

MATHS

BOOKS - NDA PREVIOUS YEARS

POLYNOMIAL, QUADRATIC EQUATION & INEQUALITIES

1. If the roots of the equation $4B^2 + \lambda B - 2 = 0$ are of the from $\frac{k}{k+1}$ and $\frac{k+1}{k+2}$, then what is the value of λ ?

A. 2k

B. 7

C. 2

 $\mathsf{D}.\,k+1$

Answer: B

2. Given 4a - 2b + c = 0 where a,b,c \in R, which of the following statement is/are not true in general?

1. (x+2) will always be a factor of the expression

2. (x-2) will always be a factor of the expression $ax^2 + bx + c$.

3. There will always be a factor of the expression ax^2+bx+c different from(x+2)

Select the correct answer using the code given below:

A.1 and 2 only

B. 1,2 and 3

C. 2 only

D.1 only

Answer: B

3. If the sum of the squares of the squares of the roots of $x^2-(p-2)x-(p+1)=0(p\in R)$ is 5,

then what is the value of p?

A. 0 B. -1 C. 1 D. $\frac{3}{2}$

Answer: C

4. What is the number of real solutions of

 $\left|x^2 - x - 6\right| = x + 2?$

A. 4

B. 3

C. 2

D. 1

Answer: B

Answer: B

6. If $\left(\log_3 x
ight)^2 + \log_3 x < 2$, then which one of the following is correct?

A. $0 < x < rac{1}{9}$ B. $rac{1}{9} \le x \le 3$ C. $3 < x < \infty$ D. $rac{1}{9} \le x \le 3$

Answer: B

Watch Video Solution

7. The number of integral values of a for which the equation $\cos 2x + a \sin x = 2a - 7$ possessess a solution.

A. a < 2

 $\mathsf{B.}\,a\geq 8$

 $\mathsf{C.}\,a>8$

D. a is any integar < -2

Answer: B

8. If $\sin \theta$ and $\cos \theta$ are the roots of $ax^2 + bx + c = 0$, then constants a, b,c will satisfy which one of the following conditions?

A.
$$a^2 + b^2 + 2ac + = 0$$

B. $a^2 + b^2 - 2ac = 0$
C. $a^2 - b^2 + 2ac = 0$
D. $-a^2 + b^2 + 2ac = 0$

Answer: C

9. If
$$a^2 + b^2 + c^2 = 0$$
, then what is $rac{\left(a^4 - b^4
ight)^3 + \left(b^4 - c^4
ight)^3 + \left(c^4 - a^4
ight)^3}{\left(a^2 - b^2
ight)^3 + \left(b^2 - c^2
ight)^3 + \left(c^2 - a^2
ight)^3}$ equal to?

A. $a^2b^2c^2$

 $\mathsf{B.}-a^2b^2c^2$

C. abc

D. $3a^2b^2c^2$

Answer: B

Watch Video Solution

10. If $0 < x < y < \pi$,then which one of the following is correct?

A. $x - \cos x > y - \cos y$

 $\mathsf{B.}\,x - \cos x < y - \cos y$

 $\mathsf{C}.\, x + \cos x > y \cos y$

 $\mathsf{D}.\, x + \cos x < y + \cos y$

Answer: B

11. What is the
$$\left(m-1
ight)^{th} \;\; ext{root of} \; \left[\left(a^m
ight)^m-\left(rac{1}{m}
ight)
ight]^{rac{1}{m+1}}$$
 ?

A. $a^{m+(1/m)}$

 $\mathsf{B.}\,a^{m-\,(\,1\,/\,m\,)}$

C. a

D. 1

Answer: C

Watch Video Solution

12. Let $a, b \in \{1, 2, 3\}$. What is the number of equations of the form $ax^2 + bx + 1 = 0$ having real roots?

A. 1

B. 2

C. 5

D. 3

Answer: D

Watch Video Solution

13. If
$$px^2 + qx + r = p(x - a)(x - B)$$
, and $p^3 + pq + r = 0$, p,q and

r being real numbers, then which of the following is not possible?

A.
$$lpha=eta=p$$

B. $lpha
eqeta=eta=p$
C. $lpha=eta
eq p$

D. eta eq lpha = p

Answer: A

14. If the equation $x^2+k^2=2(k+1)x$ has equal roots, then what is the

value of K?

A.
$$-\frac{1}{3}$$

B. $-\frac{1}{2}$
C. 0

D. 1

Answer: B

Watch Video Solution

15. If
$$x = a^{1/3} - a^{-1/3}$$
, then what is $x^3 + 3x$ equal to ?

A. zero

 $\begin{array}{l} \mathsf{B.}\,a + \left(\frac{1}{a}\right) \\ \mathsf{C.}\,a - \left(\frac{1}{a}\right) \\ \mathsf{D.}\,a^3 + \left(\frac{1}{a^3}\right) \end{array}$

Answer: C

16. If
$$x^{1/3} + y^{1/3} + z^{1/3} = 0$$
 then what is $(x + y + z)^3$ equal to ?

A. 1

B. 3

C. 3xyz

D. 27 xyz

Answer: D

17. If α , β are the roots of $ax^2 + 2bx + c = 0$ and $\alpha + \delta$, $\beta + \delta$ be those of $Ax^2 + 2Bx + C = 0$ then prove that $rac{b^2 - ac}{B^2 - AC} = \left(rac{a}{A}
ight)^2$

A. $\left(b \, / \, B
ight)^2$

 $\mathsf{B.}\left(a\left/ A\right) ^{2}$

 $\mathsf{C}.\left(a^{2}b^{2}\right)/\left(A^{2}B^{2}\right)$

 $\mathsf{D.}\left(ab\right)/\left(AB\right)$

Answer: B

Watch Video Solution

18.

If

lpha,eta are the roots of the equation $ax^2+bx+c=0,~~ ext{then what}~ ext{is the value}$

?

A. a/(bc)

B.b/ac

 $\mathsf{C}.-b/(ac)$

 $\mathsf{D.}-a/(bc)$

Answer: B

19.

lf

lpha,eta	are the roots of the equation $\$	$x^2-2x-1=0, ext{ then what is the value}$	1

A. -2

B. 0

C. 30

D. 34

Answer: D

20. Which one of the following values of x, y satisfies the in equation

 $2x+3y\geq 6, x\geq 0, y\geq 0$?

