

CHEMISTRY

BOOKS - MTG CHEMISTRY (ENGLISH)

ORGANIC CHEMISTRY-SOME BASIC PRINCIPLES AND TECHNIQUES

Mcqs

1. How many σ and π bonds are present in

$$HC \equiv C - CH = CH - CH_3$$
?

A. 9σ , 4π

B. 10σ , 3π

 $C.6\sigma, 6\pi$

D. 5σ , 5π

Answer: B

Watch Video Solution

2. Which type of hybridisation of each carbon is there in the compound?

$$CH_3 - CH = CH - CN$$

- A. sp^3 , sp^2 , sp^2 , sp
- $\mathsf{B}.\,sp^3,\,sp^2,\,sp^2,\,sp^3$
- $\mathsf{C.}\,sp^3,sp^2,sp^3,sp^3$
- D. sp^3 , sp^2 , sp, sp^3

Answer: A

Watch Video Solution

3. Which of the following represents the given sequence of hybridisation of carbon atoms from left to right $sp^2,\,sp^2,\,sp,\,sp$?

A.
$$H_2C=CH-C\equiv CH$$

B. $HC \equiv C - CH = CH_2$

$$\mathsf{C.}\,H_3C-CH=CH-CH_3$$

 $D. H_2C = CH - CH = CH_2$

Answer: A

Watch Video Solution

The hybridisation of carbons of C-C single bond of 4. $HC \equiv C - CH = CH_2$ is

A.
$$sp^3-sp^3$$

B.
$$sp-sp^2$$

C.
$$sp^3-sp$$

D.
$$sp^2-sp^3$$

Answer: B

- 5. What are the hybridization and shapes of the following molecules?
- (i) CH_3F
- (ii) $HC \equiv N$
 - A. (i) sp^2 , trigonal planar, (ii) sp^3 , tetrahedral
 - B. (i) sp^3 , tetrahedral, (ii) sp, linear
 - C. (i) sp, linear, (ii) sp^2 , trigonal planar
 - D. (i) sp^2 , trigonal planar, (ii) sp^2 , trigonal planar

Answer: B

6. Match the column I with column II and mark the appropriate choice.

Column I		Column II		
(A)	$N \equiv C - CH - C \equiv N$ OH	(i)	CH ₃ (CH ₂) ₆ CH ₃	
(B)	>-<	(ii)	но	
(C)		(iii)	OH NC CN	
(D)	CH ₃ CH ₃ HO(CH ₂) ₃ -CH-CH CH ₃		H ₃ C CH ₃ H-C-C-H H ₃ C CH ₃	

A.
$$A o iii, B o iv, C o i, D o ii$$

B.
$$A
ightarrow iv, B
ightarrow iii, C
ightarrow ii, D
ightarrow i$$

C.
$$A
ightarrow i, B
ightarrow ii, C
ightarrow iv, D
ightarrow iii$$

D.
$$A
ightarrow ii, Biii, C
ightarrow i, D
ightarrow iv$$

Answer: A

7. Which of the following correctly matched the bond line and condensed structure of the compounds ?

(i)
$$\begin{array}{c} \begin{array}{c} CH_3 & CH_3 \\ CH_3 - C - CH_2 - CH - CH_3 \end{array} \\ CH_3 \end{array}$$

(ii) OHC
$$\sim$$
 CHO, OHC – (CH₂)₄ – CHO

A. (i) only

B. (ii) only

C. (i) and (ii) only

D. (i),(ii) and (iii)

Answer: D

8. IUPAC names of the given structure are

- A. (i) hexane, (ii) 3-methylbutane
- B. (i) isopentane, (ii) 2,3-dimethylbutane
- C. (i) 3-ethylbutane, (ii) isopentane
- D. (i) 3-methylpentane, (ii)-methylbutane.

Answer: D

Watch Video Solution

9. Correct name for the given compound

$$CH_3-CH_2-\mathop{C}\limits_{|CH_2CH_3}H-CH_2-\mathop{C}\limits_{|CH_3}H-CH_2-CH_3$$
 is

- A. 3-ethyl-5-methylheptane
- B. 5-ethyl-3-methylheptane
- C. 1,1-diethyl-3-methylpentane
- D. 3-methyl-5,5-diethylpentane

Answer: A

Watch Video Solution

10. IUPAC name of the compound

$$H_3C$$
 CH_3
 CH_3
 CH_3

- A. 2,3-dimethylheptane
- B. 3-methyl-4-ethyloctane

C. 5-ethyl-6-methyloctane

D. 4-ethyl-3-methyloctane.

Answer: D

Watch Video Solution

11. How many primary, secondary, tertiary and quaternary carbon atoms are present in the following compound?

$$CH_3- {\scriptsize C\atop igcup_{CH_3}} H-CH_2- {\scriptsize C\atop igcup_{CH_3}} -CH_3- {\scriptsize C\atop igcup_{CH_3}}$$

A. One primary, two secondary and one tertiary

B. Five primary, three secondary

C. Five primary, one secondary, one tertiary and one quaternary

D. four primary, two secondary and two quaternary

Answer: C

Watch Vidaa Calutian

Water video Solution

12. The IUPAC name of the compound having formula

$$H_3C-egin{pmatrix} CH_2CH_3\ dots\ CH_2 & -CH = CH_2 \ ext{is} \ CH_3 \end{pmatrix}$$

A. 3,3,3-trimethylprop-1-ene

B. 1,1,1-trimethylprop-2-ene

C. 3,3-dimethylpent-1-ene

D. 2,2-dimethylbut-3-ene.

Answer: C

Watch Video Solution

13. IUPAC name of $\left(CH_{3}\right)_{3}C-CH=CH_{2}$ is

A. 2,2-dimethylbut-3-ene

B. 2,2-dimethylpent-4-ene

C. 3,3-dimethylbut-1-ene

D. hex-1-ene

Answer: C

Watch Video Solution

14. Which of the following represents 3-methylpenta-1,3-diene?

A.
$$CH_2 = CH(CH_2)_2CH_3$$

$$\operatorname{B.}CH_2 = CHCH(CH_3)CH_2CH_3$$

$$\mathsf{C.}\,CH_3CH = C(CH_3)CH = CH_2$$

D.
$$CH_3CH = C(CH_3)_2$$

Answer: C

15. The correct IUPAC name of the compound

- A. 3-heptyl-5-methylhept-3-ene
- B. 5,6-diethyl-3-methyldec-4-ene
- C. 5-butyl-3-methyloct-4-ene
- D. 8-methyl-3-propylhex-3-ene

Answer: B

Watch Video Solution

16. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is

$$A. -CONH_2, -CHO, -SO_3H, -COOH$$

$$B.-COOH, -SO_3H, -CONH_2, -CHO$$

$$C. -SO_3H, -COOH, -CONH_2, -CHO$$

$$D.-CHO, -COOH, -SO_3H, -CONH_2$$

Answer: B

Watch Video Solution

17. Which of the followingg compounds is not correctly matched wiith its

IUPAC name?

A.
$$CH_{3}CH_{2}CH_{2}COOCH_{2}CH_{3}$$
-Ethyl butanoate

B.
$$CH_3-\mathop{C}\limits_{CH_3}H-CH_2-CHO-3-$$
 Methylbutanal

D.
$$CH_3-CH-CH-CH_3-3-$$
 Methylbutan-3-ol $OH - CH_3$

Answer: D

Watch Video Solution

18. The correct representation of 4-hydroxy-2-methylpent-2-en-1-al is

A.
$$CH_3 - CH - CH = C - CHO$$
 $OH \qquad CH_3$

B.
$$CH_3-CH-CH=C-CHO$$
 CH_3 CH_3 CH_3 CH_3

$$\mathsf{C.}\,CH_3 - egin{pmatrix} | & C & -CH = C & -CHO \ | & CH_3 & CH_3 \end{pmatrix}$$

D.
$$CH_3 - CH - CH_2 - CH - CHO$$

Answer: A

19. The correct name of
$$CH_3CH_2 - C - CH - CHO$$
 is $CN = CN$

- A. 2-cyano-3-oxopentanal
- B. 2-formyl-3-oxopentanenitrile
- C. 2-cyano-1,3-pentadiene
- D. 1,3-dioxo-2-cyanopentane

Answer: B

Watch Video Solution

20. The IUPAC name of

A. 1-chloro-1-oxo-2,3-dimethylpentane

- B. 2-ethyl-3-methylbutanoyl chloride
- C. 2,3-dimethylpentanoyl chloride
- D. 3,4-dimethylpentanoyl chloride.

Answer: C

Watch Video Solution

21. Correct representation of 3-methylpent-3-en-2-ol is

A.

В.

