©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NDA PREVIOUS YEARS

FUNCTIONS, LIMIT, CONTINUITY AND DIFFERENTIABILITY

Mcqs

1. Let R be the set of real numbers and let $f: R \rightarrow R$ be a function such that $f(x)=\frac{x^{2}}{1+x^{2}}$. What is the range of f ?
A. R
B. $R-\{1\}$
C. $[0,1]$
D. $[0,1)$

D Watch Video Solution

2. Let $f(x)=\frac{1}{\sqrt{18-x^{2}}}$

What is the value of $\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$?
A. 0
B. $-\frac{1}{9}$
C. $\frac{1}{3}$
D. $\frac{1}{9}$

Answer: D

- Watch Video Solution

3. Let $f(x+y)=f(y)$ and $f(1)=2$ for all $x, y \in R$ where $\mathrm{f}(\mathrm{x})$ is continuous function. What is $f(1)$ equal to ?
A. $2 \log _{e} 2$
B. $\log _{e} 2$
C. 1
D. 0

Answer: A

- Watch Video Solution

4. Given $f(x)=\log \left[\frac{(1+x)}{(1-x)}\right]$ and $g(x)=\frac{\left(3 x+x^{2}\right)}{\left(1+3 x^{2}\right)}$, then what is $f[g(x)]$ equal to ?
A. $-f(x)$
B. $3[f(x)]$
C. $[f(x)]^{3}$
D. $-3[f(x)]$
5. What is the value of $\lim _{x \rightarrow 0} \frac{\sin |x|}{x}$?
A. 1
B. -1
C. ∞
D. Limit does not exist

Answer: D

- Watch Video Solution

6. What is the equivalent definition of the function given by
$f(x)= \begin{cases}2 x, & x \geq 0 \\ 0, & <0\end{cases}$
A. $f(x)=|x|$
B. $f(x)=2 x$
C. $f(x)=|x|+x$
D. $f(x)=2|x|$

Answer: C

- Watch Video Solution

7. If $f: R \rightarrow R^{+}$such that $f(x)=(1 / 3)^{x}$, the what is the value of $f^{-1}(x) ?$
A. $(1 / 3)^{x}$
B. 3^{x}
C. $\log _{1 / 3} X$
D. $\log _{x}(1 / 3)$

Answer: C

8. What is the value of $\lim _{x \rightarrow 0} \frac{x \sin 5 x}{\sin ^{2} 4 x}$
A. 0
B. $\frac{5}{4}$
C. $\frac{5}{16}$
D. $\frac{25}{4}$

Answer: C

9. If $f(x)=(1+x)^{5 / x}$ is continuous at $\mathrm{x}=0$, then what is the value of $f(0)$?
A. 0
B. 1
C. ∞
D. e^{5}

Answer: D

- Watch Video Solution

10. Consider the following statements:
11. The function $\mathrm{f}(\mathrm{x})=$ greatest integer $\leq x, x \in R$ is a continuous function.
12. All trigonometric functions are continuous on R.

Whict of the statements given above is/ are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

11. If $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]$ exists, then which one of the following correct ?
A. Both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ must exist
B. $\lim _{x \rightarrow a} f(x)$ need not exist but $\lim _{x \rightarrow a} g(x)$ must exist
C. Both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ need not exist
D. $\lim _{x \rightarrow a} f(x)$ must exist but $\lim _{x \rightarrow a} g(x)$ need not exist

Answer: A

- Watch Video Solution

12. If $f(x)=\left[\begin{array}{ll}m x+1 & \text { if } x \leq \frac{\pi}{2} \\ \sin x+n & \text { if } x>\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then
A. $m=1, n=0$
B. $m=\frac{n \pi}{2}+1$
C. $n=m\left(\frac{\pi}{2}\right)$
D. $m=n=\frac{\pi}{2}$

Answer: C

- Watch Video Solution

The above curve shows the graph of a^{x} under which one of the following conditions?
A. $a \geq 1$
B. $a>1$
C. $0<a \leq 1$
D. $0<a<1$

Answer: D

- Watch Video Solution

14. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then $\mathrm{f}\left(\frac{2 x}{1+x^{2}}\right)$ is equal to
A. $(f(x))^{2}$
B. 1
C. $2 f(x)$
D. $f\left(\frac{1-x}{1+x}\right)$

Answer: C

15. If $f(x)=(x+1)^{\cot x}$ is continuous at $\mathrm{x}=0$, then what is $\mathrm{f}(0)$ equal to?
A. 1
B. e
C. $\frac{1}{e}$
D. e^{2}

Answer:

- Watch Video Solution

16. What is the value of $\lim _{x \rightarrow \infty}\left(\frac{x-2}{x+2}\right)^{x+2}=$?
A. 0
B. e^{4}
C. e^{-2}
D. e^{-4}

- Watch Video Solution

17. If the derivative of the function
$f(x)=\left\{a x^{2}+b, x<-1\right.$ and $b x^{2}+a x+4, x \leq-1$ is everywhere continuous, then-
A. $a=2, b=3$
B. $a=3, b=2$
C. $a=-2, b=-3$
D. $a=-3, b=-2$

Answer: A

18. If $f(x)$ is differentiable everywhere, then which one of the following is correct?
A. $|f|$ is differentiable everywhere
B. $|f|^{2}$ is differentiable everywehere
C. $f|f|$ is not differentiable at some points
D. None of the above

Answer: C

- Watch Video Solution

19. Consider the cubic equation $x^{3}+a x^{2}+b x+c=0$, where a, b, c are real numbers, which of the following statements is correct?
A. If $b^{2}-4 a c>0$ then $f^{-1}(0)$ does not contain 0
B. If $b^{2}-4 a c<0$, then $f^{-1}(0)$ must contain 0
C. If $b^{2}-4 a c>0$, then $f^{-1}(0)$ may contain 0
D. If $b^{2}-4 a c<0$, then $f^{-1}(0)$ may contain 0

Answer: A

- Watch Video Solution

20. If $\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=3$ then value of x is
A. 0
B. 1
C. $a+b+c$
D. abc

Answer: C

- Watch Video Solution

21. If $-x^{2}+3 x+4>0$, then which one of the following is correct?
A. $x \in(-1,4)$
B. $x \in[-1,4]$
C. $x \in(\infty,-1) \cup(4, \infty)$
D. $x \in(-\infty,-1) \cup(4, \infty)$

Answer: A

- Watch Video Solution

22. Given $f(x)=x+\frac{1}{x}$, then what is $f^{2}(x)$ equal ot ?
A. $\frac{x^{2}+1}{x}+\frac{x}{x^{2}+1}$
B. $(x+1 / x)^{2}$
C. $x^{4}+\left(11 / x^{4}\right)$
D. $x^{2}+\left(1 / x^{2}\right)$

Answer: B

23. If $f(x)=\left\{\begin{array}{ll}1 & x \text { is a rational number } \\ 0, & \mathrm{x} \text { is an irrational number }\end{array}\right.$ what is/are the value (s) of $(f o f)(\sqrt{3})$?
A. 0
B. 1
C. Both 0 and 1
D. None of these

Answer: B

- Watch Video Solution

24. A function f is defined as follows
$f(x)=x^{p} \cos \left(\frac{1}{x}\right), x \neq 0$
$f(0)=0$
What conditions should be imposed on p so that f may be continuous at
$\mathrm{x}=0$?
A. $p=0$
B. $p>0$
C. $p<0$
D. No value of p

Answer: B

D Watch Video Solution

25. What is the value of $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
A. 1
B. 0
C. ∞
D. -1

Answer: B

26. What is $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}$?
A. $\log \left(\frac{a}{b}\right)$
B. $\log \left(\frac{b}{a}\right)$
C. ab
D. $\log (a b)$

Answer: A

- Watch Video Solution

27. Let $f(x)= \begin{cases}3 x-4, & 0 \leq x \leq 2 \\ 2 x+l, & 2<x \leq 9\end{cases}$

If is continuous at $x=2$, then what is the value of I ?
A. 0
B. 2
C. -2
D. -1

Answer: C

- Watch Video Solution

28. If $f(x)=x$ and $g(x)=|x|$, then what is $(f+g)(x)$ equal to ?
A. 0 for all $x \in R$
B. 2 x for all $x \in R$
C. $\left\{\begin{array}{l}2 x, \text { for } x \geq 0 \\ 0, \text { for } x<0\end{array}\right.$
D. $\left\{\begin{array}{l}0, \text { for } x \geq 0 \\ 2 x, \text { for } x<0\end{array}\right.$

Answer: C

- Watch Video Solution

29. If $g(x)=\sin x, x \in R$ and $f(x)=\frac{1}{\sin x}, x \in\left(0, \frac{\pi}{2}\right)$ what is (gof) (x) equal to ?
A. 1
B. $\frac{1}{\sin (\sin x)}$
C. $\frac{1}{\sin ^{2}(x)}$
D. $\sin \left(\frac{1}{\sin x}\right)$

Answer: D

- Watch Video Solution

30. Let $f: R \rightarrow R$ be defined as $f(x)=\sin (|x|)$

Which one of the following is correct?
A. f is not differentiable only at 0
B. f is differentiable at 0 only
C. f is differentiable everywhere
D. f is non-differentiable at many points

Answer: A

- Watch Video Solution

31. What is the inverse of the function $y=5^{\log x}$?
A. $x=5^{1 / \log y}$
B. $x=y^{1 / \log 5}$
C. $x=5^{\log y}$
D. $x=y^{\log 5}$

Answer: B

- Watch Video Solution

32. Assertion (A) : If $f(x)=\log x$, then $f(x)>0$ for all $x>0$.

Reaosn (R) : $f(x)=\log x$, is defined for all $x>0$
A. Both A and R are individually true, and R is the correct explanation of A
B. Both A and R are individually true but R is not the correct explanation of A .
C. A is true but R is false.
D. A is false but R is true.

