© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG CHEMISTRY (ENGLISH)

ORGANIC CHEMISTRY-SOME BASIC PRINCIPLES AND TECHNIQUES

1. How many σ and π bonds are present in
$\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$?
A. $9 \sigma, 4 \pi$
B. $10 \sigma, 3 \pi$
C. $6 \sigma, 6 \pi$
D. $5 \sigma, 5 \pi$

Answer: B

- Watch Video Solution

2. Which type of hybridisation of each carbon is there in the compound?
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CN}$
A. $s p^{3}, s p^{2}, s p^{2}, s p$
B. $s p^{3}, s p^{2}, s p^{2}, s p^{3}$
C. $s p^{3}, s p^{2}, s p^{3}, s p^{3}$
D. $s p^{3}, s p^{2}, s p, s p^{3}$

Answer: A

- Watch Video Solution

3. Which of the following represents the given sequence of hybridisation of carbon atoms from left to right $s p^{2}, s p^{2}, s p, s p$?
A. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
B. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
C. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
D. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: A

- Watch Video Solution

4. The hybridisation of carbons of C-C single bond of $H C \equiv C-C H=\mathrm{CH}_{2}$ is
A. $s p^{3}-s p^{3}$
B. $s p-s p^{2}$
C. $s p^{3}-s p$
D. $s p^{2}-s p^{3}$
5. What are the hybridization and shapes of the following molecules?
(i) $\mathrm{CH}_{3} \mathrm{~F}$
(ii) $H C \equiv N$
A. (i) $s p^{2}$, trigonal planar, (ii) $s p^{3}$, tetrahedral
B. (i) $s p^{3}$, tetrahedral, (ii) sp, linear
C. (i) $s p$, linear, (ii) $s p^{2}$, trigonal planar
D. (i) $s p^{2}$, trigonal planar, (ii) $s p^{2}$, trigonal planar

Answer: B

- Watch Video Solution

6. Match the column I with column II and mark the appropriate choice.

Column I		Column II	
(A)		(i)	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$
(B)		(ii)	
(C)		(iii)	
(D)		(iv)	

A. $A \rightarrow i i i, B \rightarrow i v, C \rightarrow i, D \rightarrow i i$
B. $A \rightarrow i v, B \rightarrow i i i, C \rightarrow i i, D \rightarrow i$
C. $A \rightarrow i, B \rightarrow i i, C \rightarrow i v, D \rightarrow i i i$
D. $A \rightarrow i i, B i i i, C \rightarrow i, D \rightarrow i v$

Answer: A
7. Which of the following correctly matched the bond line and condensed structure of the compounds?
(i)

(ii)

(iii) HOOC -
A. (i) only
B. (ii) only
C. (i) and (ii) only
D. (i),(ii) and (iii)

Answer: D

8. IUPAC names of the given structure are

A. (i) hexane, (ii) 3-methylbutane
B. (i) isopentane, (ii) 2,3-dimethylbutane
C. (i) 3-ethylbutane, (ii) isopentane
D. (i) 3-methylpentane, (ii)-methylbutane.

Answer: D

D Watch Video Solution

9. Correct name for the given compound

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\text { CH } \\ \mathrm{CH}_{2} \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\underset{C_{3}}{\mathrm{C}} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \text { is }
$$

A. 3-ethyl-5-methylheptane
B. 5-ethyl-3-methylheptane
C. 1,1-diethyl-3-methylpentane
D. 3-methyl-5,5-diethylpentane

Answer: A

- Watch Video Solution

10. IUPAC name of the compound

A. 2,3-dimethylheptane
B. 3-methyl-4-ethyloctane
C. 5-ethyl-6-methyloctane
D. 4-ethyl-3-methyloctane.

Answer: D

- Watch Video Solution

11. How many primary, secondary, tertiary and quaternary carbon atoms are present in the following compound?
$\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\stackrel{\substack{\mathrm{CH}_{3} \\ \mathrm{C} \\ \mathrm{CH}}}{\mathrm{C}}-\mathrm{CH}_{3}$
A. One primary, two secondary and one tertiary
B. Five primary, three secondary
C. Five primary, one secondary, one tertiary and one quaternary
D. four primary, two secondary and two quaternary

Answer: C

12. The IUPAC name of the compound having formula
$\mathrm{H}_{3} \mathrm{C}-\underset{\substack{\mathrm{CH}_{2} \mathrm{CH}_{3} \\ \mid \\ \mathrm{CH} \\ \mathrm{CH}}}{\mathrm{C}}-\mathrm{CH}=\mathrm{CH}_{2}$ is
A. 3,3,3-trimethylprop-1-ene
B. 1,1,1-trimethylprop-2-ene
C. 3,3-dimethylpent-1-ene
D. 2,2-dimethylbut-3-ene.

Answer: C

- Watch Video Solution

13. IUPAC name of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ is
A. 2,2-dimethylbut-3-ene
B. 2,2-dimethylpent-4-ene
C. 3,3-dimethylbut-1-ene
D. hex-1-ene

Answer: C

- Watch Video Solution

14. Which of the following represents 3-methylpenta-1,3-diene?
A. $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$

Answer: C

- Watch Video Solution

15. The correct IUPAC name of the compound

A. 3-heptyl-5-methylhept-3-ene
B. 5,6-diethyl-3-methyldec-4-ene
C. 5-butyl-3-methyloct-4-ene
D. 8-methyl-3-propylhex-3-ene

Answer: B

- Watch Video Solution

16. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is
A. $-\mathrm{CONH}_{2},-\mathrm{CHO},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH}$
B. $-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2},-\mathrm{CHO}$
C. $-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH},-\mathrm{CONH}_{2},-\mathrm{CHO}$
D. $-\mathrm{CHO},-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2}$

Answer: B

- Watch Video Solution

17. Which of the followingg compounds is not correctly matched wiith its IUPAC name?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$-Ethyl butanoate
B. $\mathrm{CH}_{3}-\underset{\substack{\text { I } \\ \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CHO}-3-$ Methylbutanal

D. $\mathrm{CH}_{3}-\underset{\substack{\text { l } \\ \mathrm{OH}}}{\mathrm{C}} \mathrm{H}-\underset{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{C}$ ($\mathrm{H}-\mathrm{CH}_{3}-3$ - Methylbutan-3-ol

- Watch Video Solution

18. The correct representation of 4-hydroxy-2-methylpent-2-en-1-al is
A. $\mathrm{CH}_{3}-\underset{\mathrm{O}_{\mathrm{O}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\underset{\underset{C H_{3}}{\mathrm{C}}}{\mathrm{C}}-\mathrm{CHO}$
B. $\mathrm{CH}_{3}-\underset{\mid c}{\underset{\text { CH }}{C}} \mathrm{H}-\mathrm{CH}=\underset{\text { | }}{\mathrm{C}} \mathrm{CH}-\mathrm{CHO}$
c. $\mathrm{CH}_{3}-{\underset{\mathrm{O}}{\mathrm{O}}}_{\mathrm{C}}^{\mathrm{C}}-\mathrm{CH}=\underset{\mathrm{CH}_{3}}{\mathrm{C}}-\mathrm{CHO}$
D. $\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{C}} \mathrm{C}-\mathrm{CH}_{2}-\underset{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{H}-\mathrm{CHO}$

Answer: A

- Watch Video Solution

19. The correct name of $\mathrm{CH}_{3} \mathrm{CH}_{2}-\underset{\mid}{\mathrm{C}}-\underset{{ }_{\mathrm{O}}^{2}}{\mathrm{C}} \mathrm{H}-\mathrm{CHO}$ is
A. 2-cyano-3-oxopentanal
B. 2-formyl-3-oxopentanenitrile
C. 2-cyano-1,3-pentadiene
D. 1,3-dioxo-2-cyanopentane

Answer: B

D Watch Video Solution

20.

The
IUPAC
name
of

is
A. 1-chloro-1-oxo-2,3-dimethylpentane
B. 2-ethyl-3-methylbutanoyl chloride
C. 2,3-dimethylpentanoyl chloride
D. 3,4-dimethylpentanoyl chloride.

Answer: C

- Watch Video Solution

21. Correct representation of 3-methylpent-3-en-2-ol is

A.

HO
B.

C.
D.

Answer: A

(Watch Video Solution

22. Which of the following IUPAC name is not correctly matched?
A.

B.

C.

D.

- 3-Nitrocyclohexene

Answer: C

- Watch Video Solution

23. The correct IUPAC name of the compound

is
A. 4-formyl-2-oxocyclohexanecarboxylic acid
B. 4-carboxy-2-oxocyclohexanal
C. 4-carboxy-1-formylcyclohexanone
D. 2-carboxy-5-formyl-1-oxocyclohexane

D Watch Video Solution

24. The correct IUPAC name of the following compound is

A. 2-ethyl-1-chlorocyclohexanol
B. 4-chloro-5-ethylcyclohexanol
C. 4-hydroxy-2-ethyl-1-chlorocyclohexane
D. 4-chloro-3-ethylcyclohexanol

Answer: D

25. The IUPAC name of the compound shown below is

A. 2-bromo-6-chlorocyclohex-1-ene
B. 6-bromo-2-chlorocyclohexene
C. 3-bromo-1-chlorocyclohexene
D. 1-bromo-3-chlorocyclohexene

Answer: C

(D) Watch Video Solution

26. Match the compounds given in column I with the IUPAC names given in column II and mark the appropriate choice.

A. $A \rightarrow i i, B \rightarrow i, C \rightarrow i i i, D \rightarrow i v$
B. $A \rightarrow i v, B \rightarrow i i, C \rightarrow i, D \rightarrow i i i$
C. $A \rightarrow i, B \rightarrow i i i, C \rightarrow i i, D \rightarrow i v$
D. $A \rightarrow i i i, B \rightarrow i v, C \rightarrow i i, D \rightarrow i$

Answer: D

- Watch Video Solution

27. Which of the following names of substituted benzene compounds is not correct?

c.

