

MATHS

BOOKS - OBJECTIVE RD SHARMA MATHS VOL I (HINGLISH)

THREE DIMENSIONAL COORDINATE SYSTEM

Illustration

1. In the following figure, if the coordinates of P are (a,b,c) then the coordinates of A,B and C are respectively

A.
$$(a, 0, 0), (b, 0, 0), (c, 0, 0)$$

B.
$$(a, 0, 0), (0, b, 0), (0, 0, c)$$

C. (0,0,a),(0,b,0),(c,0,0)

D. (a, b, c), (b, c, a), (c, a, b)

Answer: A

Watch Video Solution

2. In Fig 4 the coordinates of point D are

A. (b, a, 0)

B. (a, b, 0)

C.(b, c, 0)

D. (0, b, c)

Answer: B

Matala Videa Calutian

watch video Solution

3. In fig. 28.7 if the coordinates of point P are (a, b, c) then Write the coordinates of points A, B, C, D, E and F. Write the coordinates of the feet of the perpendiculars from the point P to the coordinate axes. Write the coordinates of the feet of the perpendicular from the point P on the coordinate planes XY, YZ and ZX. Find the perpendicular distances of point P from XY, YZ and ZX – planes. Find the perpendicular distances of the point P fro the coordinate axes. Find the coordinates of the reflection of P are (a,b,c) . Therefore OA = a, $OB = b \, nd \, OC = \cdot$

A.
$$(a, b, 0), (0, b, c), (a, 0, c)$$

B.
$$(a, b, 0), (b, c, 0), (a, c, 0)$$

$$\mathsf{C}.\,(0,b,c),\,(a,0,c),\,(a,b,0)$$

D. (a, 0, c), (0, b, c), (a, b, 0)

Answer: A

Watch Video Solution

4. In fig. 28.7 if the coordinates of point P are (a, b, c) then Write the coordinates of points A, B, C, D, E and F. Write the coordinates of the feet of the perpendiculars from the point P to the coordinate axes. Write the coordinates of the feet of the perpendicular from the point P on the coordinate planes XY, YZ and ZX. Find the perpendicular distances of point P from XY, YZ and ZX – planes. Find the perpendicular distances of the point P fro the coordinate axes. Find the coordinates of the reflection of P are (a,b,c) . Therefore OA = a, $OB = b \, nd \, OC = \cdot$

- A. a, b, c
- B. b, c, a
- C. c, a, b
- D. none of these

Answer: C

Watch Video Solution

5. In fig. 28.7 if the coordinates of point P are (a, b, c) then Write the coordinates of points A, B, C, D, E and F. Write the coordinates of the feet of the perpendiculars from the point P to the coordinate axes. Write the coordinates of the feet of the perpendicular from the point P on the coordinate planes XY, YZ And ZX. Find the perpendicular distances of point

P from XY,YZ and ZX- planes. Find the perpendicular distances of the point P fro the coordinate axes. Find the coordinates of the reflection of P are (a, b, c) . Therefore OA = a, $OB = b \, nd \, OC = \cdot$

A.
$$\sqrt{a^2+b^2},\,\sqrt{b^2+c^2},\,\sqrt{c^2+a^2}$$

B.
$$\sqrt{b^2+c^2}, \sqrt{c^2+a^2}, \sqrt{a^2+b^2}$$

C.
$$\sqrt{c^2+a^2},\sqrt{a^2+b^2},\sqrt{b^2+c^2}$$

$$\mathsf{D}.\,a,\,b,\,c$$

Answer: B

Watch Video Solution

6. In Fig if the coordinates of P are (a,b,c) then the reflections or images of P in XY, YZ and ZX-planes are

A.
$$(a, b, -c), (-a, b, c), (a, -b, c)$$

$$\mathsf{B}.\,(a,\,-b,\,-c),(\,-a,b,\,-c),(\,-a,\,-b,c)$$

C.
$$(-a, -b, c), (a, -b, -c), (-a, b, -c)$$

D.
$$(a, b, 0), (0, b, c), (a, 0, c)$$

Answer: A

View Text Solution

7. If planes are drawn parallel to the coordinate planes through the points $P(x_1,y_1,z_1)$ and $Q(x_2,y_2,z_2)$ then the lengths of the eges of the parallelopied formed are

A.
$$x_2 - x_1, y_2 - y_1, z_2 - z_1$$

B.
$$x_2 + x_1, y_2 + y_1, z_2 + z_1$$

C. x_1x_2, y_1y_2, z_1z_2

D. none of these

Answer: A

Watch Video Solution

- **8.** The perpendicular distance of the point (6,5,8) from y-axis is
 - A. 5 units
 - B. 6 units
 - C. 8 units
 - D. 10 units

Answer: D

9. If the extremities (end points) of a diagonal of a square are $(1,\ -2,3)$ and $(2,\ -3,5)$ then find the length of the side of square.