Answer: D

- Watch Video Solution

33. Assertion (A) : $\mathrm{f}(\mathrm{x})=x \sin \left(\frac{1}{x}\right)$ is differentiable at $\mathrm{x}=\mathrm{O}$ Reason (R): $\mathrm{F}(\mathrm{x}$) is continuous at $\mathrm{x}=0$
A. Both A and R are individually true, and R is the correct explanation of A
B. Both A and R are individually true but R is not the correct explanation of A .
C. A is true but R is false.
D. A is false but R is true.

Answer: D

- Watch Video Solution

34. If $f(x)=\log |x|, x \neq 0$, then what is $f^{\prime}(x)$ equal to ?
A. $(1)(|x|)$
B. $\frac{1}{x}$
C. $\frac{-1}{x}$
D. None of these

D Watch Video Solution

35. $\lim _{x \rightarrow 0} e^{-1 / x}$ is equal to
A. 0
B. ∞
C. e
D. does not exist

Answer: D

36. Let $g: R \rightarrow R$ be a function such that, $g(x)=2 x+5$. Then, what is
$g^{-1}(x)$ equal to ?
A. $\frac{x-5}{2}$
B. $2 x-5$
C. $x-\frac{5}{2}$
D. $\frac{x}{2}+\frac{5}{2}$

Answer: A

- Watch Video Solution

37. Consider the following statements:
38. $\lim _{x \rightarrow 0} \frac{x^{2}}{x}$ exists.
39. $\left(\frac{x^{2}}{x}\right)$ is not continuous at $\mathrm{x}=0$
40. $\lim _{x \rightarrow 0} \frac{|x|}{x}$ does not exist.

Which of the statement given above are correct ?
A. 1,2 and 3
B. 1 and 2 only
C. 2 and 3 only
D. 1 and 3 only

Answer: D

- Watch Video Solution

38. Let $f(x)=\frac{1}{1-|1-x|}$. Then, what is $\lim _{x \rightarrow 0} f(x)$ equal to
A. 0
B. ∞
C. 1
D. -1

Answer: C

39. What is the value of $\lim _{x \rightarrow a} \frac{\sqrt{\alpha+2 x}-\sqrt{3 x}}{\sqrt{3} \alpha+x-2 \sqrt{x}}$?
A. $\frac{2}{\sqrt{3}}$
B. $\frac{1}{(3 \sqrt{3})}$
C. $\frac{2}{(3 \sqrt{3})}$
D. $\frac{1}{\sqrt{3}}$

Answer: C

- Watch Video Solution

40. Assertion (A) : The function
$f:(1,2,3) \rightarrow(a, b, c, d)$ defined by
$f=\{(1, a),(2, b),(3, c)\}$ has no inverse.
Reason (R) fis not one-one.
A. Both A and R are individually true, and R is the correct explanation of A
B. Both A and R are individually true but R is not the correct explanation of A .
C. A is true but R is false.
D. A is false but R is true

Answer: C

- Watch Video Solution

41. Assertion (A) : $y=2 x+3$ is a one to one real valued function.

Reason (R): $x_{1} \neq x_{2}$
$\Rightarrow y_{1} \neq y_{2}, y_{1}=2 x_{1}+3, y_{2}=2 x_{2}+3$ for any two real x_{1} and x_{2}
A. Both A and R are individually true, and R is the correct explanation of A
B. Both A and R are individually true but R is not the correct explanation of A .
C. A is true but R is false.
D. A is false but R is true

Answer: A

- Watch Video Solution

42. The function $f . R \rightarrow R$ defined by $f(x)=\left(x^{2}+1\right)^{35}$ for all $x \in R$ is
A. one-one but not onto
B. onto but not one-one
C. neither one-one nor onto
D. both one-one and onto

Answer: C

- Watch Video Solution

43. Let $f: R \rightarrow R$ be a function defined as $f(x)=x|x|$, for each $x \in R, R$ being the set of real numbers. Which one of the following is correct?
A. f is one -one but not onto
B. f is onto but not one-one
C. f is both one-one and onto
D. f is neither one-one nor onto

Answer: C

- Watch Video Solution

44. The set of all points, where the function $f(x)=\frac{x}{1+|x|}$ is differentiable, is given by
A. $(-\infty, \infty)$
B. $(0, \infty)$ only
C. $(-\infty, 0) \cup(0, \infty)$ only
D. $(-\infty, 0)$ only

Answer: A

- Watch Video Solution

45. Let $y(x)=a x^{n}$ and δy dentoe samll change in y . what is limit of $\frac{\delta y}{\delta x} \operatorname{as\delta x} \rightarrow 0$?
A. 0
B. 1
C. $a n x^{n-1}$
D. $a x^{n} \log (a x)$

Answer: A

46. What is $\lim _{x \rightarrow 0} \frac{\sin ^{2} a x}{b x}$ (a, b are constants) equal to ?
A. 0
B. a
C. a / b
D. Does not exist

Answer: A

D Watch Video Solution

47. If $f(x)= \begin{cases}3 x-4, & 0 \leq x \leq 2 \\ 2 x+\lambda, & 2<x \leq 3\end{cases}$
is continouous at $x=2$, then what is the value of λ ?
A. 1
B. -1
C. 2
D. -2

Answer: D

- Watch Video Solution

48. A mapping $f: R \rightarrow R$ which is defined as $f(x)=\cos x, x \in R$ is
A. One-one olny
B. Onto only
C. One-one onto
D. Neither one-one nor onto

Answer: D

- Watch Video Solution

49. What is $\lim _{x \rightarrow \infty}\left(\frac{x}{3+x}\right)^{3 x}$ equal to?
A. e
B. e^{3}
C. e^{-9}
D. e^{9}

Answer: C

D Watch Video Solution

50. Consider the following function $f: R \rightarrow R$ such that
$f(x)=x$ if $x \geq 0$ and $f(x)=-x^{2}$ if $x<0$. Then, which one of the following is correct?
A. $\mathrm{f}(\mathrm{x})$ is continuous at every $x \in R$
B. $f(x)$ is continuous at $x=0$ only
C. $f(x)$ is discontinous at $x=0$ only
D. $\mathrm{f}(\mathrm{x})$ is discontinuous at every $x \in R$
51. Which one of the following functions $f: R \rightarrow R$ is injective?
A. $f(x)=|x|$ for all $x \in R$
B. $f(x)=x^{2}$ for all $x \in R$
C. $f(x)=11$ for all $x \in R$
D. $f(x)=-x$ for all $x \in R$

Answer: D

- Watch Video Solution

52. The function $f(x)=e^{x}, x \in R$ is
A. onto but not one-one
B. one-one onto
C. one-one but onto
D. neither one-one nor onto

Answer: C

- Watch Video Solution

53. What is the value of $\lim _{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{x+4}$
A. e
B. e^{2}
C. e^{4}
D. e^{5}

Answer: D

54.

$f: R \rightarrow R, g: R \rightarrow R$ and $g(x)=x+3$ and $(f o g)(x)=(x+3)^{2}$, then what is the value of $f(-3)$?
A. -9
B. 0
C. 9
D. 3

Answer: C

- Watch Video Solution

55. What is the value of $\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{|x-1|}$?
A. 0
B. 1
C. -1
D. The limit does not exist

Answer: A

Watch Video Solution

	I ist I (Function)		I ist II (Property)
Λ.	$\sin x$	1.	Periodic function
B.	$\cos x$	2.	Non-periodic function
	$\tan x$	3.	Continuous at every point on $(-\infty, \infty)$
		4.	Discontinuous function
		5.	Differentiah) at every point on ($-\infty, \infty$)
		6.	Not differentiable at every point on $(-\infty, \infty)$

7. has period π
8. has period 2π
9. increases on $\left(0, \frac{\pi}{2}\right)$
10. decreases on $\left(0, \frac{\pi}{2}\right)$
11. increases on $\left(\frac{\pi}{2}, \pi\right)$
12. decreases on $\left(\frac{\pi}{2}, \pi\right)$
13.

A is associated with
A. 1,3,4,8,9,12
B. $2,4,6,8,10,11$
C. $1,3,5,7,10,11$
D. None of these

Answer: A

- Watch Video Solution

	List I (Function)	I.ist II (Property)
A.B.C.	$\sin x$	1. Periodic function
	$\cos x$	2. Non-periodic function
	$\tan x$	3. Continuous at every point on (∞, x)
		4. Discontinuous function
		5. Differentiah at every point on $(-\infty, \infty)$
		6. Not differentiable at every point on ($-\infty, \infty$)
		7. has period π
		8. has period 2π
		9. increases on $\left(0, \frac{\pi}{2}\right)$
		10. decreases on $\left(0, \frac{\pi}{2}\right)$
		11. increases on $\left(\frac{\pi}{2}, \pi\right)$
		12. decreases on $\left(\frac{\pi}{2}, \pi\right)$

B is associated with
A. $2,3,5,8,9,12$
B. 1,3,5,8,10,12
C. $1,3,5,8,9,12$
D. None of these

D Watch Video Solution

	List I (Function)	List II (Property)
A. B. C.	$\sin x$	I. Periodic function
	$\cos x$	2. Non-periodic function
	$\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$	3. Continuous at every point on $(-\infty, \infty)$
		4. Discontinuous function
		5. Differentiabl- at every point on $(-\infty, \infty)$
		6. Not differentiable at every point on $(-\infty, \infty)$
		7. has period π
		8. has period 2π
		9. increases on $\left(0, \frac{\pi}{2}\right)$
		10. decreases on $\left(0, \frac{\pi}{2}\right)$
		11. increases on $\left(\frac{\pi}{2}, \pi\right)$
		12. decreases on $\left(\frac{\pi}{2}, \pi\right)$

58.