B. x=1,y=2

C. x=1,y=1

D. x = 4, y = 0

Answer: C

Watch Video Solution

21. What is the value of x at the intersection of
$$y = \frac{8}{(x^2 + 4)}$$
 and $x + y = 2$?
A. 0
B. 1
C. 2
D. -1

Answer: A

22. If the roots of the equation $x^2 - (a - 1)x + (a + b) = 0$ and $ax^2 - 2x + b = 0$ are identical, then what are the values of a and b?

A.
$$a = 2, b = 4$$

B. $a = 2, b = -4$
C. $a = 1, b = \frac{1}{2}$
D. $a = -1, b = -\frac{1}{2}$

Answer: B

23. How many real values of x satisfy the equation |x| + |x - 1| = 1?

B. 2

C. Infinite

D. No value of x

Answer: C

Watch Video Solution

24. What is the number of digits in the numeral form of 8^{17} ? $\left(Given \log_{10}^2 = = 0.3010\right)$

A. 51

B. 16

C. 15

D. 14

Answer: B

25. If α and β are the roots of the equation $x^2 + x + 1 = 0$, then what is the equation whose roots are α^{19} and β^7 ?

A.
$$x^2 - x - 1 = 0$$

B. $x^2 - x + 1 = 0$
C. $x^2 + x - 1 = 0$
D. $x^2 + x + 1 = 0$

Answer: D

B. $3\sqrt{3}$

 $\mathrm{C.}\,4\sqrt{2}$

D. 12

Answer: C

Watch Video Solution

27. If

$$r^{1/3} + \frac{1}{r^{1/3}} = 3$$
 for a real number $r \neq 0$, then what is $r + \frac{1}{r}$
equal to ?
A. 27
B. 36
C. 9
D. 18

Answer: D

28. The number of rows in a lecture hall equals the number of seats in a row. If the number of rows is reduced by 10, the number of seats is increased by 300. If x denotes the number of rows in the lecture hall, then what is the value of x?

A. 10

B. 15

C. 20

D. 30

Answer: D

Watch Video Solution

29.

 $lpha,eta \;\; ext{are the roots of the equation}\;\; lx^2-mx+m=0, l
eq m, l
eq 0,$

then which one of the following statement is correct ?

lf

A.
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} - \sqrt{\frac{m}{l}} = 0$$

B. $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{m}{l}} = 0$
C. $\frac{\sqrt{\alpha + \beta}}{\alpha\beta} - \sqrt{\frac{m}{l}} = 0$

D. The arithmetic mean of $\alpha \ {\rm and} \ \beta$ is the same as their geometric

mean

Answer: A

30. Find the value of k for real and equal roots

$$(k+1)x^2 - 2(k-1)x + 1 = 0$$

A. $k = 0$ only
B. $k = -3$ only
C. $k = 0$ or $k = 3$
D. $k = 0$ or $k = -3$

Answer: C

31. If the roots of an equation $ax^2 + bx + c = 0$ are positive , then which

one of the following is correct ?

A. Signs of a and c should be like

B. Signs of b and c should be like

C. Signs of a and b should be like

D. None of these

Answer: A

32. Which one of the following is correct ? If $4 < x^2 \leq 9$, then

A. 2 < x < 3only

 $\mathsf{B}. -3 < x < -2only$

 $\mathsf{C}.\, 2 < x < 3, \; -3 < x < \; -2$

D. None of these

Answer: C

Watch Video Solution

33. If α and β are the roots of the equation $ax^2 + bx + c = 0$, then what are the roots of the equation $cx^2 + bx + a = 0$?

A.
$$\beta$$
, $\frac{1}{\alpha}$
B. α , $\frac{1}{\beta}$
C. $-\alpha$, $-\beta$
D. $\frac{1}{\alpha}$, $\frac{1}{\beta}$

Answer: D

34. If x and y are real numbers such that $x > y \, ext{ and } \, |x| > |y|$,then which

one of the following is correct ?

A. x > 0

B. y > 0

C. y < 0

 $\mathsf{D}.\,x<0$

Answer: A

Watch Video Solution

35. What are the linear constraints for which the shaded area in the above figure is the solution set ?

A. $x-y \ge 1, x=2y \le 8, x+y \ge 1, x, y \ge 0$ B. $x-y \le 1, x=2y \ge 8, x+y \le 1, x, y \ge 0$ C. $x-y \le 1, x+2y \le 8, x+y \ge 1, x, y \ge 0$ D. $x-y \le , x+2y \le 8, x+y \le 1, x, y \ge 0$

Answer: C

36. If x is real and $x^2 - 3x + 2 > 0, x^2 - 3x - 4 \le 0$, then which one of

the following is correct?

A. $-1 \le x \le 4$ B. $2 \le x \le 4$ C. -1 < x < 1D. $-1 \le x < 1$ or $2 < x \le 4$

Answer: D

Watch Video Solution

37. If $x = 2^{1/3} - 2^{-1/3}$ then what is the value of $2x^3 + 6x$?

A. 1

B. 2

C. 3

D. 4

Answer: C

38. What is the value of

$$\sqrt{5\sqrt{5\sqrt{5\sqrt{....\infty}}}}$$

A. 5

 $\mathrm{B.}\,\sqrt{5}$

C. 1

D.
$$(5)^{1/4}$$

Answer: A

39. For the real numbers p,q,r,x,y,let p < x < q and p < y < r.

A. p < x < x < r

 $\mathsf{B.}\, p < x < q < r$

 $\mathsf{C}.\, p < y < x < q$

D. None of these

Answer: B

Watch Video Solution

40. One root of the equation $x^2 = px + q$ is reciprocal of the other and $p \neq \pm 1.$ What is the value of q ?

A.
$$q = -1$$

 $\mathsf{B.}\,q=~-1$

 $\mathsf{C}.\,q=0$

D.
$$q=rac{1}{2}$$

Answer: A

41. If the equation $x^2 + kx + 1 = 0$ has the roots α and β , then what is the value of $(\alpha + \beta) imes (\alpha^{-1} + \beta^{-1})$

A.
$$k$$

B. $\frac{1}{k^2}$
C. $2k^2$
D. $\frac{1}{(2k^2)}$

∧ L²

Answer: A

Watch Video Solution

42. If the roots of $x^2 - bx + c = 0$ are two consecutive integers then $b^2 - 4c =$

B. 2

C. -2

D. 3

Answer: A

Watch Video Solution

43. If r and s are roots of $x^2 + px + q = 0$, then what is the value of $\left(1/r^2
ight) + \left(1/s^2
ight)$? A. $p^2 - 4q$