A.
$$\sqrt{6}$$

B.
$$\sqrt{3}$$

$$\mathrm{C.}\,\sqrt{5}$$

$$\mathrm{D.}~\sqrt{7}$$

Answer: B

10. The point equidistant from the O(0,0,0), A(a,0,0), B(0,b,0) and C(0,0,c) has the coordinates

A.
$$(a, b, c)$$

$$\mathtt{B.}\,(a/2,b/2,c/2)$$

$$\mathsf{C.}\left(a/3,b/3,c/3\right)$$

D.
$$(a/4, b/4, c/4)$$

Answer: B

Watch Video Solution

11. Determine the point in XY-plane which is equidistant from three points A(2,0,3), B(0,3,2) and C(0,0,1).

A.
$$(2, 0, 8)$$

B. (0, 3, 1)

 $\mathsf{C}.\,(3,2,0)$

D. (3, 2, 1)

Answer: C

12. The cosine of the angle of the triangle with vertices

$$A(1,\ -1,2), B(6,11,2)$$
 and $C(1,2,6)$ is

A.
$$\frac{63}{65}$$

B.
$$\frac{36}{65}$$

$$\mathsf{C.}\ \frac{16}{65}$$

D.
$$\frac{13}{64}$$

Answer: B

Watch Video Solution

13. Let $P(2,\,-1,4)$ and Q(4,3,2) are two points and as point R on PQ is such that 3PQ=5QR, then the coordinates of R are

A.
$$\left(\frac{14}{5}, \frac{3}{5}, \frac{16}{5}\right)$$

B.
$$\left(\frac{16}{5}, \frac{7}{5}, \frac{14}{5}\right)$$

$$C.\left(\frac{11}{4}, \frac{1}{2}, \frac{13}{4}\right)$$

D. none of these

Answer: A

14. Let $A(2,\,-1,4)$ and $B(0,2,\,-3)$ be the points and C be a point on AB produced such that 2AC=3AB, then the coordinates of C are

A.
$$\left(\frac{1}{2}, \frac{5}{4}, -\frac{5}{4}\right)$$

$${\rm B.}\left(\,-\,\frac{1}{2},\,\frac{7}{4},\,\,-\,\frac{13}{4}\right)$$

$$\mathsf{C.}\,(6,\ -7,18)$$

D. none of these

Answer: D

15. Find the ratio in which the line joining the points (1, 2, 3)and $(\,-3,4,\,-5)$ is divided by the xy-plane . Also, find the coordinates of the point of division.

- A. 3:5 internally
- B. 5:3 externally
- C. 3:5 externally
- D. 5:3 internally

Answer: A

Watch Video Solution

16. In $\triangle ABC$ the mid points of the sides AB, BC and CA are

(l, 0, 0), (0, m, 0) and (0, 0, n) respectively.

Then,

$$rac{AB^2+BC^2+CA^2}{l^2+m^2+n^2}$$
 is equal to

A. 2

C. 8

Answer: C

joining
$$A(5,1,6)$$
 and $B(3,4,1)$ crosses the yz-plane are

17. The coordinates of the points where the line segment

A.
$$\left(0, \frac{17}{2}, \frac{13}{2}\right)$$

B.
$$\left(0, -\frac{17}{2}, \frac{13}{2}\right)$$

D.
$$\left(0,\,-\frac{17}{2},\,-\frac{13}{2}\right)$$

Watch Video Solution

 $\mathsf{C.}\left(0, \frac{17}{2}, \ -\frac{13}{2}\right)$

- **18.** The ratio in which the join of the points A(2,1,5) and B(3,4,3) is divided by the plane 2x+2y+2x=1 is
 - B(3,4,3) is divided by the plane 2x+2y-2z=1, is
 - A 7.5
 - A. 7:5
 - B. 5: 7
 - D. 3:5

