coterminous edges are the diagonals of three adjacent faces of the given parallelopiped. Then $V_1 = 2V$.

Statement 2: For any three vectors, $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$

 $ig[\overrightarrow{p} + \overrightarrow{q} \quad \overrightarrow{q} + \overrightarrow{r} \quad \overrightarrow{r} + \overrightarrow{p} \, ig] = 2ig[\overrightarrow{p} \quad \overrightarrow{q} \quad \overrightarrow{r} \, ig]$

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

7. Statement 1: Let V_1 be the volume of a parallelopiped ABCDEF having $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ as three coterminous edges and V_2 be the volume of the parallelopiped *PQRSTU* having three coterminous edges as vectors whose magnitudes are equal to the areas of three adjacent faces of the parallelopiped *ABCDEF*. Then $V_2 = 2V_1^2$ Statement 2: For any three vectors $\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma}$ $\left[\overrightarrow{\alpha} \times \overrightarrow{\beta}, \overrightarrow{\beta} \times \overrightarrow{\alpha}, \overrightarrow{\gamma} \times \overrightarrow{\alpha}\right] = \left[\rightarrow \overrightarrow{\alpha}, \rightarrow\right]^2$

$$\begin{bmatrix} \overrightarrow{\alpha} \times \overrightarrow{\beta}, \, \overrightarrow{\beta} \times \overrightarrow{\gamma}, \, \overrightarrow{\gamma} \times \overrightarrow{\alpha} \end{bmatrix} = \begin{bmatrix} \overrightarrow{\alpha} & \overrightarrow{\beta} & \overrightarrow{\gamma} \end{bmatrix}^2$$

A. 1

B. 2

C. 3

Answer: D

Watch Video Solution

8. Statement 1: If V is the volume of a parallelopiped having three coterminous edges as $\overrightarrow{a}, \overrightarrow{b}$, and \overrightarrow{c} , then the volume of the parallelopiped having three coterminous edges as

$$\overrightarrow{\alpha} = \left(\overrightarrow{a} \cdot \overrightarrow{a}\right) \overrightarrow{a} + \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{b} + \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\beta} = \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{b}\right) \overrightarrow{b} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\gamma} = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\gamma} = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\gamma} = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\gamma} = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\gamma} = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\gamma} = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{c} = \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

Statement 2: For any three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

$$\begin{vmatrix} \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{c} \end{vmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^{3}$$

A. 1

B. 2

C. 3

D. 4

Answer: C

Watch Video Solution

9. Statement 1: Unit vectors orthogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and coplanar with the vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ are $\pm \frac{1}{\sqrt{10}} (3\hat{j} - \hat{k})$. Statement 2: For any three vectors \vec{a}, \vec{b} , and \vec{c} vector $\vec{a} \times (\vec{b} \times \vec{c})$ is orthogonal to \vec{a} and lies in the plane of \vec{b} and \vec{c} . A.1 B.2 C.3

D. 4

Answer: A

Watch Video Solution

10. Statement If G_1, G_2, G_3 are the centroids of the triangular faces OBC, OCA, OAB of a tetrahedron OABC, then the ratio of the volume of the tetrahedron to that of the parallelopiped with OG_1, OG_2, OG_3 as coterminous edges is 9:4.

Statement 2: For any three vctors, $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

$$\left[\overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{c} + \overrightarrow{a} \right] = 2 \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right]$$

A. 1

B. 2

C. 3

D. 4

Answer: A

11. Statement 1: For any three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

 $\left[\overrightarrow{a} imes \overrightarrow{b} \quad \overrightarrow{b} imes \overrightarrow{c} \quad \overrightarrow{c} imes \overrightarrow{a}
ight] = 0$

Statement 2: If $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are linear dependent vectors then they are coplanar.

A. 1

B. 2

C. 3

D. 4

Answer: D

Watch Video Solution

12. Let the vectors $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{RS}, \overrightarrow{ST}, \overrightarrow{TU}$ and \overrightarrow{UP} represent the sides of

a regular hexagon.