D.

3,4-dimethylphenol

Answer: C

28. What is the minimum number of carbon atoms of an alkane must have to form an isomer?
A. 4
B. 3
C. 2
D. 1

Answer: A

- Watch Video Solution

29. 1-Butene and cyclobutane show
A. position isomerism
B. ring-chain isomerism
C. functional isomerism
D. metamerism

Answer: B

- Watch Video Solution

30.
and
$\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{N}=\mathrm{O}$ are examples of
A. functional isomers
B. tautomers
C. position isomers
D. metamers

Answer: A

- Watch Video Solution

31. The type of isomerism shown by the following compounds is
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\stackrel{\mid}{\mathrm{C}}}-\mathrm{CH}_{3}-\mathrm{CH}_{3}$
A. position isomerism
B. metamerism
C. ring-chain isomerism
D. chain isomerism

Answer: D

- Watch Video Solution

32. Which of the followingg is an isomer of ethanol?
A. Methanol
B. Acetone
C. Diethylether
D. Dimethylether

Answer: D

- Watch Video Solution

33. Given below are the structures of few compounds with molecular formula $C_{4} H_{10} O$. Select metamers from these structures.
(i) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(iii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iv) $\mathrm{CH}_{3}-\underset{\substack{\text { | } \\ \mathrm{OH}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
A. (i) and (ii)
B. (ii) and (iii)
C. (i) and (iii)
D. (ii) and (iv)

Answer: C

- Watch Video Solution

34. Match the column I with column II and mark the appropriate choice.

Column I		Column II	
(A)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$	(i)	Position isomers
(B)	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COC}_{2} \mathrm{H}_{5}, \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COCH}_{3}$	(ii)	Tautomers
(C)		(iii)	Functional isomers
(D)		(iv)	Metamers

$$
\text { A. } A \rightarrow i v, B \rightarrow i i i, C \rightarrow i, D \rightarrow i i
$$

B. $A \rightarrow i, B \rightarrow i i i, C \rightarrow i i, D \rightarrow i v$
C. $A \rightarrow i i i, B \rightarrow i v, C \rightarrow i i, D \rightarrow i$
D. $A \rightarrow i v, B \rightarrow i, C \rightarrow i i, D \rightarrow i i i$

Answer: C

- Watch Video Solution

35. What is the relationship between the structures shown?

A. Structural isomers
B. Geometrical isomers
C. Conformational structure
D. Identical structructures

Answer: C

D Watch Video Solution

36. Which of the following compounds is isomeric with 2,2,4,4tetramethylhexane?
A. 3-ethyl-2,2-dimethylpentane
B. 4-isopropylheptane
C. 4-ethyl-3-methyl-4-n-propyloctane
D. 4,4-diethyl-3-methylheptane

Answer: B

D Watch Video Solution

37. Heterolysis of a carbon-chlorine bond produces
A. two free radicals
B. two carbocations
C. one cation and one anion
D. two carbanions.

Answer: C

D Watch Video Solution

38. Which of the followingg intermediates contains three paris of electrons in its valence shell?
A. Carbocations
B. Carbanions
C. Free radicals
D. Both (a) and (b)
39. which of the following is an electrophilic reagent?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. OH^{-}
D. Cl^{+}

Answer: D

- Watch Video Solution

40. Which of the following sets of groups contains only electrophiles?
A. $\mathrm{NH}_{2}^{-}, \mathrm{NO}_{2}^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$
B. $\mathrm{F}^{-}, \mathrm{OH}^{-}, \mathrm{NH}_{3}, \mathrm{SO}_{3}$
C. $\mathrm{NO}_{2}^{+}, \mathrm{AlCl}_{3}, \mathrm{SO}_{3}, \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}}=\mathrm{O}$
D. $\mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{AlCl}_{3}, \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

41. Inductive effect involves
A. displacement off σ-electrons resulting in polarisation
B. displacement of π-electrons resulting in polarisation
C. delocalisation of σ-electrons
D. delocalisation of π-electrons.

Answer: A

- Watch Video Solution

42. The increasing order of electron donating inductive effect of alkyl groups is
A. $-H<-\mathrm{CH}_{3}<-\mathrm{C}_{2} \mathrm{H}_{5}<-\mathrm{C}_{3} \mathrm{H}_{7}$
B. $-H>-\mathrm{CH}_{3}>-\mathrm{C}_{2} \mathrm{H}_{5}>-\mathrm{C}_{3} \mathrm{H}_{7}$
C. $-H<-C_{2} H_{5}<-\mathrm{CH}_{3}<-\mathrm{C}_{3} \mathrm{H}_{7}$
D. $-H>-C_{2} H_{5}>-\mathrm{CH}_{3}>-\mathrm{C}_{3} \mathrm{H}_{7}$

Answer: A

- Watch Video Solution

43. Inductive effect of which ato is taken as zero to compare inductive effect of other atoms?
A. Hydrogen
B. Chlorine
C. carbon
D. oxygen

Answer: A

- Watch Video Solution

44. Maximum -l effect is exerted by the group
A. $-C_{6} H_{5}$
B. $-\mathrm{OCH}_{3}$
C. $-C l$
D. $-\mathrm{NO}_{2}$

Answer: D

- Watch Video Solution

45. Which one of the following acids would you expect to be the strongest?
A. $\mathrm{I}-\mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{COOH}$
C. $\mathrm{Br}-\mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{F}-\mathrm{CH}_{2} \mathrm{COOH}$

Answer: D

- Watch Video Solution

46. Few pairs of molecules are given below. Which bond of the molecule of the pairs is more polar?
(i) $\mathrm{H}_{3} \mathrm{C}-\mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\mathrm{Br}$
(ii) $\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2}, \mathrm{H}_{3} \mathrm{C}-\mathrm{OH}$
(iii) $\mathrm{H}_{3} \mathrm{C}-\mathrm{OH}, \mathrm{H}_{3} \mathrm{C}-\mathrm{SH}$
(iv) $\mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}, \mathrm{H}_{3} \mathrm{C}-\mathrm{SH}$
A. $C-B r, C-N, C-O, C-B r$
B. $C-B r, C-O, C-O, C-C l$
C. $C-B r, C-N, C-S, C-C l$
D. $C-B r, C-O, C-S, C-B r$

Answer: B

- Watch Video Solution

47. Which of the following is the correct orderr of acidity of carboxylic acids?
(i) $\mathrm{Cl}_{3} \mathrm{CCOOH}>\mathrm{Cl}_{2} \mathrm{CHCOOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$
(iii) $\mathrm{F}_{2} \mathrm{CHCOOH}>\mathrm{FCH}_{2} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
A. (i) and (ii)
B. (ii) and (iii)
C. (i) and (iii)
D. (i), (ii) and (iii)

Answer: D

- Watch Video Solution

48. Point out the incorrect statement about resonance?
A. Resonance structures should have equal energy
B. In resonance structures, the contituent atoms must be in the same
position
C. In resonance structures, there should not be same number of electoron pairs
D. Resonance structures should differ only in the location of electrons around the constituent atoms.

Answer: C

49. Which of the following is not structure of nitromethane molecule?

A.

B.

C.

Answer: D

D Watch Video Solution

50. Which of the following ions is the most resonance stabilised?
A. Ethoxide
B. Phenoxide
C. Butaxide
D. Isopropoxide

Answer: B

D Watch Video Solution

51. Hyperconjugation is
A. $\sigma-\pi$ conjugation
B. noticed due to delocalisation of σ and π bond
C. no bond resonance
D. all the above

Answer: D

52. Stability of iso-butylene can be best explaned by
A. inductive effect
B. mesomeric effect
C. hyperconjugative effect
D. steric effect

Answer: C

- Watch Video Solution

53. Which of the following is true?
A. $\mathrm{CH}_{3}-\bar{C} \mathrm{H}_{2}$
B. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3}-\stackrel{\stackrel{C}{\mathrm{CH}}}{\stackrel{\mathrm{CH}}{\mathrm{C}}} \mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: B

54. Hyperconjugation is not possible in
A. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} / \mathrm{CH}_{3}$
C.

Answer: B

55. Decreasing order of stability of following alkenes is
(i) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
$\begin{array}{cc}\text { (iv) } \mathrm{CH}_{3}-\mathrm{C} & \mathrm{CH}-\mathrm{CH}_{3} \\ 1 & \mathrm{CH} \\ \mathrm{CH}_{3} & \\ \mathrm{CH}_{3} & \mathrm{CH}_{3} \\ \text { (iv) } \mathrm{CH}_{3}-\mathrm{C} & \stackrel{1}{\mathrm{C}}-\mathrm{CH}_{3}\end{array}$
A. (i) $)$ (ii) $>$ (iii) $>$ (iv)
B. (iv)>(iii)>(iii)>(i)
C. (iii)>(ii)>(i)>(iv)
D. (ii)>(iii)>(iv)>(i)

Answer: B

- Watch Video Solution

56. Which of the following alcohols on dehydration gives most stable carbocation?

C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3}-\underset{\substack{\text { l } \\ \mathrm{OH}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{3}$

Answer: B

- Watch Video Solution

57. Stability of alkyl carbocations can be explained by
A. inductive effect only
B. hyperconjugation only
C. both inductive effect and hyperconjugation
D. electromeric effect only

Answer: C

- Watch Video Solution

58. In the given reaction two products are expected.

The product (B) is formed as a major product because
A. the carbocation $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$ is formed which is more stable
B. the carbocation $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$ is formed which is more stable
C. both carbocations are equally stable but the nucleophile attacks on central C atom
D. $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}$ can easily give a proton to attack Br^{+}.