C.5:3

19. If a line makes angle $lpha,\,eta$ and γ with the axes respectively then $\sin^2 lpha + \sin^2 eta + \sin^2 \gamma =$

B. 2

C. 3

D. none of these

Answer: B

20. If a line makes angle lpha, eta and γ with the coordinate axes respectively, then $\cos 2lpha + \cos 2eta + \cos 2\gamma =$

- A. 2
- B. -1
- C. 1
- D. 2

Answer: B

Watch Video Solution

21. If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with x-axis and y-axis respectively then the angle made by the line with z-axis, is

A.
$$\frac{\pi}{2}$$

- B. $\frac{\pi}{3}$
 - C. $\frac{\pi}{4}$

D. $\frac{5\pi}{12}$

Answer: B

Watch Video Solution

22. The direction cosines of a vector \overrightarrow{r} which is equally inclined with OX,OY and OZ ar

A.
$$\pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}$$
B. $\pm \frac{1}{3}, \ \pm \frac{1}{3}, \ \pm \frac{1}{3}$

$$c. \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{2}, \pm \frac{1}{2}$$

D. none of these

Answer: A

Watch Video Solution

23. A vector \overrightarrow{r} is inclined at equal to $OX,\,OYandOZ$. If the magnitude of \overrightarrow{r} is 6 units, find \overrightarrow{r} .

A.
$$\sqrt{3} \Big(\pm \hat{i} \pm \hat{j} \pm \hat{k} \Big)$$

B.
$$2\sqrt{3}igg(\pm\,\hat{i}\,\pm\,\hat{j}\,\pm\,\hat{k}igg)$$

C.
$$6ig(\pm\hat{i}\pm\hat{j}\pm\hat{k}ig)$$

D. none of these

Answer: B

24. If OA is equally inclined to OX,OY ,OZ and if A is $\sqrt{3}$ units from the origin then the cordinates of A are

A.
$$(3, 3, 3)$$

B.
$$(-1, 1, -1)$$

$$C.(-1,1,1)$$

Answer: D

Watch Video Solution

25. If $\frac{1}{2}$, $\frac{1}{3}$, n are direction cosines of a line, then the value of n is

A.
$$\frac{\sqrt{23}}{6}$$

B.
$$\frac{23}{6}$$
C. $\frac{2}{3}$

D.
$$\frac{1}{6}$$

Answer: A

Watch Video Solution

1, -3, 2 then its direction cosines are

A.
$$\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}},$$
B. $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$

c.
$$-\frac{1}{\sqrt{14}}$$
, $\frac{3}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$

$$\mathsf{D.} - \frac{1}{\sqrt{14}}, \, \frac{-2}{\sqrt{14}}, \, \frac{-3}{\sqrt{14}}$$

Answer: A

Watch Video Solution

27. The projections of a line segment on the coordinate axes are 12,4,3 respectively. The length and direction cosines of the line segment are

A. 13,
$$\frac{12}{13}$$
, $\frac{4}{13}$, $\frac{3}{13}$

$$\mathsf{B.}\, 19,\, \frac{12}{19},\, \frac{4}{19},\, \frac{3}{19}$$

$$\mathsf{C.}\,11,\,\frac{12}{11},\,\frac{14}{11},\,\frac{3}{11}$$

D. none of these

Answer: A

28. If \overrightarrow{r} is a vector of magnitude 21 and has direction ratios proportional to 2,-3,6 then \overrightarrow{r} is equal to

A.
$$6\hat{i} + 9\hat{j} - 18\hat{k}$$

B.
$$6\hat{i}-9\hat{j}-18\hat{k}$$

C.
$$6\hat{i}-9\hat{j}+18\hat{k}$$

D. none of these

Answer: C

29. If P(x,y,z) is a point on the line segment joining Q(2,2,4) and R(3,5,6) such that projections of \overrightarrow{OP} on the axes are $\frac{13}{5},\frac{19}{5},\frac{26}{5}$ respectively, then P divides QR in the ratio