Answer: A

22. Which of the following IUPAC name is not correctly matched?

Answer: C

Watch Video Solution

23. The correct IUPAC name of the compound

is

- A. 4-formyl-2-oxocyclohexanecarboxylic acid
- B. 4-carboxy-2-oxocyclohexanal
- C. 4-carboxy-1-formylcyclohexanone
- D. 2-carboxy-5-formyl-1-oxocyclohexane

Watch Video Solution

24. The correct IUPAC name of the following compound is

$$H_5C_2$$
 OH

- A. 2-ethyl-1-chlorocyclohexanol
- B. 4-chloro-5-ethylcyclohexanol
- C. 4-hydroxy-2-ethyl-1-chlorocyclohexane
- D. 4-chloro-3-ethylcyclohexanol

Answer: D

25. The IUPAC name of the compound shown below is

- A. 2-bromo-6-chlorocyclohex-1-ene
- B. 6-bromo-2-chlorocyclohexene
- C. 3-bromo-1-chlorocyclohexene
- D. 1-bromo-3-chlorocyclohexene

26. Match the compounds given in column I with the IUPAC names given in column II and mark the appropriate choice.

	Column I	Column II		
(A)	ОН	(i)	3,7-Dimethylocta-1,3,6-triene	
(B) O	ОН	(ii)	4-Methyl- 5-oxohexanoic acid	
(C) II	ООН	(iii)	3,3,5-Trimeth- ylhex-1-en- 2-ol	
(D)		(iv)	4-Hydroxy- 4-methylpen- tan-2-one	

A.
$$A
ightarrow ii, B
ightarrow i, C
ightarrow iii, D
ightarrow iv$$

B.
$$A
ightarrow iv, B
ightarrow ii, C
ightarrow i, D
ightarrow iii$$

C.
$$A
ightarrow i, B
ightarrow iii, C
ightarrow ii, D
ightarrow iv$$

D. A
ightarrow iii, B
ightarrow iv, C
ightarrow ii, D
ightarrow i

Answer: D

Watch Video Solution

27. Which of the following names of substituted benzene compounds is not correct?

$$\mathbf{B.} \quad ^{^{1}}\mathbf{C}_{2}\mathbf{H}_{5}$$

Answer: C

watch video Solution				
28. What is the minimum number of carbon atoms of an alkane must have				
to form an isomer?				
A. 4				
B. 3				
C. 2				
D. 1				
D. 1				
Answer: A				
Watch Video Solution				
29. 1-Butene and cyclobutane show				
·				
A. position isomerism				
F				
B. ring-chain isomerism				

C. functional isomerism

D. metamerism

Answer: B

30.

Watch Video Solution

and

 $C_2H_5-O-N=O$ are examples of

A. functional isomers

B. tautomers

C. position isomers

D. metamers

Answer: A

Watch Video Solution

31. The type of isomerism shown by the following compounds is

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3}, CH_{3}- \overset{CH_{3}}{\overset{|}{C}}H-CH_{2}CH_{3}, CH_{3}- \overset{CH_{3}}{\overset{|}{\overset{|}{C}}}-CH_{3}$$

- A. position isomerism
- B. metamerism
- C. ring-chain isomerism
- D. chain isomerism

Answer: D

32. Which of the followingg is an isomer of ethanol?

A. Methanol

B. Acetone

C. Diethylether

D. Dimethylether

Answer: D

Watch Video Solution

33. Given below are the structures of few compounds with molecular formula $C_4H_{10}O$. Select metamers from these structures.

(i)
$$CH_3-O-CH_2CH_2CH_3$$

(ii)
$$CH_3CH_2CH_2CH_2OH$$

(iii)
$$CH_3-CH_2-O-CH_2-CH_3$$

- B. (ii) and (iii)
- C. (i) and (iii)
- D. (ii) and (iv)

Answer: C

Watch Video Solution

34. Match the column I with column II and mark the appropriate choice.

	Column I		Column II	
(A)	CH_3CH_2OH , $H_3C - O - CH_3$	(i)	Position isomers	
(B)	C ₂ H ₅ COC ₂ H ₅ , C ₃ H ₇ COCH ₃	(ii)	Tautomers	
(C)	OH O	(iii)	Functional isomers	
	CH ₃ CH ₂ CH ₂ OH, CH ₃ – CH – CH ₃	(iv)	Metamers	
	ÓН		1 - (2)	

A.
$$A
ightarrow iv, B
ightarrow iii, C
ightarrow i, D
ightarrow ii$$

B. A
ightarrow i, B
ightarrow iii, C
ightarrow ii, D
ightarrow iv

C. A
ightarrow iii, B
ightarrow iv, C
ightarrow ii, D
ightarrow i

D. A
ightarrow iv, B
ightarrow i, C
ightarrow iii, D
ightarrow iii

Answer: C

35. What is the relationship between the structures shown?

A. Structural isomers

B. Geometrical isomers

C. Conformational structure

D. Identical structructures

Answer: C

Watch Video Solution

36. Which of the following compounds is isomeric with 2,2,4,4-tetramethylhexane?

- A. 3-ethyl-2,2-dimethylpentane
- B. 4-isopropylheptane
- C. 4-ethyl-3-methyl-4-n-propyloctane
- D. 4,4-diethyl-3-methylheptane

Answer: B

Watch Video Solution

37. Heterolysis of a carbon-chlorine bond produces

A. two free radicals B. two carbocations C. one cation and one anion D. two carbanions. **Answer: C** Watch Video Solution 38. Which of the followingg intermediates contains three paris of electrons in its valence shell? A. Carbocations B. Carbanions C. Free radicals D. Both (a) and (b) Answer: A

39. which of the following is an electrophilic reagent?

A.
$$H_2O$$

B. NH_3

C. *OH* ⁻

D. Cl^+

Answer: D

- A. $NH_{2}^{-},NO_{2}^{+},H_{2}O,NH_{3}$
 - $\mathbf{A}.1011_2,100_2,111_20,1011_3$

B. F^-, OH^-, NH_3, SO_3

C. NO_2^+ , $AlCl_3$, SO_3 , $CH_3\overset{+}{C}=O$

40. Which of the following sets of groups contains only electrophiles?

D. NH_3 , BF_3 , $AlCl_3$, H_2O

Answer: C

Watch Video Solution

- 41. Inductive effect involves
 - A. displacement off $\sigma\text{-electrons}$ resulting in polarisation
 - B. displacement of $\pi\text{-electrons}$ resulting in polarisation
 - C. delocalisation of σ -electrons
 - D. delocalisation of π -electrons.

Answer: A

42. The increasing order of electron donating inductive effect of alkyl groups is

$$\mathrm{A.} - H < \ - C H_3 < \ - C_2 H_5 < \ - C_3 H_7$$

$${\rm B.} - H > \ - C H_3 > \ - C_2 H_5 > \ - C_3 H_7$$

$${\rm C.} - H < \ - C_2 H_5 < \ - C H_3 < \ - C_3 H_7$$

$${\rm D.} - H > \ - C_2 H_5 > \ - C H_3 > \ - C_3 H_7$$

Answer: A

43. Inductive effect of which ato is taken as zero to compare inductive effect of other atoms?

A. Hydrogen

B. Chlorine

C. carbon

D. oxygen

Answer: A

Watch Video Solution

- 44. Maximum -I effect is exerted by the group
 - $\mathrm{A.}-C_6H_5$
 - $\mathsf{B.}-OCH_3$
 - $\mathsf{C}.-Cl$
 - $D.-NO_2$

Answer: D

45. Which one of the following acids would you expect to be the strongest?

A.
$$I-CH_2COOH$$

B. $Cl-CH_2COOH$

 $\mathsf{C}.\,Br-CH_2COOH$

 $\operatorname{\mathsf{D}}.F-CH_2COOH$

Answer: D

- **46.** Few pairs of molecules are given below. Which bond of the molecule of the pairs is more polar?
- (i) H_3C-H,H_3C-Br
- (ii) H_3C-NH_2, H_3C-OH
- (iii) $H_3C-OH,\, H_3C-SH$
- (iv) H_3C-Cl, H_3C-SH

A.
$$C - Br$$
, $C - N$, $C - O$, $C - Br$

$$\mathsf{B.}\,C-Br,C-O,C-O,C-Cl$$

$$\mathsf{C.}\,C-Br,C-N,C-S,C-Cl$$

D.
$$C - Br, C - O, C - S, C - Br$$

Answer: B

Watch Video Solution

- 47. Which of the following is the correct orderr of acidity of carboxylic acids?
- (i) $Cl_3CCOOH > Cl_2CHCOOH > ClCH_2COOH$
- (ii) $CH_3CH_2COOH > (CH_3)_9CHCOOH > (CH_3)_9CCOOH$

(iii) $F_2CHCOOH > FCH_2COOH > ClCH_2COOH$

- A. (i) and (ii)
- B. (ii) and (iii)
- C. (i) and (iii)

D. (i), (ii) and (iii)

Answer: D

Watch Video Solution

- 48. Point out the incorrect statement about resonance?
 - A. Resonance structures should have equal energy
 - B. In resonance structures, the contituent atoms must be in the same
 - position
 - C. In resonance structures, there should not be same number of electoron pairs
 - D. Resonance structures should differ only in the location of electrons
 - around the constituent atoms.

Answer: C

Watch Video Solution

49. Which of the following is not structure of nitromethane molecule?

$$CH_3 - N < O$$

A

В.

$$CH_3 - N_{O}$$

$$CH_3 - N > O$$

$$_{D.}$$
 CH₂= $\stackrel{+}{N} \stackrel{-}{<} \stackrel{O}{0}^{-}$

Answer: D

Watch Video Solution

50. Which of the following ions is the most resonance stabilised?

A. Ethoxide

B. Phenoxide

C. Butaxide

D. Isopropoxide

Answer: B

Watch Video Solution

51. Hyperconjugation is

A. $\sigma - \pi$ conjugation

B. noticed due to delocalisation of σ and π bond

C. no bond resonance

D. all the above

Answer: D

Watch Video Solution

52.	Stability	v of iso-but	vlene can	be best	explaned by
	Jean IIIe	, c ba	yiciic caii		capianca by

A. inductive effect

B. mesomeric effect

C. hyperconjugative effect

D. steric effect

Answer: C

Watch Video Solution

53. Which of the following is true?

A.
$$CH_3 - \overset{-}{C}H_2$$

B.
$$C_6H_5-CH_3$$

$$\mathsf{C.}\,CH_2=CH_2$$

D.
$$CH_3 - egin{pmatrix} CH_3 \ | \ C \ - CH = CH_2 \ | \ CH_3 \ \end{pmatrix}$$

Answer: B

Watch Video Solution

54. Hyperconjugation is not possible in

A.
$$CH_3-CH=CH_2$$

$$\mathsf{B.}\,CH_2=CH_2$$

$$CH_3 - \overset{+}{C} \overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}}{\overset{C}}{\overset{CH_3}}}{\overset{C}}{\overset{CH_3}}}{\overset{C}}{\overset{CH_3}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{$$

