©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - NDA PREVIOUS YEARS

APPLICATION OF DERIVATIVES

Example

1. Under what condition is the tangent to a
given curve at a given curve at a point perpendicular to x axis?
A. $\frac{d y}{d x}=0$
B. $\frac{d y}{d x}=1$
C. $\frac{d x}{d y}=0$
D. $\frac{d^{2} y}{d x^{2}}=1$

Answer: C

D Watch Video Solution

2. If $f(x)=\left(x-x_{0}\right) \phi(x)$ and $\phi(x)$ is
continuous at $x=x_{0}$ then what is $f\left(x_{0}\right)$
A. $\phi(x)$
B. $\phi\left(x_{0}\right)$
C. $x_{0} \phi\left(x_{0}\right)$
D. $2 \phi\left(x_{0}\right)$

Answer: B

D Watch Video Solution

3. The sum of two number is 20 what are the numbers if the product of the square of one and the cube of the other is maximum ?
A. 6,14
B. 15,5
C. 12,8
D. 10,10

Answer: C

D Watch Video Solution
4. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.
A. $\frac{1}{t}$
B. t
C. $-t$
D. $-\frac{1}{t}$

Answer: C

D Watch Video Solution

5. Which one of the following statement is
correct ?
A. The derivation of $f(X)$ at $x=$ is the slope of
the graph of $f(x)$ at the point $[a, f(a)]$
B. $f(x)$ has a positive derivative at $x=a$
means $f(x)$ increase as x increase from 'a'
C. The sum of two differntiable functions is
differntiable
D. If a function is continous at a point it is
also differentiable at the same point

Answer: D

6. Which one of the following is correct in respect of the curve $4 y-x^{2}-8=0$?
A. The curve is increasing in $(-4,4)$
B. The curve is increasing ($-4,0$)
C. The curve is increasing in (0,4)
D. The curve is decreasing in (-4,4)

Answer: C

D Watch Video Solution

7. Find minimum value of $p x+q y$ where $p>0, q>0, x>0, y>0 \quad$ when $\quad x y=r,{ }^{2}$ without using derivatives.
A. $2 r \sqrt{p q}$
B. $2 p q \sqrt{r}$
C. $-2 r \sqrt{p q}$
D. 2 rpq

Answer: A

D Watch Video Solution
8. What is / are the critical points (s) of the
function $f(x)=x^{2 / 3}(5-2 x)$ on the interval
[-1,2]?
A. 1 only
B. 0,
C. $\frac{3}{2}$ only
D. $0, \frac{3}{2}$

Answer: A

D Watch Video Solution

9. Match List I with List II and select the correct

answer using the code given below the list:

(a)List I $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ 1.List II The graph cuts y -axis in infinite number of points		
(b) $\mathrm{f}(\mathrm{x})=\ln \mathrm{x}$	2.	The graph cuts x -axis in two point
(c) $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+4$	3.The graph cuts y -axis in only one point	
(d) $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$	4.The graph cuts x -axis in only one point	
5.The graph cuts x -axis in infinite number of points		

A. $1,4,5,3$
B. $1,3,5,4$
C. $5,4,2,3$
D. $5,3,2,4$

- Watch Video Solution

10. If $x+y=12$ what is the maximum value of $x y$?

A. 25
B. 36
C. 49
D. 64
11. What is the x coordinate of the point on
the curve $\mathrm{f}(\mathrm{x})=\sqrt{x}(7 x-6)$ where the tangent
is parallel to x axis ?

$$
\begin{aligned}
& \text { A. }-\frac{1}{3} \\
& \text { B. } \frac{2}{7} \\
& \text { C. } \frac{6}{7} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

- Watch Video Solution

$$
\begin{aligned}
& \text { 12. If }(\sin x)(\cos y)=\frac{1}{2} \text {, then } \frac{d^{2} y}{d x^{2}} \text { at }\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \\
& \text { is }-4 \text { (b) }-2 \text { (c) }-6 \text { (d) } 0
\end{aligned}
$$