I. Periodic function
2. Non-periodic function
3. Continuous at every point on $(-\infty, \infty)$
4. Discontinuous function
5. Differentiabl- at every point on $(-\infty, \infty)$
6. Not differentiable at every point on $(-\infty, \infty)$
7. has period π
8. has period 2π
9. increases on $\left(0, \frac{\pi}{2}\right)$
10. decreases on $\left(0, \frac{\pi}{2}\right)$
11. increases on $\left(\frac{\pi}{2}, \pi\right)$
12. decreases on $\left(\frac{\pi}{2}, \pi\right)$

C is associated with
A. 1,4,6,7,9,11
B. 2,4,8,9
C. 1,4,6,7,9
D. None of these

Answer: C

- Watch Video Solution

59. Consider the following statements
60. Every function has a primitive
61. A primintive of a function is unique.

Which of the statements given above is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

D Watch Video Solution

60. The function $f(x)=\frac{x}{x^{2}+1}$ from R to R is
A. one-one as well as onto
B. onto but not one-one
C. neither one-one nor onto
D. one-one but not onto

Answer: D

- Watch Video Solution

61. The function $f(x)=\operatorname{cosec} x$ is
A. continuous for all values of x
B. discontinuous everywhere
C. continuous for all x except at $x=n \pi$, where n is an integer
D. continuous for all x except at $x=n \pi / 2$, where n is an integer

Answer: C

- Watch Video Solution

62. Consider the following statements:
I. $f(x)=|x-3|$ is continuous at $\mathrm{x}=0$.
II. $f(x)=|x-3|$ is differentiable at $\mathrm{x}=0$.

Which of the statements given above is/ are corrent?
A. I only
B. II only
C. Both I and II
D. Neither I nor II

Answer: C

- Watch Video Solution

63. Consider the function $f: R \rightarrow\{0,1\}$ such that
$f(x)=\left\{\begin{array}{lll}1, & \text { if } & x \text { is rational } \\ 0, & \text { if } \quad \mathrm{x} \text { is irratinal }\end{array}\right.$
Which one of the following is correct?
A. The function is one-one into
B. The function is many-one into
C. The function is one-one onto
D. The function is many-one onto

Answer: C

- Watch Video Solution

64. What is the value of $\lim _{x \rightarrow 0} \frac{\cos (a x)-\cos (b x)}{x^{2}}$
A. $a-b$
B. $a+b$
C. $\frac{b^{2}-a^{2}}{2}$
D. $\frac{b^{2}+a^{2}}{2}$

Answer: C

- Watch Video Solution

65. If $f(x)=2 x+7$ and $g(x)=x^{2}+7, x \in R$, then what are values of x for which $\operatorname{fog}(x)=25$?
A. $-1,1$
B. $-2,2$
C. $-\sqrt{2}, \sqrt{2}$
D. None of these

Answer: C

66. What is $\lim _{x \rightarrow 0} \frac{a^{x}-b^{x}}{x}$ equal to?
A. $\ln (a b)$
B. $\frac{\ln a}{\ln b}$
C. $\ln \left(\frac{a}{b}\right)$
D. $\ln \left(\frac{b}{a}\right)$

Answer: C

- Watch Video Solution

67. If the function
$f(x)=\frac{x(x-2)}{x^{2}-4}, x \neq \pm 2$ is continuous at $x=2$, then what is $f(2)$ equal to?
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: B

- Watch Video Solution

68. At how many points is the fucntion $f(x)=[x]$ discontinuous?
A. 1
B. 2
C. 3
D. Infinite

Answer: D

69. If $f(x)=\frac{2}{3} x+\frac{3}{2}, x \in R$,
then what is $f^{-1}(x)$ equal to ?
A. $\frac{2}{3} x+\frac{3}{2}$
B. $\frac{3}{2} x-\frac{9}{4}$
C. $\frac{2}{3} x-\frac{4}{9}$
D. $\frac{2}{3} x-\frac{2}{3}$

Answer: B

70. What is $\lim _{x \rightarrow \infty}\left(\sqrt{a^{2} x^{2} a x+1} \sqrt{a^{2} x^{2}+1}\right)$ equal to?
A. $\frac{1}{2}$
B. 1
C. 2
D. 0

D Watch Video Solution

71. What is the value of k for which the following fucntion $f(x)$ is continuous for all x ?
$f(x)= \begin{cases}\frac{x^{2}-3 x+2}{(x-1)^{2}}, & \text { for } x \neq 1 \\ k, & \text { for } x=1\end{cases}$
A. 3
B. 2
C. 1
D. -1

Answer: A

72. Which one of the following is correct in respect of the function $f(x)=|x|+x^{2}$
A. $f(x)$ is not continuous at $x=0$
B. $f(x)$ is differentiable at $x=0$
C. $f(x)$ us continuous but not differentible at $x=0$
D. None of the above

Answer: C

- Watch Video Solution

73. Consider the following statements:
I. $f(x)=|x-3|$ is continuous at $\mathrm{x}=0$.
II. $f(x)=|x-3|$ is differentiable at $\mathrm{x}=0$.

Which of the statements given above is/ are corrent?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer:

- Watch Video Solution

74. What is $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$ equal to?
A. 0
B. 1
C. $1 / 2$
D. Limit does not exist

Answer: A

75. What is $\lim _{x \rightarrow-2}\left(\frac{1+2}{x^{3}+8}\right)$
A. $1 / 4$
B. $-1 / 4$
C. $1 / 2$
D. $-1 / 12$

Answer: C

- Watch Video Solution

76. If $f(x) f[x y]=f[x] f[y]$ then $f[t]$ may be of the form:
A. $t+k$
B. $c t+k$
C. $t^{k}+c$
D. t^{k}

D Watch Video Solution

77. Which one of the following functions is differentiable for all real values of x ?
A. $\frac{x}{|x|}$
B. $x|x|$
C. $\frac{1}{|x|}$
D. $\frac{1}{x}$

Answer: B

- Watch Video Solution

78. What is $\lim _{x \rightarrow 0} \frac{\sqrt{1+x-1}}{x}$
A. 0
B. $\frac{1}{\sqrt{2}}$
C. 1
D. $-\frac{1}{\sqrt{2}}$

Answer: B

D Watch Video Solution

79. What is $\lim _{x \rightarrow 0} \frac{2(1-\cos x)}{x^{2}}$ equal to?
A. 0
B. $1 / 2$
C. $1 / 4$
D. 1

Answer: D

80. Consider the following :
81. $\lim _{x \rightarrow 0} \frac{1}{x}$ exists.
82. $\lim _{x \rightarrow 0} \frac{1}{e^{x}}$ does not exist.

Which of the above is/are correct?
A. 1 only
B. 2only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

81. Which one of the following is correct in respect of the function
$f(x)=\frac{x^{2}}{|x|}$ for $x \neq 0$ and $f(0)=0$
A. $f(x)$ is discontinuous every where
B. $f(x)=$ is continuous every where
C. $f(x)$ is continuous at $x=0$ only
D. $f(x)$ is discontinuous at $x=0$ only

Answer: B

D Watch Video Solution

82. What is $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}$ equal to?
A. 0
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. 1

Answer: B

83. Let $f: R \rightarrow R$ be a function whose inverse is $\frac{x+5}{3}$. What is $\mathrm{f}(\mathrm{x})$ equal to?
A. $f(x)=3 x+5$
B. $f(x)=3 x-5$
C. $f(x)=5 x-3$
D. $f(x)$ does not exist

Answer: B

- Watch Video Solution

84. Consider the following statements :
85. If $f(x)=x^{2}$ and $g(y)=y^{3}$ then $\mathrm{f}=\mathrm{g}$.
86. Identity function is not always a bijection.

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

85. Let $A=\{x \in R|x \geq 0|$. A function $f: A \rightarrow A$ is defined by $f(x)=x^{2}$. Which one of the following is correct ?
A. The function does not have inverse
B. f is its own inverse
C. The function has an inverse but f is not its own inverse
D. None of the above
86. Consider the following statement in respect of a function $f(x)$:
87. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{a}$ iff $\lim _{x \rightarrow a} f(x)$ exists.
88. If $\mathrm{f}(\mathrm{x})$ is continuous at a point, then $\frac{1}{f(x)}$ is also continuous at that point.

Which of the above, statements is/are corrent?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

87. Consider the function $f(x)=\left\{\begin{array}{ll}x^{2}, & x>2 \\ 3 x-2, & x \leq 2\end{array}\right.$. Which one of the following statements is correct in respect of the above function?
A. $f(x)$ is derivable but not continuous at $x=2$.
B. $f(x)$ if continuous but not derivalble at $x=2$.
C. $f(x)$ is neither continuous nor derivable at $x=2$.
D. $f(x)$ is continuous as well as derivable at $x=2$.

Answer: D

- Watch Video Solution

88. Consider the following statements:
89. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
90. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ exists.

