

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

SCALER AND VECTOR PRODUCTS OF TWO VECTORS

Illustration

1. if \overrightarrow{a} and \overrightarrow{b} are unit vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = \cos \theta$, then the value of $\left| \overrightarrow{a} + \overrightarrow{b} \right|$, is A. $2\sin \theta/2$ B. $2\sin \theta$ C. $2\cos \theta/2$ D. $2\cos \theta$

Answer: C

2. If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then the greatest value of $\left|\overrightarrow{a}+\overrightarrow{b}\right|+\left|\overrightarrow{a}-\overrightarrow{b}\right|$ is A.2 B.4 C. $2\sqrt{2}$ D. $\sqrt{2}$

Answer: C

Watch Video Solution

3. If the unit vectors \overrightarrow{a} and \overrightarrow{b} are inclined of an angle 2θ such that $\left|\overrightarrow{a} - \overrightarrow{b}\right| < 1$ and $0 \le \theta \le \pi$ then θ in the interval

A.
$$\left[0, rac{\pi}{6}
ight) \cup (5\pi/6, \pi]$$

B. $[0, \pi]$

C. $[\pi \, / \, 6, \, \pi \, / \, 2]$

D. $[\pi / 2, 5\pi / 6]$

Answer: A

Watch Video Solution

4. Let \overrightarrow{a} and \overrightarrow{b} be two unit vectors and α be the angle between them, then $\overrightarrow{a} + \overrightarrow{b}$ is a unit vector, if α =

A. $\pi/4$

B. $\pi/3$

C. $2\pi/3$

D. $\pi/2$

Answer: C

5. If
$$\left| \overrightarrow{a} - \overrightarrow{b} \right| = \left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right| = 1$$
, then the angle between \overrightarrow{a} and \overrightarrow{b} , is
A. $\frac{\pi}{3}$
B. $\frac{3\pi}{4}$
C. $\frac{\pi}{2}$
D. 0

Answer: A

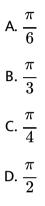
Watch Video Solution

6. Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} are two vectors inclined at an angle of 60° , $If|\overrightarrow{a}| = |\overrightarrow{b}| = 2$, the the angle between \overrightarrow{a} and $\overrightarrow{a} + \overrightarrow{b}$ is
A. 30°
B. 60°

C. $45^{\,\circ}$

D. none of these

Answer: A


Watch Video Solution

7. Consider a pyamid OPQRS locaated in the first octant $(x \ge 0, y \le 0, z \le 0)$ with O as origin , and OP an OR along the x-axis and y-axis respectively. The base OPQR of the pyramid is a square with OP=3 . The point S is directly above the mid-point T of the diagonal OQ such that TS=3 , Then , the angle between OQ and OS, is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\cos^{-1} \frac{1}{\sqrt{3}}$
D. $\cos^{-1} \frac{1}{3}$

Answer: C

8. If \overrightarrow{a} , \overrightarrow{b} are unit vertors such that $\overrightarrow{a} - \overrightarrow{b}$ is also a unit vector, then the angle between \overrightarrow{a} and \overrightarrow{b} , is

Answer: B

9. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 are unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = -1$ then $\left|2\overrightarrow{a} - 3\overrightarrow{b}\right| =$

A. 19

 $\mathrm{B.}\,\sqrt{19}$

C. $\sqrt{13}$

D. 4

Answer: B

10. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 are unit vectors such that $|\overrightarrow{a} + \overrightarrow{b}| = 1$ and $|\overrightarrow{a} - \overrightarrow{b}| = \sqrt{3}$, "then " $|3\overrightarrow{a} + 2\overrightarrow{b}| =$
A. 7
B. 4
C. $\sqrt{7}$
D. $\sqrt{19}$

11. If \overrightarrow{a} and \overrightarrow{b} are unit vectors inclined to x-axis at angle 30° and 120° then $\left|\overrightarrow{a} + \overrightarrow{b}\right|$ equals

A.
$$\sqrt{2/3}$$

B.
$$\sqrt{2}$$

C.
$$\sqrt{3}$$

Answer: B

Watch Video Solution

12. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are three vectors such that
 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, $|\overrightarrow{a}| = 1 |\overrightarrow{b}| = 2$, $|\overrightarrow{c}| = 3$, then
 $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}$ is equal to

A. 1

B. 0

C. -7

D. 7

Answer: C

Watch Video Solution

13. Let
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} be three vectors such that
 $\overrightarrow{a} \perp (\overrightarrow{b} + \overrightarrow{c})$, $\overrightarrow{b} \perp (\overrightarrow{c} + \overrightarrow{a})$ and $\overrightarrow{c} \perp (\overrightarrow{a} + \overrightarrow{b})$, if $|\overrightarrow{a}| = 1$, $|\overrightarrow{a}|$,
 $|\overrightarrow{c}| = 3$, then $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$ is,
A. $\sqrt{6}$
B. 14
C. $\sqrt{14}$

