© 'doubtnut

MATHS

BOOKS - NDA PREVIOUS YEARS

MATRICES \& DETERMINANTS

Mqs

1. $A_{(\alpha)}=\left[\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right], A_{(\beta)}=\left[\begin{array}{ll}\cos \beta & -\sin \beta \\ \sin \beta & \cos \beta\end{array}\right]$

Which one of the following is correct ?
A. $A_{(-\alpha)} A_{(-\beta)}=A_{(\alpha+\beta)}$
B. $A_{(-\alpha)} A_{(\beta)}=A_{(\alpha-\beta)}$
C. $A_{(\alpha)} A_{(-\beta)}=A_{\{-(\beta-\alpha)\}}$
D. $A_{(\alpha)} A_{(\beta)}=A_{(\alpha+\beta)}$

(D) Watch Video Solution

2. If $\mathrm{f}(\mathrm{x})=\left|\begin{array}{lll}1+\sin ^{2} x & \cos ^{2} x & 4 \sin 2 x \\ \sin ^{2} x & 1+\cos ^{2} x & 4 \sin 2 x \\ \sin ^{2} x & \cos ^{2} x & 1+4 \sin 2 x\end{array}\right|$ then the maximum
value of $f(x)$ is
A. 2
B. 4
C. 6
D. 8

Answer: C

- Watch Video Solution

3. If the matrix $\left[\begin{array}{lll}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ is singular, then what is one of the values of θ ?
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 0

Answer: A

- Watch Video Solution

4. For what values of k, does the system of linear equations $x+y+z=2,2 x+y-z=3,3 x+2 y+k z=4$ have a unique solution?
A. $k=0$
B. $-1<k<1$
C. $-2<k<2$
D. $k \neq 0$

Answer: D

- Watch Video Solution

5. Let $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right]$ If $\mathrm{AB}=\mathrm{BA}$, then what is the value of x ?
A. -1
B. 0
C. 1
D. Any real number
6. If a matrix B is obtained from a square matrix A by interchanging any two of its rows, then what is $|A+B|$ equal to
A. $2|A|$
B. $2|B|$
C. 0
D. $|A|-|B|$

Answer: C

- Watch Video Solution

7. Let $A=\left(a_{i j}\right)_{n \times n}$ and $\operatorname{adj} \mathrm{A}=\left(\alpha_{i j}\right)$

If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 4 \\ 2 & 3 & -1\end{array}\right]$, what is the value of α_{23} ?
A. 1
B. -1
C. 8
D. -8

Answer: C

- Watch Video Solution

8. If A and B are non-singular square matrices of same order then $a d j(A B)$ is equal to
A. $(\operatorname{adj} A)(\operatorname{adj} B)$
B. $(\operatorname{adj} A)+(\operatorname{adj} B)$
C. $(\operatorname{adj} A)-(\operatorname{adj} B)$
D. $(\operatorname{adj} B)(\operatorname{adj} A)$

Answer: D

9. M is a matrix with real entries given by $M=\left[\begin{array}{lll}4 & k & 0 \\ 6 & 3 & 0 \\ 2 & t & k\end{array}\right]$

Which of the following conditions guarantee the invertivility of M ?

1. $k \neq 2$
2. $k \neq 0$
3. $t \neq 0$
4. $t \neq 1$

Select the correct answer using the code given below :
A. 1 and 2
B. 2 and 3
C. 1 and 4
D. 3 and 4

Answer: A

10. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$ be a square matrix of order 3 . Then for any positive integer n , what is A^{n} equal to ?
A. A
B. $3^{n} A$
C. $\left(3^{n-1}\right) A$
D. 3 A

Answer: C

Watch Video Solution

11. Let A and B be matrices of order 3×3. If $A B=0$, then which of the following can be concluded?
A. $A=0$ or $B=0$
B. $A=0$ and $B=0$
$C . A$ and B are non-zero square matrices
D. A and B cannot both be non-singular

Answer: C

- Watch Video Solution

12. If A is a matrix of order $p \times q$ and B is a matrix of order $s \times t$, under which one of the following conditions does $A B$ exist?
A. $p=t$
B. $p=s$
C. $q=t$
D. $q=s$

Answer: D

- Watch Video Solution

13. If A is a square matrix such that $A-A^{T}=0$, then which one of the following is correct ?
A. A must be a null matrix
B. A must be a unit matrix
C. A must be a scalar matrix
D. None of the above

Answer: D

- Watch Video Solution

14. The largest value of a third order determinant whose elements are equal to 1 or 0 is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

15. What is the inverse of $A=\left[\begin{array}{ll}1+i & 1+i \\ -1+i & 1-i\end{array}\right]$?
A. $\frac{1}{4}\left[\begin{array}{ll}1-i & -1-i \\ 1-i & 1+i\end{array}\right]$
B. $\frac{1}{4}\left[\begin{array}{ll}1+i & -1+i \\ 1+i & -1-i\end{array}\right]$
C. $\frac{1}{4}\left[\begin{array}{ll}1+i & 1-i \\ -1-i & 1+i\end{array}\right]$
D. $\frac{1}{4}\left[\begin{array}{ll}1+i & 1-i \\ -1-i & -1+i\end{array}\right]$

Answer: A

- Watch Video Solution

16. In respect of the equation $\left[\begin{array}{ll}2 & 3 \\ 4 & 6\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}5 \\ c-5\end{array}\right]$
correctly match List I with List II and select the correct answer using the code given below the lists :

List I List II

(Value of c)) (Nature of the Equation)
A. 5

1. The equation has no solution.
B. 10
2. The equation has a unique solution.
C. 15
3. The equation has an infinite set of solution.
4. The equation has two infinite sets of independent solution
$\begin{array}{lll}A & B & C\end{array}$
A. $4 \quad 2 \quad 3$
$A B C$
B.
$1 \quad 13$
$A \quad B \quad C$
C. $2 \quad 2 \quad 4$
D. $\begin{array}{ccc}A & B & C \\ 4 & 1 & 3\end{array}$

Answer: B

- Watch Video Solution

17. If $A^{-1}=\left[\begin{array}{ll}1 & -2 \\ -2 & 2\end{array}\right]$, what is $\operatorname{det}(\mathrm{A})$?
A. 2
B. -2
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer: D

- Watch Video Solution

18. From the matrix equation $A B=A C$, which one of the following can be concluded?
A. $B=C$ for any matrix A
B. $B=C$, if A is singular
C. $B=C$, if A is non-singular
D. $\mathrm{A}=\mathrm{B}=\mathrm{C}$ for any matrix A

Answer: C

- Watch Video Solution

19. What is the value of $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ if $\mathrm{a}^{3}+b^{3}+c^{3}=0$?
A. 0
B. 1
C. 3 abc
D. $-3 a b c$

Answer: C

- Watch Video Solution

20. If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ is a 2×2 matrix and $\mathrm{f}(\mathrm{x})=x^{2}-x+2$ is a polynomial, then what is $f(A)$?
A. $\left[\begin{array}{ll}1 & 7 \\ 1 & 7\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 6 \\ 0 & 8\end{array}\right]$
C. $\left[\begin{array}{ll}2 & 6 \\ 0 & 6\end{array}\right]$
D. $\left[\begin{array}{ll}2 & 6 \\ 0 & 7\end{array}\right]$

Answer: B

- Watch Video Solution

21. If A is a non-null row matrix with 5 columns and B is a non-null column matrix with 5 rows, how many rows are there in $\mathrm{A} \times \mathrm{B}$?
A. 1
B. 5
C. 10

D. 25

Answer: A

- Watch Video Solution

22. Assertion (A) : If $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right), B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then $(A+B)^{2}=A^{2}+B^{2}+2 A B$.

Reason (R) : In the above $A B=B A$
A. Both A and R are individually true and R is the correct explanation of A
B. Both A and R are individually true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true
23. Assertion
(A) :

If
$A=\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \cos \alpha & \sin \alpha\end{array}\right)$ and $B=\left(\begin{array}{cc}\cos \alpha & \cos \alpha \\ \sin \alpha & \sin \alpha\end{array}\right)$, then $\mathrm{AB} \neq 1$.
Reason (R) : The product of two matrices can never be equal to an identity matrix.
A. Both A and R are individually true and R is the correct explanation of A
B. Both A and R are individually true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: C

24. If A is any $2 \times$ matrix such that $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right] A=\left[\begin{array}{ll}-1 & 0 \\ 6 & 3\end{array}\right]$ then what is A equal to ?
A. $\left[\begin{array}{ll}-5 & 1 \\ -2 & 2\end{array}\right]$
B. $\left[\begin{array}{ll}-5 & -2 \\ 1 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}-5 & -2 \\ 2 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}5 & 2 \\ -2 & -1\end{array}\right]$

Answer: C

- Watch Video Solution

25. If A is a 3×3 matrix such that $|A|=4$, then what is $A(\operatorname{adj} A)$ equal to ?
A. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]$
C. $\left[\begin{array}{lll}16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16\end{array}\right]$
D. Cannot be determined, as data is insufficient.