Which of the above statements correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

89. $\lim _{x \rightarrow 0} \frac{\sin x-\tan x}{x}$ equal to?
A. 0
B. 1
C. -1
D. $1 / 2$

Answer: C

90. What is $\lim _{x \rightarrow 0} \frac{1-\sqrt{1+x}}{x}$ equal to?
A. $1 / 2$
B. $-1 / 2$
C. 1
D. -1

Answer: A

- Watch Video Solution

91. Consider the following statements:
92. The derivative where the function attains maxima or minima be zero.
93. If a function is differentiable at a point, then it must be continuous at that point.

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

92. Let N be the set of natural numbers and f : $\mathrm{N}>\mathrm{N}$ be a function given by $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$ for $x \in N$.Which one of the following is correct? a. f is oneone and onto b. f is one-one but not onto $\mathrm{c} . \mathrm{f}$ is only onto d. f is neither one-one nor onto
A. f is one-one and onto
B. f is one-one but not onto
C. fis only onto
D. f is neither one-one nor onto

Answer: B

- Watch Video Solution

93. Let f be a function from the set of natural numbers to the set of even natural numbers given by $f(x)=2 x$. Then f is
A. one to one but not onto
B. onto but not one-one
C. both one-one and onto
D. neither one-one nor onto

Answer: C

D Watch Video Solution

94. Consider the following function :
95. $f(x)=e^{x}$, where $x>0$
96. $g(x)=|x-3|$

Which of the above functions is/are continuous?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

95. What is $\lim _{x \rightarrow 2} \frac{2-x}{x^{3}-8}$ equal to ?
A. $\frac{1}{8}$
B. $-\frac{1}{8}$
C. $\frac{1}{12}$
D. $-\frac{1}{12}$

Answer: D

- Watch Video Solution

96. A function $f: R \rightarrow R$ is defined as
$f(x)=x^{2}$ for $x \geq 0, f(x)=-x$ for $x<0$.
Consider the following statements in respect of the above function :
97. The function is continuous at $\mathrm{x}=0$.
98. The function is differentiable at $\mathrm{x}=0$.

Which of the above statements is /are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

97. What is $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$ equal to ?
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: A

Watch Video Solution
98. What is $\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}$ equal to ?
A. 0
B. π
C. $\frac{1}{\pi}$
D. 1

Answer: C

D Watch Video Solution

99. What is $\lim _{x \rightarrow 0} \frac{\sin 2 x+4 x}{2 x+\sin 4 x}$ equal to ?
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: C

Watch Video Solution
100. Let N denote the set of all non-negative integers and Z denote the set of all integers. The function $f: Z \rightarrow N$ given by $f(x)=|x|$ is:
A. One-one but not onto
B. Onto but not one-one
C. Both one-one and onto
D. Neither one-one nor onto

Answer: B

- Watch Video Solution

101. What is $\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}$ equal to ?
A. 0
B. 1
C. n
D. $n-1$

Answer: C

102. What is $\lim _{x \rightarrow 0} \frac{x}{\sqrt{1-\cos x}}$ equal to ?
A. $\sqrt{2}$
B. $-\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. Limit does not exist

Answer: D

103. What is $\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{(\pi-2 x)^{2}}$ equal to ?
A. 1
B. $1 / 2$
C. $1 / 4$
D. $1 / 8$

Answer: D

- Watch Video Solution

104. What is the value of λ if the function is continuous at $x=\frac{\pi}{2}$?
A. $1 / 8$
B. $1 / 4$
C. $1 / 2$
D. 1

Answer: A

- Watch Video Solution

105. If $f(9)=9$ and $f^{\prime}(9)=4$ then what is $\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-4}$ equal to?
A. 36
B. 9
C. 4
D. None of these

Answer: C

- Watch Video Solution

106. Consider the following statements:
107. The function $f(x)=3 \sqrt{x}$
is continuous at all x except at $\mathrm{x}=0$.
108. The function $f(x)=[x]$ is continuous at $\mathrm{x}=2.99$ where [.] is the bracket function.

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

107. Consider the following statements:
108. The function $f(x)=|x|$ is not differentiable at $\mathrm{x}=1$.
109. The function $f(x)=e^{x}$ is not differentiable at $\mathrm{x}=0$.

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

D Watch Video Solution

108. Let $\mathrm{f}(\mathrm{x})$ be a function defined in $1 \leq x \leq \infty$ by
$f(x)=\left\{\begin{array}{l}2-x \text { for } 1 \leq x \leq 2 \\ 3 x-x^{2} \text { for } x>2\end{array}\right.$
Consider the following statements :
109. The function is continuous at every point in the interval $(1, \infty)$.
110. The function is differentiable at $\mathrm{x}=1.5$.

Which of the above statements is /are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

109. Let $\mathrm{f}(\mathrm{x})$ be a function defined in $1 \leq x \leq \infty$ by
$f(x)=\left\{\begin{array}{l}2-x \text { for } 1 \leq x \leq 2 \\ 3 x-x^{2} \text { for } x>2\end{array}\right.$
What is the differentiable coefficient of $f(x)$ at $x=3$?
A. 1
B. 2
C. -1
D. -3

Answer: D

- Watch Video Solution

110. Let $\mathrm{f}(\mathrm{x})$ be a function defined in $1 \leq x \leq \infty$ by
$f(x)=\left\{\begin{array}{l}2-x \text { for } 1 \leq x \leq 2 \\ 3 x-x^{2} \text { for } x>2\end{array}\right.$
Consider the following statements :
111. $f^{\prime}(2+0)$ does not exist.
112. $f^{\prime}(2-0)$ does not exist.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

- Watch Video Solution

111. The function $f: N \rightarrow N, N$ being the set of of natural numbers, defined by $f(x)=2 x+3$ is
A. injective and surjective
B. injective but not surjective
C. not injective but surjective
D. neither injective nor surjective

Answer: B

- Watch Video Solution

112. If $f(x)=a x+b$ and $g(x)=c x+d$ such that $f[g(x)]=g[f(x)]$ then which one of the following is correct?
A. $f(c)=g(a)$
B. $f(a)=g(c)$
C. $f(c)=g(d)$
D. $f(d)=g(b)$

Answer: D

- Watch Video Solution

113. Consider the function $f(x)=\frac{x-1}{x+1}$

What $\frac{f(x)+1}{f(x)-1}$ equal to ?
A. 0
B. 1
C. 2 x
D. $4 x$

Answer: A

Watch Video Solution

114. Consider the function $f(x)=\frac{x-1}{x+1}$

What is $f(2 x)$ equal to ?
A. $\frac{f(x)+1}{f(x)+3}$
B. $\frac{f(x)+1}{3(x)+1}$
C. $\frac{3 f(x)+1}{f(x)+3}$
D. $\frac{f(x)+3}{3 f(x)+1}$

Answer: C

- Watch Video Solution

115. Consider the function $f(x)=\frac{x-1}{x+1}$

What is $f(f(x))$ equal to ?
A. x
B. $-x$
C. $-\frac{1}{x}$
D. None of these

Answer: C

116. Consider the function $f(x)= \begin{cases}x^{2}-5 & x \leq 3 \\ \sqrt{x+13} & x>3\end{cases}$ What is $\lim _{x \rightarrow 3} f(x)$ equal to ?
A. 2
B. 4
C. 5
D. 13

Answer: B

- Watch Video Solution

117. Consider the function $f(x)= \begin{cases}x^{2}-5 & x \leq 3 \\ \sqrt{x+13} & x>3\end{cases}$

Consider the following statements :

1. The function is discontinuous at $\mathrm{x}=3$.
2. The function is not differentiable at $\mathrm{x}=0$.

What of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

- Watch Video Solution

118. Consider the function $f(x)= \begin{cases}x^{2}-5 & x \leq 3 \\ \sqrt{x+13} & x>3\end{cases}$

What is the differential coefficient of $f(x)$ at $=12$?
A. $5 / 2$
B. 5
C. $1 / 5$
D. $1 / 10$
119. Consider the function
$f(x)= \begin{cases}\tan k x, & x<0 \\ 3 x+2 k^{2}, & x \geq 0\end{cases}$
What is the non-zero value of k for which the function is continuous at $\mathrm{x}=0$?
A. $1 / 4$
B. $1 / 2$
C. 1
D. 2

Answer: B

- Watch Video Solution

120. Consider the following statements:
121. The function $f(x)=[x]$ where [.] is the greatest integer function defined
on R, is continuous at all points except at $x=0$.
122. The function $f(x)=\sin |x|$ is continuous for all $x \in R$.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

121. What is $\lim _{x \rightarrow 0} \frac{\log _{5}(1+x)}{x}$ equal to?
A. 1
B. $\log _{5} e$
C. $\log _{e} 5$
D. 5

Answer: B

- Watch Video Solution

122. What is $\lim _{x \rightarrow 0} \frac{5^{x}-1}{x}$ equal to ?
A. $\log _{e} 5$
B. $\log _{5} e$
C. 5
D. 1

Answer: A

- Watch Video Solution

123. What is $\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots \ldots+n}{1^{2}+2^{2}+3^{2}+\ldots \ldots n^{2}}$
A. 5
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

124. Given that $\lim _{x \rightarrow \infty}\left(\frac{2+x^{2}}{1+x}-A x-B\right)=3$

What is the value of A ?
A. -1
B. 1
C. 2
D. 3

Watch Video Solution

125. Given that $\lim _{x \rightarrow \infty}\left(\frac{2+x^{2}}{1+x}-A x-B\right)=3$

What is the value of B ?
A. -2
B. 3
C. -4
D. -3

Answer: C

Watch Video Solution

126. Given that $\lim _{x \rightarrow \infty}\left(\frac{2+x^{2}}{1+x}-A x-B\right)=3$

If $G(x)=\sqrt{25-x^{2}}$ then what is $\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}$ equal to?

$$
\text { A. }-\frac{\sqrt{1}}{2 \sqrt{6}}
$$

B. $\frac{1}{5}$
C. $-\frac{1}{\sqrt{6}}$
D. $\frac{1}{\sqrt{6}}$

Answer: A

- Watch Video Solution

127. Cosider the following statements: $1 . f(x)=[x]$, where [.] is the greatest integer function, is discontinuous at $\mathrm{x}=\mathrm{n}$, where $n \in Z$.
128. $f(x)=\cot x$ is discontinuous at $x=n \pi$, where $n \in Z$.

