

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

SOLUTIONS OF TRIANGLES

Illustration

1. In a right triangle ABC, right angled at C, if a =

7 cm and b = $7\sqrt{3}$ cm, then $\angle A$ =

A. 30°

B. 60°

C. 45°

D. none of these

Answer: A

2. In a
$$\Delta ABC$$
, if $B=90^{\circ}$, then an^2 . $\frac{A}{2}$ =

A.
$$\frac{a-b}{a+b}$$

B.
$$\dfrac{b-c}{b+c}$$

$$\mathsf{C.}\,\frac{c-a}{c+a}$$

D.
$$\frac{b+c}{b-c}$$

Answer: B

Watch Video Solution

3. If $A=30^\circ, c=7\sqrt{3}$ and $C=90^\circ$

in

$$\Delta ABC$$
, then a =

A.
$$7\sqrt{3}$$

B. $7\sqrt{3}/2$

 $\mathsf{C.}\,7/2$

D. none of these

Answer: B

Watch Video Solution

4. If two sides and included angle of a triangle are respectively $3+\sqrt{3},\,3-\sqrt{3}$ and 60° , then the third sides is

A.
$$2\sqrt{2}$$

B.
$$4\sqrt{2}$$

 $C. 3\sqrt{2}$

D. none of these

Answer: C

Watch Video Solution

5. If the angles of a triangle are $30^0 and 45^0$ and the included side is $(\sqrt{3}+1)cm$ then the area of the triangle is .

A.
$$rac{\sqrt{3}-1}{2}cm^2$$

B.
$$rac{\sqrt{3}+1}{2}cm^2$$

C.
$$\left(\sqrt{3}-1\right)cm^2$$

D. none of these

Answer: B

Watch Video Solution

6. If $b=3, c=4, and B=\frac{\pi}{3}$, then find the number of triangles that can be constructed.

A. O

B. 1

C. 2

D. Infinite

Answer: A

Watch Video Solution

7. In a ΔABC , a,c, A are given and b_1,b_2 are two values of third side b such that $b_2=2b_1.$ Then, the value of sin A.

A.
$$\sqrt{rac{9a^2-c^2}{8a^2}}$$

B.
$$\sqrt{\frac{9a^2-c^2}{8c^2}}$$

C.
$$\sqrt{\frac{9a^2 + c^2}{8a^2}}$$

D. none of these

Answer: B

Watch Video Solution

Section I Solved Mcqs

1. In a ΔABC if the length of the sides are $\sqrt{2},\sqrt{6}$ and $\sqrt{8}$, then the measures of the angles are

A.
$$30^\circ$$
 , 60° , 90°

B.
$$45^{\circ}$$
 , 75° , 60°

C.
$$45^\circ$$
 , 30° , 105°

D. none of these

Answer: A

2. In a ΔABC , if a 100, c = 100 $\sqrt{2}$ and $A=30^{\circ}$,

then B equals to

A. $45^{\circ}~{
m or}~135^{\circ}$

 $\mathsf{B.}\,105^\circ$ or 15°

 $\text{C.}\,60^{\,\circ}\,$ or $120^{\,\circ}\,$

D. none of these

Answer: B

3. In a ΔABC , if $A=45^{\circ}$ and $B=75^{\circ}$, then

$$a + \sqrt{2}c =$$

A.b

B. 2b

C. 3b

D. none of these

Answer: B

4. In a ΔABC , if a = 40, $c=40\sqrt{3}$ and $B=30^\circ$

, then the triangle is

A. isosceles

B. equilateral

C. right angled

D. none of these

Answer: A

5. If $a=\sqrt{3}+1, B=30^{\circ}, C=45^{\circ}$, then c=

A. 3

B. 2

C. 4

D. none of these

Answer: B

6. In a ΔABC , if a = 4, b = 3 and $\angle A = 60^{\circ}$,

then c is a root of the equation

A.
$$c^2 - 3c - 7 = 0$$

B.
$$c^2 + 3c + 7 = 0$$

C.
$$c^2 - 3c + 7 = 0$$

D.
$$c^2 + 3c - 7 = 0$$

Answer: A

7. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be

A.
$$5\pm\sqrt{6}$$

B.
$$3\sqrt{3}$$

D. none of these

Answer: A

8.

