©゙’ doubtnut

MATHS

BOOKS - NDA PREVIOUS YEARS

CONICS - PARABOLA, ELLIPSE \&

HYPERBOLA

Math

1. If the latus rectum of an ellipse is equal to
the half of minor axis, then find its eccentricity.
A. $\frac{1}{2}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{3}{4}$
D. $\frac{\sqrt{15}}{4}$

Answer: B

- Watch Video Solution

2. $\mathrm{P}(2,2)$ is a point on the parabola $y^{2}=2 x$ and A is its vertex. Q is anoter point on the
parabola such that $P Q$ is perpendicular to $A P$.

What is the length of PQ .

A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $4 \sqrt{2}$
D. $6 \sqrt{2}$

Answer: D

3. The focal distance of a point on the parabola

 $y^{2}=12 \xi s 4$. Find the abscissa of this point. A. 1B. -1
C. $2 \sqrt{2}$
D. -2

Answer: A
4. If $(2,0)$ is the vertex and y-axis the directrix of a parabola then its focus is
A. $(0,0)$
B. $(-2,0)$
C. $(4,0)$
D. $(-4,0)$

Answer: C

- Watch Video Solution

5. Which one of the following points lies outside the ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)$?
A. $(a, 0)$
B. $(0, b)$
C. $(-a, 0)$
D. $(a, 0)$

Answer: D

6. What is the equation of the parabola, whose
vertex and focus are on the x-axis at distance a and b from the origin respectively ? $(b>a>0)$

$$
\begin{aligned}
& \text { A. } y^{2}=8(b-a)(x-a) \\
& \text { B. } y^{2}=4(b+a)(x-a) \\
& \text { C. } y^{2}=4(b-a)(x+a) \\
& \text { D. } y^{2}=4(b-a)(x-a)
\end{aligned}
$$

Answer: D

7. If the eccentricity and length of latus rectum
of a hyperbola are $\frac{\sqrt{13}}{3}$ and $\frac{10}{3}$ units respectively, then what is the length of the transvers axis?
A. $\frac{7}{2}$ unit
B. 12 unit
C. $\frac{15}{2}$ unit
D. $\frac{15}{4}$ unit

Answer: C
8. In how many points do the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{8}=1$ and the circle $x^{2}+y^{2}=9$ intersect?
A. One
B. Two
C. Four
D. None of above
9. If the foci of the conics
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{7}=1$ and $\frac{x^{2}}{144}-\frac{y^{2}}{81}=\frac{1}{25}$ were to coincide, then what is the value of a ?
A. 2
B. 3
C. 4
D. 16

D Watch Video Solution

10. Which one of the following is correct? The eccentricity of
the
conic
$\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1,(\lambda \geq 0)$
A. increases with increase in λ
B. decreases with increase in λ
C. does not changes with λ
D. None of above

- Watch Video Solution

11. Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(b>a)$.

Then, which one of the following is correct ?
A. Real foci do not exist
B. Foci are $(\pm a e, 0)$
C. Foci are $(\pm b e, 0)$
D. Foci are $(0, \pm b e)$

Answer: D
12. Consider the parabolas $S_{1}=y^{2}-4 a x=0$
and $S_{2}=y^{2}-4 b x=0 . S_{2}$ will S_{1}, if
A. $a>b>0$
B. $b>a>0$
C. $a>0, b<$ but $|\mathrm{b}|>a$
D. $a<0, b>$ but $|\mathrm{b}|>a$

Answer: B
13. Equation of the hyperbola with eccentricity
$3 / 2$ and foci at $(\pm 2,0)$ is $5 x^{2}-4 y^{2}=k^{2}$.

What is the value of k ?
A. $4 / 3$
B. $3 / 4$
C. $(4 / 3) \sqrt{5}$
D. $(4 / 4) \sqrt{5}$

Answer: C
14. If the latusrectum of an ellipse is equal to half of minor axis, find its eccentricity.
A. $1 / 4$
B. $1 / 2$
C. $\sqrt{3} / 5$
D. $\sqrt{3} / 2$

Answer: D

15. What is the sum of focal radii of any point on an ellipse equal to ?
A. Length of latusrectum B. Length of major-axis
C. Length of minor-axis

D. Length of semi-latusretum

Answer: B

16. What does an equation of the first degree
containing one arbitray parameter through a fixed point pepresent?
A. Circle
B. Straight line
C. Parabola
D. Ellipse

Answer: B
17. The curve $y^{2}=-4 a x(a>0)$ lies in
A. First and fourth quadrants
B. First and second quadrants
C. Second and third quadrants
D. Third and fourth quadrants