B. $rac{p^2-4q}{2}$ C. $rac{p^2-4q}{q^2}$ D. $rac{p^2-2q}{q^2}$

Answer: D

44. If x is an integar and satisfies $9 < 4x - 1 \le 19$, then x is an element of the which one of the following sets?

A. {3, 4}
B. {2, 3, 4}
C. {3, 4, 5}

D. $\{2, 3, 4, 5\}$

Answer: C

45. If
$$a = x + \sqrt{x^2 + 1}$$
 , then what is x equal to?

A.
$$(1/2)(a + a^{-1})$$

B. $(1/2)(a - a^{-1})$
C. $a + a^{-1}$

D. $a - a^{-1}$

Answer: B

46. A quadratic polynomial with two distinct roots has one real root. Then, the other root is

A. not necessarily real, if the coefficients are real `

B. always imaginary

C. always real

D. real, if the cosfficients are real

Answer: C

47. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $px^2 + qx + r = 0$, then which one of the following is correct ?

A.
$$p^2+q^2-2pr=0$$

B. $p^2-q^2+2pr=0$

C.
$$(p+r)^2 = 2 \bigl(p^2 + r^2 \bigr)$$

D. None of these

Answer: B

> Watch Video Solution

48. If $lpha\,$ and $\,eta\,$ are the roots of $x^2+4x+6=0,\,$ then what is the value of $lpha^3+eta^3$? A. -2/3

B. 2/3

Answer: D

Watch Video Solution

49. If sum of the roots of $3x^2 + (3p+1)x - (p+5) = 0$ is equal to their product, then what is the value of p?

B. 3

A. 2

C. 4

D. 9

Answer: A

50. If a polygon has 20 diagonals, then what is the number of sides ?

A. 6 B. 10 C. 12

D. 8

Answer: D

Watch Video Solution

51.

 α, γ be the roots of $Ax^2 - 4x + 1 = 0$ and β, δ be the roots of $Bx^2 - 4x$ are in HP, then what are the values of Aand B respectively?

Let

A. 3, 8

B. -3, -8

C.3, -8

D. -3, 8

Answer: D

52	$2^x + 3^y = 17$ and $2^{x+1} - 3^{y+1} = 5$ then what is the value of x?	
	. 3	
	. 2	
	.1	
	. 0	

Answer: A

53. If (x + a) is a factor of both the quadratic polynomials $x^2 + px + q$ and $x^2 + lx + m$, where p,q,l and m are constants, then which one of the following is correct?

A.
$$a = (m - q) / (l - p)(l \neq p)$$

B. $a = (m - q) / (l + p)(l \neq -p)$
C. $l = (m - q) / (a - p)(a \neq p)$
D. $p = (m - q) / (a - l)(a \neq l)$

Answer: A

Watch Video Solution

54. Which one of the following is one of the roots of the equation $(b-c)^{x^2} + (c-a)x + (a-b) = 0$? A. (c-a)/(b-c)

 $\mathsf{B.}\left(a-b\right)/\left(b-c\right)$
C.
$$(b - c) / (a - b)$$

D. $(c - a) / (a - b)$

Answer: B

55. What is the value of x satisfying the equation

$$16\left(\frac{a-x}{a+x}\right)^3 = \frac{a+x}{a-x}?$$

A. $a/2$
B. $a/3$
C. $a/4$
D. 0

Answer: B

56.	If	lpha,eta	are	the	roots		of	the		equation	
$2x^{2} -$	2(1 +	$(n)^{2}x +$	$ig(1+n^2$	$+ n^4) =$	= 0	then	what	is	the	value	of
$\alpha^2 + \beta$	eta^2 ?										
A. 2	$2n^2$										
B. 2	$2n^4$										
C. 2	2										
D. (n^2										

Answer: D

57. The roots of $Ax^2 + Bx + C = 0$ are r and s. For the roots of $x^2 + px + q = 0$ to be r^2 and s^2 , what must be the value of p?

A.
$$\left(B^2-4AC
ight)/A^2$$

B. $\left(B^2-2AC
ight)/A^2$

$$\mathsf{C.}\left(2AC-B^2\right)/A^2$$

D.
$$B^2 - 2C$$

Answer: C

59. If the roots of $ax^2 + bx + c = 0$ are $\sin \alpha$ and $\cos \alpha$ for some α , then which one of the following is correct ?

A.
$$a^2+b^2=2ac$$

B. $b^2-c^2=2ab$
C. $b^2-a^2=2ac$

$$\mathsf{D}.\,b^2+c^2=2ab$$

Answer: C

Watch Video Solution

60. If
$$x = 2 + 2^{rac{2}{3}} + 2^{rac{1}{3}}$$
, then the value of $x^3 - 6x^2 + 6x$ is:

A. 1

B. 2

C. 3

D. -2

Answer: B

61. The roots of the equation $(x-p)(x-q)=r^2$ where p,q , r are real ,

are

A. always complex

B. always real

C. always purely imaginary

D. None of these

Answer: B

Watch Video Solution

62. The equation $x - 2(x-1)^{-1} = 1 - 2(x-1)^{-1}$ has

A. no roots

B. One root is real and the other is complex

C. two equal roots

D. infinite roots

Answer: A

Watch Video Solution

63. If a,b and c are real numbers then the roots of the equation (x-a)(x-b) + (x-b)(x-c) + (x-c)(x-a) = 0 are always

A. real

B. imaginary

C. positive

D. negative

Answer: A

64. For the two equations $x^2 + mx + 1 = 0$ and $x^2 + x + m = 0$, what is the value of m for which these equations have at least one common root?

A. - 2only

B. 1only

C.-2 and 1

D.-2 and -1

Answer: C

Watch Video Solution

65. Consider the equations (x - p)(x - 6) + 1 = 0 having integral coefficents. If the equation has integral roots, then what values can p

have?

A. 4 or 8

B. 5 or 10

C. 6 or 12

D. 3 or 6

Answer: A

Watch Video Solution

66. If
$$rac{1}{2-\sqrt{-2}}$$
 is one of the roots of $ax^2+bx+c=0$, where a,b, c are

real, then what are the values of a,b,c respectively ?