Answer: B

- Watch Video Solution

26. $\left[\begin{array}{lll}x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2}\end{array}\right]$ where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are distinct. What is $|\mathrm{A}|$.
A. 0
B. $x^{2} y-y^{2} x+x y z$
C. $(x-y)(y-z)(z-x)$
D. xyz

Answer: C

- Watch Video Solution

27. Under which of the following condition(s), will the matrix $A=\left[\begin{array}{lll}0 & 0 & q \\ 2 & 5 & 1 \\ 8 & p & p\end{array}\right]$ be singular ?
28. $\mathrm{q}=02 . \mathrm{p}=03 . \mathrm{p}=20$

Select the correct answer using the code given below :
A. 1 and 2
B. 3 only
C. 1 and 3
D. 1 or 3

Answer: D

- Watch Video Solution

28. Consider the following statements :
29. If $\operatorname{det} A=0$, then $\operatorname{det}(\operatorname{adj} A)=0$
30. If A is non-singular, the $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}$
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

D Watch Video Solution

29. Let A be an $m \times n$ matrix. Under which one of the following conditions does A^{-1} exist ?
A. $m=n$ only
B. $m=n$ and $\operatorname{det} A \neq 0$
C. $m=n$ and $\operatorname{det} A=0$
D. $m \neq n$

Answer: B

30. Let A and B be two matrices of order $n \times n$. Let A be non-singular and B be singular. Consider the following :
31. $A B$ is singular
32. $A B$ is non-singular
33. $A^{-1} \mathrm{~B}$ is singular
34. $A^{-1} \mathrm{~B}$ is non singular

Which of the above is/are correct ?
A. 1 and 3
B. 2 and 4 only
C. 1 only
D. 3 only

Answer: B

31. Let A be a square matrix of order $\mathrm{n} \times \mathrm{n}$ where $\mathrm{n} \geq 2$. Let B be a matrix obtained from A with first and second rows interchanged. Then which one of the following is correct ?
A. $\operatorname{det} \mathrm{A}=\operatorname{det} \mathrm{B}$
B. $\operatorname{det} A=-\operatorname{det} B$
C. $A=B$
D. $A=-B$

Answer: B

- Watch Video Solution

32. What should be the value of k so that the system of linear equations $x-y+2 z=0, k x-y+z=0,3 x+y-3 z=0$ does not possess a unique solution ?
A. 0
B. 3
C. 4
D. 5

Answer: D

D Watch Video Solution

33. The matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$ satisfies which one of the following polynomial equations?
A. $A^{2}+3 A+2 I=0$
B. $A^{2}+3 A-2 I=0$
C. $A^{2}-3 A-2 I=0$
D. $A^{2}-3 A+2 I=0$

Answer: C

34. The number of values of k for which the system of the equations $(k+1) x+8 y=4 k a n d k x+(k+3) y=3 k-1$ has infinitely many solutions is 0 b .1 c .2 d . infinite
A. 1
B. 2
C. 3
D. None of the above

Answer: C

- Watch Video Solution

35. For what value of p, is the system of equation $p^{3} x+(p+1)^{3} y=(p+2)^{3}$ and $\quad p x+(p+1) y=(p+2) \quad$ and $x+y=1$ inconsistent
A. $p=0$
B. $p=1$
C. $p=-1$
D. For all $p>1$

Answer: C

D Watch Video Solution

36. If $A=\left[\begin{array}{ll}2 x & 0 \\ x & x\end{array}\right]$ and $A^{-1}=\left[\begin{array}{ll}1 & 0 \\ -1 & 2\end{array}\right]$, then what is the value of x ?
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. 1
D. 2

Answer: B

37. Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix and let $c_{i j}$ be cofactor of $a_{i j}$ in A. If $C=\left[c_{i j}\right]$, then
A. $|A|^{m-1}$
B. $|A|^{m}$
C. $|A|^{m+1}$
D. Zero

Answer: C

- Watch Video Solution

38. If ω is the cube root of unity, then what is one root of the equation $\left|\begin{array}{lll}x^{2} & -2 x & -2 \omega^{2} \\ 2 & \omega & -\omega \\ 0 & \omega & 1\end{array}\right|=0$?
A. 1
B. -2
C. 2
D. ω

Answer: B

- Watch Video Solution

39. If $A=\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$, then what is A^{n} equal to ?
A. $\left[\begin{array}{ll}2^{n} & 2^{n} \\ 2^{n} & 2^{n}\end{array}\right]$
B. $\left[\begin{array}{ll}2 n & 2 n \\ 2 n & 2 n\end{array}\right]$
C. $\left[\begin{array}{ll}2^{2 n-1} & 2^{2 n-1} \\ 2^{2 n-1} & 2^{2 n-1}\end{array}\right]$
D. $\left[\begin{array}{ll}2^{2 n+1} & 2^{2 n+1} \\ 2^{2 n+1} & 2^{2 n+1}\end{array}\right]$

Answer: C

40. If the least number of zeroes in a lower triangular matrix is 10 , then what is the order of the matrix?
A. 3×3
B. 4×4
C. 5×5
D. 10×10

Answer: B

D Watch Video Solution

41. If the inverse of $\left[\begin{array}{lll}1 & p & q \\ 0 & x & 0 \\ 0 & 0 & 1\end{array}\right]$ is $\left[\begin{array}{lll}1 & -p & -q \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ then what is the value of x ?
A. 1
B. Zero
C. -1
D. $\frac{1}{p}+\frac{1}{q}$

Answer: A

- Watch Video Solution

42. If $A B=\left[\begin{array}{ll}4 & 11 \\ 4 & 5\end{array}\right]$ and $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$, then what is the value of the determinant of the matrix B ?
A. 4
B. -6
C. $-\frac{1}{4}$
D. -28

Answer: B

43. The determinant $\left|\begin{array}{lll}a+b+c & a+b & a \\ 4 a+3 b+2 c & 3 a+2 b & 2 a \\ 10 a+6 b+3 c & 6 a+3 b & 3 a\end{array}\right|$ is independent of
which one of the following ?
A. a and b
B. b and c
C. a and c
D. All of these

Answer: B

- Watch Video Solution

44. If $X=\left[\begin{array}{ll}1 & -2 \\ 0 & 3\end{array}\right]$, and I is a 2×2 identity matrix, then $X^{2}-2 X+3 I$ equals to which one of the following ?
A. $-I$
B. $-2 X$
C. $2 X$
D. $4 X$

Answer: C

- Watch Video Solution

45. If the matrix B is the adjoint of the square matrix A and α is the value of the determinant of A, then what is $A B$ equal to ?
A. α
B. $\left(\frac{1}{\alpha}\right) I$
C. I
D. αI

Answer: D

46. What is the determinant $\left|\begin{array}{ccc}b c & a & a^{2} \\ c a & b & b^{2} \\ a b & c & c^{2}\end{array}\right|$ equal to ?
A. $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$
B. $\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$
C. $\left|\begin{array}{lll}1 & a & a^{3} \\ 1 & b & b^{3} \\ 1 & c & c^{3}\end{array}\right|$

Answer: B

- Watch Video Solution

47. If $x^{2}+y^{2}+z^{2}=1$, then what is the value of $\left|\begin{array}{lll}1 & z & -y \\ -z & 1 & x \\ y & -x & 1\end{array}\right|=$?
A. 0
B. 1
C. 2
D. 2-2 xyz

Answer: C

- Watch Video Solution

48. If $\left|A_{n \times n}\right|=3$ and $|\operatorname{adj} \mathrm{A}|=243$, what is the value of n ?
A. 4
B. 5
C. 6
D. 7

Answer: C

49. Under what condition does $A(B C)=(A B) C$ hold, where A, B, C are three matrices ?
A. $A B$ and $B C$ both must exist
B. Only Ab must exist
C. Only BC must exist
D. Always true

Answer: A

- Watch Video Solution

50. If A is matrix of order 3×2 and B is matrix of order 2×3, then what is $|\mathrm{KAB}|$ equal to (where k is any scalar quantity)?
A. $k|A B|$
B. $k^{2}|A B|$
C. $k^{3}|A B|$
D. $|A B|$

Answer: C

- Watch Video Solution

51. If $\left[\begin{array}{ll}5 & 0 \\ 0 & 7\end{array}\right]^{-1}\left[\begin{array}{l}x \\ -y\end{array}\right]=\left[\begin{array}{l}-1 \\ 2\end{array}\right]$, then which one of the following is correct ?
A. $x=5, y=14$
B. $x=-5, y=15$
C. $x=-5, y=-14$
D. $x=5, y=-14$

Answer: C

- Watch Video Solution

52. Which one of the following statement is correct ? The system of linear equations, $2 x+3 y=4$ and $4 x+6 y=7$, has
A. no solution
B. a unique solution
C. exactly 3 solutions
D. an infinite number of solutions

Answer: A

- Watch Video Solution

53. Suppose the system of equations
$a_{1} x+b_{1} y+c_{1} z=d_{1}$
$a_{2} x+b_{2} y+c_{2} z=d_{2}$
$a_{3} x+b_{3} y+c_{3} z=d_{3}$
has a unique solution $\left(x_{0}, y_{0}, z_{0}\right)$. If $x_{0}=0$, then which one of the following is correct ?
A. $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$
B. $\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|=0$
C. $\left|\begin{array}{lll}d_{1} & a_{1} & c_{1} \\ d_{2} & a_{2} & c_{2} \\ d_{3} & a_{3} & c_{3}\end{array}\right|=0$
D. $\left|\begin{array}{lll}d_{1} & a_{1} & b_{1} \\ d_{2} & a_{2} & b_{2} \\ d_{3} & a_{3} & b_{3}\end{array}\right|=0$

Answer: B

- Watch Video Solution

54. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. then the value of $\left|\begin{array}{ccc}a & b & a+b \\ b & c & b+c \\ a+b & b+c & 0\end{array}\right|=$ (A) 1
-1 (C) $a+b+c$ (D) 0
A. 0
B. 1
C. -1
D. None of these

Answer: A

- Watch Video Solution

55. If $\operatorname{adj} \mathrm{A}=\left[\begin{array}{ll}a & 0 \\ -1 & b\end{array}\right]$ and $\mathrm{ab} \neq 0$, then what is the value of $\left|A^{-1}\right|$?
A. 1
B. $a b$
C. $1 / \sqrt{a b}$
D. $1 / a b$

Answer: A

56. If $I+m+n=0$, then the system of equations
$-2 x+y+z=l$
$x-2 y+z=m$
$x+y-2 z=n$
has
A. a trivial solution
B. no solution
C. a unique solution
D. infinitely many solutions

Answer: D

- Watch Video Solution

57.