Which of the above statements is /are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

D Watch Video Solution

128. If $f(x)=\log _{e}\left(\frac{1+x}{1-x}\right), g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$ and $g o f(t)=g(f(t))$ then what is $g^{\circ} f\left(\frac{e-1}{e+1}\right)$ equal to?
A. 2
B. 1
C. 0
D. $\frac{1}{2}$

Answer: B

129. Given a function
$f(x)=\left\{\begin{array}{lll}-1 & \text { If } & x \leq 0 \\ a x+b & \text { If } & 0<x<1 \\ 1 & \text { If } & x \geq 1\end{array}\right.$
where a, b are constants. The function is continuous everywhere.
What is the value of a?
A. -1
B. 0
C. 1
D. 2

Answer: D

- Watch Video Solution

130. Given a function
$f(x)=\left\{\begin{array}{lll}-1 & \text { If } & x \leq 0 \\ a x+b & \text { If } & 0<x<1 \\ 1 & \text { If } & x \geq 1\end{array}\right.$
where a, b are constants. The function is continuous everywhere.

What is the value of b ?
A. -1
B. 1
C. 0
D. 2

Answer: A

- Watch Video Solution

131. Consider the following functions:
132. $f(x)=x^{3}, x \in \mathbb{R}$
133. $f(x)=\sin x, 0<x<2 \pi$
134. $f(x)=e^{x}, x \in \mathbb{R}$

Which of the above function have inverse defined on their ranges?
A. 1 and 2 olny
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: C

- Watch Video Solution

132. Consider the function
$f(x)=\left\{\begin{array}{lll}\frac{\alpha \cos x}{\pi-2 x} & \text { If } & x \neq \frac{\pi}{2} \\ 3 & \text { If } & x=\frac{\pi}{2}\end{array}\right.$
Which is continuous at $x=\frac{\pi}{2}$ where α is a constant.
What is the value of α ?
A. 6
B. 3
C. 2
D. 1

D Watch Video Solution

133. Consider the function
$f(x)=\left\{\begin{array}{lll}\frac{\alpha \cos x}{\pi-2 x} & \text { If } & x \neq \frac{\pi}{2} \\ 3 & \text { If } & x=\frac{\pi}{2}\end{array}\right.$
Which is continuous at $x=\frac{\pi}{2}$ where α is a constant.
What is $\lim _{x \rightarrow 0} f(x)$ equal to?
A. 0
B. 3
C. $\frac{3}{\pi}$
D. $\frac{6}{\pi}$

Answer: D

- Watch Video Solution

134. If $g(x)=\frac{1}{f(x)}$ and $f(x)=x, x \neq 0$, then which one of the following is correct
A. $f(f(f(g(g(f(x))))))=g(g(f(g(f(x)))))$
B. $f(f(g(3(g(f(x))))))=g(g(f(g(f(x))))))$
C. $f(g(f(g(g(f(g(x))))))=g(g(f(g(f(x))))))$
D. $f(f(f(f(f(f(x))))))=f(f(f(g(x)))))$

Answer: B

- Watch Video Solution

135. If $f(x)=\operatorname{sqet}\left(25-x^{2}\right)$, then what is $\operatorname{Lim}_{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$ equal to?
A. $\frac{1}{5}$
B. $\frac{1}{24}$
C. $\sqrt{24}$
D. $-\frac{\sqrt{1}}{\sqrt{24}}$

Answer: D

- Watch Video Solution

136. Consider the function
$f(x)= \begin{cases}a x-2 & \text { for }-2<x<-1 \\ -1 & \text { for }-1 \leq x \leq 1 \\ a+2(x-1)^{2} & \text { for } 1<1 x<2\end{cases}$
What is the value of a which $\mathrm{f}(\mathrm{x})$ is continuous at $x=-1$ and $\mathrm{x}=1$?
A. -1
B. 1
C. 0
D. 2

Answer: A

137. The function $f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}$ is not defined at $x=\pi$. The value of $f(\pi)$ so that $\mathrm{f}(\mathrm{x})$ is continuous at $x=\pi$ is
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. -1
D. 1

Answer: C

- Watch Video Solution

138. Consider the following functions:
139. $f(x)=\left\{\begin{array}{lll}\frac{1}{x} & \text { if } & x \neq 0 \\ 0 & \text { if } & x=0\end{array}\right.$
140. $f(x)=\left\{\begin{array}{l}2 x+5 \text { if } x>0 \\ x^{2}+2 x+5 \text { if } x \leq 0\end{array}\right.$

Which of the above functions is / are derivable at $x=0$?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer:

- Watch Video Solution

139. The domain of the function $f(x)=\frac{1}{\sqrt{|x|}-x}$ is
A. $[0, \infty)$
B. $(-\infty, 0)$
C. $[1, \infty)$
D. $(-\infty, 0]$

Answer: B

140. Consider the following statements :
141. The function $f(x)=x^{2}+2 \cos x$ is increasing in the interval $(0, \pi)$
142. The function $f(x)=\ln \left(\sqrt{1+x^{2}-x}\right)$ is decreasing in the interval $(-\infty, \infty)$

Which of the above statements is/ are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

141. If $f: I R \rightarrow I R \rightarrow I R$ be two functions given by $f(x)=2 x-3$ and $g(x)=x^{3}+5$ than $(f o g)^{-1}(x)$ is equal to
A. $\left(\frac{x+7}{2}\right)^{\frac{1}{3}}$
B. $\left(\frac{x-7}{2}\right)^{\frac{1}{3}}$
C. $\left(x-\frac{7}{2}\right)^{\frac{1}{3}}$
D. $\left(x+\frac{7}{2}\right)^{\frac{1}{3}}$

Answer:

- Watch Video Solution

142. If $f(x)=\frac{\sin \left(e^{x-2}-1\right)}{\ln (x-1)}$, then $\lim _{x \rightarrow 2} f(x)$ is equal to
A. -2
B. -1
C. 0
D. 1

Answer: D
143. Consider the following statements :

Statement 1 : The function $f: I R \rightarrow I R$ such that
$f(x)=x^{3}$ for all $x \in I R$ is one-one.
Statement 2: $f(a) \Rightarrow f(b)$ for all $a, b \in I R$ if the function f is one-one.
Which one of the following is correct in respect of the above statements
?
A. Both the statements are true and Statement 2 is the correct explanation of Statement 1.
B. Both the statements are true and Statement 2 is not the correct explanation of Statement 1.
C. Statement 1 is true but Statement 2 is false.
D. Statement 1 is false but Statement 2 is true.

Answer: A
144. Consider the function
$f(x)=\left\{\begin{array}{lll}-2 \sin x & \text { if } & x \leq-\frac{\pi}{2} \\ A \sin x+B & \text { if } & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x & \text { if } & x \geq \frac{\pi}{2}\end{array}\right.$
Which is continuous everywhere.
The value of A is
A. 1
B. 0
C. -1
D. -2

Answer: C

145. Consider the function
$f(x)=\left\{\begin{array}{lll}-2 \sin x & \text { if } & x \leq-\frac{\pi}{2} \\ A \sin x+B & \text { if } & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ \cos x & \text { if } & x \geq \frac{\pi}{2}\end{array}\right.$
Which is continuous everywhere.
The value of B is
A. 1
B. 0
C. -1
D. -2

Answer: A

- Watch Video Solution

146. Consider the curves
$f(x)=x|x|-1$ and $g(x)=\left\{\begin{array}{r}\frac{3 x}{2}, x>0 \\ 2 x, x \leq 0\end{array}\right.$
A. At $(2,3)$ only
B. At (-1,-2) only
C. At $(2,3)$ and (-1,-2)
D. Neither at $(2,3)$ nor at $(-1,-2)$

Answer: C

- Watch Video Solution

147. Consider the curves
$f(x)=x|x|-1$ and $g(x)=\left\{\begin{array}{r}\frac{3 x}{2}, x>0 \\ 2 x, x \leq 0\end{array}\right.$
What is the area bounded by the curves?
A. $\frac{17}{6}$ square units
B. $\frac{8}{3}$ square units
C. 2 square units
D. $\frac{1}{3}$ square unit

Answer: B

- Watch Video Solution

148. Cosider the function $f(x)=|x-1|+x^{2} \quad$ where $x \in R$. Which one of the following statements is correct?
A. $f(x)$ is continuous but not differentiable at $x=0$
B. $f(x)$ is continuous but not differentiable at $x=1$
C. $f(x)$ is differentiable at $x=1$
D. $f(x)$ is differentiable at $x=0$ and $x=1$

Answer: B

- Watch Video Solution

149. Cosider the function $f(x)=|x-1|+x^{2}$ where $x \in R$. which one of the following statements is correct?
A. $f(x)$ is increasing in $\left(-\infty, \frac{1}{2}\right)$ and decreasing in $\left(\frac{1}{2}, \infty\right)$
B. $f(x)$ is decreasing in $\left(-\infty, \frac{1}{2}\right)$ and increasing in $\left(\frac{1}{2}, \infty\right)$
C. $f(x)$ is increasing in $(-\infty, 1)$ and increasing in $(1, \infty)$
D. $f(x)$ is decreasing in $(-\infty, 1)$ and increasing in $(1, \infty)$