A. 6, -4, 1

B. 4, 6, -1

C.3, -2, 1

D.6, 4, 1

Answer: A

67. If α , β are the roots of the equation $x^2 - x + 1 = 0$ then which one of the following is correct?

A.
$$(lpha^2 - eta^2)$$
isreal
B. $2(lpha^6 + eta^5) = (lphaeta)^5$
C. $(lpha^6 - eta^6) = 0$
D. $(lpha^8 + eta^8) = (lphaeta^8)$

Answer: C

Watch Video Solution

68. If p and q are positive integers, then which one of the following equations has $p - \sqrt{q}$ as one of its roots ?

A.
$$x^2-2px-\left(p^2-q
ight)=0$$

B.
$$x^2 - 2px + (p^2 - q) = 0$$

C. $x^2 + 2px - (p^2 - q) = 0$
D. $x^2 + 2px + (p^2 - q) = 0$

Answer: B

Vatch Video Solution

69.	lf	the	product	of	the	roots	of	the	equation
x^2 –	+5x +	-k=1	$5~{ m is}~-$	3, then	what is	s the value	e of k?		
А	. 12								
В	. 15								
C	. 16								
D	. 18								

Answer: A

70. If the equation $x^2 - bx + 1 = 0$ does not possess real roots, then which one of the following is correct?

A. -3 < b < 3B. -2 < b < 2C. b > 2

 $\mathsf{D}.\,b<\ -2$

Answer: B

Watch Video Solution

71. If p and q are the root of the equation $x^2 - px + q = 0$, then what are the vlaues of p and q respectively ?

A. 1, 0

B.0, 1

C. -2, 0

D. -2, 1

Answer: A

72. Determine the positive values of 'k' for which the equation $x^2 + kx + 64 = 0$ and $x^2 - 8x + k = 0$ will both have real roots.

A. 4

B. 8

C. 12

D. 16

Answer: D

73. If the roots of the equation $(a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0$ are equal , then which one of the following is correct ?

A.
$$ab=a+c$$

B. $b^2=ac$
C. $b+c=2a$

 $\mathsf{D}.\,b=ac$

Answer: B

Watch Video Solution

74. If $lpha \,\, ext{and} \,\, eta$ are the roots of the equation $x^2-2x+4=0$, then what

is the value of $lpha^3+eta^3$?

A. 16

C. 8

D. -8

Answer: B

Watch Video Solution

75. The imaginary roots of the equation $\left(x^2+2
ight)^2+8x^2=6x\left(x^2+2
ight)$

are

A. $1\pm i$

 $\mathsf{B.}\,2\pm i$

 ${\rm C.1\pm\sqrt{2}}$

D. $2\pm I\sqrt{2}$

Answer: A

76. If α and β are the roots of the equation $x^2 + x + 1 = 0$ then which of the following are the roots of the equation $x^2 - x + 1 = 0$?

A. α^2 and β^{13}

B. α^{13} and β^7

D. None of these

Answer: D

Watch Video Solution

77. What is the solution set for the equation $x^4-26x^2+25=0$

A.
$$\{-5, -1, 1, 5\}$$

- B. $\{-5, -1\}$
- $C. \{1, 5\}$

D. $\{-5, 0, 1, 5\}$

Answer: A

78. If α and β are the roots of the equation $4x^2 + 3x + 7 = 0$, then what is the value of $(\alpha^{-2} + \beta^{-2})$?

- A. 47/49
- B. 49/47
- C. 47/49
- D. 49/47

Answer: C

79. What is the set of points (x,y) satisfying the equations $x^2 + y^2 = 4$ and x + y = 2?

A.
$$\{(2, 0), (-2, 0), (0, 2)\}$$

B. $\{(0, 2), (0, -2)\}$
C. $\{(0, 2), (2, 0)\}$
D. $\{(2, 0), (-2, 0), (0, 2), (0, 2)\}$

Answer: C

80. If p,q and r are rational numbers, then the roots of the equation $x^2 - 2px + p^2 + 2qr - r^2 = 0$ are

A. complex

B. pure imaginary

C. irrational

D. rational

Answer: D

81. If p,q and r rational numbers, then the roots of the equation $(2-\sqrt{3})x^2-(7-4\sqrt{3})x+(2+\sqrt{3})=0?$

- A. $2-\sqrt{3}$
- $\mathsf{B.}\,2+\sqrt{3}$
- C. $7 4\sqrt{3}$
- D. 4

Answer: A

Watch Video Solution

82. What is the condition that one root of the equation $ax^2 + bx + c = 0$ $a \neq 0$ should be double the other ?

A. a > 0, b > 0, c > 0,

B.
$$a > 0, b < 0, c > 0$$

C.
$$a < 0, b > 0, c < 0$$

D. a < 0, c > 0

Answer: B

Watch Video Solution

83. What is the condition that one root of the equation $ax^2 + bx + c = 0$ a $\neq 0$ should be double the other ?

A. $2a^2=9ac$

 $\mathsf{B.}\, 2b^2=9ac$

 $\mathsf{C.}\,2c^2=9ab$

D. None of these

Answer: B

84. If $x + y \leq 4$, then the how many non- zero positive integar ordered pair (x,y)?

A. 4

- B. 5
- C. 6

D. 8

Answer: C

Watch Video Solution

85. If 3 is the root of the equation $x^2 = 8x + k = 0$ then what is the value of k?

A. -15

B. 9

C. 15

D. 24

Answer: C

Watch Video Solution

86. If sum of squares of the roots of the equation $x^2 + kx - b = 0$ is 2b,

what is k equal to ?

A. 1

B.b

C. -b

D. 0

Answer: D

87. If one root of the equation $ax^2 + bx + c = 0, a
eq 0$ is reciprocal of

the other root , then which one of the following is correct?

A. a = c

 $\mathsf{B}.\, b=c$

C. a = -c

 $\mathsf{D}.\,b=0$

Answer: A

Watch Video Solution

88. The equation $x^2 - 4x + 29 = 0$ has one root 2+ 5i. What is the other root?

A. 2

B. 5

 $\mathsf{C.}\,2+5i$

D.2 - 5i

Answer: D

Watch Video Solution

89. Let lpha, eta be the roots of the equation (x-a)(x-b)=c, c
eq 0 Then the roots of the equation (x-lpha)(x-eta)+c=0 are a,c (b) b,c a,b(d) a+c,b+c

A. a, c

B. *b*, *c*

C.a, b

 $\mathsf{D}. a + b, a + c$

Answer: C

90. If the equations $x^2 - px + q = 0$ and $x^2 - ax + b = 0$ have a common root and the second equation has equal roots then

