©゙" doubtnut India's Number 1 Education App

MATHS

BOOKS - NDA PREVIOUS YEARS

3-D GEOMETRY

Mcq

1. Conisder the points ($a-1, a, a+1),(a, a+1, a-1)$ and $(a+1, a-1$,
a).
2. These points always form the vertices of an equilateral triangle for any real value of a.
3. The area of the triangle formed by these points is independent of a.

Which of the statement (s) given above is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

2. What are corrdinates of the point equidistant from the points $(a, 0,0),(0, a, 0),(0,0, a)$ and $(0,0,0) ?$
A. $\left(\frac{a}{3}, \frac{a}{3}, \frac{a}{3}\right)$
B. $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)$
C. (a, a, a)
D. $(2 a, 2 a, 2 a)$

- Watch Video Solution

3. A line makes 45° with positive x-axis and makes equal angles with positive y, z axes, respectively. What is the sum of the three angles which the line makes with positive x, y and z axes ?
A. 180°
B. 165°
C. 150°
D. 135°

Answer: B

4. What is the angle between the two lines whose direction numbers are
$(\sqrt{3}-1,-\sqrt{3}-1,4)$ and $(-\sqrt{3}-1, \sqrt{3}-1,4) ?$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

5. Consider the following statements :
6. Equations $a x+b y+c z+d=0 a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ represent a straigth line.
7. Equation of the form
$\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$
represent a straight line passing through the point (α, β, γ) and
having direction ratio proportional to I,m,n.
Which of the statements given above is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

6. If the centre of the sphere

$$
a x^{2}+b y^{2}+c x^{2}-2 x+4 y+2 z-3=0 \text { is }(1 / 2,-1,1 / 2)
$$

what is the value of b ?
A. 1
B. -1
C. 2
D. -2

Answer: C

- Watch Video Solution

7. What is the length of the perpendicular from the origin to the plane $a x+b y+\sqrt{a b} z=1$?
A. 1/(ab)
B. $1 /(a+b)$
C. $a+b$
D. $a b$

Answer: B

- Watch Video Solution

8. If the direction ratios of the normal to a plane are It $\mathrm{I}, \mathrm{m}, \mathrm{n} \mathrm{gt}$ and the length of the normal is p, then what is the sum of intercepts cut-off by the plane from the coordinate axes?
A. $p\left(\frac{1}{l}+\frac{1}{m}+\frac{1}{n}\right)$
B. $p \sqrt{\left(l^{2}+m^{2}+n^{2}\right)}$
C. $p \sqrt{\left(l^{2}+m^{2}+n^{2}\right)}\left(\frac{1}{l}+\frac{1}{m}+\frac{1}{n}\right)$
D. $\frac{p}{\sqrt{\left(l^{2}+m^{2}+n^{2}\right)}}\left(\frac{1}{l}+\frac{1}{m}+\frac{1}{n}\right)$

Answer: A
9. How many arbitray constants are there in the equation of a plane?
A. 2
B. 3
C. 4
D. Any finite number

Answer: C

- Watch Video Solution

10. If P, Q are $(2,5,-7),(-3,2,1)$ respectively, then what are the direction ratios of the line PQ ?
A. $<10,6,-16>$
B. It 5, 3, 8 gt
C. It -5, -3-8gt
D. None of these

Answer: D

- Watch Video Solution

11. If the axes are rectangular and P is the point $(2,3,-1)$, find the equation of the plane through P at right angle to $O P$.
A. $2 x+3 y+z=16$
B. $2 x+3 y-z=14$
C. $2 x+3 y+z=14$
D. $2 x+3 y-z=0$

- Watch Video Solution

> 12. Show that the coplanar points $(0,4,1),(2,3,-1),(4,5,0)$ and $92,6,2)$ are the vertices of a square.
A. Rhombus
B. Rectangle
C. Square
D. Parallelogram

Answer: C

13. If the sum of the squares of the distances of the point (x, y, z) from the points ($a, 0,0$) and ($-a, 0,0$) is $2 c^{2}$, then which are of the following is correct?
A. $x^{2}+a^{2}=2 c^{2}-y^{2}-z^{2}$
B. $x^{2}+a^{2}=c^{2}-y^{2}-z^{2}$
C. $x^{2}-a^{2}=c^{2}-y^{2}-z^{2}$
D. $x^{2}+a^{2}=c^{2}+y^{2}+z^{2}$

Answer: B

- Watch Video Solution

14. Which one of following is correct ?
$2 x+3 y-z-2=0,3 x+3 y+z-4=0, x-y+2 z-5=0$ intersect
A. at a point
B. at two points
C. at three points
D. in a line

Answer: D

- Watch Video Solution

15. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason(R)'. You are to axamine these two statements carefully and select the answer.

Assertion (A) : If It I, m, n gt are direction cosines of a line, there
can be a line whose direction cosines are

$$
\left(\sqrt{\frac{l^{2}+m^{2}}{2}}, \sqrt{\frac{m^{2}+n^{2}}{2}}, \sqrt{\frac{n^{2}+l^{2}}{2}},\right)
$$

Reason (R) : The sum of direction cosines of a line is unity.
A. Both A and R individually true, and R is the correct explanation of A .
B. Both A and R are individually true but R is not the correct explanation of A .
C. A is true but R is false.
D. A is false but R is true.