If
$\left(a_{1} / x\right)+\left(b_{1} / y\right)=c_{1},\left(a_{2} / x\right)+\left(b_{2} / y\right)=c_{2} \Delta_{1}=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|, \Delta_{2}=\left\lvert\, \begin{aligned} & b_{1} \\ & b_{2}\end{aligned}\right.$, then (x, y) is equal to which one of the following ?
A. $\left(\Delta_{2} / \Delta_{1}, \Delta_{3} / \Delta_{1}\right)$
B. $\left(\Delta_{3} / \Delta_{1}, \Delta_{2} / \Delta_{1}\right)$
C. $\left(-\Delta_{1} / \Delta_{2},-\Delta_{1} / \Delta_{3}\right)$
D. $\left(-\Delta_{1} / \Delta_{2},-\Delta_{1} / \Delta_{3}\right)$

Answer: C

- Watch Video Solution

58. Show that $\left|\begin{array}{ll}\sin 10^{\circ} & -\cos 10^{\circ} \\ \sin 80^{\circ} & \cos 80^{\circ}\end{array}\right|=1$.
A. 0
B. 1
C. -1
D. $1 / 2$

Answer: B

59. If $\left|\begin{array}{lll}2 & 4 & 0 \\ 0 & 5 & 16 \\ 0 & 0 & 1+p\end{array}\right|=20$, then what is the value of p ?
A. 0
B. 1
C. 2
D. 5

Answer: B

60. If the square matrices A and B are such that $A B=A$ and $B A=B$, then
A. $\left(A^{T}\right)^{2}=A^{T}$
B. $\left(A^{T}\right)^{2}=B^{T}$
C. $\left(A^{T}\right)^{2}=\left(A^{-1}\right)^{-1}$
D. None of the above

Answer: A

- Watch Video Solution

61. If $\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] A=\left[\begin{array}{ll}1 & -1 \\ 0 & 1\end{array}\right]$, then what is the matrix A ?
A. $\left[\begin{array}{ll}1 & -3 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}2 & 2 \\ 0 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}-4 & -1 \\ 1 & 0\end{array}\right]$
D. $\left[\begin{array}{ll}1 & -4 \\ 0 & 1\end{array}\right]$

Answer: D

- Watch Video Solution

62. Under which one of the following condition does the system of equations
$k x+y+z=k-1$
$x+k y+z=k-1$
$x+y+k z=k-1$
have no solution ?
A. $k=1$
B. $k \neq-2$
C. $\mathrm{k}=1$ or $\mathrm{k}=-2$
D. $k=-2$

Answer: C

- Watch Video Solution

63. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ where a, b are natural numbers, then which one of the following is correct ?
A. There exist more than one but finite number of B 's such that $A B=$ BA
B. There exists exactly one B such that $A B=B A$
C. There exist infinitely many B 's such that $A B=B A$
D. There cannot exist any B such that $A B=B A$

Answer: C

- Watch Video Solution

64. Consider a matrix $M=\left[\begin{array}{lll}3 & 4 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & k\end{array}\right]$ and the following statements

Statement A : Inverse of M exists.

Statement B: k $\neq 0$

Which one of the following in respect of the above matrix and statement is correct ?
A. A implies B, but B does not imply A
B. B implies A, but does not imply B
C. Neither A implies B nor B implies A
D. A implies B as well as B implies A

Answer: D

- Watch Video Solution

65. If $\left|\begin{array}{ccc}y & x & y+z \\ z & y & x+y \\ x & z & z+x\end{array}\right|=0$, then which one of the following is correct ?
A. Either $x+y=z$ or $x=y$
B. Either $x+y=-z$ or $x=z$
C. Either $x+z=y$ or $z=y$
D. Either $z+y=x$ or $x=y$

Answer: B

66. What is the value of k, if

$$
\left|\begin{array}{lll}
k & b+c & b^{2}+c^{2} \\
k & c+a & c^{2}+a^{2} \\
k & a+b & a^{2}+b^{2}
\end{array}\right|=(a-b)(b-c)(c-a) ?
$$

A. 1
B. -1
C. 2
D. 0

Answer: A

- Watch Video Solution

67. Let $A=\left[\begin{array}{ccc}0 & 0 & -10 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$ Then only correct statement about the
matrix A is (A) A is a zero matrix (B) $A^{2}=1$ (C) A^{-1} does not exist (D)
$A=(-1) \mathrm{I}$ where I is a unit matrix
A. A^{-1} does not exist
B. $A=(-1) I$
C. A is a unit matrix
D. $A^{2}=I$

Answer: D

- Watch Video Solution

68. If $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$, then what is $\mathrm{A}(\operatorname{adj} \mathrm{A})$ equal to ?
A. $\left[\begin{array}{ll}0 & 10 \\ 10 & 0\end{array}\right]$
B. $\left[\begin{array}{ll}10 & 0 \\ 0 & 10\end{array}\right]$
C. $\left[\begin{array}{ll}1 & 10 \\ 10 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}10 & 1 \\ 1 & 10\end{array}\right]$

Answer: B

69. What is the inverse of $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$?
A. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
C. $\left.\begin{array}{lll}-1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

Answer: B

- Watch Video Solution

70. Consider the following statements in respect of symmetric matrices A and B
71. $A B$ is symmetric.
72. $A^{2}+B^{2}$ is symmetric.

Which of the above statement(s) is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

71. The following item consists of two statements, one labelled the Assertion (A) and the other labelled the Reason (R). You are to examine these two statements carefully and decide if the Assertion (A) and Reason (R) are individually true and if so, whether the reason is a correct explanation of the Assertion. Select your answer using the codes given below:

Assertion (A) : $M=\left[\begin{array}{ll}5 & 10 \\ 4 & 8\end{array}\right]$ is invertible.
Reason (R) : M is singular.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. A is false but R is true

Answer: D

- Watch Video Solution

72. If X and Y are the matrices of order 2×2 each and $2 X-3 Y=\left[\begin{array}{ll}-7 & 0 \\ 7 & -13\end{array}\right]$ and $3 X+2 Y=\left[\begin{array}{ll}9 & 13 \\ 4 & 13\end{array}\right]$, then what is Y equal to ?
A. $\left[\begin{array}{ll}1 & 3 \\ -2 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$
C. $\left[\begin{array}{ll}3 & 1 \\ -1 & 5\end{array}\right]$
D. $\left[\begin{array}{ll}3 & 2 \\ 1 & -5\end{array}\right]$

Answer: C

- Watch Video Solution

73. If a, b and c are all non-zero and $|1+a 111 a+b 111 a+c|=0$, then prove that $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1=0$
A. 2
B. 1
C. -1
D. 0

Answer: C

74. If a matrix A is symmetric as well as anti-symmetric, then which one of the following is correct ?
A. A is a diagonal matrix
B. A is a null matrix
C. A is a unit matrix
D. A is a triangular matrix

Answer: B

- Watch Video Solution

75. If $A=\left[\begin{array}{lll}1 & -2 & -3 \\ 2 & 1 & -2 \\ 3 & 2 & 1\end{array}\right]$, then which one of the following is correct ?
A. A is symmetric matrix
B. A is anti-symmetric matrix
C. A is singular matrix
D. A is non-singular matrix

Answer: D

(Watch Video Solution

76. $A=\left|\begin{array}{lll}2 a & 3 r & x \\ 4 b & 6 s & 2 y \\ -2 c & -3 t & -z\end{array}\right|=\lambda\left|\begin{array}{lll}a & r & x \\ b & s & y \\ c & t & z\end{array}\right|$, then what is the value of λ ?
A. 12
B. -12
C. 7
D. -7

Answer: B

- Watch Video Solution

77. What is the value of $\left|\begin{array}{ccc}1-i & \omega^{2} & -\omega \\ \omega^{2}+i & \omega & -i \\ 1-2 i-\omega^{2} & \omega^{2}-\omega & i-\omega\end{array}\right|$, where ω is the cube root of unity ?
A. -1
B. 1
C. 2
D. 0

Answer: D

- Watch Video Solution

78. If $A=\left[\begin{array}{ll}\omega & 0 \\ 0 & \omega\end{array}\right]$, where ω is cube root of unity, then what is A^{100} equal to ?
A. A
B. $-A$
C. Null matrix
D. Identity matrix

Answer: A

- Watch Video Solution

79. A matrix X has $a+b$ rows and $a+2$ columns while the matrix Y has $b+1$ rows and $a+3$ columns. Both matrices $X Y$ and $Y X$ exist. Find a and b. Can you say $X Y$ and $Y X$ are of the same type? Are they equal.
A. 3,2
B. 2,3
C. 2, 4
D. 4,3

Answer: B

80. If $\left|\begin{array}{lll}a & b & c \\ l & m & n \\ p & q & r\end{array}\right|=2$, then what is the value of the determinant $\left|\begin{array}{lll}6 a & 3 b & 15 c \\ 2 l & m & 5 n \\ 2 p & q & 5 r\end{array}\right|$?
A. 10
B. 20
C. 40
D. 60

Answer: D

Watch Video Solution

81. Let $A=\left[\begin{array}{lll}5 & 6 & 1 \\ 2 & -1 & 5\end{array}\right]$. Let there exist a matrix B such that $A B=\left[\begin{array}{ll}35 & 49 \\ 29 & 13\end{array}\right]$. What is B equal to ?
A. $\left[\begin{array}{lll}5 & 1 & 4 \\ 2 & 6 & 3\end{array}\right]$
B. $\left[\begin{array}{lll}2 & 6 & 3 \\ 5 & 1 & 4\end{array}\right]$
C. $\left[\begin{array}{ll}5 & 2 \\ 1 & 6 \\ 4 & 3\end{array}\right]$
D. $\left[\begin{array}{ll}2 & 5 \\ 6 & 1 \\ 3 & 4\end{array}\right]$

Answer: C

Watch Video Solution

82. Consider the following statements
83. If $A^{\prime}=A$, then A is a singular matrix, where A^{\prime} is the transpose of A.
84. If A is a square matrix such that $A^{3}=I$, then A is non-singular.