A. -4
B. -2
C. -6
D. 0

Answer: A
13. What is the interval in which the function

$$
\mathrm{f}(\mathrm{x})=\sqrt{9-x^{2}} \text { is increasing } ?(f(x)>0)
$$

A. $0<x<3$
B. $-3<x<0$
C. $0<x<9$
D. $-3<x<3$

Answer: B
14. A wire 34 cm long is to be bent in the form of a quadrialteral of which each angle is 90° what is the maximum area which can be enclosed inside the quadrialteral
A. $68 \mathrm{~cm}^{2}$
B. $70 \mathrm{~cm}^{2}$
C. $71.25 \mathrm{~cm}^{2}$
D. $72.25 \mathrm{~cm}^{2}$

Answer: D
15. Which one of the following is correct ? The
function
$f(x)=(x-1) e^{x}+1$ is
A. negative for all $x>0$
B. positive for all $x>0$
C. increasing for all $x>0$
D. decreasing for all x
16. The motion of a particle is described as
$S=2-3 t+4 t^{3}$ what is the acceleration of
the paricle at the point where its velocity is
zero ?
A. 0
B. 4 unit
C. 8 unit
D. 12 unit

Answer: D

D Watch Video Solution

17. What is the product of two parts of 20 such
that the product of one part and the cube of
the other is maximum?
A. 75
B. 91
C. 84
D. 96

Answer: A

D Watch Video Solution

18. Find the maximum slope of the curve $y=-x^{3}+3 x^{2}+2 x-27$.

A. 1
B. 2
C. 5
D. -23

Answer: C

D Watch Video Solution

19. What is the area of the largest rectangle
field which can be enclosed with 200 m fencing ?
A. $1600 m^{2}$
B. $2100 \mathrm{~m}^{2}$
C. $2400 m^{2}$
D. $2500 \mathrm{~m}^{2}$

Answer: D

- Watch Video Solution

20. What is the smallest value o fm for which
$\mathrm{f}(\mathrm{x})=x^{2}+m x+5$ is increasing in the interval
$1 \leq x \leq 2 ?$
A. $m=0$
B. $m=-1$
C. $m=-2$
D. $m=-3$

Answer: C

- Watch Video Solution

21. What is the maximum value $o f x y$ subject to the condition $x+y=8$?
A. 8
B. 16
C. 24
D. 32

Answer: B

- Watch Video Solution

22. What is the equation of the curve whose slope any point is equal to $2 x$ and which passes through the origin?

> A. $y(1-x)=x^{2}$
> B. $y^{2}\left(1+x^{2}\right)=x^{4}$
> C. $y^{2}=(x+1)^{2}$
D. $y=x^{2}$

Answer: D

- Watch Video Solution

23. What is the maximum value of the function
$\log x-x ?$
A. -1
B. 0
C. 1
D. ∞

Answer: A

- Watch Video Solution

24. A rectanglular box with a cover is to have a
square base. The volume is to be 10 cubic cm
The surface area of the box in terms of the side x is given by which one of the following functions?

$$
\begin{aligned}
& \text { A. } f(x)=\left(\frac{40}{x}\right)+2 x^{2} \\
& \text { B. } f(x)=\left(\frac{40}{x}\right)+x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } f(x)=\left(\frac{40}{x}\right)+x \\
& \text { D. } f(x)=\left(\frac{60}{x}\right)+2 x
\end{aligned}
$$

Answer: A

- Watch Video Solution

25. $f(x)=\cos x$ is monotonic decreasing under
which one of the following conditions?
A. $0<x<\frac{\pi}{2}$ only
B. $\frac{\pi}{2}<x<\pi$ only
C. $0<x<\pi$
D. $0<x<2 \pi$

Answer: C

D Watch Video Solution

26. What is the minimum value of
$2 x^{2}-3 x+5 ?$
A. 0
B. $3 / 4$
C. $31 / 4$
D. $31 / 8$

Answer: D

D Watch Video Solution

27. Assertion (A) : The tangent to the curve $y=x^{3}-x^{2}-x+2$ at $(1,1)$ is parallel to the
x - axis ltrbgt Reason (R): The slope of the tangent to the cuve at $(1,1)$ is zero
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is the correct expantation of A
C. A is true but R is false
D. A is false but R is true