D. none of these

Answer: C

14. If two out to the three vectors, $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $2\left(\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a}\right) + 3 = 0$ then the

length of the third vector is

A. 3 B. 2 C. 1

D. 0

Answer: C

Watch Video Solution

15. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = 1$ and $\overrightarrow{a} \perp \overrightarrow{b}$, if \overrightarrow{c} makes angles $\delta\beta$ with $\overrightarrow{a}, \overrightarrow{b}$ respectively, then $\cos\delta + \cos\beta$ is equal to

A. 1

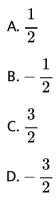
B. -1 C. $\frac{3}{2}$

D. 0

Answer: B

Watch Video Solution

16. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that angle between \overrightarrow{a} and $\overrightarrow{b}is\alpha$, \overrightarrow{b} and \overrightarrow{c} is β and \overrightarrow{c} and \overrightarrow{a} is γ . if $|\overrightarrow{a}. + \overrightarrow{b} + \overrightarrow{c}|$, then $\cos \alpha + \cos \beta + \cos \beta =$


A. 1

B. $-\frac{1}{2}$ C. $\frac{3}{2}$ D. $\frac{1}{2}$

Answer: D

17. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be vectors of equal magnitude such that the angle between \overrightarrow{a} and \overrightarrow{b} is α , \overrightarrow{b} and \overrightarrow{c} is β and \overrightarrow{c} and \overrightarrow{a} is γ . then minimum value of $\cos \alpha + \cos \beta + \cos \gamma$ is

Answer: D

18. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors of equal magnitude such that the angle between each pair is $\frac{\pi}{3}$. If $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right| = \sqrt{6}$, " then " $\left|\overrightarrow{a}\right|$ =`

A. 2

B. -1

C. 1

$$\mathsf{D.}-\sqrt{\frac{2}{3}}$$

Answer: C

Watch Video Solution

19. If
$$\left|\overrightarrow{a}\right| = 3$$
, $\left|\overrightarrow{b}\right| = 5$ and $\left|\overrightarrow{c}\right| = 4$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ then the value of $\left(\overrightarrow{a} \cdot Vecb + \overrightarrow{b} \cdot \overrightarrow{c}\right)$ is equal tio

A. 0

B. -25

C. 25

D. none of these

Answer: B

Watch Video Solution

20. Let *O* be the origin, and *OXxOY*, *OZ* be three unit vectors in the direction of the sides *QR*, *RP*, *PQ*, respectively of a triangle PQR. If the triangle PQR varies, then the minimum value of $\cos(P+Q) + \cos(Q+R) + \cos(R+P)$ is: $-\frac{3}{2}$ (b) $\frac{5}{3}$ (c) $\frac{3}{2}$ (d) $-\frac{5}{3}$ A. $-\frac{5}{3}$ B. $-\frac{3}{2}$ C. $\frac{3}{2}$ D. $\frac{5}{2}$

Answer: B

21. Angle between vectors \overrightarrow{a} and \overrightarrow{b} where \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vectors satisfying $\overrightarrow{a} + \overrightarrow{b} + \sqrt{3}\overrightarrow{c} = \overrightarrow{0}$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

22. If
$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$$
, $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 5$ and $|\overrightarrow{c}| = 7$, then the angle between \overrightarrow{a} and \overrightarrow{b} is

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$

D.
$$\frac{\pi}{3}$$

Answer: D

23. If
$$\overrightarrow{a}$$
. Vecb and \overrightarrow{c} are unit vectors satisfying
 $\left|\overrightarrow{a} - \overrightarrow{b}\right|^2 + \left|\overrightarrow{b} - \overrightarrow{c}\right|^2 \left|\overrightarrow{c} - \overrightarrow{a}\right| = 9$, then $\left|2\overrightarrow{a} + 5\overrightarrow{b} + 5\overrightarrow{c}\right|$ is
equal to
A. 0
B. 1
C. 2
D. 3

Answer: D

24. The value of 'a' for which the points A, B,C with position vectors $2\hat{i} - \hat{j} + \hat{k}, \hat{i} + 2\hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}$ and $a\hat{i} - 3\hat{j} + \hat{k}$ respectively are the vertices of a right angled triangle with $C = \pi/2$, are

A. 2 and 1

B.-2 and -1

C.-2 and 1

D.2 and -1

Answer: A

Watch Video Solution

25. If R^2 if the magnitude of the projection vector of the vector $\alpha \hat{i} + \beta \hat{j}on\sqrt{3}\hat{i} + \hat{j}is\sqrt{3}$ and if $\alpha = 2 + \sqrt{3}\beta$ then possible value (s) of $|\alpha|$ is /are

A. 1,2

B. 3,4

C. 4,5

D. 3

Answer: D

Watch Video Solution

26. The vactors $\overrightarrow{a} = 3\hat{i} - 2\hat{i} + 2\hat{k}$ and $\overrightarrow{b} = -\hat{i} - 2\hat{k}$ are the adjacent sides of a parallelogram. Then , the acute angle between \overrightarrow{a} and \overrightarrow{b} is