Statement 1:
$$\overrightarrow{PQ} \times \left(\overrightarrow{RS} + \overrightarrow{ST}\right) \neq \overrightarrow{0}$$

Statement 2: $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} \neq \overrightarrow{0}$

A. 1

B. 2

C. 3

D. 4

Answer: C

View Text Solution

Exercise

1. For non zero vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$

 $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right), \overrightarrow{|=|a|}\right| \overrightarrow{b} \left|\overrightarrow{c}\right|$ holds iff
A. $\overrightarrow{a}, \overrightarrow{b} = \overrightarrow{b}, \overrightarrow{c} = \overrightarrow{a}, \overrightarrow{a} = 0$

B.
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0 = \overrightarrow{b}$. \overrightarrow{c}
C. \overrightarrow{b} . $\overrightarrow{c} = 0 = \overrightarrow{c}$. \overrightarrow{a}
D. \overrightarrow{c} . $\overrightarrow{a} = 0 = \overrightarrow{a}$. \overrightarrow{b}

Answer: A

Watch Video Solution

2. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$$
, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and \overrightarrow{c} be a unit vector perpendicular to \overrightarrow{a} and coplanar with \overrightarrow{a} and \overrightarrow{b} , then it is given by

A.
$$rac{1}{\sqrt{6}}ig(2\hat{i}-\hat{j}+\hat{j}kig)$$

B. $rac{1}{\sqrt{2}}ig(\hat{j}+\hat{k}ig)$
C. $rac{1}{\sqrt{6}}ig(\hat{i}-2\hat{j}+\hat{k}ig)$
D. $rac{1}{2}ig(\hat{j}-\hat{k}ig)$

Answer: A

3. If \overrightarrow{a} lies in the plane of vectors \overrightarrow{b} and \overrightarrow{c} , then which of the following is correct?

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 0$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 1$
C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 3$
D. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} = 1$

Watch Video Solution

Answer: A

4. The value of
$$\begin{bmatrix} \overrightarrow{a} - \overrightarrow{b} & \overrightarrow{b} - \overrightarrow{c} & \overrightarrow{c} - \overrightarrow{a} \end{bmatrix}$$
, where $|\overrightarrow{a}| = 1, |\overrightarrow{b}| = 5, |\overrightarrow{c}| = 3$, is
A.0

B. 1

C. 6

D. none of these

Answer: A

Watch Video Solution

5. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-coplanar mutually perpendicular unit vectors, then $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ is A. ± 1

 $\mathsf{B.}\,0$

 $\mathsf{C}.-2$

D. 2

Answer: A

6. If $\overrightarrow{r} \cdot \overrightarrow{a} = \overrightarrow{r} \cdot \overrightarrow{b} = \overrightarrow{r} \cdot \overrightarrow{c} = 0$ for some non-zero vectro \overrightarrow{r} , then the value of $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ is A. 2 B. 3 C. 0

D. none of these

Answer: C

Watch Video Solution

7. If the vectors

$$\overrightarrow{r}_1 = a\hat{i} + \hat{j} + \hat{k}, \overrightarrow{r}_2 = \hat{i} + b\hat{j} + \hat{k}, \overrightarrow{r}_3 = \hat{i} + \hat{j} + c\hat{k}(a \neq 1, b \neq 1, c \neq 1)$$

are coplanar then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is
A. -1

 $\mathsf{B.0}$

C. 1

D. none of these

Answer: C

Watch Video Solution

8. If $\hat{a}, \hat{b}, \hat{c}$ are three units vectors such that \hat{b} and \hat{c} are non-parallel and $\widehat{a} imes \left(\hat{b} imes \hat{c}\right) = 1/2\hat{b}$ then the angle between \widehat{a} and \hat{c} is

A. 30°

B. $45^{\,\circ}$

C. 60°

D. 90°

Answer: C

9. For any three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ the vector $\left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \overrightarrow{a}$ equals

$$A. \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{c} - \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{a}$$
$$B. \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{c} - \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{b}$$
$$C. \left(\overrightarrow{b} \cdot \overrightarrow{a}\right) \overrightarrow{c} - \left(\overrightarrow{c} \cdot \overrightarrow{a}\right) \overrightarrow{b}$$

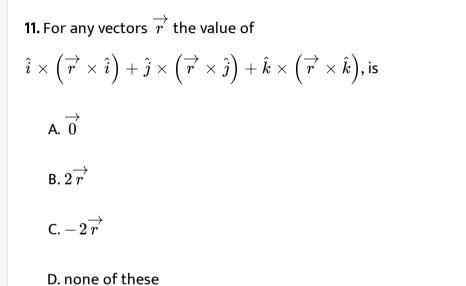
D. none of these

Answer: B

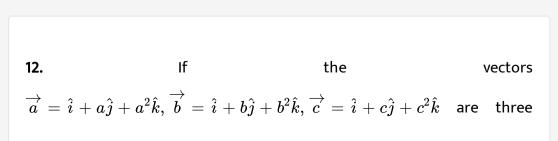
10. For any these vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 the expression
 $\left(\overrightarrow{a} - \overrightarrow{b}\right) \cdot \left\{ \left(\overrightarrow{b} - \overrightarrow{c}\right) \times \left(\overrightarrow{c} - \overrightarrow{a}\right) \right\}$ equals
A. $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$
B. $2\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$
C. $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]^2$