Which of the statements guven above is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

D Watch Video Solution

83. If the system of equations $2 x+3 y=7$ and $2 a x+(a+b) y=28$ has infinitely many solutions, then which one of the following is correct?
A. $a=2 b$
B. $b=2 a$
C. $a=-2 b$
D. $b=-2 a$

Answer: B

D Watch Video Solution

84. If the lines $3 y+4 x=1, y=x+5$ and $5 y+b x=3$ are concurrent then $b=$
A. 1
B. 3
C. 6
D. 0

Answer: C

D Watch Video Solution

85. What is the value of $\left|\begin{array}{l}\cos 15^{\circ}, \sin 15^{\circ} \\ \cos 45^{\circ}, \sin 45^{\circ}\end{array}\right| \times\left|\begin{array}{l}\cos 45^{\circ}, \cos 15^{\circ} \\ \sin 45^{\circ}, \sin 15^{\circ}\end{array}\right|$?
A. $\frac{1}{4}$
B. $\frac{\sqrt{3}}{2}$
C. $-\frac{1}{4}$
D. $-\frac{3}{4}$

Answer: C

86. Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. If $\operatorname{det}(\lambda A)=\lambda^{s} \operatorname{det}(\mathrm{~A})$, what is the value of s ?
A. 0
B. 1
C. -1
D. n

Answer: D

D Watch Video Solution

87. If A be a real skew-symmetric matrix of order n such that $A^{2}+I=0$, । being the identity matrix of the same order as that of A, then what is the order of A ?
A. Any natural number
B. Odd
C. Prime number
D. Even

Answer:

- Watch Video Solution

88. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[a_{i j}\right]$, where $\mathrm{i}, \mathrm{j}=1,2$, If its inverse matrix is $\left[b_{i j}\right]$, what is b_{22} ?
A. -2
B. 1
C. $\frac{3}{2}$
D. $-\frac{1}{2}$

Answer: D

89. If $\left[\begin{array}{lll}1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda\end{array}\right]$ is not an invertible matrix, then what is the value of λ ?
A. -1
B. 0
C. 1
D. 2

Answer: C

- Watch Video Solution

90. If $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], B=\left[\begin{array}{ll}i & 0 \\ 0 & -i\end{array}\right], C=\left[\begin{array}{ll}0 & -i \\ -i & 0\end{array}\right]$, then which one of the following in not correct ?

$$
\text { A. } A^{2}=B^{2}
$$

B. $B^{2}=C^{2}$
C. $A B=C$
D. $A B=B A$

Answer: D

- Watch Video Solution

91. If $x+i y=\left|\begin{array}{lll}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|$, then what is x - iy equal to ?
A. $3+i$
B. $1+3 i$
C. $3 i$
D. 0

Answer: D

92. If $|A|=8$, where A is square matrix of order 3 , then what is $|\operatorname{adj} A|$ equal to?
A. 16
B. 24
C. 64
D. 512

Answer: C

- Watch Video Solution

93. Consider the following statements in respect of a square matrix A and its transpose A^{T}.
94. $A+A^{T}$ is always symmetric.
95. $A-A^{T}$ is always anti-symmetric

Which of the statements given above is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

94. If a matrix A is such that $3 A^{3}+2 A^{2}+5 A+I=0$, then A^{-1} is equal to
A. $-\left(3 A^{2}+2 A+5\right)$
B. $3 A^{2}+2 A+5 I$
C. $3 A^{2}-2 A-5 I$
D. $\left(3 A^{2}+2 A-5 I\right)$
95. Let A and B be matrices of order 3×3. If $A B=0$, then which of the following can be concluded?
A. $\mathrm{A}=0$ and $\mathrm{B}=0$
B. $|\mathrm{A}|=0$ and $|\mathrm{B}|=0$
C. Either $|\mathrm{A}|=0$ or $|\mathrm{B}|=0$
D. Either $\mathrm{A}=0$ or $\mathrm{B}=0$

Answer: D

- Watch Video Solution

96. If A is a square matrix, then what is $\operatorname{adj} A^{T}-(a d j A)^{T}$ equal to ?
A. $2|\mathrm{~A}|$
B. $2|\mathrm{~A}| \mathrm{I}$
C. Null Matrix
D. Unit Matrix

Answer: C

- Watch Video Solution

97. What is the value of $\left|\begin{array}{lll}1 & \omega & 2 \omega^{2} \\ 2 & 2 \omega^{2} & 4 \omega^{3} \\ 3 & 3 \omega^{3} & 6 \omega^{4}\end{array}\right|$, where ω is the cube root of unity ?
A. 0
B. 1
C. 2
D. 3

Answer: A

98. If the matrix $A=\left[\begin{array}{ccl}2-x & 1 & 1 \\ 1 & 3-x & 0 \\ -1 & -3 & -x\end{array}\right]$ is singular, then what is the solution set S ?
A. $S=\{0,2,3\}$
B. $S=\{-1,2,3\}$
C. $S=\{1,2,3\}$
D. $S=\{2,3\}$

Answer: A

- Watch Video Solution

99. Consider the following statements.
I. The inverse of a square matrix, if it exists, is unique.
II. If A and B are singular matrices of order n, then $A B$ is also a singular matrix of order n .

Which of the statements given above is/are correct ?
A. Only I
B. Only II
C. Both I and II
D. Neither I nor II

Answer: A

- Watch Video Solution

100. What is the value of the determinant $\left|\begin{array}{lll}x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14\end{array}\right|$?
A. $x+2$
B. $x^{2}+2$
C. 2
D. -2

Answer: D

101. If 5 and 7 are the roots of the equation $\left|\begin{array}{ccc}x & 4 & 5 \\ 7 & x & 7 \\ 5 & 8 & x\end{array}\right|=0$, then what is the third root?
A. -12
B. 9
C. 13
D. 14

Answer: A

- Watch Video Solution

102. Find the value of k in which the system of equations $k x+2 y=5$ and $3 x+y=1$ has no solution ?
A. 0
B. 3
C. 6
D. 15

Answer: C

D Watch Video Solution

103. If the matrix $A=\left[\begin{array}{cc}\alpha & \beta \\ \beta & \alpha\end{array}\right]$ is such that $A^{2}=I$, then which one of the following is correct ?
A. $\alpha=0, \beta=1$ or $\alpha=1, \beta=0$
B. $\alpha=0, \beta \neq 1$ or $\alpha \neq 1, \beta=1$
C. `alpha $=1$, beta ne 0 or alpha ne 1 , beta $=1$
D. $\alpha \neq 0, \beta \neq 0$

Answer: A

104. If $A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ such that $A^{2}=B$, then what is the value of α ?
A. -1
B. 1
C. 2
D. 4

Answer: B

105. $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, then which of the following is/are correct ?
I. $A B$ is defined
II. BA is defined
III. $\mathrm{AB}=\mathrm{BA}$

Select the correct answer using the codes given below.
A. Only I
B. Only II
C. Both I and II
D. I, II and III

Answer: D

- Watch Video Solution

106. The simultaneous equations $3 x+5 y=7$ and $6 x+10 y=18$ have
A. no solution
B. infinitely many solutions
C. unique solution
D. any finite number of solutions

D Watch Video Solution

107. The roots of the equation $\left|\begin{array}{lll}x & \alpha & 1 \\ \beta & x & 1 \\ \beta & \gamma & 1\end{array}\right|=0$ are independent of
A. α
B. β
C. γ
D. α, β and γ

Answer: A

D Watch Video Solution

108. What is the value of the determinant $\left|\begin{array}{lll}a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c\end{array}\right|$?
A. $a^{3}+b^{3}+c^{3}$
B. 3 bc
C. $a^{3}+b^{3}+c^{3}-3 a b c$
D. 0

Answer: C

- Watch Video Solution

109. If $\left|\begin{array}{lll}p & -q & 0 \\ 0 & p & q \\ q & 0 & p\end{array}\right|=0$, then which one of the following is correct ?
A. p is one of the cube roots of unity
B. q is one of the cube roots of unity
C. $\frac{p}{q}$ is one of the cube roots of unity
D. None of the above

Answer: C

110. If $a^{-1}+b^{-1}+c^{-1}=0$ such that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=\lambda$, then what is λ equal to ?
A. $-a b c$
B. abc
C. 0
D. 1

Answer: B

- Watch Video Solution

111. Consider the following statements in respect of the square matrices A and B of same order:
112. A and B are non-zero and $A B=0 \rightarrow$ either $|A|=0$ or $|B|=0$
113. $A B=0 \rightarrow A=0$ or $B=0$

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

- Watch Video Solution

112. For what value of x does $\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{lll}1 & 3 & 0 \\ 3 & 0 & 2 \\ 2 & 0 & 1\end{array}\right)\left(\begin{array}{l}0 \\ 3 \\ x\end{array}\right)=(0)$ hold ?
A. -1
B. 1
C. $9 / 8$
D. $-9 / 8$

Answer: D

D Watch Video Solution

113. Consider the following statements :
114. every zero matrix is a square matrix.
115. A matrix has a numerical value.
116. A unit matrix is a diagonal matrix.