Answer: A

D Watch Video Solution

28. The function $f(x)=x^{2}-2 x$ increase forall

$$
\text { A. } x>-1 \text { only }
$$

B. $x<=1$ only
C. $x>1$ only
D. $x<1$ only

Answer: C
29. Let a and b be two distinct roots of a polynomial equation $f(x)=0$ Then there exist at least one root lying between a and b of the polynomial equation
A. $f(x)=0$
B. $f^{\prime}(x)=0$
C. $f^{\prime \prime}(x)=0$
D. none of these

Answer: B
30. The profit fucntion in rupees of a firm selling x items $(x \geq 0)$ per week is given by
$P(x)=-3500+(400-x) x$ How many
items should the firm sell so that the firm has
maximum profit ?
A. 400
B. 300
C. 200
D. 100

Answer: C

- Watch Video Solution

31. A stone thrown vertically upward satisfies
the equation $s=64 t-16 t^{2}$ where is in meter
and t is second. What is the time required to
reach the maximum height ?
A. 1 s
B. 2s
C. 3s
D. 4 s

Answer: B

D Watch Video Solution

32. If $f(x)=3 x^{2}+6 x-9$ then
A. $f(x)$ is increasing in $(-1,3)$
B. $f(x)$ is decreasing in $(3, \infty)$
C. $f(x)$ is increasing in $(-\infty,-1)$
D. $f(x)$ is decreasing in $(-\infty,-1)$

Answer: D

D Watch Video Solution

33. If $x \cos \theta+y \sin \theta=2$ is perpendicular to
the line $x-y=3$ then what is one of the value of θ ?
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 2$
D. $\pi / 3$

Answer: B

D Watch Video Solution

34. The function $y=\tan ^{-1} x-x$
A. is always decreasing
B. is always increasing
C. first increases and then decreases
D. first decreases and then increases

- Watch Video Solution

35. The velocity v of a particle at any instant t moving in a straight line is given by $\mathrm{v}=\mathrm{s}+1$ where s meter is the distance travelled in t second what is the time taken by the particle to cover a distacne of 9 m ?
A. 1 s
B. $(\log 10) s$
C. $2(\log 10) s$

D. 10 s

Answer: B

D Watch Video Solution

36. The velocity of telegraphic comunication is
given by $v=x^{2} \log (1 / x)$ where x is the
displacement for maximum velocity x equals to
?
A. $e^{1 / 2}$
B. $e^{-1 / 2}$
C. $2 e^{-1}$
D. $2 e^{-1 / 2}$

Answer: B

- Watch Video Solution

37. What is the maximum point on the curve

$$
x=e^{x} y ?
$$

A. $(1, \mathrm{e})$
B. $\left(1, e^{-1}\right)$
C. $(e, 1)$
D. $\left(e^{-1}, 1\right)$

Answer: B

- Watch Video Solution

38. A ballon is pumped at the rate of $4 \mathrm{~cm}^{3}$ per second what is the rate at which its surface area increase and radius is 4 cm ?
A. $1 \mathrm{~cm}^{2} / \mathrm{s}$
B. $2 \mathrm{~cm}^{2} / \mathrm{s}$
C. $3 \mathrm{~cm}^{2} / \mathrm{s}$
D. $4 \mathrm{~cm}^{2} / \mathrm{s}$

Answer: B

D Watch Video Solution

39.

If
the
function
$f(x)=k x^{3}-9 x^{2}+9 x+3$ is monotonically
increasing in every interval, then (a) $k<3$ (b)

$$
k \leq 3 \text { (c) } k>3 \text { (d) } k \geq 3
$$

A. $k<3$
B. $j \leq 3$
C. $k>3$
D. $k \geq 3$

Answer: C
(Watch Video Solution
40. Given two squares of sides x and y such
that $y=x+x^{2}$ what is the rate of change of area of the second square with respect to the area of the first square?
A. $1+3 x+2 x^{2}$
B. $1+2 x+3 x^{2}$
C. $1-2 x+3 x^{2}$
D. $1-2 x-3 x^{2}$

Answer: A
41. Statement I : $y=-\tan ^{-1}\left(x^{-1}\right)+1$ is an increasing function of x

Statement II : $\frac{d y}{d x}$ is positive for all values of x which one of the following is correct in respect of the above statements?
A. Both statement I and II are independently correct and statement II is the correct explanation of statementl
B. Both I and II are independently correct
but statement II is not the correct explanation of statement I
C. Statement I is correct but statement I is
false
D. Statement I is false but staement II is
correct