D. none of these

Answer: D



Answer: B



non-coplanar vectors and $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$, then the value of *abc* is A. 0 B. 1 C. 2 D. -1

Answer: D

Watch Video Solution

13. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three non-coplanar vectors and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ be the

vectors defined by the relations.

$$\overrightarrow{p} = rac{\overrightarrow{b} \times \overrightarrow{c}}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}
ight]}, \overrightarrow{q} = rac{\overrightarrow{c} \times \overrightarrow{a}}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}
ight]}, \overrightarrow{r} = rac{\overrightarrow{c} \times \overrightarrow{a}}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}
ight]}$$

Then the value of the expression

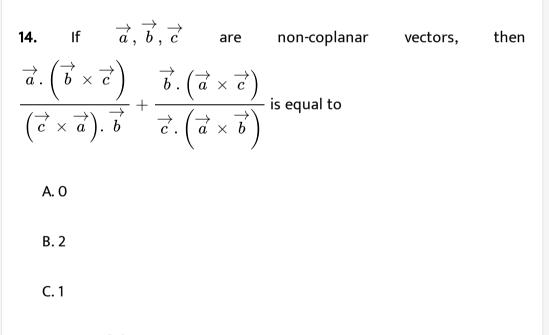
$$\left(\overrightarrow{a}+\overrightarrow{b}\right)$$
. $\overrightarrow{p}+\left(\overrightarrow{b}+\overrightarrow{c}\right)$. $\overrightarrow{q}+\left(\overrightarrow{c}+\overrightarrow{a}\right)$. \overrightarrow{r} is equal to

D		1
D	•	I

C. 2

D. 3

Answer: D



D. none of these

Answer: A

15. Let
$$\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \ \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
 and $\overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non zero vectors such that \overrightarrow{c} is a unit vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} . If the angle between \overrightarrow{a} and \overrightarrow{b} $|a_1 \ a_2 \ a_3|^2$

is
$$\frac{\pi}{6}$$
, then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ is equal to

A. 0

B. 1

C.
$$\frac{1}{4} \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2$$

D. $\frac{3}{4} \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2$

Answer: C

16. If the non zero vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other, then the solution of the equation $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b}$ is given by

A.
$$\overrightarrow{r} = x\overrightarrow{a} + \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{a}\right|^{2}}$$

B. $\overrightarrow{r} = x\overrightarrow{b} - \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}$
C. $\overrightarrow{r} = x\left(\overrightarrow{a} \times \overrightarrow{b}\right)$
D. $\overrightarrow{r} = x\left(\overrightarrow{b} \times \overrightarrow{a}\right)$

Answer: A

Watch Video Solution

17. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc]

(veca.vecd)`

$$A. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \begin{pmatrix} \overrightarrow{c} & \overrightarrow{d} \\ \overrightarrow{c} & \overrightarrow{d} \end{pmatrix}$$
$$B. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \begin{pmatrix} \overrightarrow{a} & \overrightarrow{d} \\ \overrightarrow{a} & \overrightarrow{d} \end{pmatrix}$$

$$\mathsf{C}.\left[\left(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\right)\left[\left(\overrightarrow{c},\overrightarrow{d}\right)\right.\right.\right]$$

D. none of these

Answer: B

18. If
$$(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$$
 then
A. $\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{0}$
B. $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{0}$
C. $\overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{a} \times \overrightarrow{b}$
D. $\overrightarrow{c} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{a}$

Answer: A

19. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are reciprocal system of vectors, then $\overrightarrow{a} \times \overrightarrow{p} + \overrightarrow{b} \times \overrightarrow{q} + \overrightarrow{c} \times \overrightarrow{r}$ equals

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

B. $\begin{pmatrix} \overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r} \end{pmatrix}$
C. $\overrightarrow{0}$

D.
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

Answer: C

20.
$$\overrightarrow{a} \times \left(\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right)$$
 equals
A. $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \left(\overrightarrow{a} \times \overrightarrow{b}\right)$
B. $\left(\overrightarrow{a} \cdot \overrightarrow{a}\right) \left(\overrightarrow{b} \times \overrightarrow{a}\right)$
C. $\left(\overrightarrow{b} \cdot \overrightarrow{b}\right) \left(\overrightarrow{a} \times \overrightarrow{b}\right)$

$$\mathsf{D}.\left(\overrightarrow{b}.\overrightarrow{b}\right)\left(\overrightarrow{b}\times\overrightarrow{a}\right)$$

Answer: B

Watch Video Solution

21. If $\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and \overrightarrow{c} is a unit vector perpendiculr to the vector \overrightarrow{a} and coplanar with \overrightarrow{a} and \overrightarrow{b} , then a unit vector \overrightarrow{d} perpendicular to both \overrightarrow{a} and \overrightarrow{c} is