Answer: C

- Watch Video Solution

16. Which one of the following is the plane containing the line $\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{5}$ and parallel to z-axis?
A. $2 x-3 y=0$
B. $5 x-2 z=0$
C. $5 y-3 z=0$
D. $3 x-2 y=0$

Answer: D

- Watch Video Solution

17. What is the centre of the sphere $a x^{2}+b y^{2}+c z^{2}-6 x=0$ if the radius is 1 unit?
A. $(0,0,0)$
B. $(1,0,0)$
C. $(3,0,0)$
D. cannot be determined as values of a, b, c are unknown

Answer: D

D Watch Video Solution

18. Under what condition do $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, K\right)$ represent direction cosines of a line?
A. $k=\frac{1}{2}$
B. $k=-\frac{1}{2}$
C. $k= \pm \frac{1}{2}$
D. k can take any value

Answer: C

- Watch Video Solution

19. If $x=a \sec \theta \cos \varphi, y=b \sec \theta \sin \varphi$ and $z=c \tan \theta$, show
that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$
A. 1
B. 0
C. - 1
D. $a^{2}+b^{2}$

Answer: A

- Watch Video Solution

20. A line makes angles θ, ϕ and Ψ with x,y,z axes respectively.

Consider the following ItbRgt 1. $\sin ^{2} \theta+\sin ^{2} \phi=\cos ^{2} \Psi$
2. $\cos ^{2} \theta+\cos ^{2} \phi=\sin ^{2} \Psi$
3. $\sin ^{2} \theta+\cos ^{2} \phi=\cos ^{2} \Psi$

Which of the above is/are correct?
A. 1 only
B. 2 only
C. 3 only
D. 2 and 3

Answer: B

21. What is the equation of the plane passing through $\left(x_{1}, y_{1}, z_{1}\right)$ and normal to the line with It $\mathrm{a}, \mathrm{b}, \mathrm{c} g \mathrm{gt}$ as firection ratios?
A. $a x+b y+c z=a x_{1}+b y_{1}+c z_{1}$
B. $a\left(x+x_{1}\right)+b\left(y+y_{1}\right)+c\left(z+z_{1}\right)=0$
C. $a x+b y+c z=0$
D. $a x+b y+c z=x_{1}+y_{1}+z_{1}=0$

Answer: A

- Watch Video Solution

22. What are the direction cosines of the line represented by
$3 x+y+2 z=7, x+2 y+3 z=5 ?$
A. $(-1,-7,5)$
B. $(-1,7,5)$
C. $\left(-\frac{1}{\sqrt{75}},-\frac{7}{\sqrt{75}}, \frac{5}{\sqrt{75}}\right)$
D. $\left(-\frac{1}{\sqrt{75}}, \frac{7}{\sqrt{75}}, \frac{5}{\sqrt{75}}\right)$

Answer: C

- Watch Video Solution

23. The equation of a sphere is $x^{2}+y^{2}+z^{2}-10 z=0$. If one end point of a diameter of the sphere is $(-3,4,-5)$, what is the other en point?
A. $(-3,-4,-5)$
B. $(3,4,5)$
C. $(3,4,-5)$
D. $(-3,4,-5)$

Answer: B

D Watch Video Solution

24. $O(0,0), A(0,3), B(4,0)$ are the vertices of triangle $O A B$. A force $10 \hat{i}$ acts at B . What is the magnitude of moment of force about the vertex A ?
A. 0
B. 30 unit
C. 40 unit
D. 50 unit

Answer: B

25. What is the ratio in which the line joining the points $(2,4,5)$ and $(3,5,-4)$ is internally divided by the $x y$-plane?
A. $5: 4$
B. 3: 4
C. 1:2
D. 7:5

Answer: A

- Watch Video Solution

26. Under which one of the following conditions will the two planes $x+y+z=7$ and $\alpha x+\beta y+\gamma z=3$, be parallel (but not coincident)?
A. $\alpha=\beta=\gamma=1$ only
B. $\alpha=\beta=\gamma=\frac{1}{7}$ only
C. $\alpha=\beta=\gamma$
D. None of the above

Answer: C

- Watch Video Solution

27. The straight line $\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-5}{4}$ is parallel to which one of the following?
A. $4 x+3 y-5 z=0$
B. $4 x+5 y-4 z=0$
C. $4 x+4 y-5 z=0$
D. $5 x+4 y-5 z=0$

Answer: C

- Watch Video Solution

28. If θ is the acute angle between the diagonals of a cube, then which one of the following is correct?
A. $\theta<30^{\circ}$
B. $\theta=60^{\circ}$
C. $30^{\circ}<\theta<60^{\circ}$
D. $\theta>60^{\circ}$

Answer: D

- Watch Video Solution

29. Which one of the following planes contains the z-axis?
A. $x-z=0$
B. $z+y=0$
C. $3 x+2 y=0$
D. $3 x+2 z=0$

Answer: C

- Watch Video Solution

30. Under what condition are the two lines
$y=\frac{m}{l} x+\alpha, z=\frac{n}{l} x+\beta$, and $y=\frac{m^{\prime}}{l^{\prime}} x+\alpha^{\prime}, z=\frac{n^{\prime}}{l^{\prime}} x+\beta^{\prime}$ orthogonal?
A. $\alpha \alpha^{\prime}+\beta \beta^{\prime}+1=0$
B. $\left(\alpha+\alpha^{\prime}\right)+\left(\beta+\beta^{\prime}\right)=0$
C. $l l^{\prime}+m m^{\prime}+\cap^{\prime}=1$
D. $l l^{\prime}+m m^{\prime}+\cap^{\prime}=0$

Answer: D

D Watch Video Solution

31. Find the coordinates of the point equidistant from the points $(0,0,0),(2,0,0),(0,4,0)$ and $(0,0,6)$
A. $(1,2,3)$
B. $(2,3,1)$
C. $(3,1,2)$
D. $(1,3,2)$

- Watch Video Solution

32. The angle between the lines with direction ratios $(1,0, \pm \cos \alpha)$ is 60°. What is the value of α ?
A. $\cos ^{-1}(1 / \sqrt{2})$
B. $\cos ^{-1}(1 / \sqrt{3})$
C. $\cos ^{-1}(1 / 3)$
D. $\cos ^{-1}(1 / 2)$

Answer: B

33. The line passing through $(1,2,3)$ and having direction ratios given by lt 1, 2, 3 gt cuts the x -axis distance k form origin.

What is the value of k ?