Which of the above statements is/are correct ?
A. 2 only
B. 3 only
C. 2 and 3
D. 1 and 3

Answer: B

114. If a matrix A has inverses B and C, then which one of the following is correct ?
A. B may not be equal to C
B. B should be equal to C
C. B and C should be unit matrices
D. None of the above

Answer: B

Watch Video Solution

115. If $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ then what is determinant of $A B$?
A. 0
B. 1
C. 10
D. 20

Answer: A

- Watch Video Solution

116. What is $\left|\begin{array}{lll}-a^{2} & a b & a c \\ a b & -b^{2} & b c \\ a c & b c & -c^{2}\end{array}\right|$ equal to ?
A. 4 abc
B. $4 a^{2} b c$
C. $4 a^{2} b^{2} c^{2}$
D. $-4 a^{2} b^{2} c^{2}$

Answer: C

- Watch Video Solution

117. If A and B are two matrices such that $A B=A$ and $B A=B$, then B^{2} is equal to B (b) A (c) 1 (d) 0
A. B
B. A
C. 1
D. $-I$

Answer: A

- Watch Video Solution

118. The sum and product of matrices A and B exist. Which of the following implications are necessarily true ?
119. A and B are square matrices of same order.
120. A and B are non-singular matrices

Select the correct answer using the code given below :
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

- Watch Video Solution

119. If A is a square matrix such that $A^{2}=I$, then A^{-1} is equal to (i) I (ii) 0 (iii) A (iv) I+A
A. $A+1$
B. Null matrix
C. A
D. Transpose of A

Answer: C

120. If any two rows/columns of a square matrix A of order $\mathrm{n}(>2)$ are identical; then its determinant is .
A. 0
B. 1
C. -1
D. can be any real value

Answer: A

- Watch Video Solution

121. If $\left|\begin{array}{lll}8 & -5 & 1 \\ 5 & x & 1 \\ 6 & 3 & 1\end{array}\right|=2$ then what is the value of x ?
A. 4
B. 5
C. 6
D. 8

Answer: D

- Watch Video Solution

122. What is the order of the product $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$?
A. 3×1
B. 1×1
C. 1×3
D. 3×3

Answer: B

123. If $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & -1 \\ 1 & 2\end{array}\right]$, then what is $B^{-1} A^{-1}$ equal to ?
A. $\left[\begin{array}{ll}1 & -3 \\ -1 & 2\end{array}\right]$
B. $\left[\begin{array}{ll}-1 & 3 \\ 1 & -2\end{array}\right]$
C. $\left[\begin{array}{ll}-1 & 3 \\ -1 & -2\end{array}\right]$
D. $\left[\begin{array}{ll}-1 & -3 \\ 1 & -2\end{array}\right]$

Answer: B

- Watch Video Solution

124. If each element of as third order determinant of value \triangle `is \(\mu<\) ipliedby5thenvalueofthe \(\neq w\) det er min antis \((A) 125 / \backslash\) (B)25/\\(C)5/_\\(D)/へ`
A. is multiplied by r^{3}.
B. is increased by $3 r$
C. remains unchanged
D. is multiplied by r

Answer: D

- Watch Video Solution

125. Inverse of diagonal matrix is (A) a diagonal matrix (B) symmetric (C) skew symmetric (D) none of these
A. symmetric matrix
B. skew-symmetric matrix
C. diagonal matrix
D. None of the above

Answer: C

126. If $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 6 \\ 7 & 8\end{array}\right]$ and $B=\left[\begin{array}{lll}3 & 5 & 7 \\ 4 & 6 & 8\end{array}\right]$. Then which one of following is correct ?
$A . B$ is the inverse of A
$B . B$ is the adjoint of A
C. B is the transpose of A
D. None of the above

Answer: C

- Watch Video Solution

127. If the sum of the matrices $\left[\begin{array}{l}x \\ x \\ y\end{array}\right],\left[\begin{array}{l}y \\ y \\ z\end{array}\right]$ and $\left[\begin{array}{l}z \\ 0 \\ 0\end{array}\right]$ is the matrix $\left[\begin{array}{l}10 \\ 5 \\ 5\end{array}\right]$
,then what is the value of y ?
A. -5
B. 0
C. 5
D. 10

Answer: B

- Watch Video Solution

128. If the matrix $A B$ is a zero matrix, then which one of the following is correct ?
A. A must be equal to zero matrix or B must be equal to zero matrix.
B. A must be equal to zero matrix and B must be equal to zero matrix.
C. It is not necessary that either A is zero matrix or B is zero matrix.
D. None of the above

Answer: C

129. If the matrix $\left[\begin{array}{lll}\alpha & 2 & 2 \\ -3 & 0 & 4 \\ 1 & -1 & 1\end{array}\right]$ is not invertible, then :
A. $\alpha=-5$
B. $\alpha=5$
C. $\alpha=0$
D. $\alpha=1$

Answer: A

- Watch Video Solution

130. The value of the determinant $\left|\begin{array}{lll}x^{2} & 1 & y^{2}+z^{2} \\ y^{2} & 1 & z^{2}+x^{2} \\ z^{2} & 1 & x^{2}+y^{2}\end{array}\right|$ is:
A. 0
B. $x^{2}+y^{2}+z^{2}$
C. $x^{2}+y^{2}+z^{2}+1$
D. None of the above

Answer: A

- Watch Video Solution

131. A square matrix $\left[a_{i j}\right]$ such that $a_{i j}=0$ for $i \neq j$ and $a_{i j}=k$ where k is a constant for $\mathrm{i}=\mathrm{j}$ is called :
A. diagonal matrix, but not scalar matrix
B. scalar matrix
C. unit matrix
D. None of the above

Answer: B

132. If A and B are two non-singular square matrices such that $A B=A$, then which one of the following is correct?
A. B is an identity matrix
B. $B=A^{-1}$
C. $B=A^{2}$
D. Determinant of B is zero

Answer: A

- Watch Video Solution

133. What is the value of the minor of the element 9 in the determinant
$\left|\begin{array}{lll}10 & 19 & 2 \\ 0 & 13 & 1 \\ 9 & 24 & 2\end{array}\right|$?
A. -9
B. -7
C. 7
D. 0

Answer: B

- Watch Video Solution

134. The roots of the equation $\left|\begin{array}{ccc}1 & t-1 & 1 \\ t-1 & 1 & 1 \\ 1 & 1 & t-1\end{array}\right|=0$ are
A. 1, 2
B. $-1,2$
C. $1,-2$
D. $-1,-2$

Answer: B

135. The value of the determinant $\left|\begin{array}{lll}m & n & p \\ p & m & n \\ n & p & m\end{array}\right|$
A. is a perfect cube
B. is a perfect square
C. has linear factor
D. is zero

Answer: C

D Watch Video Solution

136. The determinant of a orthogonal matrix is :
A. ± 1
B. 2
C. 0
D. ± 2

- Watch Video Solution

137. If D is determinant of order 3 and D^{\prime} is the determinant obtained by replacing the elements of D by their cofactors, then which one of the following is correct ?
A. $D^{\prime}=D^{2}$
B. $D^{\prime}=D^{3}$
C. $D^{\prime}=2 D^{2}$
D. $D^{\prime}=3 D^{3}$

Answer: A

138. Consider the following statements :
139. A matrix is not a number
140. Two determinants of different order may have the same value.

Which of the above statements is/are correct ?

A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

139. Consider the following statements :
140. The product of two non-zero matrices can never be identity matrix.
141. The product of two non-zero matrices can never be zero matrix.

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A::D

- Watch Video Solution

140. Consider the following statements :
141. The matrix $\left(\begin{array}{ccc}1 & 2 & 1 \\ a & 2 a & 1 \\ b & 2 b & 1\end{array}\right)$ is singular.
142. The matrix $\left(\begin{array}{ccc}c & 2 c & 1 \\ a & 2 a & 1 \\ b & 2 b & 1\end{array}\right)$ is non-singular.
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

141. The cofactor of the element 4 in the determinant $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|$.
A. 2
B. 4
C. 6
D. -6

Answer: C

- Watch Video Solution

142. If A is a square matrix of order 3 with $|A| \neq 0$, then which one of the following is correct ?
A. $|a d j A|=|A|$
B. $|\operatorname{adj} A|=|A|^{2}$
C. $|\operatorname{adj} A|=|A|^{3}$
D. $|\operatorname{adj} A|^{2}=|A|$

Answer: A

- Watch Video Solution

143. If $A=\left(\begin{array}{ll}i & 0 \\ 0 & -i\end{array}\right), B=\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right), C=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$ wher $i=\sqrt{-1}$, then which one of the following is correct ?
A. $A B=-C$
B. $A B=C$
C. $A^{2}=B^{2}=C^{2}=I$, where I is the identity matrix
D. $B A \neq C$

Answer: A

- Watch Video Solution

144. If $2 A=\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$, then what is A^{-1} equal to ?
A. $\left(\begin{array}{ll}2 & -1 \\ -3 & 2\end{array}\right)$
B. $\frac{1}{2}\left(\begin{array}{ll}2 & -1 \\ -3 & 2\end{array}\right)$
C. $\frac{1}{4}\left(\begin{array}{ll}2 & -1 \\ -3 & 2\end{array}\right)$
D. None of these

Answer: D

- Watch Video Solution

145. If $\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right) \times\left(\begin{array}{ll}5 & -2 \\ -3 & 1\end{array}\right)=\left(\begin{array}{ll}1 & -1 \\ 17 & \lambda\end{array}\right)$, then what is λ equal to ?
A. 7
B. -7
C. 9
D. -9

Answer: B

- Watch Video Solution

146. $\left|\begin{array}{lll}1 & b c & b c(b+c) \\ 1 & c a & c a(c+a) \\ 1 & a b & a b(a+b)\end{array}\right|=0$
A. 0
B. $a b c$
C. $a b+b c+c a$
D. $a b c(a+b+c)$
147. Consider the following statements in respect of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]$
148. The matrix A is skew-symmetric.
149. The matrix A is symmetric.
150. The matrix A is invertible.