D. $CH_3-{\displaystyle \mathop{C}_{oxedown}}={\displaystyle \mathop{C}_{oxedown}}-CH_3 \ {\displaystyle \mathop{C}_{CH_3}}$

Answer: B

Watch Video Solution

55. Decreasing order of stability of following alkenes is

(i)
$$CH_3 - CH = CH_2$$

(ii)
$$CH_3-CH=CH-CH_3$$

(iv)
$$CH_3-C=CH-CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Answer: B

Watch Video Solution

56. Which of the following alcohols on dehydration gives most stable carbocation?

A.
$$CH_3-CH_2OH$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

$$CH_3-\stackrel{
ightharpoonup}{C}_{CH_3}-OH$$

$$\mathsf{C.}\,CH_3-CH_2-CH_2-CH_2OH$$

D.
$$CH_3 - CH - CH_2CH_3$$

Answer: B

Watch Video Solution

A. inductive effect only

B. hyperconjugation only

C. both inductive effect and hyperconjugation

57. Stability of alkyl carbocations can be explained by

D. electromeric effect only

Answer: C

58. In the given reaction two products are expected.

$$CH_3 - CH = CH_2 + HBr \longrightarrow CH_3CH_2CH_2Br (A)$$

$$CH_3 - CH - CH_3 (B)$$

$$Br \longrightarrow Br$$

The product (B) is formed as a major product because

A. the carbocation $CH_3 - \overset{+}{C}H - CH_3$ is formed which is more stable

B. the carbocation $CH_3-CH_2-\overset{+}{C}H_2$ is formed which is more

C. both carbocations are equally stable but the nucleophile attacks on

central C atom

stable

D. $CH_3 - \overset{+}{C}H - CH_3$ can easily give a proton to attack $Br^+.$

Answer: A

Watch Video Solution

59. The carbocation $CH_3\overset{+}{C}HCH_3$ is less stable than

- A. $CH_3CH_2\overset{+}{C}H_2$
- B. $\overset{+}{C}H_2$
- C. $(CH_3)_3\overset{+}{C}$
- D. $CH_3\overset{+}{C}H_2$

Answer: C

Watch Video Solution

60. Complete the following reactions by filling most stable intermediate and the product.

$$CH_{3} - CH - CH = CH_{2} + HCI \xrightarrow{Br} (A) \xrightarrow{CI} (B) \text{ (ii)} + HBr \xrightarrow{Br} (C) \xrightarrow{Br} (D)$$

$$A \qquad B \qquad C \qquad D$$

$$B. \overset{\overset{CH_3}{C_1}-\overset{C}{C_1}-CH_2CH_3}{\underset{C}{C_1}-\overset{CH_3}{C_1}-\overset{CH_3}{C_1}-\overset{C}{C_1}-CH_2CH_3}$$

- $D^{\bullet} \xrightarrow{\operatorname{CH}^3 \operatorname{CH}^2 \operatorname{CH}^3} \xrightarrow{\operatorname{CH}^3 \operatorname{CH}^2 \operatorname{CH}^3 \operatorname{CH}^3} \xrightarrow{\operatorname{CH}^3 \operatorname{CH}^3 \operatorname{CH}^3 \operatorname{CH}^3 \operatorname{CH}^3} \xrightarrow{\operatorname{Re}^{\circ G} \operatorname{CH}^3 \operatorname$

Answer: B

Watch Video Solution

61. Which of the following statements is not true about the stability of carbanions?

A. Stability of carbanions becauses with increase in s-character of orbital

B. The electron withdrawingg groups like $-NO_2$, -CN, >C=0

increases the stability of carbanions.

C. Order of stability of carbanions is $3^{\circ} > 2^{\circ} > 1^{\circ}$,

D. The negatively charged carbon is ${\it sp}^3$ hybridised and pyramidal.

Answer: C

62. Which of the following carbanion expected to be most stable?

A.
$$p-NO_2C$$
 $\hat{\;}H_4CH_2$

$$\mathsf{B.}\,o-NO_2C_6H_4CH_2$$

$$\mathsf{C.}\,o-CHOC_6H_4CH_2$$

D.
$$p-CHOC_6H_4CH_2$$

Answer: B

- **63.** The order of decreasing stability of the following carbanions is
- (i) $(CH_3)_3C^{-}$
- (ii) $(CH_3)_2CH^{\,-}$
- (iii) $CH_3CH_2^-$
- (iv) $C_6H_5CH_2^-$

C. (iv)gt(i)gt(ii)gt(iii) D. (iii)gt(ii)gt(i)gt(lv) **Answer: B Watch Video Solution** 64. Free radicals can undergo A. rearrangement to a more stable free radical B. decomposition to give another free radical C. combination with other free radical D. all are correct Answer: D

A. (i)gt(ii)gt(iii)gt(iv)

B. (iv)gt(iii)gt(ii)gt(i)

Watch Video Solution

65. The most stable free radical among the following is

Α

В.

C.

D.

Answer: D

Watch Video Solution

66. Which of the following is a characteristic feature of a free radical?

- A. It has a positive charge
- B. It has a negative charge
- C. It has all paired electrons.
- D. It has an unpaired electron.

Answer: D

Watch Video Solution

67. The increasing order of stability of the following free radicals is

B. $(C_6H_5)_3\overset{*}{C} < (C_6H_5)_2\overset{*}{C}H < (CH_3)_3\overset{*}{C} < (CH_3)_2\overset{*}{C}H$

C. $(C_6H_5)_2\overset{*}{C}H < (C_6H_5)_3\overset{*}{C} < (CH_3)_3\overset{*}{C} < (CH_3)_2\overset{*}{C}H$

D. $(CH_3)_2\overset{*}{C}H < (CH_3)_3\overset{*}{C} < (C_6H_5)_3\overset{*}{C} < (C_6H_5)_2\overset{*}{C}H$

Answer: A

Watch Video Solution

68. Which of the following is a false statement?

radicals, carbonium ions or carbanions are reaction A. Free intermediates.

B. Reaction between methane and chlorine in presence of sunlight proceeds via free radical

C. The electronegative atom in the carbon chain produces +I effect

D. Homolytic fission of C-C bonds gives free radicals

Answer: C

69. Which type of intermediate (A) is formed during the reaction?

$$CH_3CH_2-N=N-CH_2CH_3 \stackrel{ ext{heat}}{\longrightarrow} (A)+N_2$$

- A. Carbocation
- B. Carbanions
- C. Free radical
- D. Carbene

Answer: C

Watch Video Solution

70. Separation of two substances by crystallisation depends upon their

A. densities

differences in

- B. solubility

 C. melting points

 D. boiling points

 Answer: B

 Watch Video Solution
- 71. Those substaces can be separated by steam distillation which are
 - A. steam volatile and insoluble in water
 - B. steam volatile and soluble in water
 - C. steam volatile and sparingly soluble in water
 - D. inliquid form in steam and solid form in water.

Answer: A

- A. vacuum distillation
- B. simple distillation
- C. steam distillation
- D. fractional distillation

Answer: A

Watch Video Solution

73. Few mixtures and their methods of separation are given in the columns I and columns II respectively. Match the columns and mark the

appropriate choice.

	Column I	Column II		
(A)	Ether + Toluene	(i)	Steam distillation	
(B)	o-Nitrophenol + p-Nitrophenol	(ii)	Distillation	
(C)	Benzoic acid + Benzaldehyde	(iii)	Fractional distillation	
(D)	Fractions of crude oil	(iv)	Sublimation	

A.
$$A
ightarrow iii, B
ightarrow ii, C
ightarrow i, D
ightarrow iv$$

B.
$$A
ightarrow ii, B
ightarrow iii, C
ightarrow i, D
ightarrow iv$$

C.
$$A
ightarrow ii, B
ightarrow i, C
ightarrow iv, D
ightarrow iii$$

D.
$$A
ightarrow i, B
ightarrow iii, C
ightarrow ii, D
ightarrow iv$$

Answer: C

Watch Video Solution

74. Distillation under reduced pressure is generally used to purify those

liquids which

B. are volatile C. have high boiling points and which decompose below their boiling points D. have a large difference in their boiling points Answer: C **Watch Video Solution** 75. Which method can be applied to separate a mixture of camphor and benzoic acid? A. Sublimation B. Chemical methods C. Crystallisation D. Extraction with solvent

A. have very low boiling points

76. The process of separation of an organic compound from its aqueous solution by shaking with a suitable solvent in termed solvent extraction or differential extraction.

The organic compound present in the aqueous layer moves to the organic solvent because

- A. The organic substance is more soluble in the organic solvent
- B. organic compound being lighter moves in the upper layer

C. organic solvent is insoluble in water hence organic compound moves up D. from the supersaturated aqueous solution the solute starts

Answer: A

diffusing

Watch Video Solution

77. The substance which can be used as adsorbent in column chromatography is

A. Na_2O

B. Na_2SO_4

D. NaCl

 $\mathsf{C}.\,Al_2O_3$

Answer: C

78. Given below is a column ot adsorbent in which the mixture of compounds A+B+C is placed. When the solvent is poured through the column, the components are separated depending upon the degree of adsorption. Which of the given statements is correct?

