©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - NDA PREVIOUS YEARS

POLYNOMIAL,QUADRATIC EQUATION \& INEQUALITIES

Math

1. If the roots of the equation $4 B^{2}+\lambda B-2=0$ are of the from $\frac{k}{k+1}$ and $\frac{k+1}{k+2}$, then what is the value of λ ?
A. 2 k
B. 7
C. 2
D. $k+1$

Answer: B

Watch Video Solution

2. Given $4 a-2 b+c=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}$, which of the following statement is/are not true in general?
3. $(x+2)$ will always be a factor of the expression
4. $(x-2)$ will always be a factor of the expression $a x^{2}+b x+c$.
5. There will always be a factor of the expression $a x^{2}+b x+c$ different from $(x+2)$

Select the correct answer using the code given below:
A. 1 and 2 only
B. 1,2 and 3
C. 2 only
D. 1 only

Answer: B

3. If the sum of the squares of the squares of the roots of $x^{2}-(p-2) x-(p+1)=0(p \in R)$ is 5, then what is the value of p ?
A. 0
B. -1
C. 1
D. $\frac{3}{2}$

Answer: C

- Watch Video Solution

4. What is the number of real solutions of
$\left|x^{2}-x-6\right|=x+2 ?$
A. 4
B. 3
C. 2
D. 1

Answer: B

- Watch Video Solution

5. If the roots of $x^{2}-2 m x+m^{2}-1=0$ lie between -2 and 4 , then
A. $-1 \leq m \leq 3$
B. $-3 \leq m \leq 3$
C. $-3 \leq m \leq 5$
D. $-1 \leq m \leq 5$

Answer: B

6. If $\left(\log _{3} x\right)^{2}+\log _{3} x<2$, then which one of the following is correct?
A. $0<x<\frac{1}{9}$
B. $\frac{1}{9} \leq x \leq 3$
C. $3<x<\infty$
D. $\frac{1}{9} \leq x \leq 3$

Answer: B

- Watch Video Solution

7. The number of integral values of a for which the equation $\cos 2 x+a \sin x=2 a-7$ possessess a solution.
A. $a<2$
B. $a \geq 8$
C. $a>8$
D. a is any integar <-2

Answer: B

- Watch Video Solution

8. If $\sin \theta$ and $\cos \theta$ are the roots of $a x^{2}+b x+c=0$, then constants a, b,c will satisfy which one of the following conditions?
A. $a^{2}+b^{2}+2 a c+=0$
B. $a^{2}+b^{2}-2 a c=0$
C. $a^{2}-b^{2}+2 a c=0$
D. $-a^{2}+b^{2}+2 a c=0$

Answer: C

D Watch Video Solution

9. If $a^{2}+b^{2}+c^{2}=0$,
then
what
is
$\frac{\left(a^{4}-b^{4}\right)^{3}+\left(b^{4}-c^{4}\right)^{3}+\left(c^{4}-a^{4}\right)^{3}}{\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}}$ equal to?
A. $a^{2} b^{2} c^{2}$
B. $-a^{2} b^{2} c^{2}$
C. abc
D. $3 a^{2} b^{2} c^{2}$

Answer: B

- Watch Video Solution

10. If $0<x<y<\pi$, then which one of the following is correct?
A. $x-\cos x>y-\cos y$
B. $x-\cos x<y-\cos y$
C. $x+\cos x>y \cos y$
D. $x+\cos x<y+\cos y$

Answer: B

11. What is the $(m-1)^{t h}$ root of $\left[\left(a^{m}\right)^{m}-\left(\frac{1}{m}\right)\right]^{\frac{1}{m+1}}$?
A. $a^{m+(1 / m)}$
B. $a^{m-(1 / m)}$
C. a
D. 1

Answer: C

- Watch Video Solution

12. Let $a, b \in\{1,2,3\}$. What is the number of equations of the form $a x^{2}+b x+1=0$ having real roots?
A. 1
B. 2
C. 5
D. 3

Answer: D

- Watch Video Solution

13. If $p x^{2}+q x+r=p(x-a)(x-B)$, and $p^{3}+p q+r=0, \mathrm{p}, \mathrm{q}$ and r being real numbers, then which of the following is not possible?
A. $\alpha=\beta=p$
B. $\alpha \neq \beta=p$
C. $\alpha=\beta \neq p$
D. $\beta \neq \alpha=p$

Answer: A

14. If the equation $x^{2}+k^{2}=2(k+1) x$ has equal roots, then what is the value of K ?
A. $-\frac{1}{3}$
B. $-\frac{1}{2}$
C. 0
D. 1

Answer: B

- Watch Video Solution

15. If $x=a^{1 / 3}-a^{-1 / 3}$, then what is $x^{3}+3 x$ equal to?
A. zero
B. $a+\left(\frac{1}{a}\right)$
C. $a-\left(\frac{1}{a}\right)$
D. $a^{3}+\left(\frac{1}{a^{3}}\right)$

- Watch Video Solution

16. If $x^{1 / 3}+y^{1 / 3}+z^{1 / 3}=0$ then what is $(x+y+z)^{3}$ equal to ?
A. 1
B. 3
C. $3 x y z$
D. 27 xyz

Answer: D

- Watch Video Solution

17. If α, β are the roots of $a x^{2}+2 b x+c=0$ and $\alpha+\delta, \beta+\delta$ be those of $A x^{2}+2 B x+C=0$ then prove that $\frac{b^{2}-a c}{B^{2}-A C}=\left(\frac{a}{A}\right)^{2}$
A. $(b / B)^{2}$
B. $(a / A)^{2}$
C. $\left(a^{2} b^{2}\right) /\left(A^{2} B^{2}\right)$
D. $(a b) /(A B)$

Answer: B

- Watch Video Solution

18.

α, β are the roots of the equation $a x^{2}+b x+c=0$, then what is the va
A. $a /(b c)$
B. $b / a c$
C. $-b /(a c)$
D. $-a /(b c)$

D Watch Video Solution

19.