A.
$$rac{1}{\sqrt{6}}ig(2\hat{i} - \hat{j} + \hat{j}kig)$$

B. $rac{1}{\sqrt{2}}ig(\hat{j} + \hat{k}ig)$
C. $rac{1}{\sqrt{2}}ig(\hat{i} + \hat{j}ig)$
D. $rac{1}{\sqrt{2}}ig(\hat{i} + \hat{k}ig)$

Answer: B

22. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are non-coplanar unit vectors such that
 $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \frac{\overrightarrow{b} + \overrightarrow{c}}{\sqrt{2}}$ then the angle between \overrightarrow{a} and \overrightarrow{b} is
A. $3\pi/4$
B. $\pi/4$
C. $\pi/2$
D. π

Answer: A

Watch Video Solution

23. Let a, b, c be distinct non-negative numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lies in a plane then c is

A. the AM of a and b

B. the GM of a and b

C. the HM of a and b

D. equal to zero

Answer: B

Watch Video Solution

24. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$$
 and $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ then
a. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are orthogonal in pairs and $|\overrightarrow{a}| = |\overrightarrow{c}|, |\overrightarrow{b}| =$
b. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are not orthogonal to each other
c. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are orthogonal in pairs but $|\overrightarrow{a}| \neq |\overrightarrow{c}|$
d. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are orthogonal but $|\overrightarrow{b}| = 1$

1

OR

If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$, then

A.
$$\left| \overrightarrow{a} \right| = 1$$
, $\overrightarrow{b} = \overrightarrow{c}$
B. $\left| \overrightarrow{c} \right| = 1$, $\left| \overrightarrow{a} \right| = 1$
C. $\left| \overrightarrow{b} \right| = 2$, $\overrightarrow{c} = 2\overrightarrow{a}$
D. $\left| \overrightarrow{b} \right| = 1$, $\left| \overrightarrow{c} \right| = \left| \overrightarrow{a} \right|$

Answer: A::D

25. If
$$\overrightarrow{p} = \frac{\overrightarrow{b} \times \overrightarrow{c}}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]}, \overrightarrow{q} = \frac{\overrightarrow{c} \times \overrightarrow{a}}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]}, \overrightarrow{r} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{b}\right]}$$

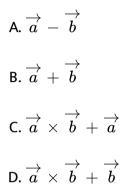
where $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-coplanar vectors, then the value of the expression $\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right). \left(\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}\right)$ is
A.3
B.2
C.1

D. 0

Answer: A

$$\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{a}, \overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{a} \neq 0, \overrightarrow{b} \neq 0, \overrightarrow{a} \neq \lambda \overrightarrow{b}, \overrightarrow{a}$$

is not perpendicular to \overrightarrow{b} then $\overrightarrow{r} =$



Answer: B

Watch Video Solution

27. The vector \overrightarrow{a} coplanar with the vectors \hat{i} and \hat{j} perendicular to the vector $\overrightarrow{b} = 4\hat{i} - 3\hat{j} + 5\hat{k}$ such that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$ is

A.
$$\sqrt{2} \Big(3\hat{i} + 4\hat{j} \Big)$$
 or $-\sqrt{2} \Big(3\hat{i} + 4\hat{j} \Big)$
B. $\sqrt{2} \Big(4\hat{i} + 3\hat{j} \Big)$ or $-\sqrt{2} \Big(4\hat{i} + 3\hat{j} \Big)$

C.
$$\sqrt{3} \Big(4\hat{i} + 5\hat{j} \Big)$$
 ro $-\sqrt{3} \Big(4\hat{i} + 5\hat{j} \Big)$
D. $\sqrt{3} \Big(5\hat{i} + 4\hat{j} \Big)$ or $-\sqrt{3} \Big(5\hat{i} + 4\hat{j} \Big)$

Answer: A

28. If the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are mutually perpendicular, then
 $\overrightarrow{a} \times \left\{ \overrightarrow{a} \times \left\{ \overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b} \right) \right\} \right\}$ is equal to
A. $\left| \overrightarrow{a} \right|^2 \overrightarrow{b}$
B. $\left| \overrightarrow{a} \right|^3 \overrightarrow{b}$
C. $\left| \overrightarrow{a} \right|^4 \overrightarrow{b}$

D. none of these

Answer: C

$$\left[\left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{b} \times \overrightarrow{c} \right) \quad \left(\overrightarrow{b} \times \overrightarrow{c} \right) \times \left(\overrightarrow{c} \times \overrightarrow{a} \right) \quad \left(\overrightarrow{c} \times \overrightarrow{a} \right) \times \left(\overrightarrow{a} \right) \right]$$

equal to

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^3$
C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^4$