A. aq=2(b+p)B. aq=(b+q)C. ap=2(b+q)D. ap=b+q

Answer: C

Watch Video Solution

91. Let a, be the roots of the equation $x^2 + x + 1 = 0$. The equation whose roots are α^{19} and β^7 are:

A.
$$x^2 - x - 1 = 0$$

B. $x^2 - x + 1 = 0$
C. $x^2 + x - 1 = 0$

D.
$$x^2 + x + 1 = 0$$

Answer: B

Watch Video Solution

92. The value of
$$\sqrt{8+2\sqrt{8+2\sqrt{8+2\sqrt{8+2\sqrt{8+...\infty}}}}}$$
 is equal to

A. 10

B. 8

C. 6

D. 4

Answer: D

93. If $\sin \theta = x + \frac{a}{x}$ for all $x \in R - \{0\}$, then which one of the following is correct ?

A.
$$a \geq 4$$

B. $a \geq rac{1}{2}$
C. $a \leq rac{1}{4}$
D. $a \leq rac{1}{2}$

Answer: C

Watch Video Solution

94. The equation $\tan^4 x - 2 \sec^2 x + a = 0$ will have at least one solution if `1 A. $|a| \leq 4$ B. $|a| \leq 2$

C. $|a| \leq \sqrt{3}$

D. None of the above

Answer: C

95. If the roots of the equation $x^2 - 4x - \log_3 N = 0$ are real, then what is the minimum vlaue of N?

- A. 1/256
- B. 1/27
- C.1/64
- D.1/81

Answer: D

96. If one of the roots of the equation $(b-c)x^2 + b(c-a)x + c(a-b) = 0$ is 1, what is the second root ? A. $-\frac{b(c-a)}{a(b-c)}$ B. $\frac{b(c-a)}{a(b-c)}$ C. $\frac{c(a-b)}{a(b-c)}$ D. $\frac{c(a-b)}{a(b-c)}$

Answer: C

Watch Video Solution

97. What are the roots of the equation $2{\left(y+2
ight)}^2-5{\left(y+2
ight)}=12$?

- A. -7/2, 2
- B. -3/2, 4
- C. 5/3, 3
- D. 3/2, 4

Answer: A

98. If the roots of the equation $3x^2 - 5x + q = 0$ are equal , then what is

the value of q ?

A. 2

B. 5/12

C. 12/25

D. 25/12

Answer: D

99. If the difference between the roots of $ax^2 + bx + c = 0$ is 1, then

which one of the following is correct ?

A.
$$b^2 = a(a + 4c)$$

B. $a^2 = b(b + 4c)$
C. $a^2 = c(a + 4c)$
D. $b^2 = a(b + 4c)$

Answer: A

100. If one of the roots of the equation $x^2 + ax - 6 = 0$ is 1, then what is (a-6) equal to ?

A. -1

B. 1

C. 2

D. -2

Answer: A

101. If α and β are the roots of the equation $x^2 - q(1+x) - r = 0$, then what is $(1+\alpha)(1+\beta)$ equal to ? A. 1 - rB. q - rC. 1 + r

 $\mathsf{D}. q + r$

Answer: A

Watch Video Solution

102. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ What is b:c equal to ? A. 3:1

B.1:2

C. 1:3

D. 3:2

Answer: A

Watch Video Solution

103. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

Which one of the following is correct ?

A.
$$bc=a^2$$

 $\mathsf{B.}\,bc=36a^2$

 ${\rm C.}\,bc=72a^2$

D. $bc = 108a^2$

Answer: D

104. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ What is the sum of the squares of the roots of the equation $x^2 + 2x - 143 = 0$ A. 170 B. 180 C. 190 D. 290

Answer: D

105. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ The solution of the simultaneous linear equaitons 2x + y = 6 and 3y = 8 + 4x will also be satisfied by which one of the following linear equations ?

A. x + y = 5

B. 2x + y = 5

C. 2x - 3y = 10

D. 2x + 3y = 6

Answer: A

106. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

If the roots of a quadratic equation are m + n and m - n, then the quadratic equaiton will be :

0

A.
$$x^2 + 2mx + m^2 - mn + n^2 =$$

B. $x^2 + 2mx + (m - n)^2 = 0$
C. $x^2 + 2mx + m^2 - n^2 = 0$
D. $x^2mx + m^2 - n^2 = 0$

Answer: C

Watch Video Solution

107. If
$$\alpha, \beta$$
 are the roots of $x^2 + px - q = 0$ and $\lambda, \delta x^2 + px - q = 0$ and λ, δ are the roots of x^2 equal to ?
A. $p + r$
B. $p + q$

 $\mathsf{C}.\,q+r$

 $\mathsf{D}.\,p-q$

Answer: C

Watch Video Solution

108. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ If the roots of the quadratic equation $3x^2 - 5x + p = 0$ and unequal, then which one of the following is correct ?

A.
$$p=25/12$$

B. $p<25/12$
C. $p>25/12$
D. $p\leq 25/12$

Answer: B
109. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ If $4^x - 6.2^x 8 = 0$, then the values of x arre A. 1, 2

B. 1, 1

- C. 1, 0
- D.2, 2

Answer: A

Watch Video Solution

110. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ If the roots of a quadratic equation $ax^2 + bx + c = 0$ are α and β , then the quadratic equation having roots α and β is

A.
$$x^2 - (b^2 - 2ac)x + c = 0$$

B. $a^2x^2 - (b^2 - 2ac)x + c = 0$
C. $ax^2 - (b^2 - 2ac)x + c^2 = 0$
D. $a^2x^2 - (b^2 - 2ac)x + c^2 = 0$

Answer: D

111. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

If the roots of the equation $3ax^2 + 2bx + c = 0$ are in the ratio 2:3 , then which one of the following is correct ?

A. 8ac = 25bB. $8ac = 9b^2$ C. $8b^2 = 9ac$ D. $8b^2 = 25ac$

Answer: D

112. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

If the sum of the roots of a quadratic equation is 3 and the product is 2, then the equationis

A.
$$2x^2 - x + = 0$$

B. $x^2 - 3x + 2 = 0$
C. $x^2 + 3x + 2 = 0$
D. $x^2 - 3x - 2 = 0$

Answer: B

113. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ If α and β are the roots of the equation $x^2 + bx + c = 0$, then what is the value of $\alpha^{-1} + \beta^{-1}$?

$$A. -\frac{b}{c}$$
$$B. \frac{b}{c}$$
$$C. \frac{c}{b}$$
$$D. -\frac{c}{b}$$

Answer: A

Watch Video Solution

114. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

The area of a rectangle whose length is five more than twice its width is 75 square unit. The length is

A. 5 unit

B. 10 unit

C. 15 unit

D. 20 unit

Answer: C

Watch Video Solution

115. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ $(x+1)^2 - 1 = 0$ has

A. one real root

B. two real roots

C. two imaginary roots

D. four real roots

Answer: B

116. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

What is the positive square root of $7+4\sqrt{3}$?