α, β are the roots of the equation $x^{2}-2 x-1=0$, then what is the valu
A. -2
B. 0
C. 30
D. 34

Answer: D

- Watch Video Solution

20. Which one of the following values of x, y satisfies the in equation
$2 x+3 y \geq 6, x \geq 0, y \geq 0$?
A. $x=0, y=3$
B. $x=1, y=2$
C. $x=1, y=1$
D. $x=4, y=0$

Answer: C

- Watch Video Solution

21. What is the value of x at the intersection of $y=\frac{8}{\left(x^{2}+4\right)}$ and $x+y=2 ?$
A. 0
B. 1
C. 2
D. -1
22. If the
roots
of the equation $x^{2}-(a-1) x+(a+b)=0$ and $a x^{2}-2 x+b=0$ are identical, then what are the values of a and b ?
A. $a=2, b=4$
B. $a=2, b=-4$
C. $a=1, b=\frac{1}{2}$
D. $a=-1, b=-\frac{1}{2}$

Answer: B

- Watch Video Solution

23. How many real values of x satisfy the equation $|x|+|x-1|=1$?
A. 1
B. 2
C. Infinite
D. No value of x

Answer: C

- Watch Video Solution

24. What is the number of digits in the numeral form of $8^{17} ?\left(\right.$ Given $\left.\log _{10}^{2}==0.3010\right)$
A. 51
B. 16
C. 15
D. 14

Answer: B

25. If α and β are the roots of the equation $x^{2}+x+1=0$, then what is the equation whose roots are α^{19} and β^{7} ?
A. $x^{2}-x-1=0$
B. $x^{2}-x+1=0$
C. $x^{2}+x-1=0$
D. $x^{2}+x+1=0$

Answer: D

- Watch Video Solution

26. If α and β are the roots of the equation $x^{2}+6 x+1=0, \quad$ then what is $|\alpha-\beta|$ equal to?
A. 6
B. $3 \sqrt{3}$
C. $4 \sqrt{2}$
D. 12

Answer: C

- Watch Video Solution

27.

$r^{1 / 3}+\frac{1}{r^{1 / 3}}=3$ for a real number $r \neq 0$, then what is $r+\frac{1}{r}$ equal to ?
A. 27
B. 36
C. 9
D. 18

Answer: D

28. The number of rows in a lecture hall equals the number of seats in a row. If the number of rows is reduced by 10 , the number of seats is increased by 300 . If x denotes the number of rows in the lecture hall, then what is the value of x ?
A. 10
B. 15
C. 20
D. 30

Answer: D

- Watch Video Solution

29.

α, β are the roots of the equation $l x^{2}-m x+m=0, l \neq m, l \neq 0$, then which one of the following statement is correct ?
A. $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}-\sqrt{\frac{m}{l}}=0$
B. $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{m}{l}}=0$
C. $\frac{\sqrt{\alpha+\beta}}{\alpha \beta}-\sqrt{\frac{m}{l}}=0$
D. The arithmetic mean of α and β is the same as their geometric mean

Answer: A

- Watch Video Solution

30. Find the value of k for real and equal roots . $(k+1) x^{2}-2(k-1) x+1=0$
A. $k=0 o n l y$
B. $k=-3 o n l y$
C. $k=0$ or $k=3$
D. $k=0$ or $k=-3$

Answer: C

D Watch Video Solution

31. If the roots of an equation $a x^{2}+b x+c=0$ are positive, then which one of the following is correct ?
A. Signs of a and c should be like
B. Signs of b and c should be like
C. Signs of a and b should be like
D. None of these

Answer: A

- Watch Video Solution

32. Which one of the following is correct ? If $4<x^{2} \leq 9$, then
A. $2<x<3 o n l y$
B. $-3<x<-2 o n l y$
C. $2<x<3,-3<x<-2$
D. None of these

Answer: C

- Watch Video Solution

33. If α and β are the roots of the equation $a x^{2}+b x+c=0$, then what are the roots of the equation $c x^{2}+b x+a=0 ?$
A. $\beta, \frac{1}{\alpha}$
B. $\alpha, \frac{1}{\beta}$
C. $-\alpha,-\beta$
D. $\frac{1}{\alpha}, \frac{1}{\beta}$
34. If x and y are real numbers such that $x>y$ and $|x|>|y|$,then which one of the following is correct ?
A. $x>0$
B. $y>0$
C. $y<0$
D. $x<0$

Answer: A

- Watch Video Solution

35. What are the linear constraints for which the shaded area in the above figure is the solution set ?

A. $x-y \geq 1, x=2 y \leq 8, x+y \geq 1, x, y \geq 0$
B. $x-y \leq 1, x=2 y \geq 8, x+y \leq 1, x, y \geq 0$
C. $x-y \leq 1, x+2 y \leq 8, x+y \geq 1, x, y \geq 0$
D. $x-y \leq, x+2 y \leq 8, x+y \leq 1, x, y \geq 0$

Answer: C

- Watch Video Solution

36. If x is real and $x^{2}-3 x+2>0, x^{2}-3 x-4 \leq 0$, then which one of the following is correct?
A. $-1 \leq x \leq 4$
B. $2 \leq x \leq 4$
C. $-1<x<1$
D. $-1 \leq x<1$ or $2<x \leq 4$

Answer: D

- Watch Video Solution

37. If $x=2^{1 / 3}-2^{-1 / 3}$ then what is the value of $2 x^{3}+6 x$?
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

38. What is the value of
$\sqrt{5 \sqrt{5 \sqrt{5 \sqrt{\cdots \infty}}}}$
A. 5
B. $\sqrt{5}$
C. 1
D. $(5)^{1 / 4}$

Answer: A

- Watch Video Solution

39. For the real numbers $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{x}, \mathrm{y}, \mathrm{let} p<x<q$ and $p<y<r$.
A. $p<x<x<r$
B. $p<x<q<r$
C. $p<y<x<q$
D. None of these

Answer: B

- Watch Video Solution

40. One root of the equation $x^{2}=p x+q$ is reciprocal of the other and $p \neq \pm 1$. What is the value of q ?
A. $q=-1$
B. $q=-1$
C. $q=0$
D. $q=\frac{1}{2}$
41. If the equation $x^{2}+k x+1=0$ has the roots α and β, then what is the value of $(\alpha+\beta) \times\left(\alpha^{-1}+\beta^{-1}\right)$
A. k^{2}
B. $\frac{1}{k^{2}}$
C. $2 k^{2}$
D. $\frac{1}{\left(2 k^{2}\right)}$