Answer: B

30. The direction cosines of the line passing through

$$P(2,3,\;-1)$$
 and the origin are

A.
$$\frac{2}{\sqrt{14}}$$
, $\frac{3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

B. $\frac{2}{\sqrt{14}}$, $-\frac{3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

C. $-\frac{2}{\sqrt{14}}$, $-\frac{3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

D. $-\frac{2}{\sqrt{14}}$, $-\frac{3}{\sqrt{14}}$, $-\frac{1}{\sqrt{14}}$

Answer: D

Watch Video Solution

31. The projection of the line segment joining the points A(-1,0,3) and B(2,5,1) on the line whose direction ratios are proportional to 6,2,3 is

A.
$$\frac{10}{7}$$

B.
$$\frac{22}{7}$$

D. none of these

Answer: B

Watch Video Solution

inclined with OX,OY and OZ are

32. Find the direction cosines of a vector \overrightarrow{r} which is equally

A.
$$\pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}$$

B.
$$\pm \frac{1}{3}$$
, $\pm \frac{1}{3}$, $\pm \frac{1}{3}$

$$\mathsf{C.} \pm \frac{1}{\sqrt{2}}, \ \pm \frac{1}{2}, \ \pm \frac{1}{2}$$

D. none of these

Answer: A

Watch Video Solution

33. A vector \overrightarrow{r} is inclined at equal to OX, OYandOZ. If the magnitude of \overrightarrow{r} is 6 units, find \overrightarrow{r} .

Watch Video Solution

34. Find the angle between two lines whose direction ratios are proportional to $1, 1, 2and(\sqrt{3}-1), (-\sqrt{3}-1), 4$.

A. 45°

B. 30°

C. 60°

D. 90°

Answer: A

Watch Video Solution

35. If $P(0,1,2),\,Q(4,\,\,-2,1)$ and O(0,0,0) are three points, then $\angle POQ =$

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$

 $\operatorname{C.}\frac{\pi}{3}$

D. $\frac{\pi}{2}$

Answer: D

36. If A,B,C,D are (2,3,-1),(3,5,-3),(1,2,3),(3,5,7) respectively, then the angel between AB and CD, is

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{4}$$

D.
$$\frac{\pi}{6}$$

Answer: A

37. Find the acute angle between the two straight lines whose direction cosines are given by l+m+n=0 and $l^2+m^2-n^2=0$

A.
$$\frac{\pi}{2}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{4}$$

D.
$$\frac{\pi}{6}$$

Answer: B

Watch Video Solution

38. ABC is a triangle in a plane with vertices

 $A(2,3,5), B(\,-1,3,2)$ and $C(\lambda,5,\mu).$ If the median

through A is equally inclined to the coordinate axes, then the value of $\lambda^3 + \mu^3 + 5$ is

B. 1130

C. 1348

D. 1077

Answer: C

Section I Solved Mcqs

1. For every point $P(x,\ y,\ z)$ on the xy-plane, a. x=0 b. y=0 c. z=0 d. x=y=z=0

$$A. x = 0$$

$$\mathsf{B.}\,y=0$$

$$\mathsf{C}.z=0$$

D. none of these

Answer: C

Watch Video Solution

2. For every point P(x,y,z) on the x-axis, (except the origin),

A.
$$x=0,y=0,y\neq 0$$

$$\mathtt{B.}\,x=0,z=0,y\neq0$$

$$\mathsf{C}.\,y=0,z=0,x\neq 0$$

D. none of these

Answer: C

Watch Video Solution

- **3.** A rectangular parallelopiped is formed by planes drawn through the points (5,7,9) and (2,3,7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is
 - A. 2
 - B. 3
 - C. 4
 - D. all of these

Answer: D

4. A parallelepiped is formed by planes drawn through the points (2,3,5) and (5,9,7), parallel to the coordinate planes. The length of a diagonal of the parallelepiped is 7 unit b. $\sqrt{38}$ unit c. $\sqrt{155}$ unit d. none of these

- A. 7
- B. $\sqrt{38}$
- C. $\sqrt{155}$
- D. none of these

Answer: A

5. The xy-plane divides the line joining the points (-1,3,4) aned (2,-5,6)

A. internally in the ratio 2:3

B. externally in the ratio 2:3

C. internally in the ratio 3:2

D. externally in the ratio 3:2

Answer: B

Watch Video Solution

6. The points $A(5,\,-1,1),\,B(7,\,-4,7),\,C(1,\,-6,10)\,\, ext{ and }\,D(\,-1,\,-3,4)$

are the vertices of a

A. trapezium B. rectangle C. rhombus D. square **Answer: C Watch Video Solution 7.** A line makes an angle of 60^0 with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis. A. 30° B. 60° C. 75°