A. $\sqrt{3}-1$ B. $\sqrt{3}+1$ C. $\sqrt{3}+2$

D.

Answer: D

117. The equation formed by multiplying each root of
$$ax^2 + bx + c = 0$$
 by 2 is $x^2 = 36x + 24 = 0$
If α and β are the roots of the equation $x^2 + x + 2 = 0$, then what is $\frac{\alpha^{10} + \beta^{10}}{\alpha^{-10} + \beta^{-10}}$ equal to ?
A. 4096
B. 2048
C. 1024
D. 512

Answer: C

Watch Video Solution

118. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

How If a and bare rational and b is not perfect square, then the

quadratic equaiton with rational coefficients whose one root is $3a+\sqrt{b}$ is

A.
$$x^2 - 6ax + 9a^2 - b = 0$$

B. $3ax^2 + x - \sqrt{b} = 0$
C. $x^2 + 3x + \sqrt{b} = 0$
D. $\sqrt{b}x^2 + x - 3a = 0$

Answer: A

Watch Video Solution

119. How many real roots does the quadratic equation $f(x) = x^2 + 3 |x| + 2 = 0$ have ?

A. One

B. Two

C. Fore

D. No real root

Answer: D

Watch Video Solution

120. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ IF α , β are the roots does the quadratic equation $ax^2 + bx + b = 0$ then what is the value of $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{b}{a}}$?

B. 0

C. 1

D. 2

Answer: B

121. The roots of the equation $x^2 - 8x + 16 = 0$

A. are imaginary

B. are distinct and real

C. are equal and real

D. canot be ascertained

Answer: C

Watch Video Solution

122. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$

A. 2

B. 3

C. 5

Answer: D

123. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ $(x + 1)^2 - 1 = 0$ has A. 10 B. 11 C. 12 D. 13

Answer: A

124. The equation formed by multiplying each root of $ax^2 + bx + c = 0$ by 2 is $x^2 = 36x + 24 = 0$ $(x + 1)^2 - 1 = 0$ has A. $b \le -4$ only B. $b \ge only$ C. -4 < b < 4D. $b \le -4, b \ge 4$

Answer: D

Watch Video Solution

125. If lpha and eta are the roots of the equation $ax^2+bx+c=0$ where lpha 0

then $(a\alpha+b)(a\beta+b)$ is equal to

A. ab

B.bc

C. *ca*

 $\mathsf{D}.\,abc$

Answer: C

D Watch Video Solution

126. The roots of the equation $2a^2x^2-2abx+b^2=0$ when a $\,<$ 0 and b

> 0 are :

A. Sometimes complex

B. Always irrational

C. Always complex

D. Always real

Answer: C

127. Every quadratic equation

 $ax^2+bx+c=0, \hspace{0.2cm} ext{where}\hspace{0.2cm} a,b,c\in R ext{ has`}$

A. exactly one real root.

B. at least one rea root.

C. at least two real roots.

D. at most two real roots.

Answer: D

Watch Video Solution

128. If lpha , eta are the roots of $ax^2+bx+c=0$ and a+h, eta+h are the roots of $px^2+qx+r=0$ then what is h equal to ?

A.
$$\frac{1}{2}\left(\frac{b}{a} - \frac{q}{p}\right)$$

B. $\frac{1}{2}\left(-\frac{b}{a} + \frac{q}{p}\right)$
C. $\frac{1}{2}\left(\frac{b}{p} + \frac{q}{a}\right)$

$$\mathsf{D}.\,\frac{1}{2}\bigg(-\frac{b}{p}+\frac{q}{a}\bigg)$$

Answer: A

129. Consider the following statements in respect of the given equation

$$ig(x^2+2ig)^2+8x^2=6xig(x^2+2ig)$$

A.1 only

B. 2 only

C. Both 1 and 2

D. Neither 1 nor 2

Answer: B

130. Two students solved a problem involving a quadratic equation. The first student made an error only in the constant term of the equation and determined the roots were 2 and 8. The second student made an error only in the coefficient of the linear term and determined the roots were -1 and -9. What was the quadratic equation ?

A.
$$x^2 - 10x + 9 = 0$$

B.
$$x^2-10x+9=0$$

$$\mathsf{C.}\,x^2 - 10x + 16 = 0$$

D.
$$x^2-8x-9=0$$

Answer: A

131. If m and n are roots of the equation (x+p)(x+q)-k=0 then find the roots of the equation (x-m)(x-n)+k=0

A.
$$p$$
 and q

B.
$$\frac{1}{p}$$
 and $\frac{1}{q}$
C. $-p$ and $-q$
D. $p + q$ and $p - q$

Answer: C

Watch Video Solution

132. 2p+3q=18 and $4p^2 + 4pq$ –3q2 - 36 = 0then what is (2p+q) equal to?

A. 6

B. 7

C. 10

D. 20

Answer: C

133. The number of real roots of the equation $x^2 - 3 ext{modx} + 2 = 0$ ` is

A. 4	
B. 3	
C. 2	
D. 1	

Answer: A

Watch Video Solution

134. If the sum of the roots of the equation $ax^2 + bx + c = 0$ is equal to

the sum of their squares then

A.
$$a^2+b^2=c^2$$

$$\mathsf{B}.\,a^2+b^2=a+b$$

 $\mathsf{C}.\,ab+b^2=2ac$

$$\mathsf{D}.\,ab-b^2=2ac$$

Answer: C

135. If the roots of the equation $x^2 - nx + m = 0$ differ by 1 then

A.
$$n^2-4m-1=0$$

B. $n^2 + 4m - 1 = 0$

$$C. m^2 - 4n - 1 = 0$$

D.
$$m^2-4n-1=0$$

Answer: A

136. If $x^2 - px + 4 > 0$ for all real value of x,then which one of the following is correct ?

A. |p| < 4

 $\mathsf{B.}\left|p\right| \leq 4$

 $\mathsf{C}.\left|p\right|>4$

D. $|p| \geq 4$

Answer: B

Watch Video Solution

137. Consider the function $f(x)=27rac{x^{rac{2}{3}}-x}{4}$ How many solutions does

the function f(x) =1 have?