A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

34. In the space the equation $b y+c z+d=0$ represents a plane perpendicular to the plane
A. x-axis
B. y-axis
C. z-axis
D. None of these

Answer: A

- Watch Video Solution

35. Which one of the following planes is normal to the plane
$3 x+y+z=5 ?$
A. $x+2 y+z=6$
B. $x-2 y+z=6$
C. $x+2 y-z=6$
D. $x-2 y-z=6$

Answer: D

- Watch Video Solution

36. If the radius of the sphere
$x^{2}+y^{2}+z^{2}-6 x-8 y+10 z+\lambda=0$ is unity, what is the value of λ ?
A. 49
B. 7
C. -49
D. -7

Answer: A
37. Curve of intersection of two spheres in
A. an ellipse
B. a circle
C. a parabola
D. None of these

Answer: B

D Watch Video Solution

38.

Show
that
the
points
$A(1,3,4), B(-1,6,10), C(-7,4,7)$ and $D(-5,1,1) \quad$ are
have vertices of a rhombus.
A. rhombus
B. rectangle
C. parallelogram
D. square

Answer: A

- Watch Video Solution

39. What is the number of planes passing through three noncollinear points?
A. 3
B. 2
C. 1
D. 0

Answer: C

- Watch Video Solution

40. what is the angle between the lines $x+z=0, y=0$ and $20 x=15 y=12 z$?
A. $\cos ^{-1}(1 / 5)$
B. $\cos ^{-1}(1 / 7)$
C. $\frac{\cos ^{-1} 45}{7 \sqrt{61}}$
D. $\sin ^{-1}(1 / 7)$

Answer: A

- Watch Video Solution

41. Under what condition does the equations $x^{2}+y^{2}+z^{2}+2 u x+2 u y+2 w+d=0 \quad$ represent \quad a real sphere?
A. $u^{2}+v^{2}+w^{2}=d^{2}$
B. $u^{2}+v^{2}+w^{2}<d$
C. $u^{2}+v^{2}+w^{2}>d$
D. $u^{2}+v^{2}+w^{2}>d^{2}$

Answer: B

- Watch Video Solution

42. What is the angle between the plane
$2 x-y+z=6$ and $x+y+2 z=3 ?$
A. $\pi / 2$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 6$

Answer: B

- Watch Video Solution

43. What is the equation of a plane through the x-axis and passing through the point $(1,2,3)$?
A. $x+y+z=6$
B. $x=1$
C. $y+z=5$
D. $z+y=1$

Answer: B

- Watch Video Solution

44. What is the value of n so that the angle between the lines having direction ratios $(1,1,1)$ and $(1,-1, \mathrm{n})$ is 60° ?
A. $\sqrt{3}$
B. $\sqrt{6}$
C. 3
D. None of these

Answer: B

45. The direction cosines of a line are proportional to $(2,1,2)$ and the line intersects a plane perpendicularly at the point (1, $-2,4$). What is the distance of the plane from the point $(3,2,3)$?
A. $\sqrt{3}$
B. 2
C. $2 \sqrt{2}$
D. 4

Answer: B

- Watch Video Solution

46. The foot of the perpendicular drawn from the origin to a plane is the point $(1,-3,1)$. What is the intercept cut on the x axis by the plane?
A. 1
B. 3
C. $\sqrt{11}$
D. 11

Answer: D

- Watch Video Solution

47. A line makes the same angle α with each of the x and y axes. If the angle θ, which it makes with the z -axis, is such that $\sin ^{2} \theta=2 \sin ^{2} \alpha$, then what is the value of α ?
A. $\pi / 4$
B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 2$

Answer: A

- Watch Video Solution

48. What is the equation of the sphere which has its centre at
$(6,-1,2)$ and touches the plane $2 x-y+2 z-2=0$?
A. $x^{2}+y^{2}+z^{2}+12 x-2 y+4 z+16=0$
B. $x^{2}+y^{2}+z^{2}+12 x-2 y+4 z-16=0$
C. $x^{2}+y^{2}+z^{2}-12 x+2 y-4 z+16=0$
D. $x^{2}+y^{2}+z^{2}-12 x+2 y-4 z+25=0$

Answer: C

49. What are the direction ratios of the line determined by the planes $x-y+2 z=1$ and $x+y-z=3$?
A. (-1,3,2)
B. $(-1,-32)$
C. $(2,1,3)$
D. $(2,3,2)$

Answer: A

- Watch Video Solution

50. Under what condition do the planes $b x-a y=n, c y-b z=l, a z-c x=m$ intersect in a line?

$$
\text { A. } a+b+c=0
$$

B. $a=b=c$
C. $a l+b m+c n=0$
D. $l+m+n=0$

Answer: C

D Watch Video Solution

51. The planes $p x+2 y+2 z-3=0$ and $2 x-y+z+2=0$ intersect at an angle $\frac{\pi}{4}$. What is the value of p^{2} ?
A. 24
B. 12
C. 6
D. 3

- Watch Video Solution

52. Find the angel between any two diagonals of a cube.
A. $\cos ^{-1}(1 / 2)$
B. $\cos ^{-1}(1 / 3)$
C. $\cos ^{-1}(1 / \sqrt{3})$
D. $\cos ^{-1}(\sqrt{2} / 3)$

Answer: B

- Watch Video Solution

53. The angle between diagonal of a cube and diagonal of a face of the cube will be
A. $\cos ^{-1}(1 / \sqrt{3})$
B. $\cos ^{-1}(1 / 3)$
C. $\cos ^{-1}(1 / \sqrt{3})$
D. $\cos ^{-1}(2 / \sqrt{3})$

Answer: D

- Watch Video Solution

54. What is the angle between the diagonal of one of the faces of the cube and the diagonal of the cube intersecting the diagonal of the face of the cube?
A. $\cos ^{-1}(1 / \sqrt{3})$
B. $\cos ^{-1}(2 / \sqrt{3})$
C. $\cos ^{-1}(\sqrt{2 / 3})$
D. $\cos ^{-1}(\sqrt{2} / 3)$