Answer: A

- Watch Video Solution

42. If the roots of $x^{2}-b x+c=0$ are two consecutive integers then $b^{2}-4 c=$
B. 2
C. -2
D. 3

Answer: A

D Watch Video Solution

43. If r and s are roots of $x^{2}+p x+q=0$, then what is the value of $\left(1 / r^{2}\right)+\left(1 / s^{2}\right) ?$
A. $p^{2}-4 q$
B. $\frac{p^{2}-4 q}{2}$
C. $\frac{p^{2}-4 q}{q^{2}}$
D. $\frac{p^{2}-2 q}{q^{2}}$

Answer: D

44. If x is an integar and satisfies $9<4 x-1 \leq 19$, then x is an element of the which one of the following sets?
A. $\{3,4\}$
B. $\{2,3,4\}$
C. $\{3,4,5\}$
D. $\{2,3,4,5\}$

Answer: C

- Watch Video Solution

45. If $a=x+\sqrt{x^{2}+1}$, then what is x equal to?
A. $(1 / 2)\left(a+a^{-1}\right)$
B. $(1 / 2)\left(a-a^{-1}\right)$
C. $a+a^{-1}$
D. $a-a^{-1}$

Answer: B

- Watch Video Solution

46. A quadratic polynomial with two distinct roots has one real root.

Then, the other root is
A. not necessarily real, if the coefficients are real `
B. always imaginary
C. always real
D. real, if the cosfficients are real

Answer: C

- Watch Video Solution

47. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $p x^{2}+q x+r=0$, then which one of the following is correct?
A. $p^{2}+q^{2}-2 p r=0$
B. $p^{2}-q^{2}+2 p r=0$
C. $(p+r)^{2}=2\left(p^{2}+r^{2}\right)$
D. None of these

Answer: B

- Watch Video Solution

48. If α and β are the roots of $x^{2}+4 x+6=0$, then what is the value of $\alpha^{3}+\beta^{3}$?
A. $-2 / 3$
B. $2 / 3$
C. 4
D. 8

Answer: D

- Watch Video Solution

49. If sum of the roots of $3 x^{2}+(3 p+1) x-(p+5)=0$ is equal to their product, then what is the value of p ?
A. 2
B. 3
C. 4
D. 9

Answer: A

50. If a polygon has 20 diagonals, then what is the number of sides?
A. 6
B. 10
C. 12
D. 8

Answer: D

- Watch Video Solution

51.

α, γ be the roots of $A x^{2}-4 x+1=0$ and β, δ be the roots of $B x^{2}-$ are in HP, then what are the values of Aand B respectively?
A. 3,8
B. $-3,-8$
C. $3,-8$
D. $-3,8$

Answer: D

- Watch Video Solution

52. If $2^{x}+3^{y}=17$ and $2^{x+1}-3^{y+1}=5$ then what is the value of x ?
A. 3
B. 2
C. 1
D. 0

Answer: A

- Watch Video Solution

53. If $(x+a)$ is a factor of both the quadratic polynomials $x^{2}+p x+q$ and $x^{2}+l x+m$, where $\mathrm{p}, \mathrm{q}, \mathrm{l}$ and m are constants, then which one of the following is correct?
A. $a=(m-q) /(l-p)(l \neq p)$
B. $a=(m-q) /(l+p)(l \neq-p)$
C. $l=(m-q) /(a-p)(a \neq p)$
D. $p=(m-q) /(a-l)(a \neq l)$

Answer: A

- Watch Video Solution

54. Which one of the following is one of the roots of the equation
$(b-c)^{x^{2}}+(c-a) x+(a-b)=0 ?$
A. $(c-a) /(b-c)$
B. $(a-b) /(b-c)$
C. $(b-c) /(a-b)$
D. $(c-a) /(a-b)$

Answer: B

- Watch Video Solution

55. What is the vlaue of x satisfying the equation $16\left(\frac{a-x}{a+x}\right)^{3}=\frac{a+x}{a-x}$?
A. $a / 2$
B. $a / 3$
C. $a / 4$
D. 0

Answer: B

56. If α, β are the roots of the equation $2 x^{2}-2(1+n)^{2} x+\left(1+n^{2}+n^{4}\right)=0$ then what is the value of $\alpha^{2}+\beta^{2}$?
A. $2 n^{2}$
B. $2 n^{4}$
C. 2
D. n^{2}

Answer: D

57. The roots of $A x^{2}+B x+C=0$ are r and s. For the roots of $x^{2}+p x+q=0$ to be r^{2} and s^{2}, what must be the value of p ?
A. $\left(B^{2}-4 A C\right) / A^{2}$
B. $\left(B^{2}-2 A C\right) / A^{2}$
C. $\left(2 A C-B^{2}\right) / A^{2}$
D. $B^{2}-2 C$

Answer: C

- Watch Video Solution

58.

If α, β
are
the
roots
of
$a x^{2}+b x+b=0$ then what is $\frac{\sqrt{\alpha}}{\sqrt{\beta}}+\frac{\sqrt{\beta}}{\sqrt{\alpha}}+\frac{\sqrt{b}}{\sqrt{a}}$ equal to ?
A. 0
B. 1
C. 2
D. 3

Answer: A

59. If the roots of $a x^{2}+b x+c=0$ are $\sin \alpha$ and $\cos \alpha$ for some α, then which one of the following is correct ?
A. $a^{2}+b^{2}=2 a c$
B. $b^{2}-c^{2}=2 a b$
C. $b^{2}-a^{2}=2 a c$
D. $b^{2}+c^{2}=2 a b$

Answer: C

- Watch Video Solution

60. If $x=2+2^{\frac{2}{3}}+2^{\frac{1}{3}}$, then the value of $x^{3}-6 x^{2}+6 x$ is:
A. 1
B. 2
C. 3
D. -2

- Watch Video Solution

61. The roots of the equation $(x-p)(x-q)=r^{2}$ where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are real, are
A. always complex
B. always real
C. always purely imaginary
D. None of these

Answer: B

- Watch Video Solution

62. The equation $x-2(x-1)^{-1}=1-2(x-1)^{-1}$ has
A. no roots
B. One root is real and the other is complex
C. two equal roots
D. infinite roots

Answer: A

D Watch Video Solution

63. If a, b and c are real numbers then the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are always
A. real
B. imaginary
C. positive
D. negative
64. For the two equations $x^{2}+m x+1=0$ and $x^{2}+x+m=0$, what is the value of m for which these equations have at least one common root?
A. $-2 o n l y$
B. 1only
C. -2 and 1
D. -2 and -1