D. 45°

Answer: D

Watch Video Solution

- **8.** If the direction cosines of a line are $\dfrac{1}{c},\dfrac{1}{c},\dfrac{1}{c}$ rthen (A) c.0
- (B) 0 < c < 1 (C) $c = ~\pm \sqrt{3}$ (D) c > 2
 - $\mathrm{A.}\,0 < c < 1$
 - $\mathrm{B.}\,c>2$
 - $c. \, c > 0$
 - D. $c=\pm\sqrt{3}$

Answer: D

9. Find the acute angle between the two straight lines whose direction cosines are given by l+m+n=0 and $l^2+m^2-n^2=0$

A.0

B. $\pi/6$

 $\mathsf{C}.\,\pi/4$

D. $\pi/3$

Answer: D

10. The dr's of two lines are given by $a+b+c=0,\, 2ab+2ac-bc=0.$ Then the angle between the lines is

B.
$$\frac{2\pi}{3}$$

$$\mathsf{C.}\ \frac{\pi}{2}$$

D.
$$\frac{\pi}{3}$$

Answer: B

Watch Video Solution

11. Find the angle between the following pair of lines: A lines with direction ratios 2,2,1 A line joning (3,1,4)to (7,2,12)

A.
$$\cos^{-1}\left(\frac{2}{3}\right)$$

B.
$$\cos^{-1}igg(-rac{2}{3}igg)$$

D. none of these

Answer: A

- **12.** The projection of the line joining the ponts (3, 4, 5) and (4, 6, 3) on the line joining the points (-1,2,4) and (1,0,5) is
 - $\mathsf{A.}\ \frac{4}{3}$
 - B. $\frac{2}{3}$
 - c. $\frac{1}{3}$

Answer: A

Watch Video Solution

- 13. The projection of a line segment on the coordinate axes are 2,3,6. Then the length of the line segment is
 - A. 7
 - B. 5
 - C. 1
 - D. 11

Answer: A

14. A line line makes the same angle θ with each of the x and z-axes. If the angle β , which it makes with y-axis, is such that $\sin^2 eta = 3 \sin^2 heta$ then $\cos^2 heta$ equals

- $\mathsf{A.}\;\frac{2}{5}$
- $\mathsf{B.}\;\frac{1}{5}$
- C. $\frac{3}{5}$ D. $\frac{2}{3}$

Answer: C

15. A line AB in three-dimensional space makes angles 45oand120o with the positive x-axis and the positive y-axis respectively. If AB makes an acute angle q with the positive z-axis, then q equals (1) 45o (2) 60o (3) 75o (4) 30o

- A. 60°
- B. 75°
- C. 30°
- D. 45°

Answer: A

16. The angle between the lines whose direction cosines satisfy the equations l+m+n=0 and $l^2=m^2+n^2$ is

- A. $\pi/6$
- B. $\pi/2$
- $\mathsf{C}.\,\pi/3$
- D. $\pi/4$

Answer: C

Watch Video Solution

Exercise

1. If the x-coordinate of a point P on the join of Q(2,2,1) and $R(5,1,\,-2)$ is 4, then its z-coordinate is

Answer: C

Watch Video Solution

2. The distance of the point P(a,b,c)` from the x-axis is

A.
$$\sqrt{b^2+c^2}$$

B.
$$\sqrt{a^2+c^2}$$

C.
$$\sqrt{a^2+b^2}$$

D.
$$\sqrt{a^2+b^2+c^2}$$

Answer: A

Watch Video Solution

3. Ratio in which the xy-plane divides the joint of $(1,\,2,\,3)$ and $(4,\,2,\,1)$, is

A. 3:1 internally

 $B.\,3:1$ externally

C. 1:2 internally

D. 2:1 externally

Answer: B

Watch Video Solution

- **4.** If P(3,2,-4), Q(5,4,-6) and R(9,8,-10) are collinear, then R divides PQ in the ratio
 - A. 3:2 internally
 - $B.\,3:2$ externally
 - C. 2:1 internally
 - D. 2:1 externally

Answer: B

5. A(3,2,0), B(5,3,2), (-9,6,-3) are the vertices of \triangle ABC and AD is the bisector of $\angle BAC$ which meets at D.