Answer: C

D Watch Video Solution

55. What is the equation of the plane through z-axis and parallel to the line $\frac{x-1}{\cos \theta}=\frac{y+2}{\sin \theta}=\frac{z-3}{0}$?
A. $x \cot \theta+y=0$
B. $x \tan \theta-y=0$
C. $x+y \cot \theta=0$
D. $x-y \tan \theta=0$

Answer: B

D View Text Solution

56. If the line through the points $A(k, 1,-1)$ and $B(2 k, 0,2)$ is perpendicular to the line through the points B and $C(2+2, k, 1)$, then what is the value of k ?
A. -1
B. 1
C. -3
D. 3

Answer: D

$a x+b y+c z+d=0$ and $a x+b y+c z+d=0$
$d \neq d_{1}$, have
A. one point only in common
B. three points in common
C. infinite points in common
D. no points in common

Answer: D

- Watch Video Solution

58. What is the distance of the origin from the plane $x+6 y-3 z+7=0$?
A. 1
B. 2
C. 3
D. 6

Answer: A

- Watch Video Solution

59. The acute angle between the planes $2 x-y+z=6$ and $x+y=2 z=3$ is
A. $\pi / 5$
B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 3$

Answer: D

- Watch Video Solution

60. What is the radius of the sphere

$$
x^{2}+y^{2}+z^{2}-x-y-z=0 ?
$$

A. $\sqrt{\frac{3}{4}}$
B. $\sqrt{\frac{1}{2}}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{1}{3}$

Answer: A

- Watch Video Solution

61. Consider the following relations among the angles α, β and γ made by a vector with the coordinate axes
I. $\cos ^{2} \alpha+\cos 2 \beta+\cos 2 \gamma=-1$
II. $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=1$

Which of the above is/are correct?
A. only I
B. Only II
C. Both I and II
D. Neither I or II

Answer: A

- Watch Video Solution

62. Which one of the following points lies on the plane $2 x+3 y-6 z=21 ?$
A. $(3,2,2)$
B. $(3,7,1)$
C. $(1,2,3)$
D. $(2,1,-1)$

Answer: B

- Watch Video Solution

63. What is the angle between the lines whose direction cosines are proportional to ($2,3,4$) and (1,-2,1) respectively?
A. 90°
B. 60°
C. 45°
D. 30°

Answer: A

- Watch Video Solution

64. What is the locus of points of intersection of a sphere and a plane?
A. Circle
B. Elipse
C. Parabola
D. Hyperbola

- Watch Video Solution

65. What is the angle between two planes

$$
2 x-y+z=4 \text { and } x+y+2 z=6 ?
$$

A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

66. What is the equation of the plane passing through point (1,-1,-1) and perpendicular to each of the planes $x-2 y-8 z=0$ and $2 x+5 y-z=0$?
A. $7 x-3 y+2 z=14$
B. $2 x+5 y-3 z=12$
C. $x-7 y+3 z=4$
D. $14 x-5 y+3 z=16$

Answer: D

- Watch Video Solution

67. The equation to sphere passing throrugh origin and the points
$(-1,0,0),(0,-2,0)$ and
(0,0,-3)
is
$x^{2}+y^{2}+z^{2}+f(x, y, z)=0$. What if $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ equal to ?
A. $-x-2 y-3 z$
B. $x+2 y+3 z$
C. $x+2 y+3 z-1$
D. $x+2 y+3 z+1$

Answer: B

D Watch Video Solution

68. If a line makes the angles α, β, γ with the axes, then what is the value of $1+\cos 2 \alpha+\cos 2 \beta+\cos \gamma$ equal to
A. -1
B. 0
C. 1
D. 2

Answer: B

- Watch Video Solution

69. What are the direction ratios of normal to the plane $2 x-y+2 z+1=0 ?$
A. $\langle 2,1,2\rangle$
B. $\left\langle 1,-\frac{1}{2}, 1\right\rangle$
C. $\langle 1,-2,1\rangle$
D. None of the above

Answer: B

70. What is the cosines of angle between the planes $x+y+z+1=0$ and $2 x-2 y+2 z+1=0 ?$

- Watch Video Solution

71. What is the sum of the squares of direction cosines of the line joining the points ($1,2,-3$) and ($-2,3,1$)?
A. 0
B. 1
C. 3
D. $\frac{2}{\sqrt{26}}$

Answer: B

72. What is the diameter of the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y-8 z-7=0$
A. 4 units
B. 5 units
C. 6 units
D. 12 units

Answer: D

- Watch Video Solution

73. If the distance between the points $(7,1,-3)$ and $(4,5, \lambda)$ is 13 units, then what is one of the value of λ ?
A. 20
B. 10
C. 9
D. 8

Answer: C

- Watch Video Solution

74. If O be the origin and $O P=r$ and $O P$ makes an angle theta with the positive direction of x-axis and lies in the XY plane find the coordinates of P .
A. $(r \cos \alpha, 0, r \sin \alpha)$
B. $(0,0, r \sin \alpha)$
C. $(r \cos \alpha, 0,0)$
D. $(0,0, r \cos \alpha)$

- Watch Video Solution

75. What is the distance of the point $(1,2,0)$ from $y z$-plane is :
A. 1 unit
B. 2 units
C. 3 units
D. 4 units

Answer: A

- Watch Video Solution

76. What are the direction cosines of a line which is equally inclined to the axes?
A. $\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$
B. $\left\langle-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$
c. $\left\langle-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$
D. $\left\langle\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\rangle$

Answer: A

- Watch Video Solution

77. What is the angle between the lines $\frac{x-2}{1}=\frac{y+1}{-2}=\frac{z+2}{1}$ and $\frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2}$?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. None of the above

Answer: A

D Watch Video Solution

78. What is the equation to the planes through $(1,2,3)$ parallel to
$3 x+4 y-5 z=0 ?$
A. $3 x+4 y+5 z+4=0$
B. $3 x+4 y-5 z+14=0$
C. $3 x+4 y-5 z+4=0$
D. $3 x+4 y-5 z-4=0$