D. none of these

Answer: C

30. Let
$$\overrightarrow{a} = \hat{i} - \hat{j}, \overrightarrow{b} = \hat{j} - \hat{k}, \overrightarrow{c} = \hat{k} - \hat{i}$$
. If \hat{d} is a unit vector such that $\overrightarrow{a} \cdot \hat{d} = 0 = \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \hat{d} \end{bmatrix}$, then \hat{d} equals

A.
$$\pm rac{\hat{i}+\hat{j}-2\hat{k}}{\sqrt{6}}$$

B. $\pm rac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$

C.
$$\pm rac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$$

D. $\pm \hat{k}$

Answer: A

31. If the vectors $(\sec^2 A)\hat{i} + \hat{j} + \hat{k}, \hat{i} + (\sec^2 B)\hat{j} + \hat{k}, \hat{i} + \hat{j} + (\sec^2 c)\hat{k}$ are coplanar,

then the value of $\cos ec^2A + \cos ec^2B + \cos ec^2C$, is

A. 1

B. 2

C. 3

D. none of these

Answer: B

32. \hat{a} and \hat{b} are two mutually perpendicular unit vectors. If the vectors $x\hat{a} + x\hat{b} + z(\hat{a} \times \hat{b}), \hat{a} + (\hat{a} \times \hat{b})$ and $z\hat{a} + z\hat{b} + y(\hat{a} \times \hat{b})$ lie in a plane, then z is

A. A.M is x and y

B. G.M. of x and y

C. H.M. of x and y

D. equal to zero

Answer: B

Watch Video Solution

33. If three concurrent edges of a parallelopiped of volume V represent vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ then the volume of the parallelopiped whose three concurrent edges are the three concurrent diagonals of the three faces of the given parallelopiped is

A. V

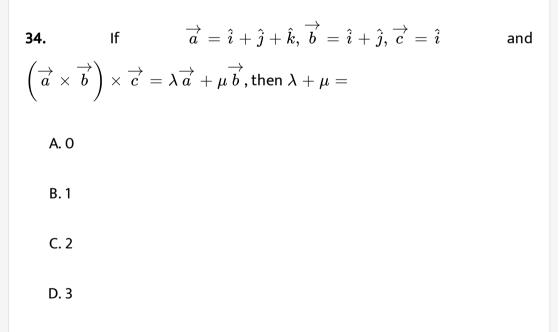
 $\mathsf{B.}\,2V$

 $\mathsf{C.}\,3V$

D. none of these

Answer: B

Watch Video Solution



Answer: A

35. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 5\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{c} = 5\hat{i} - 3\hat{j} - 2\hat{k}$, then the volume of the parallelopiped with coterminous edges

$$\overrightarrow{a}+\overrightarrow{b},\overrightarrow{b}+\overrightarrow{c},\overrightarrow{c}+\overrightarrow{a}$$
 is

A. 2

B. 1

C. -1

D. 0

Answer: D

36. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are linearly independent vectors, then
$$\frac{\left(\overrightarrow{a}+2\overrightarrow{b}\right) \times \left(2\overrightarrow{b}+\overrightarrow{c}\right). \left(5\overrightarrow{c}+\overrightarrow{a}\right)}{\overrightarrow{a}. \left(\overrightarrow{b}\times\overrightarrow{c}\right)}$$
 is equal to

A. 10

B. 14

C. 18

D. 12

Answer: D

37. If
$$\overrightarrow{a}$$
, \overrightarrow{b} are non-collinear vectors, then
 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{k} \end{bmatrix} \hat{k} =$
A. $\overrightarrow{a} + \overrightarrow{b}$
B. $\overrightarrow{a} \times \overrightarrow{b}$

$$\begin{array}{l} \mathsf{C}.\overrightarrow{a}-\overrightarrow{b}\\\\ \mathsf{D}.\overrightarrow{b}\times\overrightarrow{a}\end{array}$$

Answer: B

38. If
$$\begin{bmatrix} 2\overrightarrow{a} + 4\overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix} + \mu \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix}$$
, then
 $\lambda + \mu =$
A. 6
B. -6
C. 10
D. 8

Answer: A

39. If the volume of the tetrahedron whose vertices are $(1, -6, 10), (-1, -3, 7), (5, -1, \lambda)$ and (7, -4, 7) is 11 cubit units then $\lambda =$