Answer: B

- Watch Video Solution

150. Which one the following statements is correct?
A. $f(x)$ has local minima at more than one point in $(-\infty, \infty)$
B. $f(x)$ has local maxima at moer than one point in $(-\infty, \infty)$
C. $f(x)$ has local minimum at one point only in $(-\infty, \infty)$
D. $f(x)$ has neither maxima nor minima in $(-\infty, \infty)$

Answer: C

151. What is the area of the region bounded by x-asix, the curve $y=f(x)$ and the two ordinates $x=\frac{1}{2}$ and $x=1$?
A. $\frac{5}{12}$ square unit
B. $\frac{5}{6}$ square unit
C. $\frac{7}{6}$ square units
D. 2 square units

Answer: A

- Watch Video Solution

152. What is the area of the region bounded by x-asix, the curve $y=f(x)$ and the two ordinates $x=1$ and $x=\frac{3}{2}$?
A. $\frac{5}{12}$ square unit
B. $\frac{7}{12}$ square unit
C. $\frac{2}{3}$ square unit
D. $\frac{11}{12}$ square unit

Answer: D

- Watch Video Solution

153. Consider the equation $x+|y|=2 y$.

Which of the following statements are not correct?
yas a function of x is not defined for all real x .
yas a function of x is not continuous at $\mathrm{x}=0$.
yas a function of x is differentiable for all x .
Select the correct answer using the code given below.
A. 1 and 2 olny
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: D

- Watch Video Solution

154. Consider the equation $x+|y|=2 y$.

What is the derivative of y as a function of x with respect to x for $x<0$?
A. 2
B. 1
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: D

- Watch Video Solution

155. Consider the function $f(x)=(x-1)^{2}(x+1)(x-2)^{3}$

What is the number of point of local minima of the function $f(x)$?
A. None
B. One
C. Two
D. Three

Answer: C

- Watch Video Solution

156. Consider the function $f(x)=(x-1)^{2}(x+1)(x-2)^{3}$

What is the number of point of local maxima of the function $f(x)$?
A. None
B. One
C. Two
D. Three

Answer: C

157. Consider the function $f(x)=\frac{a^{[x]+x}-1}{[x]+x}$ where [.] denotes the greatest integer function.

What is $\lim _{x \rightarrow 0^{+}} f(x)$ equal to?
A. 1
B. In a
C. $1-a^{-1}$
D. Limit does not exist

Answer: B

Watch Video Solution

158. Consider the function $f(x)=\frac{a^{[x]+x}-1}{[x]+x}$ where [.] denotes the greatest integer function.

What is $\lim ^{0^{-}}(f(x)$ equal to?
$x \rightarrow 0^{-}$
A. 0
B. In a
C. $1-a^{-1}$
D. Limit does not exist

Answer: C

- Watch Video Solution

159. A function $f(x)$ is defined as follows:
$f(x)=\left\{\begin{array}{lll}x+\pi & \text { for } & x \in[-\pi, 0) \\ \pi \cos x & \text { for } & x \in\left[0, \frac{\pi}{2}\right] \\ \left(x-\frac{\pi}{2}\right)^{2} & \text { for } & x \in\left(\frac{\pi}{2}, \pi\right]\end{array}\right.$
Consider the following statements :
160. The function $f(x)$ is continuos at $x=0$.
161. The function $\mathrm{f}(\mathrm{x})$ is continuous at $x=\frac{\pi}{2}$.

Which of the above statements is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

160. A function $f(x)$ is defined as follows:
$f(x)=\left\{\begin{array}{lll}x+\pi & \text { for } & x \in[-\pi, 0) \\ \pi \cos x & \text { for } & x \in\left[0, \frac{\pi}{2}\right] \\ \left(x-\frac{\pi}{2}\right)^{2} & \text { for } & x \in\left(\frac{\pi}{2}, \pi\right]\end{array}\right.$
Consider the following statements :
161. The function $f(x)$ is differentiable at $x=0$.
162. The function $\mathrm{f}(\mathrm{x})$ is differentiable at $x=\frac{\pi}{2}$.

Which of the above statements is /aer correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

- Watch Video Solution

161. Let $f(x)$ be the greatest integer function and $g(x)$ be the modulus function.

What is $(g \circ f)\left(-\frac{5}{3}\right)-(f o g)\left(-\frac{5}{3}\right)$ equal to?
A. -1
B. 0
C. 1
D. 2

Answer: C

162. Let $f(x)$ be the greatest integer function and $g(x)$ be the modulus function.

What is $\left(f^{\circ} f\right)\left(-\frac{9}{5}\right)-\left(g^{\circ} g\right)(-2)$ equal to?
A. -1
B. 0
C. 1
D. 2

Answer: B

- Watch Video Solution

163. If $\lim _{x \rightarrow 0} \phi(x)=a^{2}$, where $a \neq 0$, then what is $\lim _{x \rightarrow 0} \phi\left(\frac{x}{a}\right)$ equal to?
A. a^{2}
B. a^{-2}
C. $-a^{2}$
D. $-a$

Answer: A

- Watch Video Solution

164. What is $\lim _{x \rightarrow 0} e^{\frac{1}{x^{2}}}$ equal to?
A. 0
B. 1
C. -1
D. Limit does not exist

Answer: A

165. What is the domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$?
A. $(-\infty, 0)$
B. $(0, \infty)$
C. $0<x<1$
D. $x>1$

Answer: A

(Watch Video Solution

166. Consider the following in respect of the function
$f(x)=\left\{\begin{array}{l}2+x, x \geq 0 \\ 2-x, x<0\end{array}\right.$
167. $\lim _{x \rightarrow 1} f(x)$ does not exist.
168. $f(x)$ is differentiable at $x=0$
169. $f(x)$ is continuous at $x=0$

Which of the above statements is /aer correct?
A. 1 only
B. 3 olny
C. 2 and 3 only
D. 1 and 3 only

Answer: B

- Watch Video Solution

167. Let $f: A \rightarrow R$, where $A=R\{0\}$ is such that $f(x)=\frac{x+|x|}{x}$ On which one of the following sets is $f(x)$ continuous?
A. A
B. $B=\{x \in R: x \geq 0\}$
C. $C=\{x \in R: x \leq 0\}$
D. $D=R$

- Watch Video Solution

168. $f(x)= \begin{cases}3 x^{2}+12 x-1 & -1 \leq x \leq 2 \\ 37-x, & 2<x \leq 3\end{cases}$

Which of the following statements is/are correct?

1. $f(x)$ is increasing in the interval $[-1,2]$.
2. $f(x)$ is decreasing in the interval $(2,3]$.

Select the correct answer using the code given below:
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

169. Let $f(x)=\left\{\begin{array}{ll}-2, & -3 \leq x \leq 0 \\ x-2, & 0<x \leq 3\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$ Which of the following statement is correct ? $\mathrm{g}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$ $g(x)$ is differentiable at $x=2$
A. 1 olny
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

- Watch Video Solution

170. Let $f(x)=[x]$, where [.] is the greatest integer function and $g(x)=\sin x$ be two real valued functions over R .

Which of the following statements is correct?
A. Both $f(x)$ and $g(x)$ are continuous at $x=0$
B. $f(x)$ is continuous at $x=0$, but $g(x)$ is not continuous at $x=0$.
C. $g(x)$ is continuous at $x=0$, but $f(x)$ is not continuous at $x=0$.
D. Both $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are discontinuous at $\mathrm{x}=0$.

Answer: C

- Watch Video Solution

171. Let $f(x)=[x]$, where [.] is the greatest integer function and $g(x)=\sin x$ be two real valued functions over R .

Which one of the following statements is correct?
A. $\lim _{x \rightarrow 0}(f o g)(x)$ exists
B. $\lim _{x \rightarrow 0}(g \circ f)(x)$ exists
C. $\lim _{x \rightarrow 0+}(f o g)(x)=\lim _{x \rightarrow 0-}(g o f)(x)$
D. $\lim _{x \rightarrow 0+}(f o g)(x)=\lim _{x \rightarrow 0+}(g o f)(x)$

Answer: D

172. Let $f(x)=[x]$, where [.] is the greatest integer function and $g(x)=\sin x$ be two real valued functions over R .

Which of the following statements is correct?

1. $(f \circ f)(x)=f(x)$.
2. $(\operatorname{gog})(x)=g(x)$ only when $x=0$.
3. (go(fog))(x) con take only three values.

Select the correct answer using the code given below:
A. 1 and 2 olny
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: C

173. Let $f(x)=\left\{\begin{array}{ll}\frac{e^{x}-1}{x}, & x>0 \\ 0, & x=0\end{array}\right.$ be a real valued function.

Which one of the following statements is correct?
A. $f(x)$ is a strictly decreasing function in $(0, x)$,
B. $f(x)$ is a strictly increasing function in $(0, x)$,
C. $f(x)$ is neither increasing nor decreasing in ($0, x$)
D. $f(x)$ is not decreasing in $(0, x)$.

Answer: B

- Watch Video Solution

174. Let $f(x)=\left\{\begin{array}{ll}\frac{e^{x}-1}{x}, & x>0 \\ 0, & x=0\end{array}\right.$ be a real valued function.

Which of the following statements is/are correct?

1. $f(x)$ is right continuous at $x=0$.
2. $\mathrm{f}(\mathrm{x})$ is discontinuous at $\mathrm{x}=1$.