Answer: C

- Watch Video Solution

79. What are the direction ratios of the line of intersection of the planes $x=3 z+4$ and $y=2 z-3$?
A. $\langle 1,2,3\rangle$
B. $\langle 2,1,3\rangle$
C. $\langle 3,2,1\rangle$
D. $\langle 1,3,2\rangle$

Answer: C

- Watch Video Solution

80. The equations to the straight line through (a, b, c) parallel to the z-axis are
A. $\frac{x-a}{1}=\frac{y-b}{0}=\frac{z-c}{0}$
B. $\frac{x-a}{0}=\frac{y-b}{0}=\frac{z-c}{1}$
C. $\frac{x-a}{0}=\frac{y-b}{1}=\frac{z-c}{0}$
D. $\frac{x-a}{0}=\frac{y-b}{1}=\frac{z-c}{1}$

Answer: B

- Watch Video Solution

81. The sum of the direction cosines of z-axis is
A. 0
B. $1 / 3$
C. 1
D. 3

Answer: C

- Watch Video Solution

82. What is the area of the triangle whose vertices are $(0,0,0)$,
$(1,2,3)$ and ($-3,-2,1$) ?
A. $3 \sqrt{5}$ square unit
B. $6 \sqrt{5}$ square unit
C. 6 square unit
D. 12 square unit

Answer: A

83. What is the distance between the planes
$x-2 y+z-1=0$ and $-3 x+6 y y-3 z+2=0 ?$
A. 3 unit
B. 1 unit
C. 0
D. None of the above

Answer: D

D Watch Video Solution

84. If a makes 30° with the positive direction of x -axis, angle β with the positive direction of y-axis and angle γ with the positive
direction of z-axis, then what is $\cos ^{2} \beta+\cos ^{2} \gamma$ eqaul to ?
A. $1 / 4$
B. $1 / 2$
C. $3 / 4$
D. 1

Answer: A

- Watch Video Solution

85. What should be the value of k for which the equation
$3 x^{2}+2 y^{2}+(k+1) z^{2}+x-y+z=0$ represents the sphere?
A. 3
B. 2
C. 1

Answer: B

- Watch Video Solution

86. What is the angle between the planes

$$
2 x-y-2 z+1=0 \text { and } 3 x-4 y+5 z-3=0 ?
$$

A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D
87. The condition that the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$ lies in the plane $a x+b y+c z+d=0$ is
A. $l+m+n=0$
B. $a+b+c=0$
C. $\frac{a}{l}+\frac{b}{m}+\frac{c}{n}=0$
D. $a l+b m+c n=0$

Answer: D

- Watch Video Solution

88. Find the angel between any two diagonals of a cube.
A. $\theta=30^{\circ}$
B. $\theta=45^{\circ}$
C. $2 \cos \theta=1$
D. $3 \cos \theta=1$

Answer: D

D Watch Video Solution

89. Which is the equation of the sphere with unit radius having centre at the origin ?
A. $x^{2}+y^{2}+z^{2}=0$
B. $x^{2}+y^{2}+z^{2}=1$
C. $x^{2}+y^{2}+z^{2}=2$
D. $x^{2}+y^{2}+z^{2}=3$
90. What is the sum of the squares of direction cosines of x-axis?
A. 0
B. $\frac{1}{3}$
C. 1
D. 3

Answer: C

- Watch Video Solution

91. What is the distance of the line $2 x+y+2 z=3$ from the origin ?
A. 1 unit
B. 1.5 units
C. 2 units
D. 2.5 units

Answer: A

D Watch Video Solution

92. The projection of a line segment on the coordinate axes are
$2,3,6$. Then the length of the line segment is
A. 5 units
B. 7 units
C. 11 units
D. 49 units

- Watch Video Solution

93. A straight line passes through ($1,-2,3$) and perpendicular to the plane $2 x+3 y-z=7$.

What are the direction ratios of normal to plane?
A. $\langle 2,3,-1\rangle$
B. $<2,3,1>$
C. $<-1,2,3>$
D. None of these

Answer: A

94. A straight line passes through $(1,-2,3)$ and perpendicular to the plane $2 x+3 y-z=7$.

Where does the line meet the plane ?
A. ($2,3,-1$)
B. $(1,2,3)$
C. $(2,1,3)$
D. $(3,1,2)$

Answer: D

- Watch Video Solution

95. A straight line passes through $(1,-2,3)$ and perpendicular to the plane $2 x+3 y-z=7$.

What are the direction ratios of normal to plane?
A. $(2,-1,5)$
B. (-1, 2, -3)
C. $(5,4,1)$
D. None of these

Answer: C

- Watch Video Solution

> 96. Consider $x^{2}+y^{2}+z^{2}-4 y+3=0$ and $x^{3}+y^{2}+z^{2}+2 x+4 z-4=0$

What is the distance between the centres of the two spheres?
A. 5 units
B. 4 units
C. 3 units
D. 2 units

Answer: C

- Watch Video Solution

97.

$x^{2}+y^{2}+z^{2}-4 y+3=0$ and $x^{3}+y^{2}+z^{2}+2 x+4 z-4=0$

Consider the following statements :

1. The two spheres intersect each other.
2. The radius of first sphere is less than that of second sphere.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

98.

Consider
the
spheres
$x^{2}+y^{2}+z^{2}-4 y+3=0$ and $x^{3}+y^{2}+z^{2}+2 x+4 z-4=0$

A line passes through the points $(6,-7,-1)$ and $(2,-3,1)$. What are the direction ratios of the line?
A. $<4,-4,2>$
B. $<4,4,2>$
C. $<-4,4,2>$
D. $\langle 2,1,1\rangle$

Answer: C

- Watch Video Solution

99. Consider a sphere passing through the origin and the points
$(2,1,-1),(1,5,-4),(-2,4,-6)$
What is the radius of the sphere
A. $\sqrt{12}$
B. $\sqrt{14}$
C. 12
D. 14

Answer: B
100. Consider a sphere passing through the origin and the points
(2,1,-1),(1,5,-4),(-2,4,-6).
What is the centre of the sphere?
A. $(-1,2,-3)$
B. $(1,-2,3)$
C. $(1,2,-3)$
D. $(-1,-2,-3)$

Answer: A

- Watch Video Solution

101. Consider a sphere passing through the origin and the points
$(2,1,-1),(1,5,-4),(-2,4,-6)$.

Consider the following statements :

1. The sphere passes through the point $(0,4,0)$.
2. The point $(1,1,1)$ is at a distance of 5 unit from the centre of the sphere.