Answer: A

59. The carbocation $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{HCH}$ is less stable than
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
B. $\stackrel{+}{C}^{+} H_{2}$
C. $\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}$
D. $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

60. Complete the following reactions by filling most stable intermediate and the product.

A.
B.

C.

Answer: B

- Watch Video Solution

61. Which of the following statements is not true about the stability of carbanions?
A. Stability of carbanions becauses with increase in s-character of orbital
B. The electron withdrawingg groups like $-\mathrm{NO}_{2},-\mathrm{CN},>\mathrm{C}=\mathrm{O}$ increases the stability of carbanions.
C. Order of stability of carbanions is $3^{\circ}>2^{\circ}>1^{\circ}$,
D. The negatively charged carbon is $s p^{3}$ hybridised and pyramidal.

Answer: C

62. Which of the following carbanion expected to be most stable?
A. $p-\mathrm{NO}_{2} \mathrm{C} \cdot \mathrm{H}_{4} \overline{\mathrm{C}} \mathrm{H}_{2}$
B. $o-N O_{2} C_{6} H_{4} \bar{C} H_{2}$
C. o $-\mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$
D. $p-\mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$

Answer: B

- Watch Video Solution

63. The order of decreasing stability of the following carbanions is
(i) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{-}$
(ii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{-}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$
(iv) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{-}$
A. (i)gt(ii)gt(iii)gt(iv)
B. (iv) $\operatorname{gt}(\mathrm{iii}) \mathrm{gt}(\mathrm{ii}) \mathrm{gt}(\mathrm{i})$
C. (iv)gt(i)gt(ii)gt(iii)
D. (iii)gt(ii)gt(i)gt(Iv)

Answer: B

- Watch Video Solution

64. Free radicals can undergo
A. rearrangement to a more stable free radical
B. decomposition to give another free radical
C. combination with other free radical
D. all are correct

Answer: D

65. The most stable free radical among the following is

B.

D.

Answer: D

- Watch Video Solution

66. Which of the following is a characteristic feature of a free radical?
A. It has a positive charge
B. It has a negative charge
C. It has all paired electrons.
D. It has an unpaired electron.

Answer: D

- Watch Video Solution

67. The increasing order of stability of the following free radicals is
A. $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{C} H<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{*}{C}<\left(\mathrm{C}_{6} H_{5}\right)_{2} \stackrel{*}{C} H<\left(C_{6} H_{5}\right)_{3} \stackrel{*}{C}$
B. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \stackrel{*}{C}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \stackrel{*}{\mathrm{C}} \mathrm{H}<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{*}{\mathrm{C}}<\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{\mathrm{C}} \mathrm{H}$
C. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \stackrel{*}{\mathrm{C}} \mathrm{H}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \stackrel{*}{\mathrm{C}}<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{*}{C}<\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{\mathrm{C}} \mathrm{H}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{\mathrm{C}} \mathrm{H}<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{*}{\mathrm{C}}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \stackrel{*}{\mathrm{C}}<\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \stackrel{*}{\mathrm{C}} H$

Answer: A

- Watch Video Solution

68. Which of the following is a false statement?
A. Free radicals, carbonium ions or carbanions are reaction intermediates.
B. Reaction between methane and chlorine in presence of sunlight proceeds via free radical
C. The electronegative atom in the carbon chain produces + effect
D. Homolytic fission of C-C bonds gives free radicals

Answer: C

69. Which type of intermediate (A) is formed during the reaction?
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow{\text { heat }}(A)+\mathrm{N}_{2}$
A. Carbocation
B. Carbanions
C. Free radical
D. Carbene

Answer: C

- Watch Video Solution

70. Separation of two substances by crystallisation depends upon their differences in
A. densities
B. solubility
C. melting points
D. boiling points

Answer: B

D Watch Video Solution

71. Those substaces can be separated by steam distillation which are
A. steam volatile and insoluble in water
B. steam volatile and soluble in water
C. steam volatile and sparingly soluble in water
D. inliquid form in steam and solid form in water.

Answer: A

72. Glycrine can be purified by
A. vacuum distillation
B. simple distillation
C. steam distillation
D. fractional distillation

Answer: A

- Watch Video Solution

73. Few mixtures and their methods of separation are given in the columns I and columns II respectively. Match the columns and mark the
appropriate choice.

Column I		Column II	
(A)	Ether + Toluene	(i)	Steam distillation
(B)	o-Nitrophenol + p-Nitrophenol	(ii)	Distillation
(C)	Benzoic acid + Benzaldehyde	(iii)	Fractional distillation
(D)	Fractions of crude oil	(iv)	Sublimation

A. $A \rightarrow i i i, B \rightarrow i i, C \rightarrow i, D \rightarrow i v$
B. $A \rightarrow i i, B \rightarrow i i i, C \rightarrow i, D \rightarrow i v$
C. $A \rightarrow i i, B \rightarrow i, C \rightarrow i v, D \rightarrow i i i$
D. $A \rightarrow i, B \rightarrow i i i, C \rightarrow i i, D \rightarrow i v$

Answer: C

- Watch Video Solution

74. Distillation under reduced pressure is generally used to purify those liquids which
A. have very low boiling points
B. are volatile
C. have high boiling points and which decompose below their boiling points
D. have a large difference in their boiling points

Answer: C

- Watch Video Solution

75. Which method can be applied to separate a mixture of camphor and benzoic acid?
A. Sublimation
B. Chemical methods
C. Crystallisation
D. Extraction with solvent

Answer: B

- Watch Video Solution

76. The process of separation of an organic compound from its aqueous solution by shaking with a suitable solvent in termed solvent extraction or differential extraction.

The organic compound present in the aqueous layer moves to the organic solvent because
A. The organic substance is more soluble in the organic solvent
B. organic compound being lighter moves in the upper layer
C. organic solvent is insoluble in water hence organic compound moves up
D.from the supersaturated aqueous solution the solute starts diffusing

Answer: A

- Watch Video Solution

77. The substance which can be used as adsorbent in column chromatography is
A. $\mathrm{Na}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. NaCl

Answer: C

- Watch Video Solution

78. Given below is a column ot adsorbent in which the mixture of compounds $A+B+C$ is placed. When the solvent is poured through the column, the components are separated depending upon the degree of adsorption. Which of the given statements is correct?

A. A is the most weakly adsorbed component hence remains near the top
B. A is the mostt strongly adsorbed component hence remains near the top
C. C is the most strongly adsorbed component hence is found near the bottom
D. B is the most strongly adsorbed component hence is found in the centre of the column.

Answer: B

- Watch Video Solution

79. Given below is the developed chromatogram of a mixture of pigments.

R_{y} values for x and y can be expressed as
A. $\frac{x}{z}, \frac{y}{z}$
B. $\frac{x}{y}, \frac{y}{z}$
C. $x z, y z$
D. $\frac{z}{x}, \frac{z}{y}$

Answer: A

D Watch Video Solution

80. The presence of carbon in an organic compound can be shown by
A. heating the compound wih sodium
B. heating the compound with cupric oxide
C. heating the compound on bunsen flame
D. heating the compound with magnesium

Answer: B

81. In Lassaigne's test for N, S and halogens, the organic compound is
A. fused with sodium
B. dissolved with sodamide
C. extracted with sodamide
D. fused with calcium

Answer: A

- Watch Video Solution

82. The blue compound formed in the positive test for nitrogen with Lassaigne solution of an organic compound is
A. $N a_{4}\left[F e(C N)_{5}(N O S)\right]$
B. $N a_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
C. $\mathrm{Fe}(\mathrm{CN})_{3}$
D. $F e_{4}\left[F e(C N)_{6}\right]_{3}$

Answer: D

- Watch Video Solution

83. If on adding FeCl_{3} solution to acidified Lassaigne solution, a blood red colouration is produced, it indicates the presence of
A. S
B. N
C. N and S
D. S and Cl

Answer: C

D Watch Video Solution

84. During sodium extract preparation for Lassaigne's test both N and S present in organic compound change to
A. NaCN and $N a_{2} S$
B. NaNH_{2} and $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $N a S C N$
D. $N a N O_{3}$ and $N a_{2} S$.

Answer: C

- Watch Video Solution

85. Lassaigne's test for the detection of nitrogen fails in
A. $\mathrm{NH}_{2} \mathrm{CONHNH} \mathrm{H}_{2} \cdot \mathrm{HCl}$
B. $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}$
C. $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2} \cdot \mathrm{HCl}$

Answer: B

86. Freshly prepared solution of sodium nitroprusside is added to the sodium extract. Appearance of a deep violet colour indicates the presence of
A. nitrogen
B. sulphur
C. both nitrogenn and sulphur
D. halogen

Answer: B

- Watch Video Solution

87. Which of the following will not give a white pt. when AgNO_{3} is added to its solution?
A. CCl_{4}
B. NaCl
C. MgCl_{2}
D. KCl

Answer: A

- Watch Video Solution

88. 0.92 g of an organic compound was analysed by combustion method.