A. $\pi/4$

B. $\pi/3$

C. $3\pi/4$

D. $2\pi/3$

Answer: A

27. If $\overrightarrow{e}_1 = (1, 1, 1)$ and $\overrightarrow{e}_2 = (1, 1, -1)$ and \overrightarrow{a} and \overrightarrow{b} are two vectors that $\overrightarrow{e}_1 = 2\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{e}_2\overrightarrow{a} + 2\overrightarrow{b}$ then angle between \overrightarrow{a} and \overrightarrow{b} is

A.
$$\cos^{-1}\left(\frac{7}{9}\right)$$

B. $\cos^{-1}\left(\frac{7}{11}\right)$
C. $\cos^{-1}\left(-\frac{7}{11}\right)$
D. $\cos^{-1}\left(\frac{6\sqrt{2}}{11}\right)$

Answer: C

28. The values of x for which the angle between the vectors $\vec{a} = x\hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = 2x\hat{i} + x\hat{j} - \hat{k}$ is acute, and the angle, between the vector \vec{b} and the axis of ordinates is obtuse, are

A.
$$\frac{1}{2}$$
, 2

B. -2, 3

C. all x < 0

 $\mathsf{D}.\, x > 0$

Answer: C

Watch Video Solution

29. The value of x for which the angle between $\vec{a} = 2x^2\hat{i} + 4x\hat{j} = \hat{k} + \hat{k}$ and $\vec{b} = 7\hat{i} - 2\hat{j} = x\hat{k}$, is obtuse and the angle between \vec{b} and the z-axis is acute and less than $\pi/6$, are

A. a < x < 1/2

B. 1/2 < x < 15

C. x > 1/2 or x < 0

D. none of these

Answer: D

30. If $\overrightarrow{a}, \overrightarrow{b}$ are two unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = 2\sqrt{3}$ and $\left|\overrightarrow{a} - \overrightarrow{b}\right| = 6$ then the angle between \overrightarrow{a} and \overrightarrow{b} , is

A.
$$\frac{\pi}{3}$$

B. $\frac{2\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: B

31. For any vector \overrightarrow{r} ,

$$\left(\overrightarrow{r}.~\hat{i}
ight)\hat{i}+\left(\overrightarrow{r}.~\hat{j}
ight)\hat{j}+\left(\overrightarrow{r}.~\hat{k}
ight)\hat{k}$$
 =

A.
$$\overrightarrow{r}$$

B. $2\overrightarrow{r}$
C. $3\overrightarrow{r}$
D. $\overrightarrow{0}$

Answer: A

Watch Video Solution

32. For any vector
$$\overrightarrow{r}$$
, $\left(\overrightarrow{r}$. $\hat{i}\right)^2 + \left(\overrightarrow{r}$. $\hat{j}\right)^2 + \left(\overrightarrow{r}$. $\hat{k}\right)^2$ is equal to

A. 1

B.
$$\left| \overrightarrow{r} \right|$$

C. \overrightarrow{r}
D. $\left| \overrightarrow{r} \right|^2$

Answer: D

33. A vector of magnitude 4 which is equally inclined to the vectors $\hat{i} + \hat{j}, \hat{j} + \hat{k}$ and $\hat{k} + \hat{i}$, is

A.
$$rac{4}{\sqrt{3}}ig(\hat{i} - \hat{j} - \hat{k}ig)$$

B. $rac{4}{\sqrt{3}}ig(\hat{i} + \hat{j} - \hat{k}ig)$
C. $rac{4}{\sqrt{3}}ig(\hat{i} + \hat{j} + \hat{k}ig)$
D. $rac{4}{\sqrt{3}}ig(\hat{i} + \hat{j} - \hat{k}ig)$

Answer: C

Watch Video Solution

34. Forces of magnitudes 5 and 3 units acting in the directions $6\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} - \hat{i} + 6\hat{k}$ respectively act on a particle which is displaced from the point (2,2,-1) to (4,3,1). The work done by the forces, is

B.
$$\frac{148}{7}$$
 unit

C. 296 units

D. none of these

Answer: B

Watch Video Solution

35. A groove is in the form of a broken line ABC and the position vectors fo the three points are respectively $2\hat{i} - 3\hat{j} + 2\hat{k}$, $3\hat{i} - \hat{k}$, $\hat{i} + \hat{j} + \hat{k}$, A force of magnitude $24\sqrt{3}$ acts on a particle of unit mass kept at the point A and moves it angle the groove to the point C. If the line of action of the force is parallel to the vector $\hat{i} + 2\hat{j} + \hat{k}$ all along, the number of units of work done by the force is

A. $144\sqrt{2}$

B. $144\sqrt{3}$

C. $72\sqrt{2}$

D. $72\sqrt{3}$

Answer: C

Watch Video Solution

36. A paticle acted on by constant forces $4\hat{i} = \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} + 3\hat{k} \rightarrow 5\hat{i} + 4\hat{j} + \hat{k}$. Find the work done