Answer:

42. least value of the function
$f(x)=2 x^{3}-3 x^{2}-12 x+1$ on $[-2,2.5]$
A. -3
B. 8
C. -19
D. 16.5

Answer: A

D Watch Video Solution
43. Wht is the interval over which the function
$f(x)=6 x-x^{2}, x>0$ is increasing ?
A. $(0,3)$
B. $(3,6)$
C. $(6,9)$
D. none of these

Answer: A

D Watch Video Solution

44. If f and g are two decreasing function such
that fog is defined, then fog will be-
A. fog is always an increasing funciton
B. fog is always an increasing function
C.fog is neither an increasing n or decreasing function

D. none of these

Answer: B

45. For a point of inflection of $y=f(X)$ which one of the following is correct ?
A. $\frac{d y}{d x}$ must be zero
B. $\frac{d^{2} y}{d x^{2}}$ must not be zero
C. $\frac{d y}{d x}$ must be non zero
D. $\frac{d^{2} y}{d x^{2}}$ must be zero

Answer: D

D Watch Video Solution
46. What is the value of p for which the
funtion
$f(X)=p \sin x+\frac{\sin 3 x}{3}$
has an extremum at $x=\frac{\pi}{3}$?
A. 0
B. 1
C. -1
D. 2

Answer: B
47. If at any instant t for a sphere r denotes the radius s denotes the surface area and v denotes the volume then what is $\frac{d}{d t}$ equal to ?
A. $\frac{1}{2} S \frac{d r}{d t}$
B. $\frac{1}{2} r \frac{d s}{d t}$
C. $r \frac{d s}{d t}$
D. $\frac{1}{2} r^{2} \frac{d s}{d t}$

Answer: C

D Watch Video Solution

48. The function $f(X)=k \sin x+\frac{1}{3} \sin x 3 x$ has maximum value at $x=\frac{\pi}{3}$ what is the value of k ?
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

49. Consider the following statement in respect of the function
$f(x)=x^{3}-1 x \in[-1,1]$
If $f(X)$ is increasing in $[-1,1]$

II $f(x)$ has no root in $(-1,1]$

Which of the statement given above is /are correct
A. only I
B. only II
C. Both I and II
D. Neither I nor II

Answer: A

D Watch Video Solution

50. The largest value of $2 x^{3}-3 x^{2}-12 x+5$
for $-2 \leq x \leq 2$ occurs when
A. $x=-2$
B. $x=-1$
C. $x=2$
D. $x=0$

Answer: B

D Watch Video Solution
51. The function $y=f(x)=m x+c$ has
A. maximum point bu no minimum point
B. minimum point but no maximum point
C. both maximum and minimum points
D. neither maximum point nor minimum
point

Answer: D

D Watch Video Solution
52. At an extreme point of a function $f(X)$ the tangent to the curve is
A. parallel to the x axis
B. perpendicular to the x axis
C. inclined at an angle 45° to the x axis
D. inclined at an angle 60° to the x axis

Answer: A

D Watch Video Solution
53. The point in the interval $[0,2 \pi]$ where
$f(x)=e^{x} \sin x$ has maximum slope is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. $\frac{3 \pi}{4}$

Answer: A

- Watch Video Solution

54. If the rate of change in volume of spherical soap bubble is uniform then the rate of change of surface area varies as
A. square of radius
B. square root of radius
C. inversely proportional to radius
D. cube of the radius

Answer: C

D Watch Video Solution

55. If $f(X)=x \ln x$ then $f(x)$ attains minumum
value at which one of the following points?

$$
\begin{aligned}
& \text { A. } x=e^{-2} \\
& \text { B. } x=e \\
& \text { C. } x=e^{-1} \\
& \text { D. } x=2 e^{-1}
\end{aligned}
$$

Answer:

D Watch Video Solution

56. Find the points on the curve
$x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the x-axis.
A. $(1,2)$ and (1,-2)
B. $(0, \sqrt{3})$ and $(0,-\sqrt{3})$
C. $(3,0)$ and $(-3,0)$
D. $(2,1)$ and (2,-1)

