

MATHS

BOOKS - NDA PREVIOUS YEARS

CIRCLE

Mcqs

1. An equilateral triangle is inscribed in the circle $x^2 + y^2 = a^2$ with one of the vertices at (a,0). What is the equation of the side opposite to this vertex ?

A.
$$2x - a = 0$$

B.
$$x + a = 0$$

$$C. 2x + a = 0$$

D.
$$3x - 2a = 0$$

Answer: C

2. If a circle passes through the points (0,0),(a,0)and(0,b), then find the coordinates of its centre.

A.
$$\sqrt{a^2-b^2}$$

B.
$$\sqrt{a^2+b^2}$$

$$\mathsf{C}.\,\frac{1}{2}\sqrt{a^2+b^2}$$

D.
$$2\sqrt{a^2+b^2}$$

Answer: C

3. it two circles, A, B of equal radii pass through the centres of each other, then what is the ratio of the length of the smaller arc to the circumference of the circle A but off by the circle

A.
$$\frac{1}{2}$$

B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

4. If the extremities of a diameter of a circle are (0, 0) and $(a^3, 1/a^3)$ then the circle passes through which one of the following points ?

A.
$$\left(a^2, 1/a^2
ight)$$

- B. (a, 1/a)
- $\mathsf{C.}\left(a,\ -a\right)$
- D. (1/a, a)

Answer: D

5. What is the length of the intercept made on the x-axis by the circle $x^2 + y^2 + 2gx + 2fy + c = 0$?

A.
$$rac{\sqrt{(g^2-c)}}{2}$$

$$\mathsf{B.}\,\frac{\sqrt{(g^2-4c)}}{2}$$

C.
$$2\sqrt{\left(g^2-4c\right)}$$

D.
$$2\sqrt{\left(g^2-c
ight)}$$

Answer: D

6. Under which one of the following conditions does the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ meet the xaxis in two points on opposite sides of the origin?

A.
$$c > 0$$

B. c < 0C. c = 0D. $c \leq 0$

Answer: B

7. What is the equation of a circle whose center lies on the x-axis at a distance h from the origin and the circle passes through the origin ?

A.
$$x^2 + y^2 - 2hx = 0$$

B.
$$x^2 + y^2 - 2hx + h^2 = 0$$

$$\mathsf{C.}\,x^2+y^2+2hxy=0$$

D.
$$x^2 + y^2 - h^2 = 0$$

Answer: A

8. Consider a circle of radius R. What is the lengths of a chord which subtends an angle θ at the centre

?

A.
$$2R\sin\left(rac{ heta}{2}
ight)$$

 $\mathsf{B.}\,2R\sin\theta$

$$\mathsf{C.}\,2R\tan\!\left(\frac{\theta}{2}\right)$$

D. 2R an heta

Answer: A

9. What is the equation of circle which touches the

lines x = 0 , y = 0 and x = 2 ?

A.
$$x^2 + y^2 + 2x + 2r + 1 = 0$$

B.
$$x^2 + y^2 - 4x - 4y + 1 = 0$$

C.
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

D. None of these

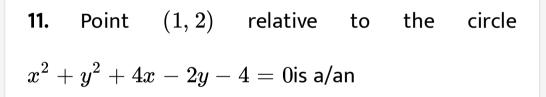
Answer: C

Watch Video Solution

10. Equation of a circle passing through origin is $x^2 + y^2 - 6x + 2y = 0$. What is the equation of

one of its diameter ?

A.
$$x + 3y = 0$$


B.
$$x + y = 0$$

 $\mathsf{C}.\,x=y$

D.
$$3x + y = 0$$

Answer: A

A. exterior point

- B. interior point, but not centre
- C. boundary point

D. centre

Answer: A

12. If the circle
$$x^2 + y^2 + 2gx + 2fy + x = 0 (c > 0)$$
 touches the y-axis then which one of the following is correct ?

A.
$$g=\,-\sqrt{c}$$
 only

B.
$$g=\pm\sqrt{c}$$

C. $f=\sqrt{c}$ only

D.
$$f=~\pm\sqrt{c}$$

Answer: D

Watch Video Solution

13. The equation of the circle which touches the axes at a distances 5 from the origin is $y^2+x^2-2lpha x-2lpha y+lpha^2=0$

What is the value of α ?