Which of the above statement is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

D Watch Video Solution

102. The line joining the points $(2,1,3)$ and $(4,-2,5)$ cuts the plane
$2 x+y-z=3$.

Where does the line cut the plane?
A. $(0,-4,-1)$
B. $(0,-4,1)$
C. $(1,4,0)$
D. $(0,4,1)$

Answer: D

- Watch Video Solution

103. The line joining the points $(2,1,3)$ and $(4,-2,5)$ cuts the plane
$2 x+y-z=3$.
What is the ratio in which the plane divideds the line?
A. $1: 1$
B. 2: 3
C. $3: 4$
D. None of these

Answer: D

D Watch Video Solution

104. Conisder the plane passing through the points $A(2,2,1), B(3,4,2)$ and $C(7,0,6)$.

Which one of the following points lines on the plane?
A. $(1,0,0)$
B. $(1,0,1)$
C. $(0,0,1)$
D. None of these

- Watch Video Solution

105. Conisder the plane passing through the points $A(2,2,1), B(3,4,2)$ and $C(7,0,6)$.

What are the direction ratios of the normal to the plane ?
A. It 1,0,1 gt
B. It 0,1,0 gt
C. It1,0,-1gt
D. None of these

Answer: C

106. The projections of a line segment on the coordinate axes are $12,4,3$ respectively. The length and direction cosines of the line segment are
A. 19 units
B. 17 units
C. 15 units
D. 13 units

Answer: D

- Watch Video Solution

107. The projections of a line segment on the coordinate axes are $12,4,3$ respectively. The length and direction cosines of the line
A. $\left\langle\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\right\rangle$
B. $\left\langle\frac{12}{13},-\frac{4}{13}, \frac{3}{13}\right\rangle$
c. $\left\langle\frac{12}{13},-\frac{4}{13},-\frac{3}{13}\right\rangle$
D. $\left\langle-\frac{12}{13},-\frac{4}{13}, \frac{3}{13}\right\rangle$

Answer: A

- Watch Video Solution

108. From the points $P(3,-1,11)$, a perpendicular is drawn on the line L given by the equation $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$. Let Q be the foot of the perpendicular.

What are the drection ratios of the line segment PQ?
A. $\langle 1,6,4\rangle$
B. $\langle-1,6,-4\rangle$
C. $\langle-1,-6,4\rangle$
D. $\langle 2,-6,4\rangle$

Answer: B

D Watch Video Solution

109. Find the equation of the perpendicular from point $(3,-1,11)$ to line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$. Also, find the coordinates of foot of perpendicular and the length of perpendicular.
A. $\sqrt{47}$ units
B. 7 units
C. $\sqrt{53}$ units
D. 8 units

Answer: C

- Watch Video Solution

110. A triangular plane $A B C$ with centroid $(1,2,3)$ cuts the coordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectivley.

What are the intercepts made by the plane $A B C$ on the axes?
A. $3,6,9$
B. 1,2,3
C. $1,4,9$
D. 2,4,6

Answer: A

111. A plane meets the coordinate axes at A, B and C respectively

 such that the centroid of $\Delta A B C$ is (1-2,3). Find the equation of the plane.A. $x+2 y+3 z=1$
B. $3 x+2 y+z=3$
C. $2 x+3 y+6 z=18$
D. $6 x+3 y+2 z=18$

Answer: D

- Watch Video Solution

112. A point $P(1,2,3)$ is one of a cuboid formed by the coordinate planes and the planes passing through P and parallel
to the coordinate planes. What is the length of one of the diagonals of the cuboid?
A. $\sqrt{10}$ units
B. $\sqrt{14}$ units
C. 4 units
D. 5 units

Answer: B

- Watch Video Solution

113. A points $P(1,2,3)$ is one vertex of a cuboid formed by the coordinate planes and the planes passing through P and parallel to the coordinate planes.

What is the equation of the plane passing through $\mathrm{P}(1,2,3)$ and parallel to xy-plane ?
A. $x+y=3$
B. $x-y=-1$
C. $z=3$
D. $x+2 y+3 z=14$

Answer: C

D Watch Video Solution

114. A points $P(1,2,3)$ is one vertex of a cuboid formed by the coordinate planes and the planes passing through P and parallel to the coordinate planes.

The radius of the sphere
$3 x^{2}+3 y^{2}+3 z^{2}-8 x+4 y+8 z-15=0$ is
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

115. A points $P(1,2,3)$ is one vertex of a cuboid formed by the coordinate planes and the planes passing through P and parallel to the coordinate planes. The direction ratios of the line perpendicular to the lines with direction ratios $<1,-2,2>$ and $\langle 0,2,1\rangle$ are
A. It 2,-1,2 gt
B. It -2,1,2 gt
C. It 2,1,-2 gt
D. It -2,-1,-2 gt

Answer: A

- Watch Video Solution

116. A points $P(1,2,3)$ is one vertex of a cuboid formed by the coordinate planes and the planes passing through P and parallel to the coordinate planes.

What are the co-ordinates of the foot of the perpendicular drawn from the point $(3,5,4)$ on the plane $z=0$?
A. $(0,5,4)$
B. $(3,5,0)$
C. $(3,0,4)$
D. $(0,0,4)$

Answer: B

- Watch Video Solution

117. A points $P(1,2,3)$ is one vertex of a cuboid formed by the coordinate planes and the planes passing through P and parallel to the coordinate planes.