The mass of the U-tube increased by 1.08 g . what is the percentage of hydrogen in the compound?
A. 0.1304
B. 0.5217
C. 0.6521
D. 0.113

Answer: A

89. An organic compound gave 0.4655 g of CO_{2} on complete combustion.

If the mass of the compound taken was 0.2115 g , what is the percentage of C in it?
A. 0.133
B. 0.2667
C. 0.6003
D. 0.288

Answer: C

- Watch Video Solution

90. In Duma's method 0.52g of an organic compound on combustion gave $68.6 \mathrm{~mL} N_{2}$ at $27^{\circ} \mathrm{C}$ and 756 mm pressure. What is the percentage of nitrogen in the compound?
A. 0.1222
B. 0.1493
C. 0.1584
D. 0.1623

Answer: B

- Watch Video Solution

91. In Kjeldahl's method of estimation of nitrogen, nitrogen is quantitatively converted to ammonium sulphate. It is then treated with standard solution of alkli. The nitrogen which is present is estimated as
A. N_{2} gas
B. NO_{2} gas
C. NH_{3} gas
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{ppt}$

Answer: C

- Watch Video Solution

92. In Carium method of estimation of halgoen, 0.15 g of an organic compound gave 0.12 g of AgBr . What is the percentage of bromine in the compound?
A. 0.6808
B. 0.3504
C. 42.1%
D. 0.5

Answer: B

93. 2.18 g of an organic compound containing sulphur produces 1.02 g of
BaSO_{4}. The percentage of sulphur in the compound is
A. 0.0726
B. 0.0898
C. 0.1
D. 0.0642

Answer: D

- Watch Video Solution

94. 1.6 g of an organic compound gave 2.6 g of magnesium pyrophosphate. The percentage of phosphorus in the compound is
A. 0.4538
B. 0.5438
C. 0.3776

D. 0.1902

Answer: A

- Watch Video Solution

95. Match the column I with column II and mark the appropriate choice.

Column I		Column II	
(A)	Beilstein test	(i)	Sulphur
(B)	Sodium nitroprusside	(ii)	Carbon
(C)	Liebig's method	(iii)	Nitrogen
(D)	Kjeldahl's method	(iv)	Chlorine

A. $A \rightarrow i, B \rightarrow i i, C \rightarrow i i i, D \rightarrow i v$
B. $A \rightarrow i i i i, B \rightarrow i i, C \rightarrow i, D \rightarrow i v$
C. $A \rightarrow i v, B \rightarrow i, C \rightarrow i i, D \rightarrow i i i$
D. $A \rightarrow i i, B \rightarrow i i i, C \rightarrow i v, D \rightarrow i$

Answer: C

(D) Watch Video Solution

96. Match the column I with column II in which formula for estimation of ann element is given annd mark the appropriate choice.

	Column I	Column II	
(A)	Estimation of carbon	(i)	$\frac{80}{188} \times \frac{w_{1}}{w} \times 100$
(B)	Estimation of nitrogen	(ii)	$\frac{62}{222} \times \frac{w_{1}}{w} \times 100$
(C)	Estimation of bromine	(iii)	$\frac{32}{233} \times \frac{w_{1}}{w} \times 100$
(D)	Estimation of sulphur	(iv)	$\frac{28}{22400} \times \frac{V}{w} \times 100$
(E)	Estimation of	(v)	$\frac{12}{44} \times \frac{w_{1}}{w} \times 100$

A. $A \rightarrow v, B \rightarrow i i, C \rightarrow i v, D \rightarrow i, E \rightarrow i i i$
B. $A \rightarrow v, B \rightarrow i v, C \rightarrow i, D \rightarrow i i i, E \rightarrow i i$
C. $A \rightarrow v, B \rightarrow i v, C \rightarrow i i, D \rightarrow i, E \rightarrow i i i$
D. $A \rightarrow i v, B \rightarrow i i i, C \rightarrow i, D \rightarrow i i, E \rightarrow v$

D Watch Video Solution

97. The masses of carbon, hydrogen and oxygen in ann organic compound are in the ratio 6:1:8 respectively. Which of the following pairs of formulae correspond to above information?
A. $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CHO}$
B. $\mathrm{CH}_{2} \mathrm{O}$ and $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
C. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
D. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ and HCHO

Answer: D

- Watch Video Solution

98. 0.2 g off an organic compound contains C, H and O . On combustion, it yields $0.15 \mathrm{~g} \mathrm{CO}_{2}$ and $0.12 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. The percentage of C, H and O respectively is
A. $C=15 \%, H=20 \%, O=65 \%$
B. $C=10 \%, H=8.2 \%, O=81.8 \%$
C. $C=12.2 \%, H=8.8 \%, O=79 \%$
D. $C=20 \%, H=6.66 \%, O=73.34 \%$

Answer: D

- Watch Video Solution

99. 0.92 g of an organic compound was analysed by combustion method.

The mass of the U-tube increased by 1.08 g . what is the percentage of hydrogen in the compound?

$$
\text { A. } C=52.17 \%, H=13.04 \%, O=34.79 \%
$$

B. $C=50 \%, H=50 \%$
C. $C=32.19 \%, H=18.01 \%, O=49.8 \%$
D. $C=72 \%, H=28 \%$

Answer: A

- Watch Video Solution

100. An organic compound contains 69% carbon and 4.8% hydrogen, the remainder being oxygen. What will be the masses off carbon dioxide and water produced when 0.20 g of this substance is subjected to complete combustion.
A. 0.40 g
B. 0.50 g
C. 0.60 g
D. 0.70 g

D Watch Video Solution

Exemplar Problems

1. Which of the following is the correct IUPAC name?
A. 3-Ethyl-4,4-dimethylheptane
B. 4,4-Dimethyl-3-ethylheptane
C. 5-Ethyl-4,4-dimethylheptane
D. 4,4-Bis(methyl)-3-ethylheptane

Answer: A

- Watch Video Solution

2. The IUPAC name for $\mathrm{CH}_{3}-\stackrel{O}{\mathrm{C}^{-}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\stackrel{| |}{\mathrm{C}}-\mathrm{OH}$ is \qquad .
A. 1-hydroxypentane-1,4-dione
B. 1,4-dioxopentanol
C. 1,carboxybutan-3-one
D. 4-oxopentanoic acid

Answer: D

D Watch Video Solution

3.

A. 1-chloro-2-nitro-4-methylbenzene
B. 1-chloro-4-methyl-2-nitrobenzene
C. 2-chloro-1-nitro-5-methylbenzene
D. m-nitro-p-pchlorotoluene

Answer: B

- Watch Video Solution

4. Electronegativity of carbon atoms depends upon their state of hybridisation. In which of the following compounds, the carbon marked with asterisk is most electronegative?
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{3}-\stackrel{\star}{\mathrm{C}} \mathrm{H}=\mathrm{CH}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \stackrel{\star}{\mathrm{C}} \mathrm{H}$
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\stackrel{\star}{\mathrm{C}} \mathrm{H}_{2}$

Answer: C

D Watch Video Solution

5. In which of the followinng functional group isomerism is not possible?
A. Alcohols
B. Aldehdyes
C. Alkyl halides
D. Cyanides

Answer: C

- Watch Video Solution

6. The fragrance of flowers is due to the presence of some steamm volatile organic compounds called essential oils. These are generally insoluble in water at room temperature but are miscible with water
vapour in vapour phase. A suitable method for the extraction of these oils from the flowers is
A. distillation
B. crystallisation
C. distillation under reduced pressure
D. steam distillation

Answer: D

- Watch Video Solution

7. During hearing of a court case, the judge suspected that some changes in the documents had been carried out. He asked the forensic department to check the ink used at two different places. According to you which technique can give the best results?
A. Column chromatography
B. solvent extraction
C. Distillation
D. Thin layer chromatography

Answer: D

D Watch Video Solution

8. The principle involved in paper chromatography is
A. adsorption
B. partition
C. solubility
D. volatility

Answer: B

9. What is the correct order of decreasing stability of the following cations?
$\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{I} \mathrm{H}-\mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \underset{\mathrm{II}}{\mathrm{H}}-\mathrm{OCH}_{3}$
$\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \underset{\mathrm{III}}{-\mathrm{CH}} \mathrm{H}_{2}-\mathrm{OCH}_{3}$
A. IlgtlgtIII
B. IlgtllIgt|
C. IIIgtIgtII
D. IgtIIgtIII

Answer: A

- Watch Video Solution

10. In which of the followinng compounds the carbon marked with asterisk is expected to have greatest positive charge?
A. $\stackrel{\star}{C} \mathrm{H}_{3}-\mathrm{CH} \mathrm{H}_{2}-\mathrm{Cl}$
B. $\stackrel{\star}{C} \mathrm{H}_{3}-\mathrm{CH}_{2}-\mathrm{Mg}^{+} \mathrm{Cl}^{-}$
C. $\stackrel{\star}{C} H_{3}-C H_{2}-B r$
D. $\stackrel{\star}{C} \mathrm{H}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Answer: A

- Watch Video Solution

11. Ionic species are stabilised by the dispersal of charge. Which of the following carboxylate ion is the most stable?
A. $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\|} \mathrm{C}}{\mathrm{C}}-\mathrm{O}^{-}$
B. $\mathrm{Cl}-\mathrm{CH}_{2}-\stackrel{\stackrel{+}{\mathrm{C}}}{\mathrm{C}}-\mathrm{O}^{-}$
c. $\mathrm{F}-\mathrm{CH}_{2}-\stackrel{\stackrel{O}{\mathrm{C}}}{\mathrm{C}}-\mathrm{O}^{-}$
D. d10lpgp6xz60nq.cloudfront.net/physics_images/NCERT_OBJ_FING_CHE_X width="30\%">

Answer: D

- Watch Video Solution

12. Electrophilic addition reactions proceed in two steps. The first step involves the addition of an electrophile. Name the type of intermediate formed in the first step of the following addition reaction.
$\mathrm{H}_{3} \mathrm{C}-\mathrm{HC}=\mathrm{CH}_{2}+\mathrm{H}^{+} \rightarrow$?
A. 2° carbanion
B. 1° carbocation
C. 2° carbocation
D. 1° carbanion

Answer: C

1. Assertion: Hybridisation influences the bond length and bond enthalpy in organic compound.

Reason: More the s character of hybrid orbital, shorter and stornger will be the bond.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

2. Assertion: $s p^{3}$ hybrid carbon atom is more electronegative than sp hybrid carbon atom.

Reason: $s p^{3}$ hybrid orbitals are more closer to the nucleus.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

- Watch Video Solution

3. Assertion: Rotation about $\mathrm{C}=\mathrm{C}$ is restricted.

Reason: Electron charge cloud of the π bond is located above and below
the plane of bonding atoms.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

4. Assertion: The name of the hybrocarbon
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ is 2,5-dimethylheptane and not 3,6-dimethylheptane.