A. A is the most weakly adsorbed component hence remains near the top

B. A is the most strongly adsorbed component hence remains near the top

C. C is the most strongly adsorbed component hence is found near the bottom

D. B is the most strongly adsorbed component hence is found in the centre of the column.

Answer: B

Watch Video Solution

79. Given below is the developed chromatogram of a mixture of pigments.

 R_y values for ${\bf x}$ and ${\bf y}$ can be expressed as

A.
$$\frac{x}{z}$$
, $\frac{y}{z}$

B.
$$\frac{x}{y}$$
, $\frac{y}{z}$

 $\mathsf{C}.\,xz,\,yz$

D.
$$\frac{z}{x}$$
, $\frac{z}{y}$

Answer: A

Watch Video Solution

- 80. The presence of carbon in an organic compound can be shown by
 - A. heating the compound wih sodium
 - B. heating the compound with cupric oxide
 - C. heating the compound on bunsen flame
 - D. heating the compound with magnesium

Answer: B

Watch Video Solution

81. In Lassaigne's test for N,S and halogens, the organic compound is

A. fused with sodium

B. dissolved with sodamide

C. extracted with sodamide

D. fused with calcium

Answer: A

Watch Video Solution

82. The blue compound formed in the positive test for nitrogen with

Lassaigne solution of an organic compound is

A. $Na_{4}ig[Fe(CN)_{5}(NOS)ig]$

 $\operatorname{B.}Na_{3}\big[Fe(CN)_{6}\big]$

 $\mathsf{C}.\,Fe(CN)_3$

D. $Fe_4igl[Fe(CN)_6igr]_3$

Answer: D

Watch Video Solution

83. If on adding $FeCl_3$ solution to acidified Lassaigne solution, a blood red colouration is produced, it indicates the presence of

- A. S
- B. N
- C. N and S
- D. S and Cl

Answer: C

Watch Video Solution

84. During sodium extract preparation for Lassaigne's test both N and S present in organic compound change to

85. Lassaigne's test for the detection of nitrogen fails in A. $NH_2CONHNH_2 \cdot HCl$ B. $NH_2NH_2 \cdot HCl$ C. NH_2CONH_2 D. $C_6H_5NHNH_2 \cdot HCl$ **Watch Video Solution**

A. NaCN and Na_2S

 $\mathsf{C}.\,NaSCN$

Answer: C

B. $NaNH_2$ and Na_2SO_4

D. $NaNO_3$ and Na_2S .

Watch Video Solution

Answer: B

86. Freshly prepared solution of sodium nitroprusside is added to the sodium extract. Appearance of a deep violet colour indicates the presence of

A. nitrogen

B. sulphur

C. both nitrogenn and sulphur

D. halogen

Answer: B

Watch Video Solution

87. Which of the following will not give a white pt. when $AgNO_3$ is added to its solution?

A. CCl_4

B. NaCl $\mathsf{C}.\,MgCl_2$ D. KCl Answer: A **Watch Video Solution** 88. 0.92 g of an organic compound was analysed by combustion method. The mass of the U-tube increased by 1.08 g. what is the percentage of hydrogen in the compound? A. 0.1304 B. 0.5217

C. 0.6521

D. 0.113

Answer: A

89. An organic compound gave 0.4655 g of ${\cal C}{\cal O}_2$ on complete combustion.

If the mass of the compound taken was 0.2115g, what is the percentage of

C in it?

B. 0.2667

A. 0.133

C. 0.6003

D. 0.288

Answer: C

Watch Video Solution

90. In Duma's method 0.52g of an organic compound on combustion gave 68.6 mL N_2 at $27^{\circ}C$ and 756mm pressure. What is the percentage of nitrogen in the compound?

A. 0.1222 B. 0.1493 C. 0.1584 D. 0.1623 **Answer: B Watch Video Solution** 91. In Kjeldahl's method of estimation of nitrogen, nitrogen is quantitatively converted to ammonium sulphate. It is then treated with standard solution of alkli. The nitrogen which is present is estimated as A. N_2 gas B. NO_2 gas C. NH_3 gas

D. $(NH_4)_2SO_4$ ppt

Answer: C

Watch Video Solution

92. In Carium method of estimation of halgoen, 0.15 g of an organic compound gave 0.12 g of AgBr. What is the percentage of bromine in the compound?

A. 0.6808

B. 0.3504

 $\mathsf{C.}\,42.1\,\%$

D. 0.5

Answer: B

Watch Video Solution

93. 2.18g of an organic compound containing sulphur produces 1.02 g of $BaSO_4$. The percentage of sulphur in the compound is

A. 0.0726

B. 0.0898

C. 0.1

D. 0.0642

Answer: D

Watch Video Solution

94. 1.6 g of an organic compound gave 2.6 g of magnesium pyrophosphate. The percentage of phosphorus in the compound is

A. 0.4538

B. 0.5438

C. 0.3776

Answer: A

Watch Video Solution

95. Match the column I with column II and mark the appropriate choice.

	Column I	Column II	
(A)	Beilstein test	(i)	Sulphur
(B)	Sodium nitroprusside	(ii)	Carbon
(C)	Liebig's method	(iii)	Nitrogen
(D)	Kjeldahl's method	(iv)	Chlorine

A.
$$A
ightarrow i, B
ightarrow ii, C
ightarrow iii, D
ightarrow iv$$

B.
$$A
ightarrow iiii, B
ightarrow ii, C
ightarrow i, D
ightarrow iv$$

C.
$$A
ightarrow iv, B
ightarrow i, C
ightarrow ii, D
ightarrow iii$$

D.
$$A
ightarrow ii, B
ightarrow iii, C
ightarrow iv, D
ightarrow i$$

96. Match the column I with column II in which formula for estimation of ann element is given annd mark the appropriate choice.

Column I			Column II		
(A)	Estimation of carbon	(i)	$\frac{80}{188} \times \frac{w_1}{w} \times 100$		
(B)	Estimation of nitrogen	(ii)	$\frac{62}{222} \times \frac{w_1}{w} \times 100$		
(C)	Estimation of bromine	(iii)	$\frac{32}{233} \times \frac{w_1}{w} \times 100$		
(D)	Estimation of sulphur	(iv)	$\frac{28}{22400} \times \frac{V}{w} \times 100$		
(E)	Estimation of phosphorus	(v)	$\frac{12}{44} \times \frac{w_1}{w} \times 100$		

A.
$$A
ightarrow v, B
ightarrow ii, C
ightarrow iv, D
ightarrow i, E
ightarrow iii$$

B.
$$A
ightarrow v, B
ightarrow iv, C
ightarrow i, D
ightarrow iii, E
ightarrow ii$$

C.
$$A
ightarrow v, B
ightarrow iv, C
ightarrow ii, D
ightarrow i, E
ightarrow iii$$

D.
$$A
ightarrow iv, B
ightarrow iii, C
ightarrow i, D
ightarrow ii, E
ightarrow v$$

Answer: B

Watch Video Solution

97. The masses of carbon, hydrogen and oxygen in ann organic compound are in the ratio 6:1:8 respectively. Which of the following pairs of formulae correspond to above information?

- A. CH_3O and CH_3CHO
- $B. CH_2O$ and C_3H_6O
- $C. C_3H_6O$ and $C_2H_6O_2$
- $D. C_3H_6O_3$ and HCHO

Answer: D

98. 0.2 g off an organic compound contains C, H and O. On combustion, it yields 0.15 g CO_2 and 0.12 g H_2O . The percentage of C, H and O respectively is

A.
$$C=15\,\%$$
 , $H=20\,\%$, $O=65\,\%$

B.
$$C=10\,\%$$
 , $H=8.2\,\%$, $O=81.8\,\%$

C.
$$C=12.2\,\%$$
 , $H=8.8\,\%$, $O=79\,\%$

D.
$$C=20\,\%$$
 , $H=6.66\,\%$, $O=73.34\,\%$

Answer: D

99. 0.92 g of an organic compound was analysed by combustion method.

The mass of the U-tube increased by 1.08 g. what is the percentage of hydrogen in the compound?

A.
$$C=52.17\,\%$$
 , $H=13.04\,\%$, $O=34.79\,\%$

B.
$$C=50\,\%$$
 , $H=50\,\%$

C.
$$C=32.19\,\%$$
 , $H=18.01\,\%$, $O=49.8\,\%$

D.
$$C=72\,\%$$
 , $H=28\,\%$

Answer: A

Watch Video Solution

100. An organic compound contains 69% carbon and 4.8% hydrogen, the remainder being oxygen. What will be the masses off carbon dioxide and water produced when 0.20 g of this substance is subjected to complete combustion.

- A. 0.40g
- B. 0.50g
- C. 0.60g
- D. 0.70g

Answer: B

Watch Video Solution

Exemplar Problems

- 1. Which of the following is the correct IUPAC name?
 - A. 3-Ethyl-4,4-dimethylheptane
 - B. 4,4-Dimethyl-3-ethylheptane
 - C. 5-Ethyl-4,4-dimethylheptane
 - D. 4,4-Bis(methyl)-3-ethylheptane

Answer: A

2. The IUPAC name for
$$CH_3-\stackrel{O}{C}-CH_2-CH_2-\stackrel{O}{C}-OH$$
 is _____.

- A. 1-hydroxypentane-1,4-dione
- B. 1,4-dioxopentanol
- C. 1,carboxybutan-3-one
- D. 4-oxopentanoic acid

Answer: D

The IUPAC name for
$$CH_3$$

A. 1-chloro-2-nitro-4-methylbenzene

B. 1-chloro-4-methyl-2-nitrobenzene

C. 2-chloro-1-nitro-5-methylbenzene

D. m-nitro-p-pchlorotoluene

Answer: B

Watch Video Solution

4. Electronegativity of carbon atoms depends upon their state of hybridisation. In which of the following compounds, the carbon marked with asterisk is most electronegative?

A.
$$CH_3-CH_2-CH_2-CH_3$$

B.
$$CH_3 - \overset{\star}{C}H = CH - CH_3$$

$$\mathsf{C.}\,CH_3-CH_2-C\equiv \overset{\star}{C}H$$

D.
$$CH_3-CH_2-CH=\overset{\star}{C}H_2$$

Answer: C

Watch Video Solution

- 5. In which of the followinng functional group isomerism is not possible?
 - A. Alcohols
 - B. Aldehdyes
 - C. Alkyl halides
 - D. Cyanides

Answer: C

Watch Video Solution

6. The fragrance of flowers is due to the presence of some steamm volatile organic compounds called essential oils. These are generally insoluble in water at room temperature but are miscible with water

vapour in vapour phase. A suitable method for the extraction of these oils from the flowers is

A. distillation

B. crystallisation

C. distillation under reduced pressure

D. steam distillation

Answer: D

Watch Video Solution

7. During hearing of a court case, the judge suspected that some changes in the documents had been carried out. He asked the forensic department to check the ink used at two different places. According to you which technique can give the best results?