Which of the above statements is/are correct ?
A. 1 only
B. 3 only
C. 1 and 3
D. 2 and 3

Answer: A

148. Consider two matrices $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & -4 \\ 2 & 1 & -4\end{array}\right]$. Which one of the following is correct ?
$A . B$ is the right inverse of A
B. B is the left inverse of A
C. B is the both sided inverse of A
D. None of the above

Answer: B

- Watch Video Solution

149. One of the roots of $\left|\begin{array}{ccc}x+a & b & c \\ a & x+b & c \\ a & b & x+c\end{array}\right|=0$ is:
A. abc
B. $a+b+c$
C. $-(a+b+c)$
D. $-a b c$

Answer: C

- Watch Video Solution

150. If A is any matrix, then the product $A A$ is defined only when A is a matrix of order $m \times n$ where:
A. $\mathrm{m}>\mathrm{n}$
B. $\mathrm{m}<\mathrm{n}$
C. $m=n$
D. $\mathrm{m} \leq \mathrm{n}$

Answer: C

151. If A is a skew-symmetric matrix of odd order n, then $|A|=0$
A. Zero
B. One
C. Negative
D. Depends on the matrix

Answer: A

- Watch Video Solution

152. If any two adjacent rows or columns of a determinant are intercharged in position, the value of the determinant :
A. Becomes zero
B. Remains the same
C. Changes its sign
D. Is doubled

Answer: C

D Watch Video Solution

153. If $a \neq b \neq c$ are all positive, then the value of the determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$ is
A. non-negative
B. non-positive
C. negative
D. positive

Answer: C

154. Let A and B be two matrices such that $A B=A$ and $B A=B$. Which of the following statements are correct ?
155. $A^{2}=A$
156. $B^{2}=B$
157. $(A B)^{2}=A B$

Select the correct answer using the code given below :
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: D

- Watch Video Solution

155. $\left|\begin{array}{ccc}6 \mathrm{i} & -3 \mathrm{i} & 1 \\ 4 & 3 \mathrm{i} & -1 \\ 20 & 3 & \mathrm{i}\end{array}\right|=x+i y$ then
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

156. If the matrix A is such that $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right) A=\left(\begin{array}{ll}1 & 1 \\ 0 & -1\end{array}\right)$, then what is A equal to ?
A. $\left(\begin{array}{ll}1 & 4 \\ 0 & -1\end{array}\right)$
B. $\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)$
C. $\left(\begin{array}{ll}-1 & 4 \\ 0 & -1\end{array}\right)$
D. $\left(\begin{array}{ll}1 & -4 \\ 0 & -1\end{array}\right)$
157. Consider the following statements :
158. Determinant is a square matrix.
159. Determinant is a number associated with a square matrix.

Which of the above statements is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

158. If A is an invertible matrix of order 2 , then $\operatorname{det}\left(A^{-1}\right)$ is equal to(a) $\operatorname{det}(\mathrm{A})(\mathrm{B}) \frac{1}{\operatorname{det}(A)}$ (C) 1 (D) 0
A. $\operatorname{det} A$
B. $\frac{1}{\operatorname{det} A}$
C. 1
D. None of the above

Answer: B

- Watch Video Solution

159. From the matrix equation $A B=A C$ we can conclude $B=C$ provided that
A. A is non-singular.
B. A is singular.
C. A is symmetric.
D. A is skew symmetric.
160. If $A=\left[\begin{array}{cc}4 & x+2 \\ 2 x-3 & x+1\end{array}\right]$ is symmetric, then $\mathrm{x}=$
A. 2
B. 3
C. -1
D. 5

Answer: D

- Watch Video Solution

161. If $\left|\begin{array}{lll}a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0$, then which one of the following is correct ?
A. ${ }^{`}(\mathrm{a}) /(\mathrm{b})$ is one of the cube roots of unity.
B. $\frac{a}{b}$ is one of the cube roots of -1 .
C. a is one of the cube roots of unity.
D. b is one of the cube roots of unity.

Answer: B

D Watch Video Solution

162. If A and B are square matrices of order 3 such that $|A|=-1,|B|=3$, then $|3 A B|$ equals
A. 3
B. -9
C. -27
D. None of these

Answer: C

163. Which one of the following matrices is an elementary matrix ?
A. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}1 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
C. $\left[\begin{array}{lll}0 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
D. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 2\end{array}\right]$

Answer: B

- Watch Video Solution

164. If $A=\left[\begin{array}{ll}2 & 7 \\ 1 & 5\end{array}\right]$ then that is $\mathrm{A}+3 A^{-1}$ equal to ?
A. 3 I
B. 5 I
C. 71
D. None of these

Answer: C

- Watch Video Solution

165. The matrix $\left[\begin{array}{cc}0 & -4+i \\ 4+I & 0\end{array}\right]$ is
A. symmetric
B. skew-symmetric
C. Hermitian
D. skew-Hermitian

Answer: D

166. Consider the following in respect of two non-singular matrices A and B of same order :
167. $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$
168. $(A+B)^{-1}=A^{-1}+B^{-1}$

Which of the above is/ar correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

- Watch Video Solution

167. If $X=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ -2 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$ satisfy the equation $A X=B$, then the matrix A is equal to
A. $\left[\begin{array}{ll}-7 & 26 \\ 1 & -5\end{array}\right]$
B. $\left[\begin{array}{ll}7 & 26 \\ 4 & 17\end{array}\right]$
C. $\left[\begin{array}{ll}-7 & -4 \\ 26 & 13\end{array}\right]$
D. $\left[\begin{array}{ll}-7 & 26 \\ -6 & 23\end{array}\right]$

Answer: A

- Watch Video Solution

168. $A=\left[\begin{array}{cc}x+y & y \\ 2 x & x-y\end{array}\right]$
$B=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ and $C=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
If $A B=C$, then what is A^{2} equal to ?
A. $\left[\begin{array}{ll}6 & -10 \\ 4 & 26\end{array}\right]$
B. $\left[\begin{array}{ll}-10 & 5 \\ 4 & 24\end{array}\right]$
C. $\left[\begin{array}{ll}-5 & -6 \\ -4 & -20\end{array}\right]$
D. $\left[\begin{array}{ll}-5 & -7 \\ -5 & 20\end{array}\right]$

- Watch Video Solution

169. The value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$ is
A. $x+y$
B. $x-y$
C. $x y$
D. $1+x+y$

Answer: C

D Watch Video Solution

170. If $E(\theta)=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then $E(\alpha) E(\beta)=$
A. $E(\alpha \beta)$
B. $E(\alpha-\beta)$
C. $E(\alpha+\beta)$
D. $-E(\alpha+\beta)$

Answer: C

(D) Watch Video Solution

171. The matrix $A=\left[\begin{array}{ccc}1 & 3 & 2 \\ 1 & x-1 & 1 \\ 2 & 7 & x-3\end{array}\right]$ will have inverse for every real number x except for
A. $x=\frac{11 \pm \sqrt{5}}{2}$
B. $x=\frac{9 \pm \sqrt{5}}{2}$
C. $x=\frac{11 \pm \sqrt{3}}{2}$
D. $x=\frac{9 \pm \sqrt{3}}{2}$

Answer: A
172. If the value of the determinants $\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|$ is positive then:
A. cannot be less than 1
B. is greater than -8
C. is less than -8
D. must be greater than 8

Answer: B

- Watch Video Solution

173. Consider the following statements in respect of the determinant $\left|\begin{array}{cc}\cos ^{2}\left(\frac{\alpha}{2}\right) & \sin ^{2}\left(\frac{\alpha}{2}\right) \\ \sin ^{2}\left(\frac{\beta}{2}\right) & \cos ^{2}\left(\frac{\beta}{2}\right)\end{array}\right|$ where α, β are complementary angles
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

174. If $A=\left[\begin{array}{lll}1 & 0 & -2 \\ 2 & -3 & 4\end{array}\right]$, then the matrix X for which $2 \mathrm{X}+3 \mathrm{~A}=0$ holds true is
A. $\left[\begin{array}{lll}-\frac{3}{2} & 0 & -3 \\ -3 & -\frac{9}{2} & -6\end{array}\right]$
B. $\left[\begin{array}{lll}\frac{3}{2} & 0 & -3 \\ 3 & -\frac{9}{2} & -6\end{array}\right]$
C. $\left[\begin{array}{ccc}\frac{3}{2} & 0 & 3 \\ 3 & \frac{9}{2} & 6\end{array}\right]$
D. $\left[\begin{array}{lll}-\frac{3}{2} & 0 & 3 \\ -3 & \frac{9}{2} & -6\end{array}\right]$

Answer: D
175. If $A=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}-1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5\end{array}\right]$ then which of the following is/are correct ?

1. A and B commute.
2. $A B$ is a null matrix.

Select the correct answer using the code given below :
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

176. If A is an invertible matrix of order n and k is any positive real number, then the value of $[\operatorname{det}(k A)]^{1} \operatorname{det} A$ is
A. k^{-n}
B. k^{-1}
C. k^{n}
D. nk

Answer: A

- Watch Video Solution

177. If A is an orthogonal matrix of order 3 and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ -3 & 0 & 2 \\ 2 & 5 & 0\end{array}\right]$, then which of the following is/are correct ?
178. $|A B|= \pm 47$
179. $A B=B A$

Select the correct answer using the code given below :
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

- Watch Video Solution

178. If a, b, c are real numbers, then the value the determinant $\left|\begin{array}{lll}1-a & a-b-c & b+c \\ 1-b & b-c-a & c+a \\ 1-c & c-a-b & a+b\end{array}\right|$ is
A. 0
B. $(a-b)(b-c)(c-a)$
C. $(a+b+c)^{2}$
D. $(a+b+c)^{3}$

- Watch Video Solution

179. Cosider the function $f(x)=\left|\begin{array}{lll}x^{3} & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3}\end{array}\right|$, where p is a constant.

What is the value of $f^{\prime}(0)$?
A. p^{3}
B. $3 p^{3}$
C. $6 p^{3}$
D. $-6 p^{3}$

Answer: D

- Watch Video Solution

180. Cosider the function $f(x)=\left|\begin{array}{lll}x^{3} & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3}\end{array}\right|$, where p is a constant.

What is the value of p for which $f^{\prime \prime}(0)=0$?
A. $-\frac{1}{6}$ or 0
B. -1 or 0
C. $-\frac{1}{6}$ or 1
D. -1 or 1

Answer: A

D Watch Video Solution

181. If A is a square matrix, then what is $\operatorname{adj} A^{T}-(a d j A)^{T}$ equal to ?
A. $2|A|$
B. Null matrix
C. unit matrix
D. None of the above

Answer: B

- Watch Video Solution

182. Consider the following in respect of the matrix $A=\left(\begin{array}{ll}-1 & 1 \\ 1 & -1\end{array}\right)$:
183. $A^{2}=-A$
184. $A^{3}=4 A$

Which of the above is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

183. Which of the following determinants have value 'zero'?
184. $\left|\begin{array}{lll}41 & 1 & 5 \\ 79 & 7 & 9 \\ 29 & 5 & 3\end{array}\right|$
185. $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
186. $\left|\begin{array}{lll}0 & c & b \\ -c & 0 & a \\ -b & -a & 0\end{array}\right|$

Select the correct answer using the code given below.
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: D

184.