Answer: C

- Watch Video Solution

65. Consider the equations $(x-p)(x-6)+1=0$ having integral coefficents. If the equation has integral roots, then what values can p have?
A. 4 or 8
B. 5 or 10
C. 6 or 12
D. 3 or 6

Answer: A

- Watch Video Solution

66. If $\frac{1}{2-\sqrt{-2}}$ is one of the roots of $a x^{2}+b x+c=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are real, then what are the values of a, b, c respectively ?
A. $6,-4,1$
B. $4,6,-1$
C. $3,-2,1$
D. $6,4,1$

Watch Video Solution

67. If α, β are the roots of the equation $x^{2}-x+1=0$ then which one of the following is correct?
A. $\left(\alpha^{2}-\beta^{2}\right)$ isreal
B. $2\left(\alpha^{6}+\beta^{5}\right)=(\alpha \beta)^{5}$
C. $\left(\alpha^{6}-\beta^{6}\right)=0$
D. $\left(\alpha^{8}+\beta^{8}\right)=\left(\alpha \beta^{8}\right)$

Answer: C

- Watch Video Solution

68. If p and q are positive integers, then which one of the following equations has $p-\sqrt{q}$ as one of its roots ?

$$
\text { A. } x^{2}-2 p x-\left(p^{2}-q\right)=0
$$

B. $x^{2}-2 p x+\left(p^{2}-q\right)=0$
C. $x^{2}+2 p x-\left(p^{2}-q\right)=0$
D. $x^{2}+2 p x+\left(p^{2}-q\right)=0$

Answer: B

- Watch Video Solution

69. If the product of the roots of the equation $x^{2}-5 x+k=15$ is -3 , then what is the value of k ?
A. 12
B. 15
C. 16
D. 18

Answer: A

70. If the equation $x^{2}-b x+1=0$ does not possess real roots, then which one of the following is correct?
A. $-3<b<3$
B. $-2<b<2$
C. $b>2$
D. $b<-2$

Answer: B

- Watch Video Solution

71. If p and q are the root of the equation $x^{2}-p x+q=0$, then what are the vlaues of p and q respectively ?
A. 1,0
B. 0,1
C. $-2,0$
D. $-2,1$

Answer: A

- Watch Video Solution

72. Determine the positive values of ' k ' for which the equation $x^{2}+k x+64=0$ and $x^{2}-8 x+k=0$ will both have real roots.
A. 4
B. 8
C. 12
D. 16

Answer: D

73. the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+\left(b^{2}+c^{2}\right)=0$ are equal , then which one of the following is correct ?
A. $a b=a+c$
B. $b^{2}=a c$
C. $b+c=2 a$
D. $b=a c$

Answer: B

- Watch Video Solution

74. If α and β are the roots of the equation $x^{2}-2 x+4=0$, then what is the value of $\alpha^{3}+\beta^{3}$?
A. 16
B. -16
C. 8
D. -8

Answer: B

- Watch Video Solution

75. The imaginary roots of the equation $\left(x^{2}+2\right)^{2}+8 x^{2}=6 x\left(x^{2}+2\right)$ are
A. $1 \pm i$
B. $2 \pm i$
C. $1 \pm \sqrt{2}$
D. $2 \pm I \sqrt{2}$

Answer: A

76. If α and β are the roots of the equation $x^{2}+x+1=0$ then which of the following are the roots of the equation $x^{2}-x+1=0$?
A. α^{2} and β^{13}
B. α^{13} and β^{7}
C. α^{20} and β^{20}
D. None of these

Answer: D

- Watch Video Solution

77. What is the solution set for the equation $x^{4}-26 x^{2}+25=0$
A. $\{-5,-1,1,5\}$
B. $\{-5,-1\}$
C. $\{1,5\}$
D. $\{-5,0,1,5\}$

- Watch Video Solution

78. If α and β are the roots of the equation $4 x^{2}+3 x+7=0$, then what is the value of $\left(\alpha^{-2}+\beta^{-2}\right)$?
A. $47 / 49$
B. $49 / 47$
C. $-47 / 49$
D. $-49 / 47$

Answer: C

- Watch Video Solution

79. What is the set of points (x, y) satisfying the equations $x^{2}+y^{2}=4$ and $x+y=2$?
A. $\{(2,0),(-2,0),(0,2)\}$
B. $\{(0,2),(0,-2)\}$
C. $\{(0,2),(2,0)\}$
D. $\{(2,0),(-2,0),(0,2),(0,2)\}$

Answer: C

- Watch Video Solution

80. If p, q and r are rational numbers, then the roots of the equation
$x^{2}-2 p x+p^{2}+2 q r-r^{2}=0$ are
A. complex
B. pure imaginary
C. irrational
D. rational
81. If p, q and r rational numbers, then the roots of the equation
$(2-\sqrt{3}) x^{2}-(7-4 \sqrt{3}) x+(2+\sqrt{3})=0 ?$
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $7-4 \sqrt{3}$
D. 4

Answer: A

- Watch Video Solution

82. What is the condition that one root of the equation $a x^{2}+b x+c=0 \quad a \neq 0$ should be double the other ?

$$
\text { A. } a>0, b>0, c>0,
$$

B. $a>0, b<0, c>0$
C. $a<0, b>0, c<0$
D. $a<0, c>0$

Answer: B

- Watch Video Solution

83. What is the condition that one root of the equation $a x^{2}+b x+c=0 \quad a \neq 0$ should be double the other ?
A. $2 a^{2}=9 a c$
B. $2 b^{2}=9 a c$
C. $2 c^{2}=9 a b$
D. None of these

Answer: B

84. If $x+y \leq 4$, then the how many non- zero positive integar ordered pair (x, y)?
A. 4
B. 5
C. 6
D. 8

Answer: C

- Watch Video Solution

85. If 3 is the root of the equation $x^{2}=8 x+k=0$ then what is the value of k ?
A. -15
B. 9
C. 15
D. 24

Answer: C

- Watch Video Solution

86. If sum of squares of the roots of the equation $x^{2}+k x-b=0$ is 2 b , what is kequal to ?
A. 1
B. b
C. $-b$
D. 0

Answer: D

87. If one root of the equation $a x^{2}+b x+c=0, a \neq 0$ is reciprocal of the other root , then which one of the following is correct?
A. $a=c$
B. $b=c$
C. $a=-c$
D. $b=0$