Answer: C

- Watch Video Solution

18. The ellipse $\frac{x^{2}}{169}+\frac{y^{2}}{25}=1$ has the same eccentricity as the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. What is the ratio of a to b ?
A. $5 / 13$
B. $13 / 5$
C. $7 / 8$
D. $8 / 7$

Answer: B
19. If $(4,0)$ and $(-4,0)$ are the foci of an ellipse and the semiminor axis is 3 , then the ellipse passes thrugh which one of the following points?
A. $(2,0)$
B. $(0,5)$
C. $(0,0)$
D. $(5,0)$

Answer: D
20. What is the locus of points, the difference of whose distances from two points being constant?
A. Pair of straight lines

B. An ellipse

C. A hyperbola
D. A parabola

Answer: C
21. A circle is drawn with the two foci an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the end of the diameter. What is the equation of the eircle ?

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=a^{2}+b^{2} \\
& \text { B. } x^{2}+y^{2}=a^{2}-b^{2} \\
& \text { C. } x^{2}+y^{2}=2 a^{2}+b^{2} \\
& \text { D. } x^{2}+y^{2}=2 a^{2}-b^{2}
\end{aligned}
$$

22. What are the equations of the directrices of the ellipse $25^{2}+16 y^{2}=400$?

$$
\begin{aligned}
& \text { A. } 3 x \pm 25=0 \\
& \text { B. } 3 y \pm 25=0 \\
& \text { C. } x \pm 15=0 \\
& \text { D. } y \pm 25=0
\end{aligned}
$$

Answer: B

23. Let E be the ellipse
 $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and C be the circle $x^{2}+y^{2}=9$.

Let $P=(1,2)$ and $Q=(2,1)$. Which one of the
following is correct?
A. Q lies inside C but outside E
B. Q lies outside both C and E
C. P line inside both C and E
D. P line inside C but outside E.
24. Find the locus of a point whiich moves in
such a way that the sum of its distances from
the points $(a, 0,0)$ and $(a, 0,0)$ is constant.
A. Circle
B. Ellipse
C. Hyperbola
D. Parabola
25. If the latusrectum of an ellipse is equal to
half of minor axis, find its eccentricity.
A. $\frac{1}{2}$
B. $\sqrt{3}$
C. $\sqrt{3} / 2$
D. $\frac{1}{\sqrt{2}}$

Answer: C
26. What are the points of intersection of the curve $4 x^{2}-9 y^{2}=1$ with its conjugate axis ?
A. $(1 / 2,0)$ and $(-1 / 2,0)$
B. $(0,2)$ and $(0,2)$
C. $(0,3)$ and $(0,-3)$
D. None such point exists

Answer: D
27. What is the sum of the focal distances of a
point of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$?
A. a
B. b
C. 2a
D. $2 b$

Answer: C
28. Find the area of the triangle formed by the
lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.
A. 9 square units
B. 12 square units
C. 14 square units
D. 18 square units

Answer: D
29. What is the focal distance of any point $P\left(x_{1}, y_{1}\right)$ on the parabola $y^{2}=4 a x ?$
A. $x_{1}+y_{1}$
B. $x_{1} y_{1}$
C. $a x_{1}$
D. $a+x_{1}$

Answer: D

D Watch Video Solution
30. If the latus rectum of an ellipse is equal to
half of the minor axis, then what is its eccentricity?

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } \frac{\sqrt{3}}{2} \\
& \text { D. } \frac{1}{\sqrt{2}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

31. What is the eccentricity of the conic

$$
4 x^{2}+9 y^{2}=144 ?
$$

A. $\frac{\sqrt{5}}{3}$
B. $\frac{\sqrt{5}}{4}$
C. $\frac{3}{\sqrt{5}}$
D. $\frac{2}{3}$

Answer: A

D Watch Video Solution

32. The sum of focal distances of a point on the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is:
A. 4 units
B. 6 units
C. 8 units
D. 10 units

Answer: A

D Watch Video Solution
33. The eccentricity e of an ellipse satisfies the condition :
A. $e<0$
B. $0<e<1$
C. $e=1$
D. $e>1$

Answer: B

D Watch Video Solution

34. The equation of the ellipse whose vertices

are $(\pm 5,0)$ and foci at $(\pm 4,0)$ is

$$
\begin{aligned}
& \text { A. } \frac{x^{2}}{25}+\frac{y^{2}}{9}=1 \\
& \text { B. } \frac{x^{2}}{9}+\frac{y^{2}}{25}=1 \\
& \text { C. } \frac{x^{2}}{16}+\frac{y^{2}}{25}=1 \\
& \text { D. } \frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{aligned}
$$