Answer: A

D Watch Video Solution
57. Which of the following statement is correct
?
A. The derivative of a function $f(X)$ at a
point will exist if t here is one tangent to
the curve $y=f(x)$ at that point and the tangent is parallel to y adis
B. The derivativbe of function (x) at a point
will exist if there is one tangent to the
curve $y=f(x)$ at that point and the tangent must be parallel to x axis
C. The derivative of a function $f(X)$ at point
will exist if there is oe and only one
tangent to the curve $y=f(x)$ at the point
and the tangent is not parallel to y axis
D. none of the abvoe

Answer: C

D Watch Video Solution

58. How many tangents are parallel to X-axis for the curve $y=x^{2}-4 x+3$?
A. 1
B. 2
C. 3
D. no tangent is parallel to x axis

Answer: A

D Watch Video Solution

59. What is the rate of change of $\sqrt{x^{2}+16}$
with respect to x^{2} at $\mathrm{x}=3$?
A. $1 / 5$
B. $1 / 10$
C. $1 / 20$
D. none of the abvoe

Answer: B

- Watch Video Solution

60. The slope of the tangent to the curve
$x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at \quad the
point $(2,-1)$ is
A. $7 / 6$
B. $6 / 7$
C. 1
D. $5 / 6$

Answer: B

- Watch Video Solution

61. Which one of the following statement is
A. e^{x} is an increasing funciton
B. e^{x} is a decreasing function
C. e^{x} is neither in increasing n or decreasing function
D. e^{x} is a constant function

Answer: A

D Watch Video Solution

62. The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the area of the circle is increasing when the radius is 10 cm .
A. $6 \pi c m^{2} / s$
B. $10 \pi \mathrm{~cm}^{2} / \mathrm{s}$
C. $30 \pi \mathrm{~cm}^{2} / \mathrm{s}$
D. $60 \pi \mathrm{~cm}^{2} / \mathrm{s}$

Answer: D
63. The function $f(x)=x^{3}-3 x^{2}+6$ is an increasing funciton for :
A. $0<x<2$
B. $x<2$
C. $x>2$ or $x>0$
D. all x

Answer: C

64. What is the minimum value of $|x|$?

A. -1
B. 0
C. 2
D. 4

Answer: B

- Watch Video Solution

65. The function $\mathrm{f}(\mathrm{x})=x^{2}-4 x, x \in[0,4]$ attains minimum value at
A. $x=0$
B. $x=1$
C. $x=2$
D. $x=4$

Answer: C

D Watch Video Solution
66. The curve $y=x e^{x}$ has minimum value equal to
A. $-\frac{1}{e}$
B. $\frac{1}{e}$
C. $-e$
D. e

Answer: A

- Watch Video Solution

67. The maximum value of the function $f(x)=$ $x^{3}+2 x^{2}-4 x+6$ exits at
A. $x=-2$
B. $x=1$
C. $x=2$
D. $x=-1$

Answer: A

D Watch Video Solution
68. The minimum value of the function $F(x)=\mid x-$ 4| exists at
A. $x=0$
B. $x=2$
C. $x=4$
D. $x=-4$

Answer: C

D Watch Video Solution
69. What is the slope of the tangent to the
curve $y=\sin ^{1}\left(\sin ^{2} x\right)$
A. 0
B. 1
C. 2
D. none of these

Answer: A

D Watch Video Solution
70. Consider the curve $y=e^{2 x}$

What is the slope of the tangent to the curve at $(0,1)$
A. 0
B. 1
C. 2
D. 4

Answer: C
71. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets X-axis at
A. $(1,0)$
B. $(2,0)$
C. $\left(-\frac{1}{2}, 0\right)$
D. $(1 / 2,0)$

Answer: C
(Watch Video Solution

72. Consider the
 $f(X)=\frac{x^{2}-x+1}{x^{2}+x+1}$

What is the maximum value of the fucnction?
A. $1 / 2$
B. $1 / 3$
C. 2
D. 3

Answer: D

$$
\begin{aligned}
& \text { 73. Consider } \\
& f(X)=\frac{x^{2}-x+1}{x^{2}+x+1}
\end{aligned}
$$

What is the minimum value of the funciton?
A. $1 / 2$
B. $1 / 3$
C. 2
D. 3

Answer: B
74. A rectangular box is to be made form a
sheet of 24 inch length and 9 inch wideth
cutting out indetical squares of side length x from the four corners and turning up the sides