Reason: Numbering should be done in such a way that sum of the locants on the parennt chain is lowest possible number.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

5. Assertion: In the case of polyfunctional compounds, the choice of principal functional group is made on the basis of order of preference. Reason: The order of decreasing priority for some functional group is

$$
\begin{aligned}
& -\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOR},-\mathrm{COCl},-\mathrm{CONH}_{2},-\mathrm{CN}, \\
& -\mathrm{CH}=\mathrm{O}, \backslash \mathrm{C}=\mathrm{O},-\mathrm{OH}, \backslash \mathrm{C}=\mathrm{C}^{\prime},-\mathrm{C} \equiv \mathrm{C}-
\end{aligned}
$$

A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

6. Assertion: Alkanes containing more than three carbon atoms exhibit chain isomerism.

Reason: In an alkane, all carbon atoms are $s p^{3}$ hybridised.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct
explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

7. Assertion: Nitroalkanes and alkyl nitrites exhibit funcctional isomerism.

Reason: Compounds having same molecular formula but different functonal groups are called functional isomers.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

8. Assertion: Heterolytic fission occurs readily in polar covalent bonds.

Reason: Hyterolytic fission involves breaking of bond in such a way that the shared pair of electrons go with one atom.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

9. Assertion: When inductive and electromeric effects operate in oppsite directions, the inductive effect predominates.

Reason: Inductive effect is the complete transfer of shared pair of π electrons to one of the atoms.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

10. Assertionj: The following structures (I) and (II) canot e the major contributors to the real structure of $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
$C H_{3}-\stackrel{\ddot{C}^{-}}{\stackrel{\mid}{C}} \underset{I}{+}-\ddot{O} \leftrightarrow C H_{3}-\stackrel{: \ddot{O}^{-}}{\stackrel{\mid}{C}} \underset{I I}{=} \stackrel{+}{O}-C H_{3}$
Reason: Both the structures involve charge separation and structure (I) contains a carbon atom with an incomplete octet.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

11. Assertion: The order of stability of carbocations is $3^{\circ}>2^{\circ}>1^{\circ}$ Reason: Carbon atom in carbocation is in $s p^{3}$ state of hybridisation.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assertion: Glycerol is purified by distillation under reduced pressure.

Reason: Method of distillation under reduced pressure is used to purify
liquids having very high boiling points and those, which decompose at or below their boiling points.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

13. Assertion: Paper chromatography is a type of partition chromatography.

Reason: Moving phase is liquid and stationary phase is solid.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

Tetravalence Of Carbon Shape Of Organic Compounds

1. How many σ and π bonds are present in
$H C \equiv C-C H=C H-\mathrm{CH}_{3} ?$
A. $9 \sigma, 4 \pi$
B. $10 \sigma, 3 \pi$
C. $6 \sigma, 6 \pi$
D. $5 \sigma, 5 \pi$

Answer: B

- Watch Video Solution

2. Which type of hybridisation of each carbon is there in the compound?

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CN}
$$

A. $s p^{3}, s p^{2}, s p^{2}, s p$
B. $s p^{3}, s p^{2}, s p^{2}, s p^{3}$
C. $s p^{3}, s p^{2}, s p^{3}, s p^{3}$
D. $s p^{3}, s p^{2}, s p, s p^{3}$

Answer: A

3. Which of the following represents the given sequence of hybridisation of carbon atoms from left to right $s p^{2}, s p^{2}, s p, s p$?
A. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
B. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
C. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
D. $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: A

- Watch Video Solution

4. The hybridisation of carbons of C-C single bond of $H C \equiv C-C H=\mathrm{CH}_{2}$ is
A. $s p^{3}-s p^{3}$
B. $s p-s p^{2}$
C. $s p^{3}-s p$
D. $s p^{2}-s p^{3}$

Answer: B

- Watch Video Solution

5. What are the hybridization and shapes of the following molecules?
(i) $\mathrm{CH}_{3} \mathrm{~F}$
(ii) $H C \equiv N$
A. (i) $s p^{2}$, trigonal planar, (ii) $s p^{3}$, tetrahedral
B. (i) $s p^{3}$, tetrahedral, (ii) $s p$, linear
C. (i) $s p$, linear, (ii) $s p^{2}$, trigonal planar
D. (i) $s p^{2}$, trigonal planar, (ii) $s p^{2}$, trigonal planar

Answer: B

D Watch Video Solution

1. Correct name for the given compound
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\substack{\text { l } \\ \mathrm{CH}_{2} \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\underset{\substack{\text { l } \\ \mathrm{CH}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ is
A. 3-ethyl-5-methylheptane
B. 5-ethyl-3-methylheptane
C. 1,1-diethyl-3-methylpentane
D. 3-methyl-5,5-diethylpentane

Answer: A

- Watch Video Solution

2. How many primary, secondary, tertiary and quaternary carbon atoms are present in the following compound?
$\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\underset{\substack{\mathrm{CH}_{3} \\ \mathrm{C} \\ \mathrm{CH}}}{\mathrm{CH}_{3}}-\mathrm{CH}_{3}$
A. One primary, two secondary and one tertiary
B. Five primary, three secondary
C. Five primary, one secondary, one tertiary and one quaternary
D. four primary, two secondary and two quaternary

Answer: C

- Watch Video Solution

3. The IUPAC name of the compound having formula

A. 3,3,3-trimethylprop-1-ene
B. 1,1,1-trimethylprop-2-ene
C. 3,3-dimethylpent-1-ene
D. 2,2-dimethylbut-3-ene.

Answer: C

D Watch Video Solution

4. IUPAC name of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ is
A. 2,2-dimethylbut-3-ene
B. 2,2-dimethylpent-4-ene
C. 3,3-dimethylbut-1-ene
D. hex-1-ene

Answer: C

- Watch Video Solution

5. Which of the following represents 3-methylpenta-1,3-diene?
A. $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{2}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$

Answer: C

- Watch Video Solution

6. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is
A. $-\mathrm{CONH}_{2},-\mathrm{CHO},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH}$
B. $-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2},-\mathrm{CHO}$
C. $-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH},-\mathrm{CONH}_{2},-\mathrm{CHO}$
D. $-\mathrm{CHO},-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2}$

Answer: B

7. Which of the followingg compounds is not correctly matched wiith its IUPAC name?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$-Ethyl butanoate
B. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CHO}-3-$ Methylbutanal
C. $\mathrm{CH}_{3}-\underset{\text { I }}{\underset{C H_{3}}{C}} \underset{O}{\mathrm{C}} \mathrm{H}-\underset{\mathrm{O}}{\mathrm{C}} \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3}-2-$ methylpentan-3-one
D. $\mathrm{CH}_{3}-\underset{\mathrm{OH}}{\mathrm{C}} \underset{\substack{\mathrm{CH}}}{\mathrm{C}} \mathrm{H}-\underset{\substack{\mathrm{C} \\ \mathrm{C}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3}-3$ - Methylbutan-3-ol

Answer: D

- Watch Video Solution

8. The correct representation of 4-hydroxy-2-methylpent-2-en-1-al is
A. $\mathrm{CH}_{3}-\underset{\substack{\text { । } \\ \mathrm{OH}}}{\mathrm{CH}} \mathrm{H}-\mathrm{CH}=\underset{\substack{\mathrm{C} \\ \mathrm{CH}}}{\mathrm{C}}-\mathrm{CHO}$
B. $\mathrm{CH}_{3}-\underset{\substack{\text { | } \\ \mathrm{CH}_{3}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}=\underset{\mathrm{OH}}{\mathrm{C}} \mathrm{C}-\mathrm{CHO}$

D. $\mathrm{CH}_{3}-\underset{\mathrm{OH}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\underset{\mathrm{CH}}{\mathrm{C}} \mathrm{C}$

Answer: A

- Watch Video Solution

9. The correct name of $\mathrm{CH}_{3} \mathrm{CH}_{2}-\underset{O}{\mathrm{C}}-\underset{C N}{\mathrm{C}} \mathrm{H}-\mathrm{CHO}$ is
A. 2-cyano-3-oxopentanal
B. 2-formyl-3-oxopentanenitrile
C. 2-cyano-1,3-pentadiene
D. 1,3-dioxo-2-cyanopentane

Answer: B

10. Correct representation of 3-methylpent-3-en-2-ol is

A.
B.

C.
D.

Answer: A

11. Which of the following IUPAC name is not correctly matched?
A.

B.

C.

D.