In

a

 ΔABC ,

if

$$b=\sqrt{3}+1, c=\sqrt{3}-1 \,\, ext{and} \,\, A=60^{\circ}$$
 , then the value of $ext{tan}\Big(rac{B-C}{2}\Big)$ is

A. - 1

B.1/2

C. 1

D. none of these

Answer: C

9. Let the angles A,B and C of triangle ABC be in $A\dot{P}$ and let $b\colon c$ be $\sqrt{3}\colon \sqrt{2}$. Find angle A

- A. 75°
- B. 60°
- C. 45°
- D. 30°

Answer: A

10. In a ΔABC , if $A=120^{\circ}\,,b=2$ and

$$C=30^{\circ}$$
 , then a=

A.
$$2\sqrt{3}$$

B. 2

$$\mathsf{C.}\,\frac{\sqrt{3}}{2}$$

D. $\frac{1}{2}$

Answer: A

11. In a ΔABC , if $A=30^{\circ}$, $C=105^{\circ}$ and

$$b=3\sqrt{2}$$
, then a =

A.
$$\sqrt{2}$$

B. 3

 $\mathsf{C.}\,3\sqrt{2}$

D. 2

Answer: B

12. If $a=\sqrt{3}+1, B=30^\circ, C=45^\circ$, then c=

A. 2

B. 3

C. 4

D. none of these

Answer: A

13. In a ΔABC , if a = 3, $b=2\sqrt{3}$ and $c=\sqrt{3}$,

then A=

A. 30°

B. 45°

C. 60°

D. 75°

Answer: C

14. In a ΔABC , if a = 5, $B=45^{\circ}$ and $c=2\sqrt{2}$,

then b=

A.
$$\sqrt{3}$$

B. 6

C.
$$2\sqrt{13}$$

D.
$$\sqrt{13}$$

Answer: D

15. In ΔABC , If $\dfrac{b}{c^2-a^2}+\dfrac{a}{c^2-b^2}=0$, then

$$\angle C$$
 =

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C.} \; \frac{2\pi}{3}$$

D.
$$\frac{\pi}{3}$$

Answer: D

16. In the ambiguous case, if a,b and A are given and c_1,c_2 are the two values of the third $(c_1-c_2)^2+(c_1+c_2)^2\tan^2 A$ is equal to

- A. 4
- B. $4a^{2}$
- $\mathsf{C.}\,4b^2$
- D. $4c^2$

Answer: B

Exercise

1. If $b=3, c=4, and B=\frac{\pi}{3},$ then find the number of triangles that can be constructed.

A. Infinite

B. two

C. one

D. nil

Answer: D

2. If the data given to construct a triangle ABC are a = 5, b= 7, $\sin A = 3/4$, then it is possible to construct

A. only one triangle

B. two triangles

C. infinitely many triangles

D. no triangles

Answer: D

3. We are given b, c and sin B such that B is acute and $b < c \sin$ B. Then,

A. no triangle is possible

B. one triangle is possible

C. two triangles are possible

D. a right-angled triangle is possible

Answer: A

$$ABC, \quad ext{if} \quad = 2, \angle B = 60^0 and \angle C = 75^0$$

,

then
$$b=\sqrt{3}$$
 (b) $\sqrt{6}$ (c) $\sqrt{9}$ (d) $1+\sqrt{2}$

A.
$$\sqrt{3}$$

B.
$$\sqrt{6}$$

C.
$$\sqrt{9}$$

D.
$$1 + \sqrt{2}$$

Answer: B

5.