$k x+y+z=1, x+k y+z=1$ and $x+y+k z=1$ has a unique solution under which one of the following conditions?
A. $k \neq 1$ and $k \neq-2$
B. $k \neq 1$ and $k \neq 2$
C. $k \neq-1$ and $k \neq-2$
D. $k \neq-1$ and $k \neq 2$

Answer: A

- Watch Video Solution

185. If A is semy square matrix of order 3 and $\operatorname{det} A=5$, then what is det $\left[(2 A)^{-1}\right]$ equal to ?
A. $1 / 10$
B. $2 / 5$
C. $8 / 5$
D. $1 / 40$

Answer: D

- Watch Video Solution

186. What is $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$ equal to ?
A. $[a x+h y+g z+h+b+f \quad g+f+c]$
B. $\left[\begin{array}{lll}a & h & g \\ h x & b y & f z \\ g & f & c\end{array}\right]$
C. $\left[\begin{array}{l}a x+h y+g z \\ h x+b y+f z \\ g x+f y+c z\end{array}\right]$
D. $\left[\begin{array}{lll}a x+h y+g z & h x+b y+f z & g x+g y+c z\end{array}\right]$

Answer: D

187. Let $a x^{3}+b x^{2}+c x+d=\left|\begin{array}{ccc}x+1 & 2 x & 3 x \\ 2 x+3 & x+1 & x \\ 2-x & 3 x+4 & 5 x-1\end{array}\right|$ then what is
the value of c
A. -1
B. 34
C. 35
D. 50

Answer: C

- Watch Video Solution

188. Let $a x^{3}+b x^{2}+c x+d=\left|\begin{array}{ccc}x+1 & 2 x & 3 x \\ 2 x+3 & x+1 & x \\ 2-x & 3 x+4 & 5 x-1\end{array}\right|$ then what is the value of c
A. 62
B. 63
C. 65
D. 68

Answer: B

- Watch Video Solution

189. If $m=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $n=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, then what is the value of the determinant of $m \cos \theta-n \sin \theta$
A. -1
B. 0
C. 1
D. 2

Answer: C

190. If $f\{x\}=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, then which of the following are correct ?
191. $f(\theta) \times f(\phi)=f(\theta+\phi)$
192. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1 .
193. The determinant of $f(x)$ is an even function.
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: D

- Watch Video Solution

191. Which of the following are correct in respect of the system of equations $x+y+z=8 x-y+2 z=6$ and $3 x-y+5 z=k$ 1)They have no solution if $k=15$ 2)Theyhave infinitely many solutions if $k=20$
3)They have a unique solution if $k=25$ Select the correct answer using the code given below a) 1 and 2 only b) 2 and 3 only c) 1 and 3 only d)1,2 and 3
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1, 2 and 3

Answer: A

- Watch Video Solution

192. $A=\left[\begin{array}{ll}1 & -1 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 3 \\ -1 & -2\end{array}\right]$, then which of the following is/are correct ?
193. $A B\left(A^{-1} B^{-1}\right)$ is a unit matrix.
194. $(A B)^{-1}=A^{-1} B^{-1}$

Select the correct answer using the code given below :
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

- Watch Video Solution

193. For
the
system
of
linear
equations
$2 x+3 y+5 z=9,7 x+3 y-2 z=8$ and $2 x+3 y+\lambda z=\mu$
Under what condition does the above system of equations have infinitely many solutions ?
A. $\lambda=5$ and $\mu \neq 9$
B. $\lambda=5$ and $\mu=9$
C. $\lambda=9$ and $\mu=5$
D. $\lambda=9$ and $\mu \neq 5$

Answer: B

- Watch Video Solution

194. For the system of linear equations
$2 x+3 y+5 z=9,7 x+3 y-2 z=8$ and $2 x+3 y+\lambda z=\mu$
Under what condition does the above system of equations have unique solutions?
A. $\lambda=5$ and $\mu=9$
B. $\lambda \neq 9$ and $\mu=7$ only
C. $\lambda \neq 5$ and μ has any real value
D. λ has any real value and $\mu \neq 9$

Answer: C

- Watch Video Solution

195. If $A=\left[\begin{array}{cc}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and determinant $\left(A^{3}\right)=125$, then the value of α is (a) ± 1 (b) ± 2 (c) ± 3 (d) ± 5
A. ± 1
B. ± 2
C. ± 3
D. ± 5

Answer: C

- Watch Video Solution

196. If B is a non-singular matrix and A is a square matrix, then $\operatorname{det}\left(B^{-1} A B\right)$ is equal to (A) $\operatorname{det}\left(A^{-1}\right)$ (B) $\operatorname{det}\left(B^{-1}\right)$ (C) $\operatorname{det}(A)$ (D) $\operatorname{det}(B)$

[^0]B. $\operatorname{det}(A)$
C. $\operatorname{det}\left(B^{-1}\right)$
D. $\operatorname{det}\left(A^{-1}\right)$

Answer: B

- Watch Video Solution

197. If $a \neq b \neq c$, are value of x which satisfies the equation
$\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0$ is given by
A. a
B. b
C. c
D. 0

Answer: D

198. If $A=[\cos \alpha \sin \alpha-\sin \alpha \cos \alpha]$, then verify that $A^{T} A=I_{2}$.
A. Null matrix
B. Identify matrix
C. A
D. $-A$

Answer: B

- Watch Video Solution

199. For the system of equaltions:
$x+2 y+3 z=1$
$2 x+y+3 z=2$
$5 x+5 y+9 z=4$
A. have the unique solution
B. have infinitely many solutions
C. are inconsistent
D. None of the above

Answer: A

- Watch Video Solution

200. $A=\left[\begin{array}{cc}x+y & y \\ x & x-y\end{array}\right], B=\left[\begin{array}{l}3 \\ -2\end{array}\right]$ and $C=\left[\begin{array}{l}4 \\ -2\end{array}\right]$. If $\mathrm{AB}=\mathrm{C}$, then what is A^{2} equal to ?
A. $\left[\begin{array}{ll}4 & 8 \\ -4 & -16\end{array}\right]$
B. $\left[\begin{array}{ll}4 & -4 \\ 8 & -16\end{array}\right]$
C. $\left[\begin{array}{ll}-4 & -8 \\ 4 & 12\end{array}\right]$
D. $\left[\begin{array}{ll}-4 & -8 \\ 8 & 12\end{array}\right]$

Answer: D

201. What is the value of the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x y z & 1 \\ 1 & 1 & 1+x y z\end{array}\right|$?
A. $1+x+y+z$
B. $2 x y z$
C. $x^{2} y^{2} z^{2}$
D. $2 x^{2} y^{2} z^{2}$

Answer: C

- Watch Video Solution

202. If $\left|\begin{array}{lll}x & y & 0 \\ 0 & x & y \\ y & 0 & x\end{array}\right|=0$, then which one of the following is correct ?
A. $\frac{x}{y}$ is one of the cube roots of unity
B. x is one of the cube roots of unity
C. y is one of the cube roots of unity
D. $\frac{x}{y}$ is one of the cube roots of -1

Answer: D

- Watch Video Solution

203. Consider the set A of all determinants of order 3 with entries 0 or 1 only. Let B be the subset of A consisting of all determinants with value 1 .

Let C be the subset of the set of all determinants with value -1 . Then
A. C is empty
B. B has as many elements as C
$C . A=B \cup C$
D. B has thrice as many elements as C

Answer: B

- Watch Video Solution

204. If $\mathrm{A}=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then what is A^{3} equal to ?
A. $\left[\begin{array}{ll}\cos 3 \theta & \sin 3 \theta \\ -\sin 3 \theta & \cos 3 \theta\end{array}\right]$
B. $\left[\begin{array}{ll}\cos ^{3} \theta & \sin ^{3} \theta \\ -\sin ^{3} \theta & \cos ^{3} \theta\end{array}\right]$
C. $\left[\begin{array}{ll}\cos 3 \theta & -\sin 3 \theta \\ \sin 3 \theta & \cos 3 \theta\end{array}\right]$
D. $\left[\begin{array}{ll}\cos ^{3} \theta & -\sin ^{3} \theta \\ \sin ^{3} \theta & \cos ^{3} \theta\end{array}\right]$

Answer: A

- Watch Video Solution

205. What is the order of the product $\left[\begin{array}{lll}x & y & z\end{array}\right]\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$?
A. 3×1
B. 1×1
C. 1×3
D. 3×3

- Watch Video Solution

206. if $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then $A^{4}=$?
A. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
B. $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
C. $\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$
D. $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Answer: A

- Watch Video Solution

207. The matrix A has x rows and $(x+5)$ column. If the matrix B has y rows and $(11-y)$ columns \& both $A B a n d B A$ exist, then $x=8$ (b)
$x=3 y=6$ (d) $y=8$
A. 8 and 3
B. 3 and 4
C. 3 and 8
D. 8 and 8

Answer: C

- Watch Video Solution

208. If A is a square matrix, then what is $\operatorname{adj} A^{T}-(a d j A)^{T}$ equal to ?
A. A
B. $2|\mathrm{~A}| \mathrm{I}$, where I is the identity matrix
C. null matrix whose order is same as that of A
D. unit matrix whose order is same as that of A

Answer: C

209. The value of the determinant $\left|\begin{array}{cc}\cos ^{2} \frac{\theta}{2} & \sin ^{2} \frac{\theta}{2} \\ \sin ^{2} \frac{\theta}{2} & \cos ^{2} \frac{\theta}{2}\end{array}\right|$ for all values of θ, is
A. 1
B. $\cos \theta$
C. $\sin \theta$
D. $\cos 2 \theta$

Answer: B

- Watch Video Solution

210. If a, b, c are non-zero real numbers, then the inverse of the matrix
$A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$ is equal to
A. $\left[\begin{array}{lll}a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1}\end{array}\right]$
B. $\frac{1}{a b c}\left[\begin{array}{lll}a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1}\end{array}\right]$
C. $\frac{1}{a b c}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
D. $\frac{1}{a b c}\left[\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$

Answer: A

- Watch Video Solution

211.