A. 2,6

B. 3,4

C. 1,7

D. 5,6

Answer: C

$$40. \left(\overrightarrow{b} \times \overrightarrow{c} \right) \times \left(\overrightarrow{c} \times \overrightarrow{a} \right) =$$

$$A. \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] \overrightarrow{c}$$

$$B. \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] \overrightarrow{b}$$

$$C. \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] \overrightarrow{a}$$

$$\mathsf{D}.\,a imes \left(\stackrel{
ightarrow}{b} imes \stackrel{
ightarrow}{c}
ight)$$

Answer: A

41. When a right handed rectangular Cartesian system OXYZ rotated about z-axis through $\pi/4$ in the counter clock wise sense it is found that a vector \overrightarrow{r} has the components $2\sqrt{2}$, $3\sqrt{2}$ and 4. The components of \overrightarrow{a} in the OXYZ coordinate system ar

A. 5, -1, 4

B. 5, $-1, 4\sqrt{2}$

C. $-1, -5, 4\sqrt{2}$

D. none of these

Answer: D

View Text Solution

42. Prove that vectors

$$egin{aligned} ec{u} &= (al+a_1l_1)\hat{i} + (am+a_1m_1)\hat{j} + (an+a_1n_1)\hat{k} \ ec{v} &= (bl+b_1l_1)\hat{i} + (bm+b_1m_1)\hat{j} + (bn+b_1n_1)\hat{k} \ ec{w} &= (wl+c_1l_1)\hat{i} + (cm+c_1m_1)\hat{j} + (cn+c_1n_1)\hat{k} \end{aligned}$$

A. form an equilteral triangle

B. are coplanar

C. are collinear

D. are mutually perpendicular

Answer: B

Watch Video Solution

43. If
$$\overrightarrow{a} x \left(\overrightarrow{a} \times \overrightarrow{b} \right) = \overrightarrow{b} \times \left(\overrightarrow{b} \times \overrightarrow{c} \right)$$
 and $\overrightarrow{a} \cdot \overrightarrow{b} \neq 0$, and $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] =$

A. 0

D	1
р.	1

C. 2

D. 3

Answer: A

44.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & a \times \overrightarrow{b} \end{bmatrix} + \left(\overrightarrow{a} \cdot \overrightarrow{b} \right)^2 =$$

A. $\left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2$
B. $\left| \overrightarrow{a} + \overrightarrow{b} \right|^2$
C. $\left| \overrightarrow{a} \right|^2 + \left| \overrightarrow{b} \right|^2$

D. none of these

Answer: A

45. Let $\overrightarrow{\alpha}$, $\overrightarrow{\beta}$ and $\overrightarrow{\gamma}$ be the unit vectors such that $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ are mutually perpendicular and $\overrightarrow{\gamma}$ is equally inclined to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ at an angle θ . If $\overrightarrow{\gamma} = x \overrightarrow{\alpha} + y \overrightarrow{\beta} + z \left(\overrightarrow{\alpha} \times \overrightarrow{\beta}\right)$, then which one of the following is incorrect?

A. $z^2 = 1 - 2x^2$ B. $z^2 = 1 - 2y^2$ C. $z^2 = 1 - x^2 - y^2$ D. $x^2 + y^2 = 1$

Answer: D

Watch Video Solution

46. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit coplanar vectors, then $\begin{bmatrix} 2\overrightarrow{a} - 3\overrightarrow{b} & 7\overrightarrow{b} - 9\overrightarrow{c} & 12\overrightarrow{c} - 23\overrightarrow{b} \end{bmatrix}$ is equal to

A. 0

B. 1/2

C. 24

D. 32

Answer: A

Watch Video Solution

47. If $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 3$, then the volume (in cubic units) of the parallelopiped with $2\overrightarrow{a} + \overrightarrow{b}, 2\overrightarrow{b} + \overrightarrow{c}$ and $2\overrightarrow{c} + \overrightarrow{a}$ as coterminous edges is

A. 15

B. 22

C. 25

D. 27

Answer: D

48. If V is the volume of the parallelopiped having three coterminous edges as \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , then the volume of the parallelopiped having three coterminous edges as

$$\overrightarrow{lpha} = \left(\overrightarrow{a}.\overrightarrow{a}
ight)\overrightarrow{a} + \left(\overrightarrow{a}.\overrightarrow{b}
ight)\overrightarrow{b} + \left(\overrightarrow{a}.\overrightarrow{c}
ight)\overrightarrow{c}$$
 $\overrightarrow{eta} = \left(\overrightarrow{a}.\overrightarrow{b}
ight)\overrightarrow{a} + \left(\overrightarrow{b}.\overrightarrow{b}
ight)\overrightarrow{b} + \left(\overrightarrow{b}.\overrightarrow{c}
ight)\overrightarrow{c}$
 $\overrightarrow{\gamma} = \left(\overrightarrow{a}.\overrightarrow{c}
ight)\overrightarrow{a} + \left(\overrightarrow{b}.\overrightarrow{c}
ight)\overrightarrow{b} + \left(\overrightarrow{c}.\overrightarrow{c}
ight)\overrightarrow{c}$ is