A. 50 units

B. 20 units

C. 30 units

D. 40 units

Answer: D

37. If $\left| \overrightarrow{a}, \overrightarrow{b} \right| = \left| \overrightarrow{a} \times \overrightarrow{b} \right|$, then the angle between \overrightarrow{a} and \overrightarrow{b} is

A. 0°

B. 180°

C. 150°

D. 45°

Answer: D

Watch Video Solution

38. If \overrightarrow{u} and \overrightarrow{v} are unit vectors and θ is the acute angle between them, then $2u\overrightarrow{u} \times 3\overrightarrow{v}$ is a unit vector for

A. no value of θ

B. exactly on value of θ

C. exactly two values of θ

D. more than two values of θ

Answer: B

39. Let $A_1, A_2, \ldots, A_n (n < 2)$ be the vertices of regular polygon of n sides with its centre at he origin. Let \overrightarrow{a}_k be the position vector of the point $A_k, k = 1, 2, \ldots, n$ if $\left|\sum_{k=1}^{n-1} \left(\overrightarrow{a}_k \times \overrightarrow{a}_k + 1\right)\right| = \left|\sum_{k=1}^{n-1} \left(\overrightarrow{a}k, \overrightarrow{a}k + 1\right)\right|$ then the minimum value of n is

B. 2

C. 8

D. 9

Answer: D

40. Let O be the origin , and $\overrightarrow{OX}, \overrightarrow{OY}, \overrightarrow{OZ}$ be three unit vector in the directions of the sides $\overrightarrow{OR}, \overrightarrow{RP}, \overrightarrow{PQ}$ respectively, of a triangle PQR, Then $, |\overrightarrow{OX} \times \overrightarrow{OY}| =$

A. sin (P +Q)

B. sin 2R

C. sin (P + R)

D. sin (Q + R)

Answer: A

Watch Video Solution

41. If the angle between the vectors \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{3}$ and the area of the triangle with adjacemnt sides parallel to \overrightarrow{a} and \overrightarrow{b} is 3 is

A.
$$\sqrt{3}$$

B. 2sqrt3`

C. 4sqrt3`

D.
$$\frac{\sqrt{3}}{2}$$

Answer: B

42. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + 4\hat{j} - 2\hat{k}$ then $\overrightarrow{a} \times \overrightarrow{b}$ is

- A. $10\hat{i}+2\hat{j}+11\hat{k}$
- B. $10\hat{i}+3\hat{j}+11\hat{k}$
- C. $10\hat{i}-3\hat{j}+11\hat{k}$
- D. $10\hat{i}-3\hat{j}-10\hat{k}$

Answer: B

43. For any vector \overrightarrow{a} $\left|\overrightarrow{a} \times \hat{i}\right|^2 + \left|\overrightarrow{a} \times \hat{j}\right|^2 + \left|\overrightarrow{a} \times \hat{k}\right|^2$ is equal to A. $\left|\overrightarrow{a}\right|^2$ B. $2\left|\overrightarrow{a}\right|^2$ C. $3\left|\overrightarrow{a}\right|^2$ D. $2\left|\overrightarrow{a}\right|$

Answer: B

44.
$$(\overrightarrow{a} \cdot \hat{i})(\overrightarrow{a} \times \hat{i}) + (\overrightarrow{a} \cdot \hat{j}) + (\overrightarrow{a} \cdot \hat{k})(\overrightarrow{a} \times \hat{k})$$
 is equal to
A. $3\overrightarrow{a}$
B. \overrightarrow{a}
C. $\overrightarrow{0}$
D. $2\overrightarrow{a}$

Answer: C

45. A unit vector perpendicular to the plane of

$$\overrightarrow{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}$$
 and $\overrightarrow{b} = 4\hat{i} + 3\hat{j} - \hat{k}$ is
A. $\frac{1}{\sqrt{26}} \left(4\hat{i} = 3\hat{j} - \hat{k}\right)$
B. $\frac{1}{7} \left(2\hat{i} - 6\hat{j} - 3\hat{k}\right)$
C. $\frac{1}{7} \left(3\hat{i} + 2\hat{j} + 6\hat{k}\right)$
D. $\frac{1}{7} \left(2\hat{i} - 3\hat{j} - 6\hat{k}\right)$

Answer: C

46. The number of vectors of unit length perpendicular to the vectors $\widehat{a} = \widehat{i} + \widehat{j}$ and $\overrightarrow{b} = \widehat{j} + \widehat{k}$ is

A. 1

B. 2

C. 4

D. infinite

Answer: B

Watch Video Solution

47. A unit vector making an obtuse angle with x-axis and perpendicular to

the plane containing the points $\hat{i} + 2\hat{j} + 3\hat{k}, 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\hat{i} + 5\hat{j} + 7\hat{k}$ also makes an obtuse angle with