The
system
of
equation
$k x+y+z=1, x+k y+z=k$ and $x+y+k z=k^{2}$ has no solution
if k equals
A. 0
B. 1
C. -1
D. -2

- Watch Video Solution

212. The value of the determinant $\left|\begin{array}{lll}1-\alpha & \alpha-\alpha^{2} & \alpha^{\circ} \\ 1-\beta & \beta-\beta^{2} & \beta^{2} \\ 1-\gamma & \gamma-\gamma^{2} & \gamma^{2}\end{array}\right|$ is equal to
A. $(\alpha-\beta)(\beta-\gamma)(\alpha-\gamma)$
B. $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
C. $(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$
D. 0

Answer: B

- Watch Video Solution

213. The adjoint of the matrix $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 3 & 1\end{array}\right]$ is
A. $\left[\begin{array}{lll}-1 & 6 & 2 \\ -2 & 1 & -4 \\ 6 & 3 & 1\end{array}\right]$
B. $\left[\begin{array}{lll}1 & 6 & -2 \\ -2 & 1 & 4 \\ 6 & -3 & 1\end{array}\right]$
C. $\left[\begin{array}{lll}6 & 1 & 2 \\ 4 & -1 & 2 \\ 6 & 3 & -1\end{array}\right]$
D. $\left[\begin{array}{lll}-6 & 1 & 2 \\ 4 & -2 & 1 \\ 3 & 1 & -6\end{array}\right]$

Answer: B

Watch Video Solution
214. If $A=\left(\begin{array}{ll}-2 & 2 \\ 2 & -2\end{array}\right)$, then which one of the following is correct ?
A. $A^{2}=-2 A$
B. $A^{2}=-4 A$
C. $A^{2}=-3 A$
D. $A^{2}=4 A$

Answer: B

- Watch Video Solution

215. If $\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{a}+\mathrm{b}+\mathrm{c}=0$, then the determinant $\left|\begin{array}{lll}p a & q b & r c \\ q c & r a & p b \\ r b & p c & q a\end{array}\right|$ equals
A. 0
B. 1
C. $p a+q b+r c$
D. $p a+q b+r c+a+b+c$

Answer: A

- Watch Video Solution

216. If the matrix $\left[\begin{array}{lll}\cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$ is singular, then what is one of the values of θ ?
A. $\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$
B. $\left(\begin{array}{ccc}\cos \theta & \sin \theta & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right)$
C. $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)$
D. $\left(\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$

Answer: A

Watch Video Solution

217. If A is a 2×3 matrix and $A B$ is a 2×5 matrix, then B must be a
A. 3×5 matrix
B. 5×3 matrix
C. 3×2 matrix
D. 5×2 matrix

- Watch Video Solution

218. if $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $A^{2}-k A-I_{2}=0$ then the value of k is
A. 4
B. -4
C. 8
D. -8

Answer: A

- Watch Video Solution

219. A square matrix A is called orthogonal if

Where A^{\prime} is the transpose of A .
A. $A=A^{2}$
B. $A^{\prime}=A^{-1}$
C. $A=A^{-1}$
D. $A=A^{\prime}$

Answer: B

- Watch Video Solution

220. For a square matrix A , which of the following properties hold ?
221. $\left(A^{-1}\right)^{-1}=A$
222. $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}$
223. $(\lambda A)^{-1} \lambda A^{-1}$ where λ is a scalar

Select the correct answer using the code given below :
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1, 2 and 3

Answer: A

- Watch Video Solution

221. Which one of the following factors does the expansions of the determinant $\left(\begin{array}{lll}x & y & 3 \\ x^{2} & 5 y^{2} & 9 \\ x^{3} & 10 y^{3} & 27\end{array}\right)$ contain ?
A. $x-3$
B. $x-y$
C. Y-3
D. $x-3 y$

Answer: A

- Watch Video Solution

222. What is the adjoint of the matrix $\binom{\cos (-\theta)-\sin (-\theta)}{-\sin (-\theta) \cos (-\theta)}$?
A. $\left(\begin{array}{ll}\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
B. $\left(\begin{array}{ll}\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
C. $\left(\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
D. $\left(\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$

Answer: A

- Watch Video Solution

223. If A and B are two invertible matrices of same order, the $(A B)^{-1}$ is
(A) AB (B) BA (C) $A^{-1} B^{-1}$ (D) does not exist
A. $B^{-1} A^{-1}$
B. $A^{-1} B^{-1}$
C. $B^{-1} A$
D. $A^{-1} B$

Answer: A

- Watch Video Solution

224. If $a+b+c=0$, one root of $|a-x c b c b-x a b a c-x|=0$ is $x=1$
b. $x=2$ c. $x=a^{2}+b^{2}+c^{2}$ d. $x=0$
A. $x=a$
B. $x=\sqrt{\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{2}}$
C. $x=\sqrt{\frac{2\left(a^{2}+b^{2}+c^{2}\right)}{3}}$
D. $x=0$

Answer: D

225. What should be the value of x so that the matrix $\left(\begin{array}{ll}2 & 4 \\ -8 & x\end{array}\right)$ does not have an inverse ?
A. 16
B. -16
C. 8
D. -8

Answer: B

- Watch Video Solution

226. The system of equation
$2 x+y-3 z=5$
$3 x-2 y+2 z=5$ and
$5 x-3 y-z=16$
A. is inconsistent
B. is consistent, with unique solution
C. is consistent, with infinitely many solutions
D. has its solution lying along x-axis in three-dimensional space

Answer: B

- Watch Video Solution

227. If u, v and w (all positive) are the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of a GP, the determinant of the matrix $\left(\begin{array}{lll}\operatorname{In} & u & p l \\ \operatorname{In} & v & q l \\ \operatorname{In} & w & r l\end{array}\right)$ is
A. 0
B. 1
C. $(p-q)(q-r)(r-p)$
D. $\ln u \times \ln v \times \ln w$

Answer: A

228. Consider the following in respect of matrices A, B and C of same order :
229. $(A+B+C)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}$
230. $(A B)^{\prime}=A B^{\prime}$
231. $(A B C)^{\prime}=C^{\prime} B^{\prime} A^{\prime}$

Where A^{\prime} is the transpose of the matrix A. Which of the above are correct ?
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: C

229. Let matrix B be the adjoint of a square matrix A, I be the identity matrix of the same order as A. If $k(\neq 0)$ is the determinant of the matrix A, then what is $A B$ equal to ?
A. 1
B. kI
C. $k^{2} I$
D. $(1 / k) I$

Answer: B

Watch Video Solution

230. What is the determinant of the matrix $\left(\begin{array}{lll}x & y & y+z \\ z & x & z+x \\ y & z & x+y\end{array}\right)$?
A. $(x-y)(y-z)(z-x)$
B. $(x-z)(z-x)$
C. $(y-z)(z-x)$
D. $(x-z)^{2}(x+y+z)$

Answer: D

- Watch Video Solution

231. If A, B and C are the angles of a triangle and
$\left|\begin{array}{ccc}1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin ^{2} A & \sin B+\sin ^{2} B & \sin C+\sin ^{2} C\end{array}\right|=0$, then the triangle
$A B C$ is
A. The triangle $A B C$ is isosceles
B. The triangle $A B C$ is equailateral
C. The triangle $A B C$ is scalene
D. No conclusion can be drawn with regard to the nature of the triangle

Answer: A

232. Consider the following in respect of matrices A and B of same order :
233. $A^{2}-B^{2}=(A+B)(A-B)$
234. $(A-I)(I+A)=0 \leftrightarrow A^{2}=I$

Where I is the identity matrix and O is the null matrix.
Which of the above is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

233. What is the area of the triangle with vertices $\left(x_{1}, \frac{1}{x_{1}}\right),\left(x_{2}, \frac{1}{x_{2}}\right),\left(x_{3}, \frac{1}{x_{3}}\right) ?$
A. $\left|\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)\right|$
B. 0
C. $\left|\frac{\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)}{x_{1} x_{2} x_{3}}\right|$
D. $\left|\frac{\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)}{2 x_{1} x_{2} x_{3}}\right|$

Answer: D

- Watch Video Solution

234. If $B=\left[\begin{array}{ccc}3 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 0\end{array}\right]$, then what is adjoint of B equal to ?
A. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & -1 & 8\end{array}\right]$
B. $\left[\begin{array}{lll}0 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 8\end{array}\right]$
C. $\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
D. It does not exist

D Watch Video Solution

235. If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, then the matrix A is/an
A. Singular matrix
B. Involutory matrix
C. Nilpotent matrix
D. Inempotent matrix

Answer: B

- Watch Video Solution

236. If A is a identity matrix of order 3 , then its inverse $\left(A^{-1}\right)$
A. is qual to null matrix
B. is equal to A
C. is equal to 3 A
D. does not exist

Answer: B

D Watch Video Solution

237. A is a square matrix of order 3 such that its determinant is 4 . What is the determinant of its transpose ?
A. 64
B. 36
C. 32
D. 4

Answer: D

238. If A is square matrix of order $n>1$, then which one of the following is correct ?
A. $\operatorname{det}(-A)=\operatorname{det} A$
B. $\operatorname{det}(-\mathrm{A})=(-1)^{n} \operatorname{det} \mathrm{~A}$
C. $\operatorname{det}(-A)=-\operatorname{det} A$
D. $\operatorname{det}(-A)=n \operatorname{det} A$

Answer: B

- Watch Video Solution

239. Let A and B be (3×3) matrices with $\operatorname{det} A=4$ and $\operatorname{det} B=3$.

What is det (2AB) equal to ?
A. 96
B. 72
C. 48
D. 36

Answer: A

- Watch Video Solution

240. Let A and B be (3×3) matrices with $\operatorname{det} \mathrm{A}=4$ and $\operatorname{det} \mathrm{B}=3$.

What is det ($3 A B^{-1}$)equal to ?
A. 12
B. 18
C. 36
D. 48

Answer: C

[^0]: A. det (B)