Seletct the correct answer using the code given below.
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

175. Let $f(x)=\left\{\begin{array}{ll}-2, & -3 \leq x \leq 0 \\ x-2, & 0<x \leq 3\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$

Which of the following statement is/are correct?

1. $\mathrm{g}(\mathrm{x})$ is differentiable $\mathrm{x}=0$.
$g(x)$ is differentiable at $x=2$.
Select the correct aswer using the code given below:
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

- Watch Video Solution

176. Let $f(x)=\left\{\begin{array}{ll}-2, & -3 \leq x \leq 0 \\ x-2, & 0<x \leq 3\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$

What is the value of the differential coefficient of $g(x)$ at $x=-2$?
A. -1
B. 0
C. 1
D. 2

Answer: B

- Watch Video Solution

177. Let $f(x)=\left\{\begin{array}{ll}-2, & -3 \leq x \leq 0 \\ x-2, & 0<x \leq 3\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$

What is the value of differential coefficent of $g(x)$ at $x=-2$
A. -1
B. 0
C. 1
D. 2

Answer: B

- Watch Video Solution

178. What is $\lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{x^{2}}$ equal to?
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: B

- Watch Video Solution

179. The function $f: X \rightarrow Y$ defined by $f(x)=\cos x$ where $x \in X$, is one-one and onto if X and Y are respectively equal to
A. $[0, \pi]$ and $[-1,1]$
B. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $[-1,1]$
C. $[0, \pi]$ and $(-1,1)$
D. $[0, \pi]$ and $[0,1]$

Answer: A

- Watch Video Solution

180. If $f(x)=\frac{x}{x-1}$, then what is $\frac{f(a)}{f(a+1)}$ equal to?
A. $f\left(-\frac{a}{a+1}\right)$
B. $f\left(a^{2}\right)$
C. $f\left(\frac{1}{a}\right)$
D. $f(-a)$

Answer: B

- Watch Video Solution

181. Let $f:[-6,6] \rightarrow R$ be defined by $f(x)=x^{2}-3$. Consider the following :
182. $\left(f^{\circ} f^{\circ} f\right)(-1)=\left(f^{\circ} f^{\circ} f\right)(1)$

Which of the above is /are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

182.

$f(x)=p x+q$ and $g(x)=m x+n$. Then $f(f(x))=g(f(x)) \quad$ is equivalent to
A. $f(p)=g(m)$
B. $f(q)=g(n)$
C. $f(n)=g(q)$
D. $f(m)=g(p)$

Answer: C

183. If $F(x)=\sqrt{9-x^{2}}$, then what is $\lim _{x \rightarrow 1} \frac{F(x)-F(1)}{x-1}$ equal to?
A. $-\frac{1}{4 \sqrt{2}}$
B. $\frac{1}{8}$
C. $-\frac{1}{2 \sqrt{2}}$
D. $\frac{1}{2 \sqrt{2}}$

Answer: C

- Watch Video Solution

184. If $f(x)=\{x$, when x is rational and 0 , when x is irrational $g(x)=\{0$, when x is rational and x, when x is irrational then $(f-g)$ is
A. one-one and into
B. neither one-one nor onto
C. many-one and onto
D. one-one and onto

Answer: D

- Watch Video Solution

185. Let $f(x)$ be defined as follows:
$f(x)= \begin{cases}2 x+1, & -3<x<-2 \\ x-1, & -2 \leq x<0 \\ x+2, & 0 \leq x<1\end{cases}$
Which one of the following statements is correct in respect of the above function?
A. It is discontinuous at $x=-2$ but continuous at every other point.
B. It is continuous only in the interval ($-3,-2$).
C. It is discontinuous at $\mathrm{x}=0$ but continuous at every other point.
D. It is discontinuous at every point.

Answer: C

186. Consider the following statements:
187. If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist, then $\lim _{x \rightarrow a}\{f(x) g(x)\}$ exists.
188. If $\lim _{x \rightarrow a}\{f(x) g(x)\}$ exists, then both $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ must exist.

Which of the above statements is /are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

D Watch Video Solution

187. Let $f(a)=\frac{a-1}{a+1}$

Consider the following :

1. $f(2 a)=f(a)+1$
2. $f\left(\frac{1}{a}\right)=-f(a)$

Which of the above is /are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

188. Suppose the function $f(x)=x^{n}, n \neq 0$ is differentiable for all x . Then n can be any element of the interval
A. $(1, \infty)$
B. $(0, \infty)$
C. $\left(\frac{1}{2}, \infty\right)$
D. None of the above

Answer: A

- Watch Video Solution

189. The inverse of the function $y=5^{\operatorname{In} x}$ is
A. $x=y^{\frac{1}{\operatorname{In5}}}, y>0$
B. $x=y^{I n 5}, y>0$
C. $x=y^{\frac{1}{\operatorname{In5}}}, y<0$
D. $x=5$ In $y, y>0$

Answer: A

- Watch Video Solution

190. A function is defined as follows :
$f(x)= \begin{cases}-\frac{x}{\sqrt{x}^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}$
Which one of following is correct in respect of the above function?
A. $f(x)$ is continuous at $x=0$ but not differentiable at $x=0$
B. $f(x)$ is continuous as well as differentiable at $x=0$
C. $f(x)$ is discontinuous at $x=0$
D. None of the above

Answer: C

- Watch Video Solution

191. Consider the following :
192. $x+x^{2}$ is continuous at $\mathrm{x}=0$
193. $x+\cos \left(\frac{1}{x}\right)$ is discontinuous at $\mathrm{x}=0$
194. $x^{2}+\cos \left(\frac{1}{x}\right)$ is continuous at $\mathrm{x}=0^{`}$

Which of the above are correct?
A. 1 and 2 olny
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: A

- Watch Video Solution

192. A function is defined in $(0, \infty)$ by
$f(x)=\left\{\begin{array}{lll}1-x^{2} & \text { for } & 0<x \leq 1 \\ \text { In } x & \text { for } & 1<x \leq 2 \\ \text { In } 2-1+0.5 x & \text { for } & 2<x<\infty\end{array}\right.$
Which one of the following is correct in respect of the derivative of the function, i.e., $f^{\prime}(x)$?
A. $f^{\prime}(x)=2 x$ for $0<x \leq 1$
B. $f^{\prime}(x)=-2 x$ for $0<x \leq 1$
C. $f^{\prime}(x)=-2 x$ for $0<x<1$
D. $f^{\prime}(x)=0$ for $0<x<\infty$

Answer: C

- Watch Video Solution

193. Consider the following statements :
194. Derivative of $f(x)$ may not exist at some point.
195. Derivative of $f(x)$ may exist finitely at some point.
196. Derivative of $f(x)$ may be infinite (geometircally) at some point.

Which of the above statements are correct?
A. 1 and 2 olny
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

- Watch Video Solution

194. The function $f(x)=|x|-x^{3}$ is
A. odd
B. even
C. both even and odd
D. neither even nor odd

Answer: D

- Watch Video Solution

195. If $l_{1}=\frac{d}{d x}\left(e^{\sin x}\right)$
$l_{2} \lim _{h \rightarrow 0} \frac{e^{\sin (x+h)}-e^{\sin x}}{h}$
$l_{3}=\int e^{\sin x} \cos x d x$
then which one of the following is correct?
A. $l_{1} \neq l_{2}$
B. $\frac{d}{d x}\left(l_{3}\right)=l_{2}$
C. $\int l_{3} d x=l_{2}$
D. $l_{2}=l_{3}$

Answer: B

D Watch Video Solution

196. If $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin x}{x}=l$ and $\lim _{x \rightarrow \infty} \frac{\cos x}{x}=m$, then which one of the following is correct?
A. $l=1, m=1$
В. $l=\frac{2}{\pi}, m=\infty$
C. $l=\frac{2}{\pi}, m=0$
D. $l=1, m=\infty$

Answer: C

- Watch Video Solution

197. If x is any real number, then $\frac{x^{2}}{1+x^{4}}$ belongs to which one of the following intervals?
A. $(0,1)$
B. $\left(0, \frac{1}{2}\right]$
C. $\left(0, \frac{1}{2}\right)$
D. $[0,1]$

Answer: B

- Watch Video Solution

198. The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k, k$ is an integer, is
A. $(-1)^{k}(k-1) \pi$
B. $(-1)^{k-1}(k-1) \pi$
C. $(-1)^{k} k \pi$
D. $(-1)^{k-1} k \pi$

Answer: A

- Watch Video Solution

199. Indicate all correct alternatives if, $f(x)=\frac{x}{2}-1$, then on the interval $[0, \pi]$
A. $\tan [f(x)]$ where $[$.$] is the greatest integer function, and \frac{1}{f(x)}$ are both continuous.
B. $\tan [f(x)]$, where [.] is the greatest integer function, and $f^{-1}(x)$ are both continuous.
C. $\tan [f(x)]$, where [.] is the greatest integer function, and $\frac{1}{f(x)}$ are both discontinuous.
D. $\tan [f(x)]$ where [.] is the greatest integer function, is discontinuous but $\frac{1}{f(x)}$ is continuous.