What is the value of x for width the vulume is maximum ?
A. 1 inch
B. 1.5 inch
C. 2 inch

D. 2.5 inch

Answer: C

D Watch Video Solution

75. A rectangular box is to be made form a sheet of 24 inch length and 9 inch width cutting out identical squares of side length x from the four corners and turning up the sides

What is the maximum volume of the box?
A. 200 cubic inch
B. 400 cubic inch
C. 100 cubic inch
D. none of these

Answer: A

- Watch Video Solution

76. Show that the height of the cylinder of maximum volume that can be inscribed in a
sphere of radius R is $\frac{2 R}{\sqrt{3}}$.
A. $\frac{2 r}{\sqrt{3}}$
B. $\frac{r}{\sqrt{3}}$
C. $2 r$
D. $\sqrt{3 r}$

Answer: B

D Watch Video Solution

77. A cylinder is inscribed in a sphere of radius

r

What is the radius of the cylinder of maximum

volume?

> A. $\frac{2 r}{\sqrt{3}}$
> B. $\frac{\sqrt{2}}{\sqrt{3}} r$
C. r
D. $\sqrt{3 r}$

Answer: C

78. Consider the following statements
79. $y=\frac{e^{x}+e^{-x}}{2}$ is an increasing funciton on
$[0, \infty)$
80. $y=\frac{e^{x}-e^{-x}}{2}$ is an increasing function on
$(-\infty, \infty)$
Which of the above statement is / are are correct ?
A. 1 only
B. 2 only

C. both 1 and 2

D. neither 1 nor 2

Answer: B

D Watch Video Solution

79. Consider the function $f(X)=\frac{x^{2}-1}{x^{2}+1}$ where $x \in R$

At what value of x does $f(x)$ attain minimum value?
A. -1
B. 0
C. 1
D. 2

Answer: C

- Watch Video Solution

80. What is the minimum value of $f(X)$?
A. 0
B. $\frac{1}{2}$
C. -1
D. 2

Answer: C

- Watch Video Solution

81.

Consider
the
function
$f(x)=0.75 x^{4}-x^{3}-9 x^{2}+7$ What is the
maximum value of the function ?
A. 1
B. 3
C. 7
D. 9

Answer: C

- Watch Video Solution

82. Consider the following value of the

function?

1 The functin attains local minima at $x=-2$ and
$x=3$

2 The function increases in the interval ($-2,0$)

 which of the above statements is/are correct?A. 1 only
B. 2 only
C. both 1 and 2
D. neither 1 nor 2

Answer:

D Watch Video Solution
83. Consider the parametric equation
A. It represents a circle of diameter a
B. It represents a circle of radius a
C. It represents a parabola
D. none of the above

Answer: D

D Watch Video Solution
84. What is $\frac{d y}{d x}$ equal to?
A. $\frac{y}{x}$
B. $-\frac{y}{x}$
C. $\frac{x}{y}$
D. $-\frac{x}{y}$

Answer: D

- Watch Video Solution

85. What is $\frac{d^{2} y}{d x^{2}}$ equal to?
A. $\frac{a^{2}}{y^{2}}$
B. $\frac{a^{2}}{x^{2}}$
C. $-\frac{a^{2}}{y^{2}}$
D. $-\frac{a^{2}}{y^{3}}$

Answer: C

D Watch Video Solution

86. The function $f(x)=\frac{x^{2}}{e^{x}} \quad$ monotonically
increasing if
A. $x<0$ only
B. $x>2$ only
C. $0<x<2$

$$
\text { D. } x \in(-\infty, 0) \cup(2, \infty)
$$

Answer: C

D Watch Video Solution

87. Consider the following statements
$1 f(x)=\ln x$ is an increasing funciton on $(0, \infty)$
$2 f(x)=e^{x}-x(\operatorname{In} x) \quad$ is an increasing
function on $(1, \infty)$

Which of the above statement is / are correct

?