A. 4

B. 5

C. 6

D. 7

Answer: B

14. AB is an equilateral triangle inscribed in a circle of centre O and radius 5*cm*. Let the diameter through C meet the circle again at D. Assertion (A) : AD. BD < OB. OCReason (R) : $2(AD^2 + BD^2) = CD^2 = 100sqcm$ A. Both A and R are individually true and R is the

correct explanation of A

B. Both A and R are individually true but R is not

the correct explanation of A

C. A is true but R is false

D. A is false but R is true

Answer: D

15. If x-axis is tangent to the circle $x^2 + y^2 + 2gx + fy + k = 0$. Then which one of the following is correct ?

A.
$$g^2 = k$$

B. $g^2 = f$
C. $f^2 = k$
D. $f^2 = g$

Answer: A

16. The circle $x^2 + y^2 + 4x - 4y - 4 = 0$ touches

A. Only the x-axis

B. Only the y-axis

C. Both the axes

D. Neither of the axes

Answer: C

Watch Video Solution

17. Consider the following statement in respect of circles $x^2 + y^2 - 2x - 2y = 0$ and $x^2 + y^2 = 1$

1. The radius of the first circle is twice that of the second circle.

2. Both the circles pass through the origin.

Which of the statements given above is/are correct

?

A.1 only

B. 2 only

C. Both 1 and 2

D. Neither 1 nor 2

Answer: D

18. What is the equation to circle which touchs both the axes and has centre on the line x + y = 4?

A.
$$x^2 + y^2 - 4x + 4y + 4 = 0$$

B.
$$x^2 + y^2 - 4x - 4y + 4 = 0$$

C.
$$x^2 + y^2 + 4x - 4y - 4 = 0$$

D.
$$x^2 + y^2 + 4x + 4y - 4 = 0$$

Answer: B

19. For the equation

 $ax^2+by^2+2hxy+2gx+2fy+c=0$ where a
eq 0, to represent a circle, the condition will be

A.
$$h=g, a=b$$

B.
$$h=g=f, a=b$$

C.
$$h=0, a=b$$

D.
$$h=0, g^2+f^2-c=a+b$$

Answer: C

20. For the equation

 $ax^2+by^2+2hxy+2gx+2fy+c=0$ where a
eq 0, to represent a circle, the condition will be

A.
$$a=b$$
 and $c=0$

B.
$$f = g$$
 and $h = 0$

C.
$$a=b$$
 and $h=0$

D.
$$f=g$$
 and $c=0$

Answer: C

21. What is the radius of the circle touching x-axis at

(3,0) and y-axis at (0,3) ?

A. 3 units

B.4 units

C. 5 units

D. 6 units

Answer: A

22. Which one of the following points lies inside a circle of radius 6 and centre at (3, 5) ?

A.
$$(-2, -1)$$

B.(0,1)

- $\mathsf{C.} \; (\; -1,\; -2)$
- D. (2, -1)

Answer: B

23. The radius of the circle $x^2 + y^2 + x + c = 0$ passing through the origin is

A.
$$\frac{1}{4}$$

B. $\frac{1}{2}$

C. 1

 $\mathsf{D.}\,2$

Answer: B

24. What is the distance between the centres of the

two circles ?

A.
$$\sqrt{a^2+b^2}$$

- $\mathsf{B.}\,a^2+b^2$
- C.a + b
- D. 2(a + b)

Answer: A

25. The two circles touch each other if

A.
$$c=\sqrt{a^2+b^2}$$

B. $rac{1}{c}=rac{1}{a^2}+rac{1}{b^2}$
C. $c=rac{1}{a^2}+rac{1}{b^2}$
D. $c=rac{1}{a^2+b^2}$

Answer: B

26. A straight line x=y+2 touches the circle $4ig(x^2+y^2ig)=r^2$, The value of r is:

A.
$$\sqrt{2}$$

 $\mathsf{B.}\,2\sqrt{2}$

 $\mathsf{C.}\,2$

D. 1

Answer: B

Watch Video Solution

27. If the centre of the circle passing through the origin is (3, 4).

then the intercept cut off by the circle on x-axis and

y-axis respectively are

A. 3 unit and 4 unit

B. 6 unit and 4 unit

C. 3 unit and 8 unit

D. 6 unit and 8 unit

Answer: D

Watch Video Solution

28. If a circle of radius b units with centre at (0, b) touches the line $y = x - \sqrt{2}$, then what is the value of b ?