Answer: A

- Watch Video Solution

88. The equation $x^{2}-4 x+29=0$ has one root $2+5$ i. What is the other root?
A. 2
B. 5
C. $2+5 i$
D. $2-5 i$

Answer: D

- Watch Video Solution

89. Let α, β be the roots of the equation $(x-a)(x-b)=c, c \neq 0$ Then the roots of the equation $(x-\alpha)(x-\beta)+c=0$ are a, c (b) $b, c a, b$
(d) $a+c, b+c$
A. a, c
B. b, c
C. a, b
D. $a+b, a+c$

Answer: C

- Watch Video Solution

90. If the equations $x^{2}-p x+q=0$ and $x^{2}-a x+b=0$ have a common root and the second equation has equal roots then
A. $a q=2(b+p)$
B. $a q=(b+q)$
C. $a p=2(b+q)$
D. $a p=b+q$

Answer: C

(D) Watch Video Solution

91. Let a , be the roots of the equation $x^{2}+x+1=0$. The equation whose roots are α^{19} and β^{7} are:
A. $x^{2}-x-1=0$
B. $x^{2}-x+1=0$
C. $x^{2}+x-1=0$
D. $x^{2}+x+1=0$

Answer: B

- Watch Video Solution

92. The value of $\sqrt{8+2 \sqrt{8+2 \sqrt{8+2 \sqrt{8+2 \sqrt{8+\ldots \infty}}}}}$ is equal to
A. 10
B. 8
C. 6
D. 4

Answer: D

- Watch Video Solution

93. If $\sin \theta=x+\frac{a}{x}$ for all $x \in R-\{0\}$, then which one of the following is correct ?
A. $a \geq 4$
B. $a \geq \frac{1}{2}$
C. $a \leq \frac{1}{4}$
D. $a \leq \frac{1}{2}$

Answer: C

- Watch Video Solution

94. The equation $\tan ^{4} x-2 \sec ^{2} x+a=0$ will have at least one solution if ` 1
A. $|a| \leq 4$
B. $|a| \leq 2$
C. $|a| \leq \sqrt{3}$
D. None of the above

Answer: C

- Watch Video Solution

95. If the roots of the equation $x^{2}-4 x-\log _{3} N=0$ are real, then what is the minimum vlaue of N ?
A. $1 / 256$
B. $1 / 27$
C. $1 / 64$
D. $1 / 81$

Answer: D

- Watch Video Solution

96. If one of the roots of the equation
$(b-c) x^{2}+b(c-a) x+c(a-b)=0$ is 1 , what is the second root?
A. $-\frac{b(c-a)}{a(b-c)}$
B. $\frac{b(c-a)}{a(b-c)}$
C. $\frac{c(a-b)}{a(b-c)}$
D. $\frac{c(a-b)}{a(b-c)}$

Answer: C

- Watch Video Solution

97. What are the roots of the equation $2(y+2)^{2}-5(y+2)=12$?
A. $-7 / 2,2$
B. $-3 / 2,4$
C. $-5 / 3,3$
D. $3 / 2,4$

D Watch Video Solution

98. If the roots of the equation $3 x^{2}-5 x+q=0$ are equal , then what is the value of q ?
A. 2
B. $5 / 12$
C. $12 / 25$
D. $25 / 12$

Answer: D

- Watch Video Solution

99. If the difference between the roots of $a x^{2}+b x+c=0$ is 1 , then which one of the following is correct?
A. $b^{2}=a(a+4 c)$
B. $a^{2}=b(b+4 c)$
C. $a^{2}=c(a+4 c)$
D. $b^{2}=a(b+4 c)$

Answer: A

- Watch Video Solution

100. If one of the roots of the equation $x^{2}+a x-6=0$ is 1 , then what is (a-6) equal to?
A. -1
B. 1
C. 2
D. -2
101. If α and β are the roots of the equation $x^{2}-q(1+x)-r=0, \quad$ then what is $(1+\alpha)(1+\beta)$ equal to ?
A. $1-r$
B. $q-r$
C. $1+r$
D. $q+r$

Answer: A

- Watch Video Solution

102. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

What is b:c equal to?
A. $3: 1$
B. 1: 2
C. $1: 3$
D. 3: 2

Answer: A

- Watch Video Solution

103. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

Which one of the following is correct ?
A. $b c=a^{2}$
B. $b c=36 a^{2}$
C. $b c=72 a^{2}$
D. $b c=108 a^{2}$

- Watch Video Solution

104. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

What is the sum of the squares of the roots of the equation $x^{2}+2 x-143=0$
A. 170
B. 180
C. 190
D. 290

Answer: D

105. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

The solution of the simultaneous linear equaitons
$2 x+y=6$ and $3 y=8+4 x$ will also be satisfied by which one of the following linear equations ?
A. $x+y=5$
B. $2 x+y=5$
C. $2 x-3 y=10$
D. $2 x+3 y=6$

Answer: A

- Watch Video Solution

106. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

If the roots of a quadratic equation are $m+n$ and $m-n$, then the quadratic equaiton will be :
A. $x^{2}+2 m x+m^{2}-m n+n^{2}=0$
B. $x^{2}+2 m x+(m-n)^{2}=0$
C. $x^{2}+2 m x+m^{2}-n^{2}=0$
D. $x^{2} m x+m^{2}-n^{2}=0$

Answer: C

- Watch Video Solution

107.