A. 1 only
B. 2 only
C. both 1 and 2
D. neither 1 nor 2

Answer: C
(Watch Video Solution
88. Consider the fucntion $f(x)=\left(\frac{1}{x}\right)^{2 x^{2}}$, where $x>0$. At what value of x does the function attain maximum value?
A. e
B. \sqrt{e}
C. $\frac{1}{\sqrt{e}}$
D. $\frac{1}{e}$

Answer: C
89. The maximum value of the function is
A. e
B. $\frac{2}{e^{e}}$
C. $e^{\frac{1}{e}}$
D. $\frac{1}{e}$

Answer: C

- Watch Video Solution

90. Consider $f(x)=\frac{x^{2}}{2}-\mathrm{kx}+1$ ' such that $\mathrm{f}(0)$
$=0$ and $f(3)=15$

The value of k is

> A. $\frac{5}{3}$
> B. $\frac{3}{5}$
> C. $-\frac{5}{3}$
> D. $-\frac{3}{5}$

Answer: D

91. $f^{\prime \prime}\left(-\frac{2}{3}\right)$ is equal to
A. -1
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. 1

Answer: A
(D) Watch Video Solution
92. Separate the intervals of monotonocity for
the function $f(x)=-2 x^{3}-9 x^{2}-12 x+1$

$$
\begin{aligned}
& \text { A. }(-2,-1) \\
& \text { B. }(-\infty,-2) \\
& \text { C. }(-1,2) \\
& \text { D. }(-1, \infty)
\end{aligned}
$$

Answer: D

93. The function $f(x)$ is a decreasing funciton in the interval

$$
\begin{aligned}
& \text { A. }(-2,-1) \\
& \text { B. }(-\infty,-2) \\
& \text { C. }(-1,2) \\
& \text { D. }(-\infty,-2) \cup(-1, \infty)
\end{aligned}
$$

Answer: D

- Watch Video Solution

94. Consider the function $f(\theta)=$
$4\left(\sin ^{2} \theta+\cos ^{4} \theta\right)$
what is the maxium value of the funciton $f(\theta)$
?
A. 1
B. 2
C. 2
D. 4

Answer: D

95. What is the minimum value of the function

$f(\theta)$?
A. 0
B. 1
C. 2
D. 3

Answer: C

96. Consider the following statements:

$1 f(\theta)=2$ has no solution
$2 f(\theta)=\frac{7}{2}$ has a solution
which of the above statement is/are correct ?
A. I only
B. 2 only
C. both I and 2
D. neither 1 nor 2

- Watch Video Solution

97. Consider the equaiton $\mathrm{k} \sin \mathrm{x}+\cos 2 \mathrm{x}=2 \mathrm{k}-7$

 If the equaiton possesses solution then that what is the minimum value of k ?A. 1
B. 2
C. 4
D. 6
98. If the equaiton posses soluiton then what is the maximum value of k ?
A. 1
B. 2
C. 4
D. 6

Answer: B
99. Which one of the following statement is correct in respect of the function $\mathrm{f}(\mathrm{x})=x^{3} \sin x$?
A. It has local maximum at $x=0$
B. It has local minimum at $x=0$
C. It has neither maximum nor minimum at

$$
x=0
$$

D. It has maximum value 1

Answer: A

D Watch Video Solution

100.

The
maximum
value
of
$\sin \left(\theta+\frac{\pi}{6}\right)+\cos \left(\theta+\frac{\pi}{6}\right)$ is attained at
$\theta \in\left(0, \frac{\pi}{2}\right)$
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: A

D Watch Video Solution

101. The length of the longest interval, in which the function $3 \sin x-4 \sin ^{3} x$ is increasing is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{2}$
D. (π)

Answer: A

D Watch Video Solution

102. What is the maximum value of the
function $f(x)=4 \sin ^{2} x+1$?
A. 5
B. 3
C. 2
D. 1

Answer:

- Watch Video Solution

103. Let $f(x)=x+\frac{1}{x}$ when $\mathrm{x} \in(0,1)$ Then which one of the following is correct ?
A. $f(x)$ fluctuates in the interval
B. $f(x)$ increases in the interval
C. $f(x)$ decreases in the interval
D. none of the above

Answer: A: C

- Watch Video Solution

104. Consider the following statement:
$1 \frac{d y}{d x}$ at a point on the curve given slope of the tangent at that point

2 If $a(t)$ denotes acceleration of a particle then
$\in \operatorname{ta}(\mathrm{t}) \mathrm{dt}+\mathrm{c}$ gives velocity of the particle
3 If $s(t)$ gives displacement of a particle at time
t then $\frac{d s}{d t}$ gives it acceleration at that instant

Which of the above statement is / are correct

?