A. y-axis

B. z-axis

C. y and z axes

D. x and y axes

Answer: B

48. Let $\overrightarrow{u} = \hat{i} + \hat{j}$, $\overrightarrow{v} = \hat{i} - \hat{j}a$ and $\hat{i} - \hat{j}$ and $\overrightarrow{w} = \hat{i} + 2\hat{j} + 3\hat{k}$ If \hat{n} is unit vector such that $\overrightarrow{u} \cdot \hat{n} = 0$ and $\overrightarrow{n} \cdot \hat{n} = 0$, then $|\overrightarrow{w} \cdot \hat{n}|$ is equal to

A. 3 B. 0

C. 1

D. 2

Answer: A

49. If $\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + 2\hat{k}$ and $\overrightarrow{c} = -\hat{i} + 2\hat{j} - \hat{k}$, then a unit vector normal to the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{b} - \overrightarrow{c}$, is

A. \hat{i}

B. \hat{j}

 $\mathsf{C}.\,\hat{k}$

D. none of these

Answer: A

Watch Video Solution

50. A unit vector perpendicular to both $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

A.
$$\hat{i} - \hat{j} + \hat{k}$$

B. $\hat{i} + \hat{j} + \hat{k}$
C. $rac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$

D.
$$rac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$$

Answer: C

Watch Video Solution

51. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j} - 2\hat{k}$$
 and $\overrightarrow{b} = \hat{i} + \hat{j}$. Let \overrightarrow{c} be vector such that $\left|\overrightarrow{c} - \overrightarrow{a}\right| = 3$, $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right| = 3$ and the angle between \overrightarrow{c} and $\overrightarrow{a} \times \overrightarrow{b}$ be 30° Then, \overrightarrow{a} . Ve is equal to

A.
$$\frac{25}{8}$$

B. 2

C. 5

D.
$$\frac{1}{8}$$

Answer: B

52. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of the vertices. A,B,C of a triangle

ABC. Then the area of triangle ABC is

$$\begin{array}{l} \mathsf{A}. \ \frac{1}{2} \middle| \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \middle| \\ \mathsf{B}. \ \frac{1}{2} \middle| \overrightarrow{a} \times \overrightarrow{b} \middle| \\ \mathsf{C}. \ \frac{1}{2} \middle| \overrightarrow{b} \times \overrightarrow{c} \middle| \\ \mathsf{D}. \ \frac{1}{2} \middle| \overrightarrow{c} \times \overrightarrow{a} \middle| \end{array}$$

Answer: A

Watch Video Solution

53. If $\overrightarrow{AB} = \overrightarrow{b}$ and $\overrightarrow{AC} = \overrightarrow{c}$ then the length of the perpendicular from

A to the line BC is

A.
$$\frac{\left|\overrightarrow{b} \times \overrightarrow{c}\right|}{\left|\overrightarrow{b} + \overrightarrow{c}\right|}$$

B.
$$\frac{\left|\overrightarrow{b} \times \overrightarrow{c}\right|}{\left|\overrightarrow{b} - \overrightarrow{c}\right|}$$

$$\begin{array}{c} \mathsf{C} \cdot \frac{\left| \overrightarrow{b} \times \overrightarrow{c} \right|}{2\left| \overrightarrow{b} - \overrightarrow{c} \right|} \\ \mathbf{D} \cdot \frac{\left| \overrightarrow{b} \times \overrightarrow{c} \right|}{2\left| \overrightarrow{b} + \overrightarrow{c} \right|} \end{array}$$

Answer: B

54. The perpendicular distance of the point \overrightarrow{c} from the joining \overrightarrow{a} and \overrightarrow{b} is

A.
$$\frac{\begin{vmatrix} \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix}}{\begin{vmatrix} \overrightarrow{b} - \overrightarrow{a} \end{vmatrix}}$$
B.
$$\frac{\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \end{vmatrix}}{\begin{vmatrix} \overrightarrow{b} - \overrightarrow{a} \end{vmatrix}}$$
C.
$$\frac{\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \end{vmatrix}}{\begin{vmatrix} \overrightarrow{a} - \overrightarrow{a} \end{vmatrix}}$$

$$\mathsf{D}. \ \frac{1}{2} \frac{\left| \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \right|}{\left| \overrightarrow{b} - \overrightarrow{a} \right|}$$

Answer: A

55. If the diagonals of a parallelogram are represented by the vectors $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} + 3\hat{j} - 4\hat{k}$, then its area in square units , is

A. $5\sqrt{3}$

B. $6\sqrt{3}$

 $\mathsf{C.}\,\sqrt{42}$

D. $\sqrt{42}$

Answer: C

56. if \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ then

A.
$$\overrightarrow{a}$$
. $\overrightarrow{b} = \overrightarrow{b}$. $\overrightarrow{c} = \overrightarrow{c}$. \overrightarrow{a}
B. $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$
C. $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c}$
D. $\overrightarrow{b} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$

Answer: B

Watch Video Solution

57. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be unit vetors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, which one

of the following is correct?