A. $2+\sqrt{2}$ B. $2-\sqrt{2}$ C. $2\sqrt{2}$ D. $\sqrt{2}$

Answer: A

29. Consider the two circles
$$(x-1)^2+(y-3)^2=r^2$$
 and $x^2+y^2-8x+2yy+8=0$

What is the distance between the centres of the

two circles ?

A. 5 units

B. 6 units

C. 8 units

D. 10 units

Answer: A

30. If two circles $(x-1)^2+(y-3)^2=r^2$ and $x^2+y^2-8x+2y+8=0$ intersect in two distinct points , then

A. r=1B. 1 < r < 2C. r=2

D.
$$2 < r < 8$$

Answer: D

31. Consider a circle of passing through the origin and the points (a, b) and (-b, -a)What is the sum of the squares of the intercepts cut off by the circles on the axes ?

A.
$$x + y = 0$$

B.
$$x - y = 0$$

$$\mathsf{C.}\, x+y=a+b$$

D.
$$x-y=a^2-b^2$$

Answer: A

32. Consider a circle of passing through the origin and the points (a, b) and (-b, -a)What is the sum of the squares of the intercepts cut off by the circle on the axes ?

A.
$$\left(\frac{a^2 + b^2}{a^2 - b^2}\right)^2$$

B. $2\left(\frac{a^2 + b^2}{a - b}\right)^2$
C. $4\left(\frac{a^2 - b^2}{a - b}\right)^2$

D. None of these

Answer: B

33. Find the equation of the circle passing through the point (2, 4) and having its centre at the intersection of the lines x - y = 4 and 2x + 3y + 7 = 0.

A. 3 unit

B. 5 units

C. $3\sqrt{3}$ units

D. $5\sqrt{2}$ units

Answer: D

34. The two circles $x^2 + y^2 = r^2$ and $x^2 + y^2 - 10x + 16 = 0$ intersect at two distinct points. Then

A.
$$2 < r < 8$$

B. $r = 2$ or $r = 8$
C. $r < 2$

D.
$$r>2$$

Answer: A

35. What is the equation of the circle which passes through the points (3,-2) and (-2, 0) and having its centre on the line 2x-y-3=0?

A.
$$x^2 + y^2 + 3x + 2 = 0$$

B. $x^2 + y^2 + 3x + 12y + 2 = 0$
C. $x^2 + y^2 + 2x = 0$
D. $x^2 + y^2 = 5$

Answer: B

36. The equation the circle which passes through the points (1, 0), (0, -6) and (3, 4) is

A.
$$4x^2 + 4y^2 + 142x + 47y + 140 = 0$$

B.
$$4x^2 + 4y^2 - 142x - 47y + 138 = 0$$

C.
$$4x^2 + 4y^2 - 142x + 47y + 138 = 0$$

D.
$$4x^2 + 4y^2 + 150x - 49y + 138 = 0$$

Answer: C

37. The equation of a circle whose end the points of a diameter are (x_1, y_1) and (x_2, y_2) is

$$(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=x^2+y^2$$
B. $(x-x_1)^2+(y-y_1)^2=x_2y_2$ C. $x^2+y^2+2x_1x_2+2y_1y_2=0$ D. $(x-x_1)(x-x_2)+(y+y_1)(y-y_2)=0$

Answer: D

Α.

38. If y-axis touches the cirle.

 $x^2+y^2+gx+fy+rac{c}{4}=0$ then the normal at

this point intersects the circle at the point.

Watch Video Solution

39. A circle is drawn on the chord of a circle $x^2 + y^2 = a^2$ as diameter. The chord lies on the line x + y = a. What is the equation of the circle ?

A.
$$\left(-rac{g}{2},\,-rac{f}{2}
ight)$$

B. $\left(-g,\,-rac{f}{2}
ight)$
C. $\left(-rac{g}{2},f
ight)$

D.
$$(-g, -f)$$

Answer: B

Watch Video Solution

40. The circle $x^2 + y^2 + 4x - 7y + 12 = 0$ cuts an

intercept on y-axis equal to

A. 1

B. 4

C. 3