The lengths of the intercepts on the co-ordinate axes made by the plane $5 x+2 y+z-13=0$ are
A. 5,2,1 unit
B. $\frac{13}{5}, \frac{13}{2}, 13 \mathrm{unit}$
C. $\frac{5}{13}, \frac{2}{13}, \frac{1}{13}$ unit
D. 1,2,5 unit

- Watch Video Solution

118. A plane P passes through the line of intersection of the planes $2 x-y+3 z=2, x+y-z=1$ and the point $(1,0,1)$.

What are the direction ratios of the line of intersection of the given planes ?
A. $\langle 2,-5,-3\rangle$
B. $\langle 1,-5,-3\rangle$
C. $\langle 2,5,3\rangle$
D. $\langle 1,3,5\rangle$

Answer: A
119. A plane P passes through the line of intersection of the planes $2 x-y+3 z=2, x+y-z=1$ and the point $(1,0,1)$. What is the equation of the plane P ?
A. $2 x+5 y-2=0$
B. $5 x+2 y-5=0$
C. $x+z-2=0$
D. $2 x-y-2 z=0$

Answer: B

- Watch Video Solution

120. A plane P passes through the line of intersection of the planes $2 x-y+3 z=2, x+y-2=1$ and the point $(1,0,1)$.

What are the direction ratios of the line of intersection of the given planes? What is the equation of the plane P ? If the plane P touches the sphere $x^{2}+y^{2}+z^{2}=r^{2}$, then what is r equal to?
A. $\frac{2}{\sqrt{29}}$
B. $\frac{4}{\sqrt{29}}$
C. $\frac{5}{\sqrt{29}}$
D. 1

Answer: C

- Watch Video Solution

121. Let Q be the image of the point $P(-2,1,-5)$ in the plane
$3 x-2 y+2 z+1=0$
Consider the following :
122. The coordinates of Q are $(4,-3,-1)$.
123. PQ is of length more than 8 units.
124. The point $(1,-1,-3)$ is the mid-point of the line segment $P Q$ and lines on the given plane.

Which of the above statements are correct?
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: D

- Watch Video Solution

122. Let Q be the image of the point $P(-2,1,-5)$ in the plane
$3 x-2 y+2 z+1=0$

Consider the following :

Consider the following :

1. The direction ratios of the line segment $P Q$ are lt $3,-2,2 \mathrm{gt}$.
2. The sum of the squares of direction cosines of the line segment PQ is unity.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

D Watch Video Solution

123. A line L passes through the point $P(5,-6,7)$. and is parallel to the planes $x+y+z=1$ and $2 x-y-2 z=3$. What
are the direction ratios of the line of intersection of the given planes?
A. It 1,4,3 gt
B. It -1,-4,3 gt
C. It 1,-4,3 gt
D. It 1, -4,-3 gt

Answer: C

- Watch Video Solution

124. A line L passes through the point $P(5,-6,7)$. and is parallel to the planes $x+y+z=1$ and $2 x-y-2 z=3$. What are the direction ratios of the line of intersection of the given planes?
A. $\frac{x-5}{-1}=\frac{y+6}{4}=\frac{z-7}{-3}$
B. $\frac{x+5}{-1}=\frac{y-6}{4}=\frac{z+7}{-3}$
C. $\frac{x+5}{-1}=\frac{y-6}{4}=\frac{z+7}{-3}$
D. $\frac{x-5}{-1}=\frac{y+6}{-4}=\frac{z-7}{-3}$

Answer: A

- Watch Video Solution

125. A straight line with direction cosines $(0,1,0)$ is (a) parallel to x-axis (b) parallel to yaxis (c) parallel to z-axis (d) equally inclined to all the axes
A. parallel to x-axis
B. parallel to y-axis
C. parallel to z-axis
D. equally inclined to all the axes

Answer: B

- Watch Video Solution

126. Find the coordinates of a point equidistant from th four points $O(0,0,0), A(a, 0,0), B(0, b, 0)$ and $C(0,0, c)$.
A. $\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}, \frac{a+b+c}{3}\right)$
B. (a, b, c)
C. $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
D. $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$

Answer: C

$P(3,2,4), Q(4,5,2), R(5,8,0)$ and $S(2,-1,6)$ are
A. vertices of a rhombus which is not a square
B. non-coplanar
C. collinear
D. copanar but not collinear

Answer: C

- Watch Video Solution

128. The line passing through the points $(1,2,-1)$ and $(3,-1,2)$ meets the $y z$-plane at which one of the following points? (A) $\left(0,-\frac{7}{2}, \frac{5}{2}\right)$ (B) $\left(0, \frac{7}{2}, \frac{1}{2}\right)$ (C) $\left(0,-\frac{7}{2},-\frac{5}{2}\right)$
(D) $\left(0, \frac{7}{2},-\frac{5}{2}\right)$
A. $\left(0,-\frac{7}{2}, \frac{5}{2}\right)$
B. $\left(0, \frac{7}{2}, \frac{1}{2}\right)$
C. $\left(0,-\frac{7}{2}, \frac{5}{2}\right)$
D. $\left(0, \frac{7}{2},-\frac{5}{2}\right)$

Answer: D

D Watch Video Solution

129. Under which one of the following conditions are the lines
$x=a y+b, z=c y+d \quad$ and $\quad x=e y+f ; z=g y+h$
perpendicular?
A. $a e+c g-1=0$
B. $a e+b f-1=0$
C. $a e+c g+1=0$
D. $a g+c e+1=0$

Answer: C

- Watch Video Solution

130. The point of intersection of the line joining the points $(-3,4,-8)$ and ($5,-6,4$) with the XY -plane is
A. 2 units
B. 3 units
C. 4 units
D. 5 units

Answer: B

131. The point of intersection of the line joining the points $(-3,4,-8)$ and ($5,-6,4)$ with the XY -plane is
A. $\left(\frac{7}{3},-\frac{8}{3}, 0\right)$
B. $\left(-\frac{7}{3},-\frac{8}{3}, 0\right)$
C. $\left(-\frac{7}{3}, \frac{8}{3}, 0\right)$
D. $\left(\frac{7}{3.8} / 3,0\right)$