A. Column chromatography

B. solvent extraction

D. Thin layer chromatography
Answer: D
Watch Video Solution
8. The principle involved in paper chromatography is
A. adsorption
B. partition
C. solubility
D. volatility
Answer: B
Watch Video Solution

C. Distillation

9. What is the correct order of decreasing stability of the following

cations?

$$CH_3-\stackrel{+}{C}H-CH_3 \qquad CH_3-\stackrel{+}{C}H-OCH_3 \ CH_3-\stackrel{+}{C}H-CH_2-OCH_3$$

A. IIgtIgtIII

B. IIgtIIIgtI

C. Illgtlgtll

D. Igtligtili

Answer: A

Watch Video Solution

10. In which of the followinng compounds the carbon marked with asterisk is expected to have greatest positive charge?

A.
$$\overset{\star}{C}H_3-CH_2-Cl$$

B.
$$\overset{\star}{C}H_3-CH_2-Mg^+Cl^-$$

C.
$$\overset{\star}{C}H_3-CH_2-Br$$

D.
$$\overset{\star}{C}H_3-CH_2-CH_3$$

Answer: A

Watch Video Solution

11. Ionic species are stabilised by the dispersal of charge. Which of the following carboxylate ion is the most stable?

A.
$$CH_3 - \overset{O}{C} - O^-$$

B.
$$Cl-CH_2-\overset{O}{\overset{||}{C}}-O^-$$

C.
$$F-CH_2-\overset{O}{\overset{|}{C}}-O^-$$

width="30%">

Answer: D

Watch Video Solution

12. Electrophilic addition reactions proceed in two steps. The first step involves the addition of an electrophile. Name the type of intermediate formed in the first step of the following addition reaction.

$$H_3C-HC=CH_2+H^+
ightarrow$$
 ?

- A. 2° carbanion
- $\text{B.}\,1^{\circ}$ carbocation
- C. 2° carbocation
- D. 1° carbanion

Answer: C

1. Assertion: Hybridisation influences the bond length and bond enthalpy in organic compound.

Reason: More the s character of hybrid orbital, shorter and stornger will be the bond.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

2. Assertion: sp^3 hybrid carbon atom is more electronegative than sp hybrid carbon atom.

Reason: sp^3 hybrid orbitals are more closer to the nucleus.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Watch Video Solution

3. Assertion: Rotation about C=C is restricted.

Reason: Electron charge cloud of the π bond is located above and below

the plane of bonding atoms.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

4. Assertion: The name of the hybrocarbon

 $(CH_3)_2CHCH_2CH_2CH(CH_3)CH_2CH_3$

is 2,5-dimethylheptane and not 3,6-dimethylheptane.

Reason: Numbering should be done in such a way that sum of the locants on the parennt chain is lowest possible number.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

5. Assertion: In the case of polyfunctional compounds, the choice of principal functional group is made on the basis of order of preference.

Reason: The order of decreasing priority for some functional group is

$$-COOH, -SO_3H, -COOR, -COCI, -CONH_2, -CN,$$

 $-CH=O, C=O, -OH, C=C, -C\equiv C-.$

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

6. Assertion: Alkanes containing more than three carbon atoms exhibit chain isomerism.

Reason: In an alkane, all carbon atoms are sp^3 hybridised.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct

explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

7. Assertion: Nitroalkanes and alkyl nitrites exhibit funcctional isomerism.

Reason: Compounds having same molecular formula but different functional groups are called functional isomers.

A. If both assertion and reason are true and reason is the correct

explanation of assertion

B. If both assertion and reason are true but reason is not the correct

explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

8. Assertion: Heterolytic fission occurs readily in polar covalent bonds.

Reason: Hyterolytic fission involves breaking of bond in such a way that the shared pair of electrons go with one atom.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct

explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

9. Assertion: When inductive and electromeric effects operate in oppsite directions, the inductive effect predominates.

Reason: Inductive effect is the complete transfer of shared pair of π electrons to one of the atoms.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

10. Assertionj: The following structures (I) and (II) canot e the major contributors to the real structure of CH_3COOCH_3

Reason: Both the structures involve charge separation and structure (I) contains a carbon atom with an incomplete octet.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

11. Assertion: The order of stability of carbocations is $3^{\circ}>2^{\circ}>1^{\circ}$

Reason: Carbon atom in carbocation is in ${\it sp}^3$ state of hybridisation.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

Watch Video Solution

12. Assertion: Glycerol is purified by distillation under reduced pressure.

Reason: Method of distillation under reduced pressure is used to purify

liquids having very high boiling points and those, which decompose at or below their boiling points.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

13. Assertion: Paper chromatography is a type of partition chromatography.

Reason: Moving phase is liquid and stationary phase is solid.

A. If both assertion and reason are true and reason is the correct

explanation of assertion

B. If both assertion and reason are true but reason is not the correct

explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

Tetravalence Of Carbon Shape Of Organic Compounds

1. How many σ and π bonds are present in

A.
$$9\sigma$$
, 4π

 $HC \equiv C - CH = CH - CH_3$?

B. 10σ , 3π

 $\mathsf{C.}\,6\sigma,\,6\pi$

D. 5σ , 5π

Answer: B

Watch Video Solution

2. Which type of hybridisation of each carbon is there in the compound?

$$CH_3 - CH = CH - CN$$

A. sp^3, sp^2, sp^2, sp

 $\mathsf{B}.\,sp^3,\,sp^2,\,sp^2,\,sp^3$

 $\mathsf{C.}\,sp^3,sp^2,sp^3,sp^3$

D. $sp^{3}, sp^{2}, sp, sp^{3}$

Answer: A

3. Which of the following represents the given sequence of hybridisation of carbon atoms from left to right $sp^2,\,sp^2,\,sp,\,sp$?

A.
$$H_2C=CH-C\equiv CH$$

$$\mathrm{B.}\,HC\equiv C-CH=CH_2$$

$$\mathsf{C.}\,H_3C-CH=CH-CH_3$$

D.
$$H_2C=CH-CH=CH_2$$

Answer: A

Watch Video Solution

4. The hybridisation of carbons of C-C single bond of $HC \equiv C - CH = CH_2$ is

A.
$$sp^3-sp^3$$

B.
$$sp-sp^2$$

$$\mathsf{C.}\, sp^3-sp$$

D.
$$sp^2-sp^3$$

Answer: B

Watch Video Solution

- 5. What are the hybridization and shapes of the following molecules?
- (i) CH_3F
- (ii) $HC \equiv N$
 - A. (i) sp^2 , trigonal planar, (ii) sp^3 , tetrahedral
 - B. (i) sp^3 , tetrahedral, (ii) sp, linear
 - C. (i) sp, linear, (ii) sp^2 , trigonal planar
 - D. (i) sp^2 , trigonal planar, (ii) sp^2 , trigonal planar

Answer: B

Nomenclature Of Organic Compounds

1. Correct name for the given compound

$$CH_3-CH_2-egin{array}{cccc} C&H-CH_2-C&H-CH_2-CH_3\ CH_2CH_3&CH_3 \end{array}$$
 is

- A. 3-ethyl-5-methylheptane
- B. 5-ethyl-3-methylheptane
- C. 1,1-diethyl-3-methylpentane
- D. 3-methyl-5,5-diethylpentane

Answer: A

Watch Video Solution

2. How many primary, secondary, tertiary and quaternary carbon atoms are present in the following compound?

$$CH_3-rac{C}{C}H-CH_2-rac{C}{C}-CH_3 \ CH_3$$

- A. One primary, two secondary and one tertiary
- B. Five primary, three secondary
- C. Five primary, one secondary, one tertiary and one quaternary
- D. four primary, two secondary and two quaternary

Answer: C

Watch Video Solution

3. The IUPAC name of the compound having formula

$$H_3C-egin{pmatrix} CH_2CH_3\ dots\ C & -CH=CH_2 ext{ is }\ CH_3 \end{pmatrix}$$

- A. 3,3,3-trimethylprop-1-ene
- B. 1,1,1-trimethylprop-2-ene
- C. 3,3-dimethylpent-1-ene
- D. 2,2-dimethylbut-3-ene.

Answer: C

Watch Video Solution

- **4.** IUPAC name of $(CH_3)_3C-CH=CH_2$ is
 - A. 2,2-dimethylbut-3-ene
 - B. 2,2-dimethylpent-4-ene
 - C. 3,3-dimethylbut-1-ene
 - D. hex-1-ene

Answer: C

- 5. Which of the following represents 3-methylpenta-1,3-diene?
 - A. $CH_2 = CH(CH_2)_2CH_3$

B. $CH_2 = CHCH(CH_3)CH_2CH_3$

 $C. CH_3CH = C(CH_3)CH = CH_2$

D. $CH_3CH = C(CH_3)_2$

Answer: C

6. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is

 $A. -CONH_2$, -CHO, $-SO_3H$, -COOH

 $B.-COOH, -SO_3H, -CONH_2, -CHO$

 $C. -SO_3H$, -COOH, $-CONH_2$, -CHO

 $D.-CHO, -COOH, -SO_3H, -CONH_2$

Answer: B

7. Which of the followingg compounds is not correctly matched wiith its

IUPAC name?