Answer: C

(Watch Video Solution

12. Which of the following names of substituted benzene compounds is not correct?
A.

B.

C.

D.

3,4-dimethylphenol

Answer: C

1. What is the minimum number of carbon atoms of an alkane must have to form an isomer?
A. 4
B. 3
C. 2

Answer: A

- Watch Video Solution

2. 1-Butene and cyclobutane show
A. position isomerism
B. ring-chain isomerism
C. functional isomerism
D. metamerism

Answer: B

- Watch Video Solution

3. The type of isomerism shown by the following compounds is
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\mathrm{~L}} \mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\stackrel{\text { । }}{\mathrm{C}}} \underset{\substack{\text { | } \\ \mathrm{CH}}}{ }-\mathrm{CH}_{3}$
A. position isomerism
B. metamerism
C. ring-chain isomerism
D. chain isomerism

Answer: D

- Watch Video Solution

4. Which of the followingg is an isomer of ethanol?
A. Methanol
B. Acetone
C. Diethylether
D. Dimethylether

Answer: D

- Watch Video Solution

5. Given below are the structures of few compounds with molecular formula $C_{4} H_{10} O$. Select metamers from these structures.
(i) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(iii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iv) $\mathrm{CH}_{3}-\underset{\substack{\mathrm{O} \\ \mathrm{OH}}}{\mathrm{CH}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
A. (i) and (ii)
B. (ii) and (iii)
C. (i) and (iii)
D. (ii) and (iv)

Answer: C

- Watch Video Solution

6. Which of the following compounds is isomeric with $2,2,4,4$ tetramethylhexane?
A. 3-ethyl-2,2-dimethylpentane
B. 4-isopropylheptane
C. 4-ethyl-3-methyl-4-n-propyloctane
D. 4,4-diethyl-3-methylheptane

Answer: B

- Watch Video Solution

Fundamental Concepts In Organic Chemistry

1. Heterolysis of a carbon-chlorine bond produces
A. two free radicals
B. two carbocations
C. one cation and one anion
D. two carbanions.

Answer: C

- Watch Video Solution

2. Which of the followingg intermediates contains three paris of electrons in its valence shell?
A. Carbocations
B. Carbanions
C. Free radicals
D. Both (a) and (b)

D Watch Video Solution

3. which of the following is an electrophilic reagent?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. OH^{-}
D. $C l^{+}$

Answer: D

- Watch Video Solution

4. Which of the following sets of groups contains only electrophiles?
A. $\mathrm{NH}_{2}^{-}, \mathrm{NO}_{2}^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$
B. $\mathrm{F}^{-}, \mathrm{OH}^{-}, \mathrm{NH}_{3}, \mathrm{SO}_{3}$
C. $\mathrm{NO}_{2}^{+}, \mathrm{AlCl}_{3}, \mathrm{SO}_{3}, \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}}=\mathrm{O}$
D. $\mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{AlCl}_{3}, \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

5. Inductive effect involves
A. displacement off σ-electrons resulting in polarisation
B. displacement of π-electrons resulting in polarisation
C. delocalisation of σ-electrons
D. delocalisation of π-electrons.

Answer: A

6. The increasing order of electron donating inductive effect of alkyl groups is

$$
\begin{aligned}
& \text { A. }-H<-\mathrm{CH}_{3}<-\mathrm{C}_{2} H_{5}<-\mathrm{C}_{3} H_{7} \\
& \text { B. }-H>-\mathrm{CH}_{3}>-\mathrm{C}_{2} H_{5}>-\mathrm{C}_{3} H_{7} \\
& \text { C. }-H<-\mathrm{C}_{2} H_{5}<-\mathrm{CH}_{3}<-\mathrm{C}_{3} H_{7} \\
& \text { D. }-H>-C_{2} H_{5}>-C H_{3}>-C_{3} H_{7}
\end{aligned}
$$

Answer: A

- Watch Video Solution

7. Inductive effect of which ato is taken as zero to compare inductive effect of other atoms?
A. Hydrogen
B. Chlorine
C. carbon
D. oxygen

Answer: A

- Watch Video Solution

8. Maximum -l effect is exerted by the group
A. $-C_{6} H_{5}$
B. $-\mathrm{OCH}_{3}$
C. $-C l$
D. $-\mathrm{NO}_{2}$

Answer: D

- Watch Video Solution

9. Which one of the following acids would you expect to be the strongest?
A. $\mathrm{I}-\mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{COOH}$
C. $\mathrm{Br}-\mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{F}-\mathrm{CH}_{2} \mathrm{COOH}$

Answer: D

- Watch Video Solution

10. Few pairs of molecules are given below. Which bond of the molecule of the pairs is more polar?
(i) $\mathrm{H}_{3} \mathrm{C}-\mathrm{H}, \mathrm{H}_{3} \mathrm{C}-\mathrm{Br}$
(ii) $\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2}, \mathrm{H}_{3} \mathrm{C}-\mathrm{OH}$
(iii) $\mathrm{H}_{3} \mathrm{C}-\mathrm{OH}, \mathrm{H}_{3} \mathrm{C}-\mathrm{SH}$
(iv) $\mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}, \mathrm{H}_{3} \mathrm{C}-\mathrm{SH}$
A. $C-B r, C-N, C-O, C-B r$
B. $C-B r, C-O, C-O, C-C l$
C. $C-B r, C-N, C-S, C-C l$
D. $C-B r, C-O, C-S, C-B r$

Answer: B

- Watch Video Solution

11. Which of the following is the correct orderr of acidity of carboxylic acids?
(i) $\mathrm{Cl}_{3} \mathrm{CCOOH}>\mathrm{Cl}_{2} \mathrm{CHCOOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}>\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOH}>\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$
(iii) $\mathrm{F}_{2} \mathrm{CHCOOH}>\mathrm{FCH}_{2} \mathrm{COOH}>\mathrm{ClCH}_{2} \mathrm{COOH}$
A. (i) and (ii)
B. (ii) and (iii)
C. (i) and (iii)
D. (i), (ii) and (iii)

Answer: D

- Watch Video Solution

12. Point out the incorrect statement about resonance?
A. Resonance structures should have equal energy
B. In resonance structures, the contituent atoms must be in the same
position
C. In resonance structures, there should not be same number of electoron pairs
D. Resonance structures should differ only in the location of electrons around the constituent atoms.

Answer: C

13. Which of the following is not structure of nitromethane molecule?

A.

B.

C.

Answer: D

D Watch Video Solution

14. Which of the following ions is the most resonance stabilised?
A. Ethoxide
B. Phenoxide
C. Butaxide
D. Isopropoxide

Answer: B

D Watch Video Solution

15. Hyperconjugation is
A. $\sigma-\pi$ conjugation
B. noticed due to delocalisation of σ and π bond
C. no bond resonance
D. all the above

Answer: D

16. Stability of iso-butylene can be best explaned by
A. inductive effect
B. mesomeric effect
C. hyperconjugative effect
D. steric effect

Answer: C

- Watch Video Solution

17. Which of the following is true ?
A. $\mathrm{CH}_{3}-\bar{C} H_{2}$
B. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3}-\stackrel{\stackrel{C}{\mathrm{CH}}}{\stackrel{\mathrm{CH}}{\mathrm{C}}} \mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$

Answer: B
18. Hyperconjugation is not possible in
A. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} / \mathrm{CH}_{3}$
C.
D. $\mathrm{CH}_{3}-\underset{\substack{\mathrm{C} \\ \mathrm{CH}}}{\mathrm{C}}=\underset{\substack{\text { CH }}}{\mathrm{C}}-\mathrm{CH}_{3}$

Answer: B

- Watch Video Solution

19. Decreasing order of stability of following alkenes is
(i) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$

A. (i) $)$ (ii)>(iii)>(iv)
B. (iv)>(iii)>(iii)>(i)
C. (iii)>(ii)>(i)>(iv)
D. (ii)>(iii)>(iv)>(i)

Answer: B

- Watch Video Solution

20. Which of the following alcohols on dehydration gives most stable carbocation?

C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3}-\underset{\substack{\text { I } \\ \mathrm{OH}}}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2} \mathrm{CH}_{3}$

Answer: B

- Watch Video Solution

21. Stability of alkyl carbocations can be explained by
A. inductive effect only
B. hyperconjugation only
C. both inductive effect and hyperconjugation
D. electromeric effect only

Answer: C

22. The carbocation $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{HCH}$ is less stable than
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$
B. ${ }^{+}{ }^{+} H_{2}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{C}$
D. $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

23. Which of the following statements is not true about the stability of carbanions?
A. Stability of carbanions becauses with increase in s-character of orbital
B. The electron withdrawingg groups like $-\mathrm{NO}_{2},-\mathrm{CN},>\mathrm{C}=\mathrm{O}$ increases the stability of carbanions.
C. Order of stability of carbanions is $3^{\circ}>2^{\circ}>1^{\circ}$,
D. The negatively charged carbon is $s p^{3}$ hybridised and pyramidal.

Answer: C

- Watch Video Solution

24. Which of the following carbanion expected to be most stable?
A. $p-\mathrm{NO}_{2} \mathrm{C} \cdot \mathrm{H}_{4} \overline{\mathrm{C}} \mathrm{H}_{2}$
B. $o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \overline{\mathrm{C}} \mathrm{H}_{2}$
C. o $-\mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$
D. $p-\mathrm{CHOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$

Answer: B

25. The order of decreasing stability of the following carbanions is
(i) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{-}$
(ii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{-}$
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}$
(iv) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{-}$
A. (i)gt(ii)gt(iii)gt(iv)
B. (iv)gt(iii)gt(ii)gt(i)
C. (iv)gt(i)gt(ii)gt(iii)
D. (iii)gt(ii)gt(i)gt(Iv)

Answer: B

- Watch Video Solution

26. Free radicals can undergo
A. rearrangement to a more stable free radical
B. decomposition to give another free radical
C. combination with other free radical
D. all are correct

Answer: D

D Watch Video Solution

27. The most stable free radical among the following is
A.

B.