A. One

B. Two

C. Three

D. Four

Answer: B

Watch Video Solution

138. Consider the function $f(x)=27rac{x^{rac{2}{3}}-x}{4}$ How many solutions does

the function f(x) =1 have?

A. One

B. Two

C. Three

D. Four

Answer: A

139.

lpha and eta(a<eta) be the roots of the equation $x^2+bx+c=0$, where bConsider the following : 1. eta<-lpha 2. eta<|a|

Which of the above is//are corect ?

A.1 only

B. 2 only

C. Both 1 and 2

D. Neither 1 nor 2

Answer: C

Watch Video Solution

140.

Let

 $lpha \,\,\, {
m and} \,\,\, eta(a<eta) \,\,\, {
m be the roots of the equation} \,\,\, x^2+bx+c=0, \,\,\, {
m where} \,\,\, b$

Consider the following :

1. lpha+eta+lphaeta>0

2. $\alpha^2\beta+\beta^2lpha>0$

Which of the above is//are correct ?

A.1 only

B. 2 only

C. Both 1 and 2

D. Neither 1 nor 2

Answer: B

Watch Video Solution

141.

Let

 α and $\beta(a < \beta)$ be the roots of the equation $x^2 + bx + c = 0$, where bIf one root of the equation $(1 - m)x^2 + 1x + 1 = 0$ is double the other and 1 is real, then what is the greatest value of m?

$$\mathsf{A.}-\frac{9}{8}$$

B. 43716

C.
$$-\frac{8}{9}$$

D. $\frac{8}{9}$

Answer: B

Watch Video Solution

142. If c > 0 and 4a + c < 2b then $ax^2 - bx + c = 0$ has a root win which one of the following intervals a)(0,2) b)(2,3) c)(3,4) d)(-2,0)

- A. (0, 2)
- **B**. (2, 3)
- C.(3, 4)
- D. (-2, 0)

Answer: A

143.

 α and $\beta(a < \beta)$ be the roots of the equation $x^2 + bx + c = 0$, where bIf both the roots of the equation $x^2 - 2kx + k^2 - 4 = 0$ lie between -3 and 5, then which one of the following is correct ?

A. -2 < k < 2. B. -5 < k < 3C. -3 < k < 5D. -1 < k < 3

Answer: D

Watch Video Solution

144. Let α and β be the roots of equation $x^2 - (1 - 2a^2)x + (1 - 2a^2) = 0$ 1.) under what condition does the above equation have real roots. 1.) $a^2 < \frac{1}{2}$ 2.) $a^2 > \frac{1}{2}$ 3.) $a^2 \le \frac{1}{2}$ 4.) $a^2 \ge \frac{1}{2}$ 2.) Under what condition is $\frac{1}{(\alpha)^2} + \frac{1}{(\beta)^2} < 1$?

A.
$$a^2 < rac{1}{2}$$

B. $a^2 > rac{1}{2}$
C. $a^2 \leq rac{1}{2}$
D. $a^2 \geq rac{1}{2}$

Answer: D

145. Let α and β be the roots of the equation

$$x^2-ig(1-2a^2ig)x+ig(1-2a^2ig)=0$$
Under what condition is ${1\over lpha^2}+{1\over eta^2}<1$?

A. $a^2<rac{1}{2}$ B. $a^2>rac{1}{2}$ C. $a^2>1$ D. $a^2\in\left(rac{1}{3},rac{1}{2}
ight)$ omly

Answer: A

146. What is the greatest value of the positive integer n satisfying the condition $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} < 2 - \frac{1}{1000}$? A.8 B.9 C.10 D.11

Answer: C

147.

 $2x^2+3x-lpha-0 ~~{
m has\ roots}~~-2~~{
m and}~~eta~~{
m while\ the\ equation}~~x^2-3mx$ -

What is the value of α ?

A. 1/2

B. 1

C. 2

D. 4

Answer: C

Watch Video Solution

148.

 $2x^2+3x-lpha-0~~{
m has~roots}~~-2~~{
m and}~~eta~~{
m while~the~equation}~~x^2-3mx$ -

If eta, 2, 2m are in GP, then what is the value of $eta\sqrt{m}$?

A. 1

B. 2

C. 4

Answer: A

Watch Video Solution

149. If the
$$p \oint (a, a) lies between the l \in es |x + y| = 2$$
 , `then which one of

the following is correct ?

A. |a| < 2B. $|a| < \sqrt{2}$ C. |a| < 1

$$\mathsf{D}. |a| < \frac{1}{\sqrt{2}}$$

Answer: C

150.

 $2x^2 + 3x - \alpha - 0$ has roots -2 and β while the equation $x^2 - 3mx$ -If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + lx + m = 0$, then which one of the following is correct ?

A. $p^2m=l^2q$ B. $m^2p=l^2p$ C. $m^2p=q^2l$

D.
$$m^2p^2=l^2q$$

Answer: A

151.

 $2x^2+3x-lpha-0$ has roots -2 and eta while the equation x^2-3mx -

lf	ω,ω^2	are	the	cube	roots	of	unity,	then		
$(1+\omega)ig(1+\omega^2ig)ig(1+\omega^3ig)ig(1+\omega+\omega^2ig)$ is equal to										
	A2									
	D 1									
	В1									
	C. 0									
	D. 2									
Answer: C										
Watch Video Solution										

152.

 $2x^2 + 3x - \alpha - 0$ has roots -2 and β while the equation $x^2 - 3mx$ -If the graph of a quadratic polynomial lies entirely above x-axis, then which one of the following is correct ?

A. Both the roots are real

B. One root is real and the other is complex

C. Both the roots are complex

D. Cannot say

Answer: C

Watch Video Solution

153.

 $2x^2 + 3x - lpha - 0$ has roots -2 and eta while the equation $x^2 - 3mx$ -If $\cot lpha$ and $\cot eta$ are the roots of the equation $x^2 + bx + c = 0$ with $b \neq 0$, then the value of $\cot(lpha + eta)$ is

A.
$$\frac{c-1}{b}$$

B.
$$\frac{1-c}{b}$$

C.
$$\frac{b}{c-1}$$

D.
$$\frac{b}{1-c}$$

Answer: B

154.