Answer: C

- Watch Video Solution

200. The set of all points where the function $f(x)=\sqrt{1-e^{-x^{2}}}$ is differentiable is
A. $(0, \infty)$
B. $(-\infty, \infty)$
C. $(-\infty, 0) \cup(0, \infty)$
D. $(-1, \infty)$

Answer: C

- Watch Video Solution

201. If $f(x)=x(\sqrt{x}+\sqrt{(x+1)}$, then
A. continuous but not differentiable at $\mathrm{x}=0$
B. differentiable at $x=0$
C. not continuous at $\mathrm{x}=0$
D. None of the above

Answer: B

- Watch Video Solution

202. Which one the following graph represents the function
$f(x)=\frac{x}{x}, x \neq 0$?
A.
.
B.
.
C.
D. None of the above

Answer: C

- Watch Video Solution

203. Let g be the greatest integer function. Then the function
$f(x)=(g(x))^{2}-g(x)$ is discontinuous at
A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Answer: D

- Watch Video Solution

204. Consider the following statements :

Statement I:
$x>\sin x$ for all $x>0$
Statement II : $f(x)=x \sin x$ is an increasing function for all $x>0$
Which one of the following is correct in respect of the above statements?
A. Both Statement I and Statement II are true and Statemenet II is the correct explanation of Statement II.
B. Both Statement I and Statement II are true and Statement II is not the correct explanation of Statement I.
C. Statement I is true but Statement II is false
D. Statement I is false but Statement II is true

- Watch Video Solution

205. If $f(x)=\frac{4 x+x^{4}}{1+4 x^{3}}$ and $g(x)=\operatorname{In}\left(\frac{1+x}{1-x}\right)$, then what is the value of $f^{\circ} g\left(\frac{e-1}{e+1}\right)$ equal to?
A. 2
B. 1
C. 0
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

206. Which one of the following is correct in respect of the function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$defined as $f(x)=|x+1| ?$
A. $f(x)^{2}=[f(x)]^{2}$
B. $f(|x|)=|f(x)|$
C. $f(x+y)=f(x)+f(y)$
D. None of the above

Answer: D

- Watch Video Solution

207. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$is defined by $f(x)=\frac{x^{2}}{1+x^{2}}$. What is the range of the function?
A. $[0,1)$
B. $[0,1]$
C. $(0,1]$
D. $(0,1)$
208. If $f(x)=|x|+|x-1|$, then which one of the following is correct?
A. $f(x)$ is continuous at $x=0$ and $x=1$
B. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$ but not at $\mathrm{x}=1$
C. $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$ but not at $\mathrm{x}=0$
D. $f(x)$ is neither continuous at $x=0$ nor at $x=1$

Answer: A

- Watch Video Solution

209. Conisder the function $f(x)=\left\{\begin{array}{ll}x^{2} \ln |x| & x \neq 0 \\ 0 & x=0\end{array}\right.$. What is $\mathrm{f}^{\prime}(0)$ equal to?
A. 0
B. 1
C. -1
D. It does not exist

Answer: A

- Watch Video Solution

210. If $f(x)=\frac{x^{2}-9}{x^{2}-2 x-3}, x \neq 3$ is continuous at $\mathrm{x}=3$, then which one of the following is correct?
A. $f(3)=0$
B. $f(3)=1.5$
C. $f(3)=3$
D. $f(3)=-1.5$

Answer: B

211. If $f: \mathbb{R} \rightarrow S$ defined by $f(x)=4 \sin \times-3 \cos x+1$ is onto, then what is S equal to?
A. $[-5,5]$
B. $(-5,5)$
C. $(-4,6)$
D. $[-4,6]$

Answer: D

- Watch Video Solution

212. For f to be a function, what is the domain of f , if $f(x)=\frac{1}{\sqrt{|x|-x}}$?
A. $(-\infty, 0)$
B. $(0, \infty)$
C. $(-\infty, \infty)$
D. $(-\infty, 0]$

D Watch Video Solution

213. What is $\lim _{x \rightarrow 0} \frac{\tan x}{\sin 2 x}$ equal to?
A. $\frac{1}{2}$
B. 1
C. 2
D. Limit does not exist

Answer: A

Watch Video Solution
214. What is $\lim _{h \rightarrow 0} \frac{\sqrt{2 x+3 h}-\sqrt{2} x}{2 h}$ equal to?
A. $\frac{1}{2 \sqrt{2} x}$
B. $\frac{3}{\sqrt{2} x}$
C. $\frac{3}{2 \sqrt{2} x}$
D. $\frac{3}{4 \sqrt{2} x}$

Answer: D

- Watch Video Solution

215. If $f(x)$ is an even function, then write whether $f^{\prime}(x)$ is even or odd.
A. $f^{\prime}(x)$ is an even function
B. $f^{\prime}(x)$ is an odd function
C. $f^{\prime}(x)$ may be an even or odd function depending on the type of function
D. $f^{\prime}(x)$ is a constant function

Answer: B

216. Let $A=(X \in R:-1 \leq x \leq 1)$ and S be the subset of $A \times B$, defined by $S=\left[(x, y) \in A \times B: x^{2}+y^{2}=1\right]$

Which one of the following is correct?
A. S is a one-one function from A inot B
B. S is a many-one function from A inot B
C. S is a bijective mapping from A into B
D. S is not a function

Answer: D

- Watch Video Solution

217. If $f(x)=\frac{\sqrt{x-1}}{x-4}$ defines a function of R , then what is its domain?
A. $(-\infty, 4) \cup(4, \infty)$
B. $[4, \infty]$
C. $(1,4) \cup(4, \infty)$
D. $[1,4) \cup(4, \infty)$

Answer: D

- Watch Video Solution

218. Consider the function
$f(x)=\left\{\begin{array}{lll}\frac{\sin 2 x}{5 x} & \text { if } & x \neq 0 \\ \frac{2}{15} & \text { if } & x=0\end{array}\right.$
Which one of the following is correct in respect of the function?
A. It is not continuous at $\mathrm{x}=0$
B. It is continuous at every x
C. It is not continuous at $x=\pi$
D. It is continuous at $x=0$

Answer: A

219. For the function $f(x)=|x-3|$, which of the following is not correct?
A. The function is not continuous at $x=3$
B. The function is continuous at $x=3$
C. The function is differentiable at $x=0$
D. The function is differentiable at $x=-3$

Answer: A

- Watch Video Solution

220. If the function $f 9 x)=\frac{2 x-\sin ^{-1} x}{2 x+\tan ^{-1} x}$ is continuous at each point of its domain, then the value of $f(0) 2$ (b) $\frac{1}{3}$ (c) $-\frac{1}{3}$ (d) $\frac{2}{3}$
A. $-\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. 2

Answer: B

- Watch Video Solution

221. If $f(x)=\sqrt{25-x^{2}}$, then what is $\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}$ equal to
A. $-\frac{1}{\sqrt{24}}$
B. $\frac{1}{\sqrt{24}}$
C. $-\frac{1}{4 \sqrt{3}}$
D. $\frac{1}{4 \sqrt{3}}$

Answer: A

- Watch Video Solution

222. What is $\lim _{\theta \rightarrow 0} \frac{\sqrt{1-\cos \theta}}{\theta}$ equal to?
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. $-\frac{1}{2 \sqrt{2}}$

Answer: C

- Watch Video Solution

223. A function $f: A \rightarrow R$ is defined by the equation
$f(x)=x^{2}-4 x+5$
where $A=(1,4)$. What is the range of the function?
A. $(2,5)$
B. $(1,5)$
C. [1,5)
D. [1,5]

Answer: C

- Watch Video Solution

224. In which one of the following intervals is the function $f(x)=x^{2}-5 x+6$ decreasing?
A. $(-\infty, 2]$
B. $[3, \infty]$
C. $(-\infty, \infty)$
D. $(2,3)$

Answer: A

- Watch Video Solution

$f(x+y)=f(x) f(y)$ and $f(x)=1+x g(x) \phi(x)$ where $\lim _{x \rightarrow 0} g(x)=a$
.Then what is $f(x)$ equal to?
A. $1+a n f(x)$
B. $1+a b$
C. ab
D. $a b f(x)$

Answer: D

- Watch Video Solution

226. What is $\lim _{x \rightarrow \frac{\pi}{6}} \frac{2 \sin ^{2} x+\sin x-1}{2 \sin ^{2} x-3 \sin x+1}$ to?
A. $-\frac{1}{2}$
B. $-\frac{1}{3}$
C. -2
D. -3

Answer: D

- Watch Video Solution

227. A function f defined by $f(x)=\operatorname{In}\left(\sqrt{x^{2}+1-x}\right)$ is
A. an even function
B. an odd function
C. Both even and odd function
D. Neither even nor odd function

Answer: B

- Watch Video Solution

228. The domain of the function f defined by $f(x)=\log _{x} 10$ is
A. $x>10$
B. $x>0$ excluding $\mathrm{x}=10$
C. $x \geq 10$
D. $x>0$ excluding $\mathrm{x}=1$

Answer: D

D Watch Video Solution

229. $\lim _{x \rightarrow \infty} \frac{1-\cos ^{3} 4 x}{x^{2}}$ is equal to
A. 0
B. 12
C. 24
D. 36

Answer: C

230. If $f(x)=3^{1+x}$, then $f(x) f(y) f(z)$ is equal to
A. $f(x+y+z)$
B. $f(x+y+z+1)$
C. $f(x+y+z+2)$
D. $f(x+y+z+3)$

Answer: C

Watch Video Solution
231. The domain of the function $f(x)=\sqrt{(2-x)(x-3)}$ is
A. $(0, \infty)$
B. $[0, \infty]$
C. $[2,3]$
D. $(2,3)$

Answer: C

- Watch Video Solution

232. The value of k which makes
$` f(x)=\{\{:(\sin x, x n e 0),(k, x=0):\} " c o n t i n u o u s$ at $x=0, i s "$
A. 2
B. 1
C. -1
D. 0

Answer: D