C.

D.

Answer: D

- Watch Video Solution

28. Which of the following is a characteristic feature of a free radical?
A. It has a positive charge
B. It has a negative charge
C. It has all paired electrons.
D. It has an unpaired electron.

Answer: D

- Watch Video Solution

29. The increasing order of stability of the following free radicals is
A. $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{C} H<\left(\mathrm{CH}_{3}\right)_{3}{ }^{*}<\left(\mathrm{C}_{6} H_{5}\right)_{2} \stackrel{*}{C} H<\left(\mathrm{C}_{6} H_{5}\right)_{3}{ }^{*}$
B. $\left(C_{6} H_{5}\right)_{3} \stackrel{*}{C}<\left(C_{6} H_{5}\right)_{2} \stackrel{*}{C} H<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{*}{C}<\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{C} H$
C. $\left(C_{6} H_{5}\right)_{2} \stackrel{*}{C} H<\left(C_{6} H_{5}\right)_{3} \stackrel{*}{C}<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{*}{C}<\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{C} H$
D. $\left(\mathrm{CH}_{3}\right)_{2} \stackrel{*}{C} H<\left(\mathrm{CH}_{3}\right)_{3} \stackrel{*}{C}<\left(\mathrm{C}_{6} H_{5}\right)_{3} \stackrel{*}{C}<\left(\mathrm{C}_{6} H_{5}\right)_{2} \stackrel{*}{C} H$

Answer: A

- Watch Video Solution

30. Which of the following is a false statement?
A. Free radicals, carbonium ions or carbanions are reaction intermediates.
B. Reaction between methane and chlorine in presence of sunlight proceeds via free radical
C. The electronegative atom in the carbon chain produces +l effect
D. Homolytic fission of C-C bonds gives free radicals

Answer: C

- Watch Video Solution

31. Which type of intermediate (A) is formed during the reaction?
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{N}=\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow{\text { heat }}(A)+\mathrm{N}_{2}$
A. Carbocation
B. Carbanions
C. Free radical
D. Carbene

Answer: C

- Watch Video Solution

Methods Of Purification Of Organic Compounds

1. Separation of two substances by crystallisation depends upon their differences in
A. densities
B. solubility
C. melting points
D. boiling points

Answer: B

2. Those substaces can be separated by steam distillation which are
A. steam volatile and insoluble in water
B. steam volatile and soluble in water
C. steam volatile and sparingly soluble in water
D. inliquid form in steam and solid form in water.

Answer: A

- Watch Video Solution

3. Glycrine can be purified by
A. vacuum distillation
B. simple distillation
C. steam distillation
D. fractional distillation

D Watch Video Solution

4. Distillation under reduced pressure is generally used to purify those liquids which
A. have very low boiling points
B. are volatile
C. have high boiling points and which decompose below their boiling points
D. have a large difference in their boiling points

Answer: C

- Watch Video Solution

5. Which method can be applied to separate a mixture of camphor and benzoic acid?
A. Sublimation
B. Chemical methods
C. Crystallisation
D. Extraction with solvent

Answer: B

- Watch Video Solution

6. The substance which can be used as adsorbent in column chromatography is
A. $\mathrm{Na}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. NaCl

Answer: C

- Watch Video Solution

Qualitative Analysis Of Organic Compounds

1. The presence of carbon in an organic compound can be shown by
A. heating the compound wih sodium
B. heating the compound with cupric oxide
C. heating the compound on bunsen flame
D. heating the compound with magnesium

Answer: B

2. In Lassaigne's test for N, S and halogens, the organic compound is
A. fused with sodium
B. dissolved with sodamide
C. extracted with sodamide
D. fused with calcium

Answer: A

- Watch Video Solution

3. The blue compound formed in the positive test for nitrogen with Lassaigne solution of an organic compound is
A. $N a_{4}\left[F e(C N)_{5}(N O S)\right]$
B. $\mathrm{Na} a_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
C. $\mathrm{Fe}(\mathrm{CN})_{3}$
D. $F e_{4}\left[F e(C N)_{6}\right]_{3}$

Answer: D

- Watch Video Solution

4. If on adding FeCl_{3} solution to acidified Lassaigne solution, a blood red colouration is produced, it indicates the presence of
A. S
B. N
C. N and S
D. S and Cl

Answer: C

D Watch Video Solution

5. During sodium extract preparation for Lassaigne's test both N and S present in organic compound change to
A. NaCN and $N a_{2} S$
B. NaNH_{2} and $\mathrm{Na}_{2} \mathrm{SO}_{4}$
C. $N a S C N$
D. $N a N O_{3}$ and $N a_{2} S$.

Answer: C

- Watch Video Solution

6. Lassaigne's test for the detection of nitrogen fails in
A. $\mathrm{NH}_{2} \mathrm{CONHNH} \mathrm{H}_{2} \cdot \mathrm{HCl}$
B. $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{HCl}$
C. $\mathrm{NH}_{2} \mathrm{CONH}_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2} \cdot \mathrm{HCl}$

Answer: B

7. Freshly prepared solution of sodium nitroprusside is added to the sodium extract. Appearance of a deep violet colour indicates the presence of
A. nitrogen
B. sulphur
C. both nitrogenn and sulphur
D. halogen

Answer: B

- Watch Video Solution

8. Which of the following will not give a white pt. when AgNO_{3} is added to its solution?
A. CCl_{4}
B. NaCl
C. MgCl_{2}
D. KCl

Answer: A

- Watch Video Solution

Quantitative Analysis

1. 0.92 g of an organic compound was analysed by combustion method.

The mass of the U-tube increased by 1.08 g . what is the percentage of hydrogen in the compound?
A. 0.1304
B. 0.5217
C. 0.6521
D. 0.113

- Watch Video Solution

2. An organic compound gave 0.4655 g of CO_{2} on complete combustion. If the mass of the compound taken was 0.2115 g , what is the percentage of C in it?
A. 0.133
B. 0.2667
C. 0.6003
D. 0.288

Answer: C

3. In Duma's method 0.52g of an organic compound on combustion gave $68.6 \mathrm{~mL} N_{2}$ at $27^{\circ} \mathrm{C}$ and 756 mm pressure. What is the percentage of nitrogen in the compound?
A. 0.1222
B. 0.1493
C. 0.1584
D. 0.1623

Answer: B

- Watch Video Solution

4. In Kjeldahl's method of estimation of nitrogen, nitrogen is quantitatively converted to ammonium sulphate. It is then treated with standard solution of alkli. The nitrogen which is present is estimated as
B. NO_{2} gas
C. NH_{3} gas
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{ppt}$

Answer: C

- Watch Video Solution

5. In Carium method of estimation of halgoen, 0.15 g of an organic compound gave 0.12 g of AgBr . What is the percentage of bromine in the compound?
A. 0.6808
B. 0.3504
C. 42.1%
D. 0.5

Answer: B

6. 2.18 g of an organic compound containing sulphur produces 1.02 g of BaSO_{4}. The percentage of sulphur in the compound is
A. 0.0726
B. 0.0898
C. 0.1
D. 0.0642

Answer: D

- Watch Video Solution

7. 1.6 g of an organic compound gave 2.6 g of magnesium pyrophosphate.

The percentage of phosphorus in the compound is
B. 0.5438
C. 0.3776
D. 0.1902

Answer: A

D Watch Video Solution

8. The masses of carbon, hydrogen and oxygen in ann organic compound are in the ratio 6:1:8 respectively. Which of the following pairs of formulae correspond to above information?
A. $\mathrm{CH}_{3} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CHO}$
B. $\mathrm{CH}_{2} \mathrm{O}$ and $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
C. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
D. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$ and HCHO

Answer: D

9. 0.2 g off an organic compound contains C, H and O . On combustion, it yields $0.15 \mathrm{~g} \mathrm{CO}_{2}$ and $0.12 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. The percentage of C, H and O respectively is
A. $C=15 \%, H=20 \%, O=65 \%$
B. $C=10 \%, H=8.2 \%, O=81.8 \%$
C. $C=12.2 \%, H=8.8 \%, O=79 \%$
D. $C=20 \%, H=6.66 \%, O=73.34 \%$

Answer: D

- Watch Video Solution

10. 0.92 g of an organic compound was analysed by combustion method.