A.
$$CH_3CH_2CH_2COOCH_2CH_3$$
-Ethyl butanoate

B.
$$CH_3-\mathop{C}\limits_{CH_3}H-CH_2-CHO-3-$$
 Methylbutanal

D.
$$CH_3-CH-CH-CH_3-3-$$
 Methylbutan-3-ol $OH - CH_3$

Answer: D

Watch Video Solution

8. The correct representation of 4-hydroxy-2-methylpent-2-en-1-al is

A.
$$CH_3 - CH - CH = C - CHO$$
 $OH \qquad CH_3$

B.
$$CH_3 - CH - CH = C - CHO$$
 $CH_3 - CH_3 - CH$

Answer: A

- - A. 2-cyano-3-oxopentanal
 - B. 2-formyl-3-oxopentanenitrile
 - C. 2-cyano-1,3-pentadiene
 - D. 1,3-dioxo-2-cyanopentane

Answer: B

10. Correct representation of 3-methylpent-3-en-2-ol is

A.

В.

C

Answer: A

D.

11. Which of the following IUPAC name is not correctly matched?

- Cyclopentane
- Chlorocyclohexane
- C. 1,1-dimethylcyclohexane
- 3-Nitrocyclohexene

Answer: C

Watch Video Solution

12. Which of the following names of substituted benzene compounds is not correct?

$$CH_3$$
4-ethyl-2-methylaniline

4-chloro-1,3-dinitrobenzene

3,4-dimethylphenol

Answer: C

Watch Video Solution

Isomerism

- **1.** What is the minimum number of carbon atoms of an alkane must have to form an isomer?
 - A. 4
 - B. 3
 - C. 2

Answer: A

Watch Video Solution

- **2.** 1-Butene and cyclobutane show
 - A. position isomerism
 - B. ring-chain isomerism
 - C. functional isomerism
 - D. metamerism

Answer: B

3. The type of isomerism shown by the following compounds is

$$CH_{3}CH_{2}CH_{2}CH_{2}CH_{3},\,CH_{3}-\stackrel{CH_{3}}{C}H-CH_{2}CH_{3},\,CH_{3}-\stackrel{CH_{3}}{C}-CH_{3}$$

- A. position isomerism
- B. metamerism
- C. ring-chain isomerism
- D. chain isomerism

Answer: D

- 4. Which of the followingg is an isomer of ethanol?
- A. Methanol
 - B. Acetone
 - C. Diethylether

D. Dimethylether

Answer: D

- **5.** Given below are the structures of few compounds with molecular formula $C_4H_{10}O$. Select metamers from these structures.
- (i) $CH_3 O CH_2CH_2CH_3$
- (ii) $CH_3CH_2CH_2CH_2OH$
- (iii) $CH_3-CH_2-O-CH_2-CH_3$
- - A. (i) and (ii)
 - B. (ii) and (iii)
 - C. (i) and (iii)
 - D. (ii) and (iv)

Answer: C

Watch Video Solution

- **6.** Which of the following compounds is isomeric with 2,2,4,4-tetramethylhexane?
 - A. 3-ethyl-2,2-dimethylpentane
 - B. 4-isopropylheptane
 - C. 4-ethyl-3-methyl-4-n-propyloctane
 - D. 4,4-diethyl-3-methylheptane

Answer: B

Watch Video Solution

Fundamental Concepts In Organic Chemistry

1. Heterolysis of a carbon-chlorine bond produces A. two free radicals B. two carbocations C. one cation and one anion D. two carbanions. **Answer: C Watch Video Solution** 2. Which of the followingg intermediates contains three paris of electrons in its valence shell? A. Carbocations B. Carbanions C. Free radicals D. Both (a) and (b)

Answer: A

Watch Video Solution

- 3. which of the following is an electrophilic reagent?
 - A. H_2O
 - B. NH_3
 - C. OH^-
 - D. Cl^+

Answer: D

- 4. Which of the following sets of groups contains only electrophiles?
 - A. $NH_2^{\,-}, NO_2^{\,+}, H_2O, NH_3$

B. F^-, OH^-, NH_3, SO_3

C. NO_2^+ , $AlCl_3$, SO_3 , $CH_3\overset{+}{C}=O$

D. NH_3 , BF_3 , $AlCl_3$, H_2O

Answer: C

Watch Video Solution

5. Inductive effect involves

A. displacement off σ -electrons resulting in polarisation

B. displacement of $\pi\text{-electrons}$ resulting in polarisation

C. delocalisation of σ -electrons

D. delocalisation of π -electrons.

Answer: A

6. The increasing order of electron donating inductive effect of alkyl groups is

$$\mathrm{A.} - H < \ - C H_3 < \ - C_2 H_5 < \ - C_3 H_7$$

$${\rm B.} - H > \ - C H_3 > \ - C_2 H_5 > \ - C_3 H_7$$

$${\sf C.} - H < \ - C_2 H_5 < \ - C H_3 < \ - C_3 H_7$$

$${\rm D.} - H > \ - \ C_2 H_5 > \ - \ C H_3 > \ - \ C_3 H_7$$

Answer: A

7. Inductive effect of which ato is taken as zero to compare inductive effect of other atoms?

A. Hydrogen

B. Chlorine

C. carbon

Answer: A

Watch Video Solution

- **8.** Maximum -I effect is exerted by the group
 - $\mathrm{A.}-C_6H_5$
 - $\mathsf{B.}-OCH_3$
 - $\mathsf{C}.-Cl$
 - $D.-NO_2$

Answer: D

9. Which one of the following acids would you expect to be the strongest?

A.
$$I-CH_2COOH$$

B. $Cl-CH_2COOH$

 $\mathsf{C}.\,Br-CH_2COOH$

 $\mathsf{D.}\,F-CH_{2}COOH$

Answer: D

10. Few pairs of molecules are given below. Which bond of the molecule of the pairs is more polar?

- (i) H_3C-H,H_3C-Br
- (ii) H_3C-NH_2, H_3C-OH
- (iii) $H_3C-OH,\, H_3C-SH$
- (iv) H_3C-Cl, H_3C-SH

A.
$$C-Br, C-N, C-O, C-Br$$

$$\operatorname{B.}C-Br,C-O,C-O,C-Cl$$

$$\mathsf{C.}\,C-Br,C-N,C-S,C-Cl$$

$$\mathtt{D.}\,C-Br,C-O,C-S,C-Br$$

Answer: B

- 11. Which of the following is the correct orderr of acidity of carboxylic acids?
- (i) $Cl_3CCOOH > Cl_2CHCOOH > ClCH_2COOH$
- (ii) $CH_3CH_2COOH > (CH_3)_9CHCOOH > (CH_3)_9CCOOH$
- (iii) $F_2CHCOOH > FCH_2COOH > ClCH_2COOH$
 - A. (i) and (ii)
 - B. (ii) and (iii)
 - C. (i) and (iii)

D. (i), (ii) and (iii)

Answer: D

Watch Video Solution

- 12. Point out the incorrect statement about resonance?
 - A. Resonance structures should have equal energy
 - B. In resonance structures, the contituent atoms must be in the same
 - position
 - C. In resonance structures, there should not be same number of electoron pairs
 - D. Resonance structures should differ only in the location of electrons around the constituent atoms.

Answer: C

13. Which of the following is not structure of nitromethane molecule?

$$CH_3 - N \nearrow O$$

A

$$CH_3 - N_{\bullet}$$

В.

$$CH_3 - N \nearrow O$$

$$_{D.}$$
 CH₂= $\stackrel{+}{N} \stackrel{O}{<}_{O^{-}}$

Answer: D

Watch Video Solution

14. Which of the following ions is the most resonance stabilised?

A. Ethoxide

B. Phenoxide

C. Butaxide

D. Isopropoxide

Answer: B

Watch Video Solution

15. Hyperconjugation is

A. $\sigma - \pi$ conjugation

B. noticed due to delocalisation of σ and π bond

C. no bond resonance

D. all the above

Answer: D

- A. inductive effect
- B. mesomeric effect
- C. hyperconjugative effect
- D. steric effect

Answer: C

Watch Video Solution

17. Which of the following is true?

- A. $CH_3 \overset{-}{C}H_2$
- B. $C_6H_5-CH_3$
- $\mathsf{C.}\,CH_2=CH_2$

D.
$$CH_3 - egin{pmatrix} CH_3 \ | \ C \ - CH = CH_2 \ | \ CH_3 \ \end{pmatrix}$$

Answer: B

Watch Video Solution

18. Hyperconjugation is not possible in

A.
$$CH_3-CH=CH_2$$

$$B. CH_2 = CH_2$$

$$CH_3 - \overset{+}{C} \overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}}{\overset{C}}{\overset{CH_3}}}{\overset{C}}{\overset{CH_3}}}{\overset{C}}{\overset{CH_3}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{$$