If $\quad \alpha, \beta$
are
the
roots
of $x^{2}+p x-q=0$ and $\lambda, \delta x^{2}+p x-q=0$ and λ, δ are the roots of x^{2} equal to ?
A. $p+r$
B. $p+q$
C. $q+r$
D. $p-q$

Answer: C

- Watch Video Solution

108. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

If the roots of the quadratic equation $3 x^{2}-5 x+p=0$ and unequal, then which one of the following is correct ?
A. $p=25 / 12$
B. $p<25 / 12$
C. $p>25 / 12$
D. $p \leq 25 / 12$

Answer: B

109. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

If $4^{x}-6.2^{x} 8=0$, then the values of x arre
A. 1,2
B. 1,1
C. 1,0
D. 2,2

Answer: A

- Watch Video Solution

110. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

If the roots of a quadratic equation $a x^{2}+b x+c=0$ are α and β, then the quadratic equation having roots α and β is
A. $x^{2}-\left(b^{2}-2 a c\right) x+c=0$
B. $a^{2} x^{2}-\left(b^{2}-2 a c\right) x+c=0$
C. $a x^{2}-\left(b^{2}-2 a c\right) x+c^{2}=0$
D. $a^{2} x^{2}-\left(b^{2}-2 a c\right) x+c^{2}=0$

Answer: D

- Watch Video Solution

111. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$ If the roots of the equation $3 a x^{2}+2 b x+c=0$ are in the ratio $2: 3$, then which one of the following is correct ?
A. $8 a c=25 b$
B. $8 a c=9 b^{2}$
C. $8 b^{2}=9 a c$
D. $8 b^{2}=25 a c$

D Watch Video Solution

112. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

If the sum of the roots of a quadratic equation is 3 and the product is 2 , then the equationis
A. $2 x^{2}-x+=0$
B. $x^{2}-3 x+2=0$
C. $x^{2}+3 x+2=0$
D. $x^{2}-3 x-2=0$

Answer: B

D Watch Video Solution

113. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

If α and β are the roots of the equation $x^{2}+b x+c=0$, then what is the value of $\alpha^{-1}+\beta^{-1}$?
A. $-\frac{b}{c}$
B. $\frac{b}{c}$
C. $\frac{c}{b}$
D. $-\frac{c}{b}$

Answer: A

- Watch Video Solution

114. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

The area of a rectangle whose length is five more than twice its width is
75 square unit. The length is
A. 5 unit
B. 10 unit
C. 15 unit
D. 20 unit

Answer: C

- Watch Video Solution

115. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$
$(x+1)^{2}-1=0$ has
A. one real root
B. two real roots
C. two imaginary roots
D. four real roots

D Watch Video Solution

116. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

What is the positive square root of $7+4 \sqrt{3}$?
A. $\sqrt{3}-1$
B. $\sqrt{3}+1$
C. $\sqrt{3}+2$
D.

Answer: D

117. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

If α and β are the roots of the equation $x^{2}+x+2=0$, then what is $\frac{\alpha^{10}+\beta^{10}}{\alpha^{-10}+\beta^{-10}}$ equal to ?
A. 4096
B. 2048
C. 1024
D. 512

Answer: C

- Watch Video Solution

118. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

How If a and bare rational and b is not perfect square, then the
quadratic equaiton with rational coefficients whose one root is $3 a+\sqrt{b}$ is
A. $x^{2}-6 a x+9 a^{2}-b=0$
B. $3 a x^{2}+x-\sqrt{b}=0$
C. $x^{2}+3 x+\sqrt{b}=0$
D. $\sqrt{b} x^{2}+x-3 a=0$

Answer: A

- Watch Video Solution

119. How many real roots does the quadratic equation $f(x)=x^{2}+3|x|+2=0$ have ?
A. One
B. Two
C. Fore
D. No real root

Answer: D

D Watch Video Solution

120. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$

IF α, β are the roots does the quadratic equation $a x^{2}+b x+b=0$ then what is the value of $\sqrt{\frac{\alpha}{\beta}}+\sqrt{\frac{\beta}{\alpha}}+\sqrt{\frac{b}{a}}$?
A. -1
B. 0
C. 1
D. 2

Answer: B

121. The roots of the equation $x^{2}-8 x+16=0$
A. are imaginary
B. are distinct and real
C. are equal and real
D. canot be ascertained

Answer: C

- Watch Video Solution

122. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$
A. 2
B. 3
C. 5
D. 8

Answer: D

- Watch Video Solution

123. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$
$(x+1)^{2}-1=0$ has
A. 10
B. 11
C. 12
D. 13

Answer: A

- Watch Video Solution

124. The equation formed by multiplying each root of $a x^{2}+b x+c=0$ by 2 is $x^{2}=36 x+24=0$
$(x+1)^{2}-1=0$ has
A. $b \leq-4 o n l y$
B. $b \geq$ only
C. $-4<b<4$
D. $b \leq-4, b \geq 4$

Answer: D

- Watch Video Solution

125. If α and β are the roots of the equation $a x^{2}+b x+c=0$ where $\alpha 0$ then $(a \alpha+b)(a \beta+b)$ is equal to
A. $a b$
B. $b c$
C. $c a$
D. $a b c$

Answer: C

- Watch Video Solution

126. The roots of the equation $2 a^{2} x^{2}-2 a b x+b^{2}=0$ when $\mathrm{a}<0$ and b >0 are:
A. Sometimes complex
B. Always irrational
C. Always complex
D. Always real

Answer: C

127. Every quadratic equation
$a x^{2}+b x+c=0$, where $a, b, c \in R$ has'
A. exactly one real root.
B. at least one rea root.
C. at least two real roots.
D. at most two real roots.

Answer: D

- Watch Video Solution

128. If α, β are the roots of $a x^{2}+b x+c=0$ and $a+h, \beta+\mathrm{h}$ are the roots of $p x^{2}+q x+r=0$ then what is h equal to ?
A. $\frac{1}{2}\left(\frac{b}{a}-\frac{q}{p}\right)$
B. $\frac{1}{2}\left(-\frac{b}{a}+\frac{q}{p}\right)$
C. $\frac{1}{2}\left(\frac{b}{p}+\frac{q}{a}\right)$
D. $\frac{1}{2}\left(-\frac{b}{p}+\frac{q}{a}\right)$

Answer: A

- Watch Video Solution

129. Consider the following statements in respect of the given equation $\left(x^{2}+2\right)^{2}+8 x^{2}=6 x\left(x^{2}+2\right)$
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

130. Two students solved a problem involving a quadratic equation. The first student made an error only in the constant term of the equation and determined the roots were 2 and 8 . The second student made an error only in the coefficient of the linear term and determined the roots were - 1 and -9 . What was the quadratic equation ?
A. $x^{2}-10 x+9=0$
B. $x^{2}-10 x+9=0$
C. $x^{2}-10 x+16=0$
D. $x^{2}-8 x-9=0$

Answer: A

- Watch Video Solution

131. If m and n are roots of the equation $(x+p)(x+q)-k=0$ then find the roots of the equation $(x-m)(x-n)+k=0$
A. p and q
B. $\frac{1}{p}$ and $\frac{1}{q}$
C. $-p$ and $-q$
D. $p+q$ and $p-q$