The mass of the U-tube increased by 1.08 g . what is the percentage of hydrogen in the compound?
A. $C=52.17 \%, H=13.04 \%, O=34.79 \%$
B. $C=50 \%, H=50 \%$
C. $C=32.19 \%, H=18.01 \%, O=49.8 \%$
D. $C=72 \%, H=28 \%$

Answer: A

- Watch Video Solution

11. An organic compound contains 69% carbon and 4.8% hydrogen, the remainder being oxygen. What will be the masses off carbon dioxide and water produced when 0.20 g of this substance is subjected to complete combustion.
A. 0.40 g
B. 0.50 g
C. 0.60 g
D. 0.70 g

D Watch Video Solution

Higher Order Thinking Skills

1. Consider the following reactions.
I. $\mathrm{CH}_{2}=\mathrm{CHCOOH} \xrightarrow{\Delta} \mathrm{CH}_{2}=\mathrm{CH}_{2}$

II.
III. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{COOH})_{2} \xrightarrow{\Delta} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

In which cases, parent compound loses its functional group in preference?
A. I,II
B. I,II,III
C. IIIIII
D. I,III

Answer: A

- Watch Video Solution

2. Which of the following names is correct for

A. 3-Formylpentane-1,3-dial
B. 1,2,3-Triformylpropane
C. 2-Formylmethylbutane-1,4-dial
D. Propane-1,2,3-tricarbaldehyde.

Answer: D

3. The number of structural and configurational isomers of a bromo compound, $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}$, formed by the additionn of HBr to 2-penthyne respectively are
A. 1 and 2
B. 2 and 4
C. 4 and 2
D. 2 and 1

Answer: B

4. Arrange the followinng carbocations in decreasing order of stability

IV
A. $I I>I>I I I>I V$
B. $I I I>I V>I>I I$
C. $I I>I I I>I>I V$
D. $I V>I>I I>I I I$

Answer: D
5. The correct stability order for the following species is

(I)

(II)

(III)

(IV)
A. IlgtIVgtIgtIII
B. IgtllgtIIIgtIV
C. IlgtlgtIVgtIII
D. IgtIIIgtIIgtIV

Answer: D

- Watch Video Solution

6. Which of the following orders correctly depicts the decreasing order of stability of carbanion?
A. $\xrightarrow{\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{CH}_{2}>\langle\mathrm{O}\rangle-\overline{\mathrm{C}}_{2}>\mathrm{CH}_{3}-\overline{\mathrm{CH}}_{2}} \gg \overline{\mathrm{CH}}_{3}$
B.

$$
\mathrm{OHC}-\underset{\substack{\bar{C} \\ \text { CHO }}}{\bar{C}}-\mathrm{CHO}>\mathrm{OHC}-\overline{\mathrm{C}} \mathrm{H}-\mathrm{CHO}>\mathrm{H}_{3} \mathrm{C}-\underset{\substack{\| \\ \mathrm{C}}}{\mathrm{C}}-\overline{\mathrm{C}} \mathrm{H}
$$

c. $\bar{C} H_{2} \mathrm{NO}_{2}<\bar{C} \mathrm{H}_{2} \mathrm{CN}<\overline{\mathrm{C}} \mathrm{H}_{2} \mathrm{Cl}<\overline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{3}$
D.

Answer: B

- Watch Video Solution

7. A sample of 0.50 g of an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50 mL of 0.5 M $\mathrm{H}_{2} \mathrm{SO}_{4}$. The residual acid required 60 mL of 0.5 M solution of NaOH for neutralisation. What would be the percentage composition of nitrogen in the compound?
A. 50
B. 60
C. 56
D. 44

Answer: C

- Watch Video Solution

Ncert Exemplar

1. Which of the following is the correct IUPAC name?
A. 3-Ethyl-4,4-dimethylheptane
B. 4,4-Dimethyl-3-ethylheptane
C. 5-Ethyl-4,4-dimethylheptane
D. 4,4-Bis(methyl)-3-ethylheptane

Answer: A

2. The IUPAC name for $\mathrm{CH}_{3}-\stackrel{O}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\stackrel{| |}{\mathrm{C}}-\mathrm{OH}$ is \qquad .
A. 1-hydroxypentane-1,4-dione
B. 1,4-dioxopentanol
C. 1,carboxybutan-3-one
D. 4-oxopentanoic acid

Answer: D

- Watch Video Solution

3. Electronegativity of carbon atoms depends upon their state of hybridisation. In which of the following compounds, the carbon marked with asterisk is most electronegative?
A. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
B. $\mathrm{CH}_{3}-\stackrel{\star}{\mathrm{C}} \mathrm{H}=\mathrm{CH}-\mathrm{CH}_{3}$
C. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \stackrel{\star}{\mathrm{C}} \mathrm{H}$
D. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\stackrel{\star}{\mathrm{C}} \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

4. In which of the followinng functional group isomerism is not possible?
A. Alcohols
B. Aldehdyes
C. Alkyl halides
D. Cyanides

Answer: C

5. The fragrance of flowers is due to the presence of some steamm volatile organic compounds called essential oils. These are generally insoluble in water at room temperature but are miscible with water vapour in vapour phase. A suitable method for the extraction of these oils from the flowers is
A. distillation
B. crystallisation
C. distillation under reduced pressure
D. steam distillation

Answer: D

- Watch Video Solution

6. During hearing of a court case, the judge suspected that some changes in the documents had been carried out. He asked the forensic
department to check the ink used at two different places. According to you which technique can give the best results?
A. Column chromatography
B. solvent extraction
C. Distillation
D. Thin layer chromatography

Answer: D

- Watch Video Solution

7. The principle involved in paper chromatography is
A. adsorption
B. partition
C. solubility
D. volatility

Answer: B

- Watch Video Solution

8. What is the correct order of decreasing stability of the following cations?

$$
\begin{aligned}
& \mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{I} \mathrm{H}-\mathrm{CH}_{3} \quad \mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \underset{\mathrm{II}}{\mathrm{H}}-\mathrm{OCH}_{3} \\
& \mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}-\underset{\mathrm{III}}{\mathrm{C}} \mathrm{CH}_{2}-\mathrm{OCH}_{3}
\end{aligned}
$$

A. IIgtIgtIII
B. IIgt|IIgtI
C. IIIgtIgtII
D. IgtIIgtIII

Answer: A

9. In which of the followinng compounds the carbon marked with asterisk is expected to have greatest positive charge?
A. $\stackrel{\star}{C} H_{3}-C H_{2}-C l$
B. $\stackrel{\star}{C} \mathrm{H}_{3}-\mathrm{CH}_{2}-\mathrm{Mg}^{+} \mathrm{Cl}^{-}$
C. $\stackrel{\star}{\mathrm{C}} \mathrm{H}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$
D. $\stackrel{\star}{C} \mathrm{H}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Answer: A

- Watch Video Solution

10. Ionic species are stabilised by the dispersal of charge. Which of the following carboxylate ion is the most stable?
A. $\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{I}} \mathrm{C}-\mathrm{O}^{-}$
B. $\mathrm{Cl}-\mathrm{CH}_{2}-\stackrel{\stackrel{+}{\mathrm{C}}}{\mathrm{C}}-\mathrm{O}^{-}$
C. $\mathrm{F}-\mathrm{CH}_{2}-\stackrel{\text { ! }}{\mathrm{C}}-\mathrm{O}^{-}$
D. d10lpgp6xz60nq.cloudfront.net/physics_images/NCERT_OBJ_FING_CHE_X width="30\%">

Answer: D

- Watch Video Solution

11. Electrophilic addition reactions proceed in two steps. The first step involves the addition of an electrophile. Name the type of intermediate formed in the first step of the following addition reaction.
$\mathrm{H}_{3} \mathrm{C}-\mathrm{HC}=\mathrm{CH}_{2}+\mathrm{H}^{+} \rightarrow$?
A. 2° carbanion
B. 1° carbocation
C. 2° carbocation
D. 1° carbanion

Answer: C

- Watch Video Solution

Assertion And Reason

1. Assertion: Hybridisation influences the bond length and bond enthalpy in organic compound.

Reason: More the s character of hybrid orbital, shorter and stornger will be the bond.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

2. Assertion: $s p^{3}$ hybrid carbon atom is more electronegative than sp hybrid carbon atom.

Reason: $s p^{3}$ hybrid orbitals are more closer to the nucleus.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

3. Assertion: Rotation about $\mathrm{C}=\mathrm{C}$ is restricted.

Reason: Electron charge cloud of the π bond is located above and below the plane of bonding atoms.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

4. Assertion: The name of the hybrocarbon
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
is 2,5-dimethylheptane and not 3,6-dimethylheptane.
Reason: Numbering should be done in such a way that sum of the locants on the parennt chain is lowest possible number.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

5. Assertion: Alkanes containing more than three carbon atoms exhibit chain isomerism.

Reason: In an alkane, all carbon atoms are $s p^{3}$ hybridised.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

6. Assertion: Nitroalkanes and alkyl nitrites exhibit funcctional isomerism.

Reason: Compounds having same molecular formula but different functonal groups are called functional isomers.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct
explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

7. Assertion: Heterolytic fission occurs readily in polar covalent bonds.

Reason: Hyterolytic fission involves breaking of bond in such a way that the shared pair of electrons go with one atom.
A. If both assertion and reason are true and reason is the correct
explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

8. Assertion: When inductive and electromeric effects operate in oppsite directions, the inductive effect predominates.

Reason: Inductive effect is the complete transfer of shared pair of π electrons to one of the atoms.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

9. Assertionj: The following structures (I) and (II) canot e the major contributors to the real structure of $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$

Reason: Both the structures involve charge separation and structure (I) contains a carbon atom with an incomplete octet.
A. If both assertion and reason are true and reason is the correct
explanation of assertion
B. If both assertion and reason are true but reason is not the correct
explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

10. Assertion: The order of stability of carbocations is $3^{\circ}>2^{\circ}>1^{\circ}$ Reason: Carbon atom in carbocation is in $s p^{3}$ state of hybridisation.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

11. Assertion: Glycerol is purified by distillation under reduced pressure.

Reason: Method of distillation under reduced pressure is used to purify liquids having very high boiling points and those, which decompose at or below their boiling points.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

12. Assertion: Paper chromatography is a type of partition chromatography.

Reason: Moving phase is liquid and stationary phase is solid.
A. If both assertion and reason are true and reason is the correct explanation of assertion
B. If both assertion and reason are true but reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