A.
$$V^3$$

 $\mathsf{B.}\, 3V$

- $\mathsf{C}.\,V^{\,2}$
- $\mathsf{D.}\,2V$

Answer: A

49. The unit vector \overrightarrow{a} and \overrightarrow{b} are perpendicular, and the unit vector \overrightarrow{c} is inclined at an angle θ to both \overrightarrow{a} and \overrightarrow{b} . If $\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b} + \gamma \left(\overrightarrow{a} \times \overrightarrow{b} \right)$, then which one of the following is incorrect?

A. lpha
eq etaB. $\gamma^2 = 1 - 2lpha^2$ C. $\gamma^2 = -\cos 2 heta$ D. $eta^2 = rac{1 + \cos 2 heta}{2}$

Answer: A

Watch Video Solution

50. If the vector $\overrightarrow{AB} = -3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - \lambda\hat{j} + 4\hat{k}$ where $\lambda > 0$ are the sides of ΔABC and the length of the median through A is $\sqrt{18}$, then the length of the side BC, is

A. $2\sqrt{26}$

B. $4\sqrt{13}$

C. $6\sqrt{13}$

D. none of these

Answer: D

Watch Video Solution

51. Let \overrightarrow{a} and \overrightarrow{b} be two mutually perpendicular unit vectors and \overrightarrow{c} be a unit vector inclued at an angle θ to both \overrightarrow{a} and \overrightarrow{b} . If $\overrightarrow{c} = x\overrightarrow{a} + x\overrightarrow{b} + y\left(\overrightarrow{a}\times\overrightarrow{b}\right)$, where $x, y \in R$, then the exhaustive

range of θ is

A. $\left[\frac{\pi}{2}, \frac{3\pi}{4}\right]$ B. $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$ C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

D. none of these

Answer: B

52. Let the position vectors of vertices A, B, C of $\triangle ABC$ be respectively $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} . If \overrightarrow{r} is the position vector of the mid point of the line segment joining its orthocentre and centroid then $(\overrightarrow{a} - \overrightarrow{r}) + (\overrightarrow{b} - \overrightarrow{r}) + (\overrightarrow{c} - \overrightarrow{r}) =$ A. 1 B. 2 C. 3 D. none of these

Answer: C

View Text Solution

53. The position vector of a point P is $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$ where $x, y, z \in N$ and $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$. If $\overrightarrow{r} \cdot \overrightarrow{a} = 10$, then the number of possible position of P is

A. 36

B. 72

C. 66

D. none of these

Answer: A

Watch Video Solution

54. \overrightarrow{a} and \overrightarrow{b} are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{a} \times \overrightarrow{b}$ is equal to

A.
$$\frac{1}{\sqrt{2}} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right)$$

B. $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right)$

$$\begin{array}{l} \mathsf{C}.\,\frac{1}{\sqrt{3}} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right) \\ \mathsf{D}.\,\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right) \end{array}$$

Answer: C

Watch Video Solution

55. If the vectors $2a\hat{i} + b\hat{j} + c\hat{k}$, $b\hat{i} + c\hat{j} + 2a\hat{k}$ and $c\hat{i} + 2a\hat{j} + b\hat{k}$ are coplanar vectors, then the straight lines ax + by + c = 0 will always pass through the point

A. (1, 2)

- B. (2, -1)
- C.(2,1)
- D. (1, -2)

Answer: C

56. Let $\overrightarrow{\alpha} = a\hat{i} + b\hat{j} + c\hat{k}$, $\overrightarrow{b} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\overrightarrow{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ are three coplanar vectors with $a \neq b$ and $\overrightarrow{\gamma} = \hat{i} + \hat{j} + \hat{k}$. Then $\overrightarrow{\gamma}$ is perpendicular to

A. $\overrightarrow{\alpha}$ B. $\overrightarrow{\beta}$

 $\mathsf{C}. \overrightarrow{\gamma}$

D. all of these

Answer: D

Watch Video Solution

57. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three mutually perpendicular vectors having same magnitude and \overrightarrow{r} is a vector satisfying $\overrightarrow{a} \times \left(\left(\overrightarrow{r} - \overrightarrow{b} \right) \times \overrightarrow{a} \right) + \overrightarrow{b} \times \left(\left(\overrightarrow{r} - \overrightarrow{c} \right) \times \overrightarrow{b} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{b} \times \left(\left(\overrightarrow{r} - \overrightarrow{c} \right) \times \overrightarrow{b} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a} \right) + \overrightarrow{c} \times \left(\overrightarrow{r} \right) + \overrightarrow{c}$