D. $CH_3-{C\atop |\atop CH_3}={C\atop |\atop CH_3}-CH_3$

Answer: B

19. Decreasing order of stability of following alkenes is

(i)
$$CH_3 - CH = CH_2$$

(ii)
$$CH_3 - CH = CH - CH_3$$

(iv)
$$CH_3-C=CH-CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Answer: B

Watch Video Solution

20. Which of the following alcohols on dehydration gives most stable carbocation?

A.
$$CH_3-CH_2OH$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

$$_3-\stackrel{|}{\stackrel{C}{\stackrel{}{_{CH_3}}}}-OH$$

$$\mathsf{C.}\,CH_3-CH_2-CH_2-CH_2OH$$

D.
$$CH_3 - CH - CH_2CH_3$$
 $\mid \atop OH$

Answer: B

Watch Video Solution

A. inductive effect only

B. hyperconjugation only

C. both inductive effect and hyperconjugation

21. Stability of alkyl carbocations can be explained by

D. electromeric effect only

Answer: C

22. The carbocation $CH_3\overset{+}{C}HCH_3$ is less stable than

A.
$$CH_3CH_2\overset{+}{C}H_2$$

B.
$$\overset{+}{C}H_2$$

$$\mathsf{C.}\left(CH_{3}
ight)_{3}\overset{+}{C}$$

D.
$$CH_3\overset{+}{C}H_2$$

orbital

Answer: C

Watch Video Solution

23. Which of the following statements is not true about the stability of carbanions?

A. Stability of carbanions becauses with increase in s-character of

B. The electron withdrawing groups like $-NO_2$, -CN, >C=0increases the stability of carbanions.

D. The negatively charged carbon is sp^3 hybridised and pyramidal.

C. Order of stability of carbanions is $3^{\circ}>2^{\circ}>1^{\circ}$,

Answer: C

24. Which of the following carbanion expected to be most stable?

A.
$$p-NO_2C$$
 $\widehat{\ }H_4\overset{-}{C}H_2$

$$\mathsf{B.}\,o-NO_2C_6H_4CH_2$$

$$\mathsf{C.}\,o-CHOC_6H_4CH_2$$

D.
$$p-CHOC_6H_4CH_2$$

Answer: B

25. The order of decreasing stability of the following carbanions is

- (i) $(CH_3)_3C^-$
- (ii) $(CH_3)_2CH^{-}$
- (iii) $CH_3CH_2^-$
- (iv) $C_6H_5CH_2^{\,-}$
 - A. (i)gt(ii)gt(iii)gt(iv)
 - B. (iv)gt(iii)gt(ii)gt(i)
 - C. (iv)gt(i)gt(ii)gt(iii)
 - D. (iii)gt(ii)gt(i)gt(Iv)

Answer: B

Watch Video Solution

26. Free radicals can undergo

- A. rearrangement to a more stable free radical
- B. decomposition to give another free radical
- C. combination with other free radical
- D. all are correct

Answer: D

Watch Video Solution

27. The most stable free radical among the following is

A.

Answer: D

D.

C.

28. Which of the following is a characteristic feature of a free radical?

A. It has a positive charge

B. It has a negative charge

C. It has all paired electrons.

D. It has an unpaired electron.

Answer: D

Watch Video Solution

- 29. The increasing order of stability of the following free radicals is

 - $\text{B.}\left(C_{6}H_{5}\right)_{3}\overset{*}{C}<\left(C_{6}H_{5}\right)_{2}\overset{*}{C}H<\left(CH_{3}\right)_{3}\overset{*}{C}<\left(CH_{3}\right)_{2}\overset{*}{C}H$
 - $\mathsf{C.}\left(C_{6}H_{5}
 ight)_{2}\overset{*}{C}H<\left(C_{6}H_{5}
 ight)_{3}\overset{*}{C}<\left(CH_{3}
 ight)_{3}\overset{*}{C}<\left(CH_{3}
 ight)_{2}\overset{*}{C}H$

Answer: A

Watch Video Solution

30. Which of the following is a false statement?

A. Free radicals, carbonium ions or carbanions are reaction intermediates.

B. Reaction between methane and chlorine in presence of sunlight proceeds via free radical

C. The electronegative atom in the carbon chain produces +I effect

D. Homolytic fission of C-C bonds gives free radicals

Answer: C

Watch Video Solution

31. Which type of intermediate (A) is formed during the reaction?

$$CH_3CH_2-N=N-CH_2CH_3 \stackrel{ ext{heat}}{\longrightarrow} (A)+N_2$$

- A. Carbocation
- B. Carbanions
- C. Free radical

D. Carbene **Answer: C Watch Video Solution** Methods Of Purification Of Organic Compounds 1. Separation of two substances by crystallisation depends upon their differences in A. densities B. solubility C. melting points D. boiling points

Watch Video Solution

Answer: B

2. Those substaces can be separated by steam distillation which are
A. steam volatile and insoluble in water
B. steam volatile and soluble in water
C. steam volatile and sparingly soluble in water
D. inliquid form in steam and solid form in water.
Answer: A
Watch Video Solution
3. Glycrine can be purified by
3. Glycrine can be purified by A. vacuum distillation

D. fractional distillation

Answer: A

Watch Video Solution

- **4.** Distillation under reduced pressure is generally used to purify those liquids which
 - A. have very low boiling points
 - B. are volatile
 - C. have high boiling points and which decompose below their boiling points
 - D. have a large difference in their boiling points

Answer: C

5. Which method can be applied to separate a mixture of camphor and benzoic acid?

A. Sublimation

B. Chemical methods

C. Crystallisation

D. Extraction with solvent

Answer: B

6. The substance which can be used as adsorbent in column chromatography is

A. Na_2O

 $\operatorname{B.}{Na_2SO_4}$

 $\mathsf{C.}\,Al_2O_3$

D. NaCl

Answer: C

Watch Video Solution

Qualitative Analysis Of Organic Compounds

- 1. The presence of carbon in an organic compound can be shown by
 - A. heating the compound wih sodium
 - B. heating the compound with cupric oxide
 - C. heating the compound on bunsen flame
 - D. heating the compound with magnesium

Answer: B

2. In Lassaigne's test for N,S and halogens, the organic compound is
A. fused with sodium
B. dissolved with sodamide
C. extracted with sodamide
D. fused with calcium
Answer: A
Watch Video Solution
3. The blue compound formed in the positive test for nitrogen with Lassaigne solution of an organic compound is
A. $Na_{4}igl[Fe(CN)_{5}(NOS)igr]$
B. $Na_{3}igl[Fe(CN)_{6}igr]$
C. $Fe(CN)_3$
D. $Fe_4igl[Fe(CN)_6igr]_3$

Answer: D

4. If on adding $FeCl_3$ solution to acidified Lassaigne solution, a blood red colouration is produced, it indicates the presence of

- A. S
- B. N
- C. N and S
- D. S and Cl

Answer: C

Watch Video Solution

5. During sodium extract preparation for Lassaigne's test both N and S present in organic compound change to

6. Lassaigne's test for the detection of nitrogen fails in $A.\ NH_2CONHNH_2\cdot HCl$ $B.\ NH_2NH_2\cdot HCl$ $C.\ NH_2CONH_2$ $D.\ C_6H_5NHNH_2\cdot HCl$

A. NaCN and Na_2S

 $\mathsf{C}.\,NaSCN$

Answer: C

Answer: B

B. $NaNH_2$ and Na_2SO_4

D. $NaNO_3$ and Na_2S .

Watch Video Solution

er: B

Watch Video Solution

7. Freshly prepared solution of sodium nitroprusside is added to the
sodium extract. Appearance of a deep violet colour indicates the presence
of

A. nitrogen

B. sulphur

C. both nitrogenn and sulphur

D. halogen

Answer: B

Watch Video Solution

8. Which of the following will not give a white pt. when $AgNO_3$ is added to its solution?

A. CCl_4

- B. NaCl
- $\mathsf{C}.\,MgCl_2$
 - D. KCl

Answer: A

Watch Video Solution

Quantitative Analysis

1. 0.92 g of an organic compound was analysed by combustion method.

The mass of the U-tube increased by 1.08 g. what is the percentage of hydrogen in the compound?

- A. 0.1304
 - B. 0.5217
 - C. 0.6521
 - D. 0.113

Answer: A

Watch Video Solution

2. An organic compound gave 0.4655 g of CO_2 on complete combustion.

If the mass of the compound taken was 0.2115g, what is the percentage of

C in it?

A. 0.133

B. 0.2667

C. 0.6003

D. 0.288

Answer: C

3. In Duma's method 0.52g of an organic compound on combustion gave 68.6 mL N_2 at $27^{\circ}C$ and 756mm pressure. What is the percentage of nitrogen in the compound?

A. 0.1222

B. 0.1493

C. 0.1584

D. 0.1623

Answer: B

Watch Video Solution

4. In Kjeldahl's method of estimation of nitrogen, nitrogen is quantitatively converted to ammonium sulphate. It is then treated with standard solution of alkli. The nitrogen which is present is estimated as

A. N_2 gas

B. NO_2 gas

C. NH_3 gas

D. $(NH_4)_2SO_4$ ppt

Answer: C

Watch Video Solution

- 5. In Carium method of estimation of halgoen, 0.15 g of an organic compound gave 0.12 g of AgBr. What is the percentage of bromine in the compound?
 - A. 0.6808
 - B. 0.3504
 - $\mathsf{C.}\ 42.1\ \%$
 - D. 0.5

Answer: B

6. 2.18g of an organic compound containing sulphur produces 1.02 g of

 ${\it BaSO}_4.$ The percentage of sulphur in the compound is

A. 0.0726

B. 0.0898

C. 0.1

D. 0.0642

Answer: D

Watch Video Solution

7. 1.6 g of an organic compound gave 2.6 g of magnesium pyrophosphate.

The percentage of phosphorus in the compound is

A. 0.4538

B. 0.5438

C. 0.3776

D. 0.1902

Answer: A

Watch Video Solution

8. The masses of carbon, hydrogen and oxygen in ann organic compound are in the ratio 6:1:8 respectively. Which of the following pairs of formulae correspond to above information?

A. CH_3O and CH_3CHO

 $B. CH_2O$ and C_3H_6O

 $C. C_3H_6O$ and $C_2H_6O_2$

 $D. C_3H_6O_3$ and HCHO

Answer: D

9. 0.2 g off an organic compound contains C, H and O. On combustion, it yields 0.15 g CO_2 and 0.12 g H_2O . The percentage of C, H and O respectively is

A.
$$C=15\,\%$$
 , $H=20\,\%$, $O=65\,\%$

B.
$$C=10~\%$$
 , $H=8.2~\%$, $O=81.8~\%$

C.
$$C=12.2\,\%$$
 , $H=8.8\,\%$, $O=79\,\%$

D.
$$C=20\,\%$$
 , $H=6.66\,\%$, $O=73.34\,\%$

Answer: D

Watch Video Solution

10. 0.92 g of an organic compound was analysed by combustion method.

The mass of the U-tube increased by 1.08 g. what is the percentage of hydrogen in the compound?