A.
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{0}$$

B. $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a} \neq \overrightarrow{0}$
C. $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0}$
D. $\overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{c}, \overrightarrow{c} \times \overrightarrow{a}$ are mutually perpendicular vectors.

Answer: B

58. Let
$$\triangle PQR$$
 be a triangle. Let $\overrightarrow{a} = \overrightarrow{QR}, \overrightarrow{b} = \overrightarrow{RP}$ and $\overrightarrow{c} = \overrightarrow{PQ}$. if $|\overrightarrow{a}| = 12, |\overrightarrow{b}| = 4\sqrt{3}$ and $\overrightarrow{b}, \overrightarrow{c}$

, then which of the following is (are) true ?

A.
$$\frac{1}{2} \left| \overrightarrow{c} \right|^2 - \left| \overrightarrow{a} \right| = 12$$

B. $\frac{1}{2} \left| \overrightarrow{c} \right|^2 + \left| \overrightarrow{a} \right| = 30$
C. $\left| \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{a} \right| = 48\sqrt{3}$
D. \overrightarrow{a} . $\overrightarrow{b} = -72$

Answer: A::C::D

59. Let \overrightarrow{a} be a unit vector perpendicular to unit vectors \overrightarrow{b} and \overrightarrow{c} and if the angle between \overrightarrow{b} and \overrightarrow{c} is α , then $\overrightarrow{b} \times \overrightarrow{c}$ is

- A. $\pm (\cos \alpha) \overrightarrow{a}$
- $\mathsf{B.} \pm (\cos e c \alpha) \overrightarrow{a}$
- $\mathsf{C}.\pm(\sin\alpha)\overrightarrow{a}$

D. none of these

Answer: C

Watch Video Solution

60. If the vectors \overrightarrow{a} . $\overrightarrow{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\overrightarrow{b} = \hat{j}$ are such that $\overrightarrow{a}, \overrightarrow{b}$, and \overrightarrow{b} from a right handed system, then \overrightarrow{c} id

A.
$$x\hat{i} - x\hat{k}$$

B. $\overrightarrow{0}$

C. $y\hat{j}$

D. $-z \widehat{+} x \hat{k}$

Answer: A

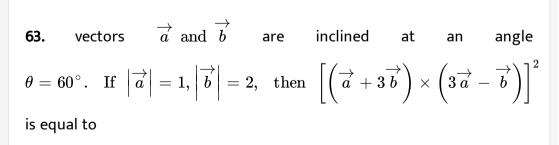
61. If the area of parallelogram whose diagonals coincide with the following pair of vectors is $5\sqrt{3}$, then vectors are

A.
$$3\hat{i} + 2\hat{i} - \hat{k}, 3\hat{i} - \hat{j} + 4\hat{k}$$

B. $\frac{3}{2}\hat{i} + \frac{1}{2}\hat{j} - \hat{k}, 2\hat{i} - 6\hat{j} + 8\hat{k}$
C. $3\hat{i} + \hat{j} - 2\hat{k}, \hat{i} + 3\hat{j} + 4\hat{k}$

D. none of these

Answer: B


62.

$$ec{a}-2\hat{i}+\hat{j}+\hat{k}, \ensuremath{\overrightarrow{b}}=\hat{i}+2\hat{j}+\hat{k} ext{ and } ec{c}=2\hat{i}-3\hat{j}+4\hat{k}. ext{ A vector } ec{r}$$
 is

A.
$$-2\hat{i} = 2\hat{j} + 2\hat{k}$$

B. $-2\hat{i} + \hat{j} + 3\hat{k}$
C. $3\hat{i} + 2\hat{j} + 4\hat{k}$
D. $\hat{i} - 5\hat{i} + 3\hat{k}$

Watch Video Solution

Answer: D

A. 225

Let

B. 275

C. 325

D. 300

Answer: D

Watch Video Solution

64. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be unit vectors such that $\overrightarrow{a}, \overrightarrow{b} = 0 = \overrightarrow{a}, \overrightarrow{c}$. If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$, then \overrightarrow{a} equals

 $\begin{aligned} \mathbf{A}. \pm 2 \left(\overrightarrow{b} \times \overrightarrow{c} \right) \\ \mathbf{B}. 2 \left(\overrightarrow{b} \times \overrightarrow{c} \right) \\ \mathbf{C}. \pm \frac{1}{2} \left(\overrightarrow{b} \times \overrightarrow{c} \right) \\ \mathbf{D}. - \frac{1}{2} \left(\overrightarrow{b} \times \overrightarrow{c} \right) \end{aligned}$

Answer: A

65. Let $\overrightarrow{u} = u_1 \hat{i} + u_2 \hat{j}$ be a unit vector in xy plane and $\overrightarrow{w} = \frac{1}{\sqrt{6}} \left(\hat{i} + \hat{j} + 2\hat{k} \right)$. Given that there exists a vector \overrightarrow{c} " in " R_3 " such that $|\overrightarrow{u} \times \overrightarrow{v}| = 1$ and $\overrightarrow{w} \cdot \left(\overrightarrow{u} \times \overrightarrow{v} \right) = 1$, then A. $|u_1| = |u_2|$ B. $|u_2| = 2|u_2|$ C. $2|u_1| = |u_2|$