A.
$$\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$$

B. $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
C. $\frac{3}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
D. $2 \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$

Answer: B

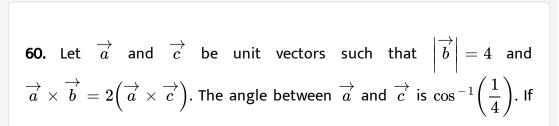
View Text Solution

58. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be the three non-coplanar vectors and \overrightarrow{d} be a non zero vector which is perpendicular to $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ and is represented as $\overrightarrow{d} = x \left(\overrightarrow{a} \times \overrightarrow{b}\right) + y \left(\overrightarrow{b} \times \overrightarrow{c}\right) + z \left(\overrightarrow{c} \times \overrightarrow{a}\right)$. Then, A. $x^3 + y^3 + z^3 = 3xyz$ B. xy + yz + zx = 0C. x = y = zD. $x^2 + y^2 + z^2 = xy + yz + zx$

Answer: A

59. Let
$$\overrightarrow{r}$$
 be a unit vector satisfying $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b}$, where $|\overrightarrow{a}| = \sqrt{3}$ and $|\overrightarrow{b}| = \sqrt{2}$. Then \overrightarrow{r} -
A. $\frac{2}{3} \left(\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \right)$
B. $\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \right)$
C. $\frac{2}{3} \left(\overrightarrow{a} - \overrightarrow{a} \times \overrightarrow{b} \right)$
D. $\frac{1}{3} \left(-\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \right)$

Answer: B



$$\overrightarrow{b}-2\overrightarrow{c}=\lambda\overrightarrow{a}$$
 then A. $rac{1}{3},rac{1}{4}$ B. $-rac{1}{3},\,-rac{1}{4}$

 $\lambda =$

$$C.3, -4$$

D. -3, 4

Answer: C

61. If
$$4\overrightarrow{a} + 5\overrightarrow{b} + 9\overrightarrow{c} = \overrightarrow{0}$$
 then
 $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \left\{\left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)\right\}$ is equal to
A. $\overrightarrow{0}$
B. \overrightarrow{a}
C. \overrightarrow{b}
D. \overrightarrow{c}

Answer: A

62. If in a triagle
$$ABC, \overrightarrow{AB} = \frac{\overrightarrow{u}}{\left|\overrightarrow{u}\right|} - \frac{\overrightarrow{v}}{\left|\overrightarrow{v}\right|}$$
 and $\overrightarrow{A}C = 2\frac{\overrightarrow{u}}{\left|\overrightarrow{u}\right|}$,where $\left|\overrightarrow{u}\right| = \left|\overrightarrow{v}\right|$, then

A.
$$1 + \cos 2A + \cos 2B + \cos 2C = 0$$

- $\mathsf{B.}\,1+\cos 2A+\cos 2B+\cos 2C=2$
- C. both a and b

D. none of these

Answer: A

63. Let
$$A\Big(2\hat{i}+3\hat{j}+5\hat{k}\Big), B\Big(-\hat{i}+3\hat{j}+2\hat{k}\Big)$$
 and $C\Big(\lambda\hat{i}+5\hat{j}+\mu\hat{k}\Big)$ be

the vertices of ΔABC and its median through A be equally inclined to the positive directions of the coordinate axds. Then, the value of $2\lambda-\mu$

is

A.	0
Β.	1
C.	4
D.	3

Answer: C

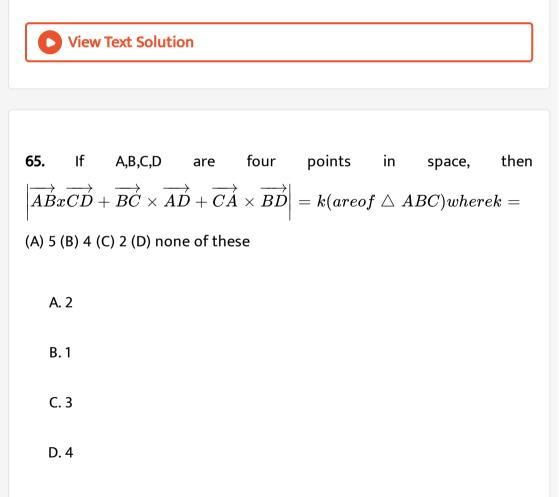
View Text Solution

64. A plane is parallel to the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{k}$ and another plane is parallel to the vectors $\hat{i} + \hat{j}$ and $\hat{i} - \hat{k}$. The acute angle between the line of intersection of the two planes and the vector $\hat{i} - \hat{j} + \hat{k}$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D



Answer: D