In

 ΔABC , if $A = 30^{\circ}$, b = 8, a = 6, $B = \sin^{-1} x$

, then x=

A. 1/2

B. 1/3

C.2/3

D. 1

Answer: C

6. If a=2, b=3, c=5 in ΔABC , then C=

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D. none of these

Answer: D

7. A triangle side are few $7cm, 4\sqrt{3}cm$ and $\sqrt{13}cm$ then the smallest angle is

- A. 15°
- B. 45°
- C. 30°

D. none of these

Answer: C

8. In a ΔABC , if c = 2, $A=120^{\circ}$, $a=\sqrt{6}$, then

C=

A. $30^{\,\circ}$

B. 60°

C. 45°

D. none of these

Answer: C

9. If $A=30^0,\,a=7,\,andb=8$ in $ABC,\,$ then find the number of triangles that can be constructed.

A. one solution

B. two solutions

C. no solutions

D. none of these

Answer: B

10. If a $\Delta ABC,\,b=2,\,C=60^{\,\circ}\,,\,c=\sqrt{6}$, then a

=

A.
$$\sqrt{3}-1$$

B.
$$\sqrt{3}$$

C.
$$\sqrt{3} + 1$$

D. none of these

Answer: C

11.

then

If

in

 $\Delta ABC, a = 5, b = 4 \text{ and } \cos(A - B) = \frac{31}{32},$

A. 6

B. 7

C. 9

D. none of these

Answer: A

12.

In a ΔABC , If

 $A=30^{\circ}\,,b=2,c=\sqrt{3}+1,$ then $rac{C-B}{2}$ is

A. 15°

B. 30°

C. 45°

D. none of these

Answer: B

13. In a
$$\Delta ABC$$
 if a = 2, $b=\sqrt{6}, c=\sqrt{3}+1$,

then cos A=

- A. 30°
- B. 45°
- C. 60°
- D. none of these

Answer: B

14. In a ΔABC , if $A=45^{\circ}$, $b=\sqrt{6}$, a=2, then

B=

A. $30^{\,\circ}~$ or $~150^{\,\circ}$

 $\mathrm{B.}\,60^{\circ}$ or 120°

C. $45^{\circ}~{
m or}~135^{\circ}$

D. none of these

Answer: B

15. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P., then the length of the third side can be $5-\sqrt{6}$ (b) $3\sqrt{3}$ (c) 5 (d) $5+\sqrt{6}$

A.
$$5\pm\sqrt{6}$$

B. 0.7

C.
$$\sqrt{5} + 6$$

D. none of these

Answer: A

16. The sides of a triangle are 3x+4y, 4x+3y and 5x+5y units, where x,y>0. The $\ riangle$ is

- A. right angled
- B. equilateral
- C. obtuse angled
- D. none of these

Answer: C

17. In a ΔABC , a,b,A are given and c_1, c_2 are two values of the third side c. The sum of the areas of two triangles with sides a,b, c_1 and a,b, c_2 is

A.
$$(1/2)b^2\sin 2A$$

$$\mathsf{B.}\,(1/2)a^2\sin2A$$

$$\mathsf{C}.\,b^2\sin2A$$

D. none of these

Answer: A

18. In the ambiguous case, if a,b and A are given and c_1,c_2 are the two values of the third $(c_1-c_2)^2+(c_1+c_2)^2\tan^2A$ is equal to

A.
$$2\sqrt{a^2-b^2}$$

B.
$$\sqrt{a^2-b^2\sin^2 A}$$

C.
$$2\sqrt{a^2-b^2\sin^2 A}$$

D.
$$\sqrt{a^2-b^2}$$

Answer: C

19. In the ambiguous case, if a,b and A are given and c_1,c_2 are the two values of the third $(c_1-c_2)^2+(c_1+c_2)^2\tan^2 A$ is equal to

A.
$$4a^2\cos^2 A$$

B.
$$4a^2 \cos A$$

$$\mathsf{C.}\,4a\cos^2A$$

D. none of these

Answer: A

20. The smallest angle of the triangle whose sides are $6+\sqrt{12},\sqrt{48},\sqrt{24}$ is

A.
$$\pi/3$$

B.
$$\pi/4$$

$$\mathsf{C}.\,\pi/6$$

D. none of these

Answer: C