D. $|u_1|-3|u_2|$

Answer: A

Watch Video Solution

66. Let $\overrightarrow{u} = u_1 \hat{i} + u_3 \hat{k}$ be a unit vector in xz-plane and $\overrightarrow{q} = \frac{1}{\sqrt{6}} \left(\hat{i} + \hat{j} + 2\hat{k} \right)$. If there exists a vector \overrightarrow{v} in such that $\left| \overrightarrow{u} \times \overrightarrow{u} \right| = 1$ and $\overrightarrow{w} \cdot \left(\overrightarrow{u} \times \overrightarrow{c} \right)$.Then

A. $|u_1| = |u_3|$ B. $|u_1| = 2|u_3|$ C. $|u_1| = 2|u_3|$ D. $2|u_1| = |u_3|$

Answer: B

Watch Video Solution

67. Let $\overrightarrow{u} = u_1 \hat{i} + u_2 \hat{j} + u_3 \hat{k}$ be a unit vector in R^3 and $\overrightarrow{w} = \frac{1}{\sqrt{6}} \left(\hat{i} + \hat{j} + 2\hat{k} \right)$, Given that there exists a vector \overrightarrow{v} in R^3 such that $\left| \overrightarrow{u} \times \overrightarrow{v} \right| = 1$ and $\overrightarrow{w} \cdot \left(\overrightarrow{u} \times \overrightarrow{v} \right) = 1$ which of the following statements is correct?

A. There is exactly one choice for such \overrightarrow{v}

B. There are exactly two for such \overrightarrow{v}

C. There are exactly for such $\stackrel{
ightarrow}{v}$

D. There are infinitely many choices for such \overrightarrow{v}

Answer: D

68. IF the force represented by $3\hat{i} + 2\hat{k}$ is acting through the point $5\hat{i} + 4\hat{j} - 3\hat{k}$, then its moment about th point (1,3,1) is

A. $14\hat{i} - 8\hat{j} + 12\hat{k}$ B. $-14\hat{i} + 8\hat{j} - 12\hat{k}$ C. $-6\hat{i} - \hat{j} + 9\hat{k}$ D. $6\hat{i} + \hat{j} - 9\hat{k}$

Answer: A

69. The moment of the couple formed by the forces $5\hat{i} + \hat{j}$ and $-5\hat{i} - \hat{k}$ acting at the points (9 ,-1,2) and (3,-2,1)

A. $-\hat{i}+\hat{j}+5\hat{k}$ B. $\hat{i}-11\hat{j}-5\hat{k}$ C. $-\hat{i}=11\hat{j}+5\hat{k}$ D. $\hat{i}-\hat{j}-5\hat{k}$

Answer: D

Watch Video Solution

70. A force of 39 kg. wt is acting at a point p (-4,2,5) in the direaction $12\hat{i} - 4\hat{j} - 3\hat{k}$. The moment of this force about a line through the origin having the direction of $2\hat{i} - 2\hat{j} + \hat{k}$ is

A. 76 units

B. - 76 units

C. $42\hat{i}+144\hat{j}-24\hat{k}$

D. none of these

Answer: B

71. The moment about a line through the origin having the direction of $112\hat{i} - 4\hat{j} - 3\hat{k}$ is

A.
$$\frac{760}{13}$$

B. $\frac{-760}{13}$
C. $\frac{76}{13}$
D. $\frac{760}{3}$

Answer: B

72. The moment of the couple consisting of the force through the point

 $2\hat{i}-3\hat{j}-\hat{k}$ is

A. 5

B. $5\sqrt{5}$

C. $\sqrt{5}$

D. 25

Answer: B

Watch Video Solution

Section I Solved Mcqs

1. The length of the longer diagonal of the parallelogram constructed on

$$5\overrightarrow{a} + 2\overrightarrow{b}$$
 and $\overrightarrow{a} - 3\overrightarrow{b}$, if it is given that $\left|\overrightarrow{a}\right| = 2\sqrt{2}, \left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a}. Vecb = \frac{\pi}{4}$ is

A. 15

B. $\sqrt{3}$

C. $\sqrt{593}$

D. $\sqrt{369}$

Answer: C

Watch Video Solution

2. If the vectors $\overrightarrow{a}=(c\log_2 x)\hat{k}$ make an obtuse angle for any $x
eq (0,\infty)$ then c belongs to

A. $(-\infty,0)$

B. $(-\infty, -4/3)$

C. (-4/3, 0)

D. $(-4/3,\infty)$

Answer: C

3. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} represent respectively \overrightarrow{BC} , \overrightarrow{CA} and \overrightarrow{AB} where ABC is a triangle, Then,

 $A. \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$ $B. \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a}$ $C. \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$ $D. \left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right] = \left[\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}\right] = \left[\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}\right] \neq 0$