A.
$$C=52.17\,\%$$
 , $H=13.04\,\%$, $O=34.79\,\%$

B.
$$C=50\,\%$$
 , $H=50\,\%$

C.
$$C=32.19\,\%$$
 , $H=18.01\,\%$, $O=49.8\,\%$

D.
$$C=72\,\%$$
 , $H=28\,\%$

Answer: A

Watch Video Solution

11. An organic compound contains 69% carbon and 4.8% hydrogen, the remainder being oxygen. What will be the masses off carbon dioxide and water produced when 0.20 g of this substance is subjected to complete combustion.

A. 0.40g

B. 0.50g

C. 0.60g

D. 0.70g

Answer: B

Watch Video Solution

Higher Order Thinking Skills

1. Consider the following reactions.

I.
$$CH_2 = CHCOOH \stackrel{\Delta}{\longrightarrow} CH_2 = CH_2$$

II.

III. $CH_3CH(COOH)_2 \xrightarrow{\Delta} CH_3CH_2COOH$

In which cases, parent compound loses its functional group in preference?

A. I,II

B. I,II,III

C. II,III

D. I,III

Answer: A

Watch Video Solution

2. Which of the following names is correct for

$$C \atop \mid \atop CHO$$
 $H_2 - C \atop \mid \atop CHO$ H_2 ?

A. 3-Formylpentane-1,3-dial

B. 1,2,3-Triformylpropane

C. 2-Formylmethylbutane-1,4-dial

D. Propane-1,2,3-tricarbaldehyde.

Answer: D

3. The number of structural and configurational isomers of a bromo compound, C_5H_9Br , formed by the additionn of HBr to 2-penthyne respectively are

A. 1 and 2

B. 2 and 4

C. 4 and 2

D. 2 and 1

Answer: B

4. Arrange the followinng carbocations in decreasing order of stability

HO
$$\overset{\dagger}{C}H_2$$
 O_2N $\overset{\dagger}{C}H_2$ $\overset{\dagger}{C}H_2$

A.
$$II > I > III > IV$$

$$\mathrm{B.}\,III>IV>I>II$$

$$\mathsf{C}.\,II > III > I > IV$$

$$\mathrm{D.}\,IV > I > II > III$$

Answer: D

5. The correct stability order for the following species is

$$(I)$$
 (III) (IV)

- A. IlgtIVgtIgtIII
- B. IgtIIgtIIIgtIV
- C. IlgtlgtlVgtlll
- D. IgtIllgtIlgtIV

Answer: D

Watch Video Solution

6. Which of the following orders correctly depicts the decreasing order of stability of carbanion?

$$(CH_3)_3 - \overline{C}H_2 > \bigcirc \longrightarrow \overline{C}H_2 > CH_3 - \overline{C}H_2$$

$$> \overline{C}H_3$$

В.

$$OHC-rac{\overline{C}}{CHO}-CHO>OHC-\overline{C}H-CHO>H_3C-C-\overline{C}H-CHO>H_3C$$

C. $\overline{C}H_2NO_2<\overline{C}H_2CN<\overline{C}H_2Cl<\overline{C}H_2CH_3$

Answer: B

Watch Video Solution

7. A sample of 0.50 g of an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50 mL of 0.5 M H_2SO_4 . The residual acid required 60 mL of 0.5 M solution of NaOH for neutralisation. What would be the percentage composition of nitrogen in the compound?

A. 50

B. 60

Answer: C

Watch Video Solution

Ncert Exemplar

- 1. Which of the following is the correct IUPAC name?
 - A. 3-Ethyl-4,4-dimethylheptane
 - B. 4,4-Dimethyl-3-ethylheptane
 - C. 5-Ethyl-4,4-dimethylheptane
 - D. 4,4-Bis(methyl)-3-ethylheptane

Answer: A

A. 1-hydroxypentane-1,4-dione

B. 1,4-dioxopentanol

C. 1,carboxybutan-3-one

D. 4-oxopentanoic acid

Answer: D

Watch Video Solution

3. Electronegativity of carbon atoms depends upon their state of hybridisation. In which of the following compounds, the carbon marked with asterisk is most electronegative?

A.
$$CH_3-CH_2-CH_2-CH_3$$

B.
$$CH_3 - \overset{\star}{C}H = CH - CH_3$$

C.
$$CH_3-CH_2-C\equiv \overset{\star}{C}H$$

D.
$$CH_3-CH_2-CH=\overset{\star}{C}H_2$$

Answer: C

Watch Video Solution

- 4. In which of the followinng functional group isomerism is not possible?
 - A. Alcohols
 - B. Aldehdyes
 - C. Alkyl halides
 - D. Cyanides

Answer: C

5. The fragrance of flowers is due to the presence of some steamm volatile organic compounds called essential oils. These are generally insoluble in water at room temperature but are miscible with water vapour in vapour phase. A suitable method for the extraction of these oils from the flowers is

A. distillation

B. crystallisation

C. distillation under reduced pressure

D. steam distillation

Answer: D

Watch Video Solution

6. During hearing of a court case, the judge suspected that some changes in the documents had been carried out. He asked the forensic

Watch Video Solution

8. What is the correct order of decreasing stability of the following cations?

$$CH_3-\stackrel{+}{\stackrel{}{C}}H-CH_3 \qquad CH_3-\stackrel{+}{\stackrel{}{C}}H-OCH_3 \ CH_3-\stackrel{+}{\stackrel{}{C}}H-CH_2-OCH_3$$

B. Ilgtiligti

A. IIgtIgtIII

C. Iligtigtii

D. Igtligtili

Answer: A

9. In which of the followinng compounds the carbon marked with asterisk is expected to have greatest positive charge?

A.
$$\overset{\star}{C}H_3-CH_2-Cl$$

B.
$$\overset{\star}{C}H_3-CH_2-Mg^+Cl^-$$

C.
$$\overset{\star}{C}H_3-CH_2-Br$$

D.
$$\overset{\star}{C}H_3-CH_2-CH_3$$

Answer: A

10. Ionic species are stabilised by the dispersal of charge. Which of the following carboxylate ion is the most stable?

A.
$$CH_3 - \overset{O}{\overset{|}{C}} - O^-$$

B.
$$Cl-CH_2-\overset{|}{C}-O^-$$

C.
$$F-CH_2-\overset{\mid\mid}{C}-O^-$$

D. d10lpgp6xz60nq.cloudfront.net/physics images/NCERT OBJ FING CHE X

width="30%">

Answer: D

Watch Video Solution

11. Electrophilic addition reactions proceed in two steps. The first step involves the addition of an electrophile. Name the type of intermediate formed in the first step of the following addition reaction.

$$H_3C-HC=CH_2+H^+
ightarrow ?$$

- A. 2° carbanion
- B. 1° carbocation
- C. 2° carbocation
- D. 1° carbanion

Answer: C

Watch Video Solution

Assertion And Reason

1. Assertion: Hybridisation influences the bond length and bond enthalpy in organic compound.

Reason: More the s character of hybrid orbital, shorter and stornger will be the bond.

- A. If both assertion and reason are true and reason is the correct explanation of assertion
- B. If both assertion and reason are true but reason is not the correct explanation of assertion
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

Watch Video Solution

2. Assertion: sp^3 hybrid carbon atom is more electronegative than sp hybrid carbon atom.

Reason: sp^3 hybrid orbitals are more closer to the nucleus.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

3. Assertion: Rotation about C=C is restricted.

Reason: Electron charge cloud of the π bond is located above and below the plane of bonding atoms.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

4. Assertion: The name of the hybrocarbon

 $(CH_3)_2CHCH_2CH_2CH(CH_3)CH_2CH_3$

is 2,5-dimethylheptane and not 3,6-dimethylheptane.

Reason: Numbering should be done in such a way that sum of the locants on the parennt chain is lowest possible number.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

5. Assertion: Alkanes containing more than three carbon atoms exhibit chain isomerism.

Reason: In an alkane, all carbon atoms are sp^3 hybridised.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

6. Assertion: Nitroalkanes and alkyl nitrites exhibit funcctional isomerism.

Reason: Compounds having same molecular formula but different functional groups are called functional isomers.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct

explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

7. Assertion: Heterolytic fission occurs readily in polar covalent bonds.

Reason: Hyterolytic fission involves breaking of bond in such a way that the shared pair of electrons go with one atom.

A. If both assertion and reason are true and reason is the correct

explanation of assertion

B. If both assertion and reason are true but reason is not the correct

explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

8. Assertion: When inductive and electromeric effects operate in oppsite directions, the inductive effect predominates.

Reason: Inductive effect is the complete transfer of shared pair of π electrons to one of the atoms.

- A. If both assertion and reason are true and reason is the correct explanation of assertion
- B. If both assertion and reason are true but reason is not the correct explanation of assertion
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: D

9. Assertionj: The following structures (I) and (II) canot e the major contributors to the real structure of CH_3COOCH_3

Reason: Both the structures involve charge separation and structure (I) contains a carbon atom with an incomplete octet.

A. If both assertion and reason are true and reason is the correct explanation of assertion

- B. If both assertion and reason are true but reason is not the correct explanation of assertion
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

Watch Video Solution

10. Assertion: The order of stability of carbocations is $3^{\circ} > 2^{\circ} > 1^{\circ}$

Reason: Carbon atom in carbocation is in sp^3 state of hybridisation.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

11. Assertion: Glycerol is purified by distillation under reduced pressure.

Reason: Method of distillation under reduced pressure is used to purify liquids having very high boiling points and those, which decompose at or below their boiling points.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

12. Assertion: Paper chromatography is a type of partition chromatography.

Reason: Moving phase is liquid and stationary phase is solid.

A. If both assertion and reason are true and reason is the correct explanation of assertion

B. If both assertion and reason are true but reason is not the correct explanation of assertion

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