Find the coordinates of D.

$$\mathtt{B.}\,(\,-19/8,57/16,17/16)$$

$$\mathsf{C.}\,(19/8,\,-57/16,17/16)$$

D. none of these

Answer: A

Watch Video Solution

6. A line passes through the points (6, -7, -1) and (2, -3, 1). Find te direction cosines off

the line if the line makes an acute angle with the positive direction of the x-axis.

A.
$$\frac{2}{3}$$
, $-\frac{2}{3}$, $-\frac{1}{3}$

$$\mathrm{B.} - \frac{2}{3}, \frac{2}{3}, \frac{1}{3}$$

c.
$$\frac{2}{3}$$
, $-\frac{2}{3}$, $\frac{1}{3}$

D. $\frac{2}{3}$, $\frac{2}{3}$, $\frac{1}{3}$

Answer: A

Watch Video Solution

7. If a line makes angles α,β,γ with the positive direction of coordinate axes, then write the value of $\sin^2\alpha+\sin^2\beta+\sin^2\gamma$.

- **A.** 1
- B. 2
- C. 3
- D. 4

Answer: B

Watch Video Solution

8. If P is a point in space such that OP=12 and \overrightarrow{OP} is inclied at angle of 45° and 60° with OX and OY respectively, then the position vector of P is

A.
$$6\hat{i}+t\hat{j}\pm6\sqrt{2}\hat{k}$$

B.
$$6\hat{i} + 6\sqrt{2}\hat{j} \pm 6\hat{k}$$

C.
$$6\sqrt{2}\hat{i}+6\sqrt{j}\pm6\hat{k}$$

D. none of these

Answer: C

Watch Video Solution

- **9.** A vector $\overrightarrow{O}P$ is inclined to $OXat45^0 and OYat60^0$. Find the angle at which $\overrightarrow{O}P$ is inclined to OZ.
 - A. 75°
 - B. 60° or 120°
 - C. 75° or 105°
 - D. 255°

Answer: B

10. A vector \overrightarrow{r} is equally inclined with the coordinates axes. If the tip of \overrightarrow{r} is in the positive octant and $|\overrightarrow{r}|=6$, then \overrightarrow{r} is

A.
$$2\sqrt{3}\Big(\hat{i}-\hat{j}+\hat{k}\Big)$$

B.
$$2\sqrt{3}\Big(-\,\hat{i}\,+\hat{j}+\hat{k}\Big)$$

C.
$$2\sqrt{3}ig(\hat{i}+\hat{j}-\hat{k}ig)$$

D.
$$2\sqrt{3}ig(\hat{i}+\hat{j}+\hat{k}ig)$$

Answer: D

11. If \overrightarrow{r} is a vector of magnitude 21 and has direction ratios proportional to 2,-3,6 then \overrightarrow{r} is equal to

A.
$$6\hat{i}-i\hat{j}+18\hat{k}$$

B.
$$6\hat{i}+9\hat{j}+18\hat{k}$$

C.
$$6\hat{i}-9\hat{j}+18\hat{k}$$

D.
$$6\hat{i}+9\hat{j}-18\hat{k}$$

Answer: A

Watch Video Solution

12. The direction cosines of the lines bisecting the angle between the lines whose direction cosines are

 $l_1,\,m_1,\,n_1\,$ and $l_2,\,m_2,\,n_2$ and the angle between these lines is $heta,\,$ are

A.
$$\dfrac{l_1+l_2}{2\sin heta/2}, \dfrac{m_1+m_2}{2\sin heta/2}, \dfrac{n_1+n_2}{2\sin heta/2}$$

B.
$$\frac{l_1 + l_2}{2\cos\theta/2}$$
, $\frac{m_1 + m_2}{2\cos\theta/2}$, $\frac{n_1 + n_2}{2\cos\theta/2}$

C.
$$rac{l_1-l_2}{2\sin heta/2}, rac{m_1-m_2}{2\sin heta/2}, rac{n_1-n_2}{2\sin heta/2}$$
D. $rac{l_1-l_2}{2\cos heta/2}, rac{m_1-m_2}{2\cos heta/2}, rac{n_1-n_2}{2\cos heta/2}$

Answer: B

B(4,7,1) and C(3,5,3).