Answer: A

- Watch Video Solution

132. 31.If the angle between the lines whose direction ratios are $2,-1,2$ and $a, 3,5$ be 45°, then $a=(A) 1(B) 2(C) 3(D) 4$
A. 52
B. 4
C. 2
D. 1

Answer: B

- Watch Video Solution

133. A variable plane passes through a fixed point (a, b, c) and cuts the coordinate axes at points $A, B, a n d C$. Show that eh locus of the centre of the sphere $O A B C i s \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$.
A. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
B. $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1$
C. $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2$
D. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=2$

Answer: C

- Watch Video Solution

134. The equation of the plane passing through the line of intersection of the planes $x+y+z=1,2 x+3 y+4 z=7$, and perpendicular to the plane $x-5 y+3 z=5$ is given by
A. $x+2 y+3 z-6=0$
B. $x+2 y+3 z+6=0$
C. $3 x+4 y+5 z-8=0$
D. $3 x+4 y+5 z+8=0$

Answer: A

135. Let the coordinates of the points A, B, C be $(1,8,4),(0,-11,4)$ and $(2,-3,1)$ respectively. What are the coordinates of the point D which is the foot of the perpendicular from A on $B C$?
A. $(3,4,-2)$
B. $(4,-2,5)$
C. $(4,5,-2)$
D. $(2,4,5)$

Answer: C

- Watch Video Solution

136. What is the equation of the plane passing through the point
$(-2,6,-6),(-3,10,-9)$ and (-5,0,-6)?

$$
\text { A. } 2 x-y-2 z=2
$$

B. $2 x+y+3 z=3$
C. $x+y+z=16$
D. $x-y-z=-3$

Answer: A

- Watch Video Solution

137. A sphere of constant radius k, passes through the origin and meets the axes at $A, B a n d C$. Prove that the centroid of triangle $A B C$ lies on the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.
A. $x^{2}+y^{2}+z^{2}=r^{2}$
B. $x^{2}+y^{2}=z^{2}=4 r^{2}$
C. $9\left(x^{2}+y^{2}+z^{2}\right)=4 r^{2}$
D. $3\left(x^{2}+y^{2}+z^{2}\right)=2 r^{2}$

Answer: C

- Watch Video Solution

138. The coordinates of the vertices P, Q and R of a triangle $P Q R$ are $(1,-1,1),(3,-2,2)$ and $(0,2,6)$ respectively. If $\angle R Q P=\theta$, then what is $\angle P R Q$ equal to ?
A. $30^{\circ}=\theta$
B. $45^{\circ}+\theta$
C. $60^{\circ}-\theta$
D. $90^{\circ}-\theta$

Answer: D

139. What is the equation to the sphere whose centre is at $(-2,3,4)$ and radius is 6 units?
A. $x^{2}+y^{2}+z^{2}+4 x-6 y-8 z=7$
B. $x^{2}=y^{2}+z^{2}+6 x-4 y-8 z=7$
C. $x^{2}+y^{2}+z^{2}+4 x-6 y-8 z=4$
D. $x^{2}+y^{2}+z^{2}+4 x+6 y+8 z=4$

Answer: A

- Watch Video Solution

140. What is the distance of the point $(2,3,4)$ from the plane $3 x-6 y+2 z+11=?$
A. 1 unit
B. 2 unit
C. 3 unit
D. 4 units

Answer: A

(Watch Video Solution

141. Coordinates of the point O, P, Q and R are respectively ($0,0,4$), $(4,6,2 m),(2,0,2 n)$ and $(2,4,6)$. Let L, M, N and K be points on the sides $\mathrm{OR}, \mathrm{OP}, \mathrm{PQ}$ and QR respectively such that LMNK is a parallelogram whose two adjecent sides LM and side LK are each of length $\sqrt{2}$.

What are the values of m and n respectively?
A. 6,2
B. 1,3
C. 3,1
D. None of the above

Answer: C

D Watch Video Solution

142. The line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{3}$ is given by
A. $x+y+z=6, x+2 y-3 z=-4$
B. $x+2 y-2 z=-1,4 x+4 y-5 z-3=0$
C. $3 x+2 y-3 z=0,3 x-6 y+3 z=-2$
D. $x+2 y-3 z=-2,3 x-6 y+3 z=0$

Answer: D

143. Consider the following statements :
144. The angle between the planes
$2 x-y+z=1$ and $x+y+2 z=3$ is $\frac{\pi}{3}$.
145. The distance between the planes

$$
6 x-3 y+6 z=0 \text { and } 2 x-y+2 z+4=0 \text { is } \frac{10}{9}
$$

Which of the above statements is/are correct
A. 1 only
B. 2 only
C. Both and 2
D. Neither 1 nor 2

Answer: C

144. What is the radius of the sphere

$$
x^{2}+y^{2}+z^{2}-6 x+8 y-10 z+1=0 ?
$$

A. 5
B. 2
C. 7
D. 3

Answer: C

- Watch Video Solution

145. The equation of the plane passing through the intersection of the planes $2 x+y+2 z=9,4 x-5 y-4 z=1$ and the point $(3,2,1)$ is
A. $10 x-2 y+2 z=28$
B. $10 x+2 y+2 z=28$
C. $10 x+2 y-2 z=28$
D. $10 x-2 y-2 z=14$

Answer: A

- Watch Video Solution

146. The distance between the parallel planes $4 x-2 y+4 z+9=0$ and $8 x-4 y+8 z+21=0$ is (A) $\frac{1}{4}$
$\frac{1}{2}$ (C) $\frac{3}{2}$ (D) $\frac{7}{4}$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. $\frac{7}{4}$

- Watch Video Solution

147. What are the direction cosines of Z-axis?
A. It $1,1,1, \mathrm{gt}$
B. It1,0,0gt
C. It0,1,0gt
D. It0,0,1gt

Answer: D

- Watch Video Solution