 $2x^2+3x-lpha-0$ has roots -2 and eta while the equation x^2-3mx -

The roots of the equation

$$(q-r)x^2+(r-p)x+(p-q)=0$$
 are

A.
$$\left(r-p
ight)/(q-r), 1/2$$

$$\mathsf{B.}\left(p-q\right)/(q-r),1$$

$$\mathsf{C}.\left(q-r\right)/(p-q),1$$

D.
$$\left(r-p
ight)/\left(p-q
ight),1/2$$

Answer: B

155.

 $2x^2+3x-lpha-0 ~~{
m has\ roots}~~-2~~{
m and}~~eta~~{
m while\ the\ equation}~~x^2-3mx$ -

If lpha and eta are the roots of the equation $1+x+x^2=0$, then the matrix product $\begin{bmatrix} 1 & \beta \\ \alpha & \alpha \end{bmatrix}, \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix}$ is equal to A. $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ $\mathsf{B}.\begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$ $\mathsf{C}.\begin{bmatrix}1&-1\\-1&2\end{bmatrix}$ $\mathsf{D}. \begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$ Answer: B Watch Video Solution 156. If|a| $de \neg esthe|o|lutevalueofan \int egar, then which of the follow \in garec ext{ or } rect$ |ab| = | a | | b |2. |a + b | le |a| + | b|3. |a-b| ge |a| - |b | |` Select the correct answer using the code given below.

A. 1 and 2 only

B. 2 and 3 only

C.1 and 3 only

D. 1,2 and 3

Answer: D

Watch Video Solution

157.

 $2x^2+3x-lpha-0 ~~{
m has\ roots}~~-2~~{
m and}~~eta~~{
m while\ the\ equation}~~x^2-3mx$ -

The sum of all real roots of the equation $\left|x-3
ight|^2+\left|x-3
ight|-2=0$ is

A. 2

B. 3

C. 4

D. 6

Answer: D

158.

 $2x^2 + 3x - \alpha - 0$ has roots -2 and β while the equation $x^2 - 3mx$ -It is given that the roots of the equation $x^2 - 4x - \log_3 P = 0$ are real . For this, the minimum value of P is

A.
$$\frac{1}{27}$$

B. $\frac{1}{64}$
C. $\frac{1}{81}$

Answer: C

159.

 $2x^2+3x-lpha-0 ~~{
m has\ roots}~~-2~~{
m and}~~eta~~{
m while\ the\ equation}~~x^2-3mx$ -
If α and β are the roots of the equation $3x^2 + 2x + 1 = 0$, then the equation whose roots are $\alpha + \beta^{-1}$ and $\beta + \alpha^{-1}$

A.
$$3x^2 + 8x + 16 = 0$$

B.
$$3x^2 - 8x - 16 = 0$$

C.
$$3x^2 + 8x - 16 = 0$$

D.
$$x^2 + 8x + 16 = 0$$

Answer: A

Watch Video Solution

160.

 $2x^2 + 3x - \alpha - 0$ has roots -2 and β while the equation $x^2 - 3mx - \Delta PQR, \ eq R = rac{\pi}{2}$. If than $\left(rac{P}{2}
ight)$ and $an\left(rac{Q}{2}
ight)$ are the roots of the equation

then which one of the following is correct ?

A.
$$a = b + c$$

 $\mathsf{B}.\, b = c + a$

 $\mathsf{C.}\, c = a + b$

 $\mathsf{D}.\, b = c$

Answer: C

Watch Video Solution

161.

 $2x^2+3x-lpha-0 ~~{
m has\ roots}~~-2~~{
m and}~~eta~~{
m while\ the\ equation}~~x^2-3mx$ -

The equation $|1-x|+x^2=5$ has

A. a rational root and an irrrational root

B. two rational roots

C. two irrational roots

D. no real roots

Answer: A

Watch Video Solution

 $2x^2 + 3x - \alpha - 0$ has roots -2 and β while the equation $x^2 - 3mx$ -Let [x] denote the greatest integar function. What is the number of solutions of the equation $x^2 - 4x + [x] - 0$ in the interval [0, 2]?

A. Zero (No solution)

B. One

C. Two

D. Three

Answer: B

Watch Video Solution

163. $Consider the follow \in g \exp ressions : 1. x+x^(2)- 1/x2. sqrt(ax^(2) +$

 $bx + x - c + d/c - e / x^{(2)}3. 3x^{(2)} - 5 x + ab51/x - 2/ (x+5)` Which of the$

above are rational expressions ?

A. 1, 4 and 5only

B.1, 3, 4 and 5only

C.2, 4 and 5only

D.1 and 2only

Answer: B

Watch Video Solution

164. If α and $\beta \neq 0$ are the roots of the quadratic equation $x^2 + ax - \beta = 0$, then the quadratic expression $-x^2 + \alpha x + \beta$ where has

A. Least value
$$-\frac{1}{4}$$

B. Least value $-\frac{9}{4}$
C. Greatest value $\frac{1}{4}$
D. Greatest value $\frac{9}{4}$

Answer: D

165. Let f(x) be a quadratic expression which is positive for all ral x and g(x) = f(x) + f'(x) + f''(x), then for any real x,

A. g(x) < 0B. g(x) > 0C. g(x) = 0D. $g(x) \leq 0$

Answer: B

166. The ration of roots of the equations $ax^2 + bx + c = 0$ and px^(2) +

qx + r = 0 are equal. If D_1 and D_2 are respective discriminates. Then

what is
$$rac{D_1}{D_2}$$
 equal to
A. $rac{a^2}{p^2}$
B. $rac{b^2}{q^2}$
C. $rac{c^2}{r^2}$

?

D. None of these

Answer: B

Watch Video Solution

167. The roots of the equation $\left|x^2-x-6
ight|=x+2$ are

A. -2, 1, 4

B.0, 2, 4

C.0, 1, 4

D. -2, 2, 4

Answer: B

168. The equation $Px^2 + qx + r = 0$ (where p, q, r, all are positive) has distinct real roots a and b .

A. a > 0, b > 0B. a < 0, b < 0C. a > 0, b < 0D. a < 0, b > 0

Answer: D

Watch Video Solution

169. If the roots of the equation $x^2 + px + q = 0$ are $x^2 + px + q = 0$ are $\tan 19^\circ$ and $\tan 26^\circ$, then which one of the following is correct ?

A. q - p = 1B. p - q = 1C. p + q = 2D. p + q = 3

Answer: A

Watch Video Solution

170. The number of real roots for the equation $x^2+9|x|+20=0$ is

A. Zero

B. One

C. Two

D. Three

Answer: B

Watch Video Solution