Answer: C

- Watch Video Solution

132. $2 \mathrm{p}+3 \mathrm{q}=18$ and $4 p^{2}+4 p q-3 q 2-36=0$ then what is $(2 \mathrm{p}+\mathrm{q})$ equal to?
A. 6
B. 7
C. 10
D. 20

Answer: C

133. The number of real roots of the equation $x^{2}-3 \operatorname{modx}+2=0$ is
A. 4
B. 3
C. 2
D. 1

Answer: A

- Watch Video Solution

134. If the sum of the roots of the equation $a x^{2}+b x+c=0$ is equal to the sum of their squares then
A. $a^{2}+b^{2}=c^{2}$
B. $a^{2}+b^{2}=a+b$
C. $a b+b^{2}=2 a c$
D. $a b-b^{2}=2 a c$

Answer: C

- Watch Video Solution

135. If the roots of the equation $x^{2}-n x+m=0$ differ by 1 then
A. $n^{2}-4 m-1=0$
B. $n^{2}+4 m-1=0$
C. $m^{2}-4 n-1=0$
D. $m^{2}-4 n-1=0$

Answer: A

- Watch Video Solution

136. If $x^{2}-p x+4>0$ for all real value of x , then which one of the following is correct ?
A. $|p|<4$
B. $|p| \leq 4$
C. $|p|>4$
D. $|p| \geq 4$

Answer: B

- Watch Video Solution

137. Consider the function $f(x)=27 \frac{x^{\frac{2}{3}}-x}{4}$ How many solutions does the function $\mathrm{f}(\mathrm{x})=1$ have?
A. One
B. Two
C. Three

D. Four

Answer: B

- Watch Video Solution

138. Consider the function $f(x)=27 \frac{x^{\frac{2}{3}}-x}{4}$ How many solutions does the function $f(x)=1$ have?
A. One
B. Two
C. Three
D. Four

Answer: A

139.

α and $\beta(a<\beta)$ be the roots of the equation $x^{2}+b x+c=0, \quad$ where b Consider the following : 1. $\beta<-\alpha 2 . \beta<|a|$

Which of the above is//are corect ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

140.

Let
α and $\beta(a<\beta)$ be the roots of the equation $x^{2}+b x+c=0$, where b
Consider the following :

1. $\alpha+\beta+\alpha \beta>0$
2. $\alpha^{2} \beta+\beta^{2} \alpha>0$

Which of the above is//are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: B

- Watch Video Solution

141. If one root of the equation $(1-m) x^{2}+1 x+1=0$ is double the other and 1 is real , then what is the greatest value of m ?
A. $-\frac{9}{8}$
B. 43716
C. $-\frac{8}{9}$
D. $\frac{8}{9}$

Answer: B

- Watch Video Solution

142. If $c>0$ and $4 a+c<2 b$ then $a x^{2}-b x+c=0$ has a root win which one of the following intervals $a)(0,2) b)(2,3) c)(3,4) d)(-2,0$)
A. $(0,2)$
B. $(2,3)$
C. $(3,4)$
D. $(-2,0)$

Answer: A

α and $\beta(a<\beta)$ be the roots of the equation $x^{2}+b x+c=0$, where b If both the roots of the equation $x^{2}-2 k x+k^{2}-4=0$ lie between -3 and 5 , then which one of the following is correct ?
A. $-2<k<2$.
B. $-5<k<3$
C. $-3<k<5$
D. $-1<k<3$

Answer: D

- Watch Video Solution

144. Let α and β be the roots of equation $x^{2}-\left(1-2 a^{2}\right) x+\left(1-2 a^{2}\right)=0$ 1.) under what condition does the above equation have real roots. 1.) $a^{2}<\frac{1}{2}$ 2.) $a^{2}>\frac{1}{2}$ 3.) $a^{2} \leq \frac{1}{2}$ 4.) $a^{2} \geq \frac{1}{2}$ 2.) Under what condition is $\frac{1}{(\alpha)^{2}}+\frac{1}{(\beta)^{2}}<1$?
A. $a^{2}<\frac{1}{2}$
B. $a^{2}>\frac{1}{2}$
C. $a^{2} \leq \frac{1}{2}$
D. $a^{2} \geq \frac{1}{2}$

Answer: D

- Watch Video Solution

145. Let α and β be the roots of the equation
$x^{2}-\left(1-2 a^{2}\right) x+\left(1-2 a^{2}\right)=0$
Under what condition is $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}<1$?
A. $a^{2}<\frac{1}{2}$
B. $a^{2}>\frac{1}{2}$
C. $a^{2}>1$
D. $a^{2} \in\left(\frac{1}{3}, \frac{1}{2}\right)$ omly

- Watch Video Solution

146. What is the greatest value of the positive integer n satisfying the condition $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{n-1}}<2-\frac{1}{1000}$?
A. 8
B. 9
C. 10
D. 11

Answer: C

- Watch Video Solution

147.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x-$

What is the valueof α ?
A. $1 / 2$
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

148.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x$ If $\beta, 2,2$ mare in GP , then what is the value of $\beta \sqrt{m}$?
A. 1
B. 2
C. 4
D. 6

Answer: A

(Watch Video Solution

149. Ifthep $\oint(a, a)$ liesbetweenthel $\in e s|\mathrm{x}+\mathrm{y}|=2$, 'then which one of the following is correct ?
A. $|a|<2$
B. $|a|<\sqrt{2}$
C. $|a|<1$
D. $|a|<\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

150.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x-$ If the roots of the equation $x^{2}+p x+q=0$ are in the same ratio as those of the equation $x^{2}+l x+m=0$, then which one of the following is correct ?
A. $p^{2} m=l^{2} q$
B. $m^{2} p=l^{2} p$
C. $m^{2} p=q^{2} l$
D. $m^{2} p^{2}=l^{2} q$

Answer: A

- Watch Video Solution

151.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x-$

If ω, ω^{2} are the cube roots of unity, then $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\left(1+\omega+\omega^{2}\right)$ is equal to
A. -2
B. -1
C. 0
D. 2

Answer: C

- Watch Video Solution

152.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x-$ If the graph of a quadratic polynomial lies entirely above x-axis, then which one of the following is correct ?
A. Both the roots are real
B. One root is real and the other is complex
C. Both the roots are complex
D. Cannot say