A. 1 and 2 only
B. 2 only
C. 1 only
D. 1,2 and 3

Answer: A
(Watch Video Solution
105. Which one of the folloiwng is correct in

$$
\begin{aligned}
& \text { respect of the function } \\
& f(x)=x(x-1)(x-1) ?
\end{aligned}
$$

A. The local maximum value is larger than
local minimum value
B. The local maxmum value is smaller than
local minimum vlaue
C. The function has no local maximum
D. The function has no local minimum

Answer: B

D Watch Video Solution

106. The maximum value of $\frac{\operatorname{In} x}{x}$ is
A. e
B. $\frac{1}{e}$
C. $\frac{2}{e}$
D. 1
107. Match List I with List II and select the correxct anseer using the code given below the lists:

List-I
(Function)
A. $\sin x+\cos x$
B. $3 \sin x+4 \cos x$
C. $2 \sin x+\cos x$
D. $\sin x+3 \cos x$

List-II
(Maximum value)

1. $\sqrt{10}$
2. $\sqrt{2}$
3. 5
4. $\sqrt{5}$
A. $2,3,1,4$
B. 2341
C. 3214
D. 3241

Answer: B

D View Text Solution

108. A cylindrical jar without a lid has to be
constructed using a given surface area of a
metal sheet if the capacity of the jar times the height of the jar The value of k is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

109.

The
maximum
value
of
$\sin \left(x+\frac{\pi}{5}\right)+\cos \left(x+\frac{\pi}{5}\right)$,
where
$x \in\left(0, \frac{\pi}{2}\right)$, is attained at
A. $\frac{\pi}{20}$
B. $\frac{\pi}{15}$
C. $\frac{\pi}{10}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

110. What is themaximum value of 16 $\sin \theta-12 \sin ^{2} \theta ?$
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{16}{3}$
D. 4

Answer: C

D Watch Video Solution

111. Which one of the followng is correct in respect of the function
$f(x)=x \sin x+\cos x+\frac{1}{2} \cos ^{2} x ?$
A. It is increasing in the interval $\left(0, \frac{\pi}{2}\right)$
B. It remain constant in the interval
$\left(0, \frac{\pi}{2}\right)$
C. It is decreasing in the interval $\left(0, \frac{\pi}{2}\right)$
D. It is decreasing in the interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

Answer: C

- Watch Video Solution

112. Maximum possible area that can be enclosed by a wire of length 20 cm by bending
it in form of a circular sector is 10 b .25 c .30 d .

20
A. $25 \mathrm{~cm}^{2}$
B. 20 m
C. 10 m
D. 5 m

Answer: A
113. What is the minimum value of

$$
[x(x-1)+1]^{\frac{1}{3}} \text { where } 0<x<1 ?
$$

A. $\left(\frac{3}{4}\right)^{\frac{1}{3}}$
B. 1
C. $\frac{1}{3}$
D. $\left(\frac{3}{8}\right)^{\frac{1}{3}}$

Answer: A

D Watch Video Solution
114. If $y=\mid \sin X^{|x|}$ then what is the value of $\frac{d y}{d x} a t x=\frac{\pi}{6}$?
A. $\left(\frac{2^{\pi}}{6}\right) \frac{6 \ln 2-\sqrt{3 \pi}}{6}$
B. $\left(\frac{2^{\pi}}{6}\right) \frac{6 \ln 2+\sqrt{3 \pi}}{6}$
C. $\left(\frac{2^{\pi}}{6}\right) \frac{6 \ln 2+\sqrt{3 \pi}}{6}$
D. $\left(\frac{2^{\pi}}{6}\right) \frac{6 \ln 2-\sqrt{3 \pi}}{6}$

Answer: A

D Watch Video Solution
115. 40. A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum, the ratio of the length of the cylinder to the diameter of its semi-circular ends is w (
A. $\pi:(\pi+2)$
B. $(\pi+2): \pi$
C. 1:1
D. none of the above

Answer: A
(Watch Video Solution