Answer: C

Watch Video Solution

4. The vector $\hat{i} + x\hat{j} + 3\hat{k}$ is rotated through an angle θ and doubled in magnitude, then it becomes $4\hat{i} + (4x - 2)\hat{j} + 2\hat{k}$. Then values of x are (A) $-\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 2

A. -2/3, 2B. 1/3,2

C. 2/3,-2

D. 2,-1/3

Answer: A

Watch Video Solution

5. If $\overrightarrow{a}, \overrightarrow{b}$ are unit vectors such that the vector $\overrightarrow{a} + 3\overrightarrow{b}$ is peependicular to $7\overrightarrow{a} - \overrightarrow{b}$ and $\overrightarrow{a} - 4\overrightarrow{b}$ is prependicular to $7\overrightarrow{a} - 2\overrightarrow{b}$ then the angle between \overrightarrow{a} and \overrightarrow{b} is

A. $\pi/6$

B. $\pi/4$

C. $\pi/3$

D. $\pi/2$

Answer: C

6. if G is the centroid of $\triangle ABC$ such that \overrightarrow{GB} and \overrightarrow{GC} are inclined at on obtuse angle, then

- A. $5a^2 > b^2 + c^2$
- $\mathsf{B.}\,5c^2>a^2+b^2$
- $\mathsf{C.}\, 5b^2 > a^2 + c^2$

D. none of these

Answer:

7. A vector of magnitude 4 which is equally inclined to the vectors $\hat{i}+\hat{j},\,\hat{j}+\hat{k}\,\, ext{and}\,\,\hat{k}+\hat{i}$, is

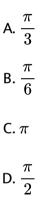
A.
$$rac{4}{\sqrt{3}}ig(\hat{i}-\hat{j}-\hat{k}ig)$$

B. $rac{4}{\sqrt{3}}ig(\hat{i}+\hat{j}-\hat{k}ig)$
C. $rac{4}{\sqrt{3}}ig(\hat{i}+\hat{j}+\hat{k}ig)$

D. none of these

Answer: C

Watch Video Solution


8. Unit vectors equally inclined to the vectors

$$\hat{i}, \frac{1}{3}\left(-2\hat{i}+\hat{j}+2\hat{k}\right) = \pm \frac{4}{\sqrt{3}}\left(4\hat{j}+3\hat{k}\right)$$
 are
 $A. \pm \frac{1}{\sqrt{51}}\left(\hat{i}-5\hat{j}+5\hat{k}\right)$
 $B. \pm \frac{1}{\sqrt{51}}\left(\hat{i}-5\hat{j}-5\hat{k}\right)$
 $C. \pm \frac{1}{\sqrt{t}}51\left(\hat{i}+5\hat{j}+5\hat{k}\right)$

D. none of these

Answer: A

9. If a,b,c are the p^{th} , q^{th} and r^{th} terms of G.P then the angle between the vector $\vec{u} = (\log a)\hat{i} + (\log b)\hat{j} + (\log c)\hat{k}$ and $\vec{v} - (q-r)\hat{i} + (r-p)\hat{i} + (r-p)\hat{i}$, is

Answer: D

10. If a, b,c are the pth, qth, and rth terms of a HP, then the vectors $\vec{u} = a^{-1}\hat{i} + b^{-1}\hat{j} + c^{-1}\hat{k}$ and $\vec{v} = (q-r)\hat{i} + (q-r)\hat{i} + (r-p)\hat{j} + (p-r)\hat{j}$ A. are parallel

B. are othogonal

C. satisfy
$$\overrightarrow{u}$$
 . $\overrightarrow{v}=1$
D. satisfy $\left|\overrightarrow{u}\times\overrightarrow{v}\right|=\hat{i}+\hat{j}+\hat{k}$

Answer: B

Watch Video Solution

11. Let a,b,c denote the lengths of the sides of a triangle such that

$$(a-b)\overrightarrow{u}+(b-c)\overrightarrow{v}+(c-a)\Bigl(\overrightarrow{u} imes\overrightarrow{v}\Bigr)=\overrightarrow{0}$$

For any two non-collinear vectors \overrightarrow{u} and \overrightarrow{u} , then the triangle is

A. right angled

B. equilateral

C. isoscels

D. obtuse angled

Answer: B

12. The vectors \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{u} \times \overrightarrow{u}$ are of the same length and taken pairwise they form equal angles. If $\overrightarrow{a} = \hat{i} + \hat{j}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$ then \overrightarrow{c} is equal to

A.
$$\hat{i} + \hat{k}, \frac{1}{3} \left(-\hat{i} + 4\hat{j} - \hat{k} \right)$$

B. $\hat{i} + 2\hat{j} + 3\hat{k}, \hat{i} + \hat{j}$
C. $-\hat{i} + \hat{j} + 2\hat{k}, \hat{i} + \hat{k}$
D. $\frac{1}{3} \left(-\hat{i} + 4\hat{j} - \hat{k} \right), \hat{j} + \hat{k}$

Answer: A