Answer: C

- Watch Video Solution

153.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x$ If $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^{2}+b x+c=0$ with $b \neq 0, \quad$ then the value of $\cot (\alpha+\beta)$ is
A. $\frac{c-1}{b}$
B. $\frac{1-c}{b}$
C. $\frac{b}{c-1}$
D. $\frac{b}{1-c}$

Answer: B

154.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x$
The roots of the equation
$(q-r) x^{2}+(r-p) x+(p-q)=0$ are
A. $(r-p) /(q-r), 1 / 2$
B. $(p-q) /(q-r), 1$
C. $(q-r) /(p-q), 1$
D. $(r-p) /(p-q), 1 / 2$

Answer: B

- Watch Video Solution

155.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x$

If α and β are the roots of the equation $1+x+x^{2}=0$, then the matrix product $\left[\begin{array}{ll}1 & \beta \\ \alpha & \alpha\end{array}\right],\left[\begin{array}{cc}\alpha & \beta \\ 1 & \beta\end{array}\right]$ is equal to
A. $\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$
B. $\left[\begin{array}{cc}-1 & -1 \\ -1 & 2\end{array}\right]$
C. $\left[\begin{array}{ll}1 & -1 \\ -1 & 2\end{array}\right]$
D. $\left[\begin{array}{ll}-1 & -1 \\ -1 & -2\end{array}\right]$

Answer: B

- Watch Video Solution

156.

 $|a b|=|a||b| 2 .|a+b| l e|a|+|b| 3$. $|a-b|$ ge $|a|-|b| \mid `$ ' Select the correct answer using the code given below.
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: D

- Watch Video Solution

157.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x$ The sum of all real roots of the equation $|x-3|^{2}+|x-3|-2=0$ is
A. 2
B. 3
C. 4
D. 6

Answer: D

158.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x-$ It is given that the roots of the equation $x^{2}-4 x-\log _{3} P=0$ are real .

For this, the minimum value of P is
A. $\frac{1}{27}$
B. $\frac{1}{64}$
C. $\frac{1}{81}$
D. 1

Answer: C

- Watch Video Solution

159.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x-$

If α and β are the roots of the equation $3 x^{2}+2 x+1=0$, then the equation whose roots are $\alpha+\beta^{-1}$ and $\beta+\alpha^{-1}$
A. $3 x^{2}+8 x+16=0$
B. $3 x^{2}-8 x-16=0$
C. $3 x^{2}+8 x-16=0$
D. $x^{2}+8 x+16=0$

Answer: A

- Watch Video Solution

160.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x-$ $\triangle P Q R, \angle R=\frac{\pi}{2}$. If than $\left(\frac{P}{2}\right)$ and $\tan \left(\frac{Q}{2}\right)$ are the roots of the eq then which one of the following is correct ?
A. $a=b+c$
B. $b=c+a$
C. $c=a+b$
D. $b=c$

Answer: C

- Watch Video Solution

161.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x$ The equation $|1-x|+x^{2}=5$ has
A. a rational root and an irrrational root
B. two rational roots
C. two irrational roots
D. no real roots

Answer: A

162.

$2 x^{2}+3 x-\alpha-0$ has roots -2 and β while the equation $x^{2}-3 m x$ Let $[x]$ denote the greatest integar function. What is the number of solutions of the equation $x^{2}-4 x+[x]-0$ in the interval $[0,2] ?$
A. Zero (No solution)
B. One
C. Two
D. Three

Answer: B

- Watch Video Solution

163. Considerthe follow $\in g \exp$ ressions : $1 . x+x^{\wedge}(2)-1 / x 2 . \operatorname{sqrt}\left(\mathrm{ax}^{\wedge}(2)+\right.$ $\left.b x+x-c+d / c-e / x^{\wedge}(2)\right) 3.3 x^{\wedge}(2)-5 x+a b 51 / x-2 /(x+5)^{\wedge}$ Which of the above are rational expressions ?
A. 1, 4 and 5only
B. 1, 3, 4 and 5only
C. 2, 4 and 5only
D. 1 and $2 o n l y$

Answer: B

- Watch Video Solution

164. If α and $\beta(\neq 0)$ are the roots of the quadratic equation $x^{2}+a x-\beta=0, \quad$ then the quadratic expression $-x^{2}+\alpha x+\beta$ where has
A. Least value $-\frac{1}{4}$
B. Least value $-\frac{9}{4}$
C. Greatest value $\frac{1}{4}$
D. Greatest value $\frac{9}{4}$

Answer: D

- Watch Video Solution

165. Let $f(x)$ be a quadratic expression which is positive for all ral x and $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$, then for any real x,
A. $g(x)<0$
B. $g(x)>0$
C. $g(x)=0$
D. $g(x) \leq 0$

Answer: B

- Watch Video Solution

166. The ration of roots of the equations $a x^{2}+b x+c=0$ and $\mathrm{px}^{\wedge}(2)+$ $\mathrm{qx}+r=0$ are equal. If D_{1} and D_{2} are respective discriminates. Then
what is $\frac{D_{1}}{D_{2}}$ equal to ?
A. $\frac{a^{2}}{p^{2}}$
B. $\frac{b^{2}}{q^{2}}$
C. $\frac{c^{2}}{r^{2}}$
D. None of these

Answer: B

- Watch Video Solution

167. The roots of the equation $\left|x^{2}-x-6\right|=x+2$ are
A. $-2,1,4$
B. $0,2,4$
C. $0,1,4$
D. $-2,2,4$

Answer: B

Watch Video Solution

168. The equation $P x^{2}+q x+r=0$ (where $\mathrm{p}, \mathrm{q}, \mathrm{r}$, all are positive) has distinct real roots a and b.
A. $a>0, b>0$
B. $a<0, b<0$
C. $a>0, b<0$
D. $a<0, b\rangle 0$

Answer: D

- Watch Video Solution

169. If the roots of the equation $x^{2}+p x+q=0$ are $x^{2}+p x+q=0$ are $\tan 19^{\circ}$ and $\tan 26^{\circ}$, then which one of the following is correct ?
A. $q-p=1$
B. $p-q=1$
C. $p+q=2$
D. $p+q=3$

Answer: A

- Watch Video Solution

170. The number of real roots for the eqiuation $x^{2}+9|x|+20=0$ is
A. Zero
B. One
C. Two
D. Three

Answer: B

\square