Answer: A

35. Difference of Focal radii of any point is equal to the length of major axis
A. latus rectum B. semi-transverse axis
C. transverse axis

D. semi-latus rectum

Answer: C

- Watch Video Solution

36. The foci of the hyperbola
$4 x^{2}-9 y^{2}-1=0$ are
A. $(\pm \sqrt{13}, 0)$
B. $\left(\pm \frac{\sqrt{13}}{6}, 0\right)$
C. $\left(0, \pm \frac{\sqrt{13}}{6}\right)$
D. None of these

Answer: B

- Watch Video Solution

37. The axis of the parabola $y^{2}+2 x=0$ is
A. $x=0$
B. $y=0$
C. $x=2$
D. $y=2$

Answer: B
38. What is the sum the major and minor axes
of the ellipse whose eccentricity is $4 / 5$ and length of latus rectum is 14.4 unit ?
A. 32 units
B. 48 units
C. 64 units
D. None of these

Answer: C
39. Find the area of the greatest rectangle that
can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
A. $a b$
B. 2 ab
C. $a b / 2$
D. $\sqrt{a b}$

Answer: B

-

40. Find the area of the greatest rectangle that
can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
A. $a b(\pi-1)$
B. $2 a(\pi-1$
C. $a b(\pi-2)$
D. None of these

Answer: C

D Watch Video Solution
41. Consider an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

What is the eauation of parabola whose verted is at $(0,0)$ and focus is at $(0,2)$?

$$
\begin{aligned}
& \text { A. } y^{2}+8 x=0 \\
& \text { B. } y^{2}-8 x=0 \\
& \text { C. } x^{2}+8 y=0 \\
& \text { D. } x^{2}-8 y=0
\end{aligned}
$$

Answer: C
42. Consider an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

What is the length of the latus rectum of the ellipse $25 x^{2}+16 y^{2}=400$?
A. $25 / 2$
B. $25 / 4$
C. $156 / 5$
D. $32 / 5$

Answer: D
43. The line $2 y=3 x+12$ cuts the parabola $4 y=3 x^{2}$.

Where does the line cut the parabola?
A. $\operatorname{At}(-2,3)$ only
B. At $(4,12)$ only
C. At both $(-2,3)$ and $(4,12)$
D. Neither at $(-2,3)$ nor $(4,12)$

Answer: C
44. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.
A. 27 square unit B. 36 squre unit
C. 48 square unit
D. 54 square unit

Answer: A

- Watch Video Solution

45. The line $2 y=3 x+12$ cuts the parabola
$4 y=3 x^{2}$.

Where does the line cut the parabola?
A. 7 square unit
B. 14 square unit
C. 20 square unit
D. 21 square unit

Answer: C

- Watch Video Solution

46. The point on $y^{2}=4 a x$ nearst to the focus has to abscissa equal to
A. $x=0$
B. $x=a$
C. $x=\frac{a}{2}$
D. $x=2 a$

Answer: A
47. The line $2 y=3 x+12$ cuts the parabola
$4 y=3 x^{2}$.
The hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the point $(3 \sqrt{5}, 1)$ and the length of its latus rectum is $\frac{4}{3}$ units. The length of the conjugate axis is
A. 2 units
B. 3 units
C. 4 units
D. 5 units

Answer: C

- Watch Video Solution

48. Consider any point P on the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ in the first quadrant. Let r and s represent its distances from $(4,0)$ and $(-4,0)$ respectively, then $(r+s)$ is equal to:
A. 10 units
B. 9 unit
C. 8 unit

D. 6 unit

Answer: A

D Watch Video Solution

49. The eccentricity of the hyperbola

$$
16 x^{2}-9 y^{2}=1 \text { is? }
$$

A. $\frac{3}{5}$
B. $\frac{5}{3}$
C. $\frac{4}{5}$
D. $\frac{5}{4}$

Answer: B

D Watch Video Solution

50. The line $2 y=3 x+12$ cuts the parabola
$4 y=3 x^{2}$.

What is the equation of the hyperbola having rectum and eccentrieity 8 and $\frac{3}{\sqrt{5}}$ respectivly ?
A. $\frac{x^{2}}{25}+\frac{y^{2}}{20}=1$
B. $\frac{x^{2}}{40}+\frac{y^{2}}{20}=1$
C. $\frac{x^{2}}{40}+\frac{y^{2}}{30}=1$
D. $\frac{x^{2}}{30}+\frac{y^{2}}{25}=1$

Answer: A

D Watch Video Solution

51. The line $2 y=3 x+12$ cuts the parabola $4 y=3 x^{2}$.

If the ellipse $9 x^{2}+16 y^{2}=144$ intersecpts the
line $3 x+4 y=12$ then what is the length of the chord so formed?
A. 5 units
B. 5 units
C. 8 units
D. 10 units

Answer: A
52. The line $2 y=3 x+12$ cuts the parabola
$4 y=3 x^{2}$.