13. Find the coordinates of the foot of the perpendicular drawn from point A(1,0,3) to the join of points

A.
$$(5/3, 7/3, 17/3)$$

B.
$$(5, 7, 17)$$

C.
$$(5/7, -7/3, 17/3)$$

D.
$$(-5/3, 7/3, -17/3)$$

Answer: A

Watch Video Solution

14. The foot of the perpendicular drawn from a point with position vector $\hat{i}+4\hat{k}$ on the joining the points having position vectors as $-11\hat{j}+3\hat{k}$ an $2\hat{i}-3\hat{j}+\hat{k}$ has the position vector

A.
$$4\hat{i}+5\hat{j}+5\hat{k}$$

B.
$$4\hat{i} + 5\hat{j} - 5\hat{k}$$

C.
$$5\hat{i}+4\hat{j}-5\hat{k}$$

D.
$$4\hat{i}-5\hat{j}+5\hat{k}$$

Answer: B

Watch Video Solution

15. The projections of a directed line segment on the coordinate axes are 12,4,3. The direction cosines of the line are

A.
$$\frac{12}{13}$$
, $-\frac{4}{13}$, $\frac{3}{13}$

$$\mathsf{B.} - \frac{12}{13}, \ -\frac{4}{13}, \frac{3}{13}$$

c.
$$\frac{12}{13}$$
, $\frac{4}{13}$, $\frac{3}{13}$

D. none of these

Answer: C

Watch Video Solution

16. Let $l_1, m_1, n_1; l_2, m_2, n_2$ and l_3, m_3, n_3 be the direction cosines of three mutually perpendicular lines. Show that the direction ratios of the line which makes equal angles with each of them are $(l_1+l_2+l_3), (m_1+m_2+m_3), (n_1+n_2+n_3)$

A.
$$l_1 + l_2 + l_3, m_1 + m_2 + m_3, n_1 + n_2 + n_3$$

B.
$$\frac{l_1+l_2+l_3}{\sqrt{3}},\, \frac{m_1+m_2+m_3}{\sqrt{3}},\, \frac{n_1+n_2+n_3}{\sqrt{3}}$$

C.
$$\frac{l_1+l_2+l_3}{3}, \frac{m_1+m_2+m_3}{3}, \frac{n_1+n_2+n_3}{3}$$

D. none of these

Answer: B

Watch Video Solution

17. If P(x,y,z) is a point on the line segment joining Q(2,2,4) and R(3,5,6) such that the projections of $\vec{O}P$ on te axes are 13/5, 19/5 and 26/5, respectively, then find the ratio in which P divides QR.

A. 1: 2

B.3:2

C.2:3

D. 1:3

Answer: B

.....

18. If O is the origin, OP=3 with direction ratios

$$-1, 2, and -2$$
, then find the coordinates of P .

A.
$$(-1, 2, -2)$$

B.
$$(1, 2, 2)$$

C.
$$(-19, 2/9, -2/9)$$

D.
$$(3, 5, -9)$$

Answer: A

19. A mirror and a source of light are situated at the origin O and at a point on OX, respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are 1, -1, 1, then find the DCs of the reflected ray.

A.
$$\frac{1}{3}$$
, $\frac{2}{3}$, $\frac{2}{3}$

B.
$$-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$$

$$C. -\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}$$

D.
$$-\frac{1}{3}$$
, $-\frac{2}{3}$, $\frac{2}{3}$

Answer: D

20. Find the angel between any two diagonals of a cube.

A.
$$30^{\circ}$$

B.
$$45^{\circ}$$

$$\mathsf{C.}\cos^{-1}\!\left(\frac{1}{\sqrt{3}}\right)$$

D.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

Answer: D

Watch Video Solution

21. A line makes angles $lpha, eta, \gamma$ and δ with the diagonals of a cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$

A.
$$1/3$$

Answer: C

22. If
$$P(0,1,2),\ Q(4,-2,1) and\ O(0,0,0)$$
 are three points then $POQ=\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C.}\,\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Answer: D