What ishte eccentricity of rectangular hyper bola ?
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{5}$
D. $\sqrt{6}$

Answer: A
53. Find the coordinates of a point on the parabola $y=x^{2}+7 x+2$ which is closest to the straight line $y=3 x-3$.
A. $(0,2)$
B. $(-2,-8)$
C. $(-7,2)$
D. $(1,10)$

Answer: B

D Watch Video Solution
54. Find the coordinates of a point on the parabola $y=x^{2}+7 x+2$ which is closest to the straight line $y=3 x-3$.

$$
\begin{aligned}
& \text { A. } \frac{\sqrt{10}}{2} \\
& \text { B. } \frac{\sqrt{10}}{5} \\
& \text { C. } \frac{1}{\sqrt{10}} \\
& \text { D. } \frac{\sqrt{5}}{4}
\end{aligned}
$$

55. Consider the parabola $y=x^{2}+7 x+2$ and the straight line $y=3 x-3$.

What is equation of the ellipse having foci
$(\pm 2,0)$ the eccentricity $\frac{1}{4}$?
A. $\frac{x^{2}}{64}+\frac{y^{2}}{60}=1$
B. $\frac{x^{2}}{60}+\frac{y^{2}}{64}=1$
C. $\frac{x^{2}}{20}+\frac{y^{2}}{24}=1$
D. $\frac{x^{2}}{24}+\frac{y^{2}}{20}=1$

Answer: A

D Watch Video Solution

56. एक व्यक्ति दौड़पथ पर दौड़ते हुए अंकित करता है कि उससे दो झंडा चौकियों की दूरियां का योग सदैव 10 मीटर रहता है और झंडा चौकियों के बीच की दूरी 8 मीटर है व्यक्ति द्वारा बनाए पथ का समीकरण ज्ञात कीजिए
A. 18π square metres
B. 15π square metres
C. 12π square metres

D. 8π square metres

Answer: B

D Watch Video Solution

57. Consider the parabola $y=x^{2}+7 x+2$ and the straight line $y=3 x-3$.

The position of the point, $(1,2)$ relative to the ellipse $2 x^{2}+7 y^{2}=20$ is
A. Outside the ellipse
B. inside the ellipse but not at the focus

C. on the ellispe

D. at the focus

Answer: A

D Watch Video Solution

58. Consider the parabola $y=x^{2}+7 x+2$ and the straight line $y=3 x-3$.

The equation of the ellipse whose centre is at origin, major axis is along x-axis with eccentricity $\frac{3}{4}$ and latus rectum 4 units is
A. $\frac{x^{2}}{1024}+\frac{7 y^{2}}{64}=1$
B. $\frac{49 x^{2}}{1024}+\frac{7 y^{2}}{64}=1$
C. $\frac{7 x^{2}}{1024}+\frac{49 y^{2}}{64}=1$
D. $\frac{x^{2}}{1024}+\frac{49 y^{2}}{64}=1$

Answer: B

D Watch Video Solution

59. The equation of the ellipse whose vertices
are $(\pm 5,0)$ and foci at $(\pm 4,0)$ is
A. $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
B. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
C. $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
D. $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$

Answer: A

- Watch Video Solution

60. Consider the parabola $y=x^{2}+7 x+2$ and the straight line $y=3 x-3$.

The sum of the focal distances of a point on an ellipse is constant and equal to the
A. length of equal to the
B. length of major axis
C. length of major axis
D. length of latus rectum

Answer: B

61. Consider the parabola $y=x^{2}+7 x+2$
and the straight line $y=3 x-3$.
The equation $2 x^{2}-3 y^{2}-6=0$ represents
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: D
62. Consider the parabola $y=x^{2}+7 x+2$
and the straight line $y=3 x-3$.
The two parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ intersect
A. at two points on the line $y=x$
B. only at the origin
C. at three points one of which lies on $y+x$

$$
=0
$$

D. only at (4a, 4a)

Watch Video Solution

