

MATHS

BOOKS - NDA PREVIOUS YEARS

PROPERTIES OF TRIANGLE, INVERSE TRIGONOMETRIC FUNCTION

- **1.** In a triangle ABC, a = 2b and $\angle A=3\angle B$. Which one of the following is correct ?
 - A. The triangle is isosceles
 - B. The triangle is equilateral
 - C. The triangle is right-angled
 - D. Such triangle does not exist

Answer: C

Watch Video Solution

- What is the value of 2. $an(an^{-1}x+ an^{-1}y+ an^{-1}z)-\cot(\cot^{-1}x+\cot^{-1}y+\cot^{-1}z)$
- ?

B. 2(x + y + z)

C. $\frac{3\pi}{2}$

D. $\frac{3\pi}{2} + x + y + z$

Answer: A

3. What is the value of x that satisfies the equation $\cos^{-1}x = 2\sin^{-1}x$?

A.
$$\frac{1}{2}$$

B. -1

C. 1

D. $-\frac{1}{2}$

Answer: A

4. The median AD of triangle ABC is bisected at F, and BF is produced to meet the side AC in P. If $AP=\lambda AC$ then what is the value of λ

A.
$$\frac{1}{4}$$

B. $\frac{1}{2}$

c.
$$\frac{2}{3}$$

$$\mathsf{D.}\;\frac{1}{3}$$

Answer: D

Watch Video Solution

5. What is the value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$?

$$\mathsf{A.} - \frac{\pi}{3}$$

$$\mathsf{B.}\,\frac{2\pi}{3}$$

$$\mathsf{C.} - \frac{2\pi}{3}$$

D.
$$\frac{\pi}{3}$$

Answer: D

6. What are the values of (x, y) satisfying the simultaneous equation

sin⁻¹
$$x + \sin^{-1} y = \frac{2\pi}{3}$$
 and $\cos^{-1} x - \cos^{-1} y = \frac{\pi}{3}$?

A.(0,1)

$$\operatorname{B.}\left(\frac{1}{2},1\right)$$

$$\mathsf{C.}\left(1,\,\frac{1}{2}\right)$$

D. $\left(\frac{\sqrt{3}}{2}, 1\right)$

Answer: B

Watch Video Solution

7. If the perimeter of a triangle ABC is 30 cm, then what is the value of $a\cos^2(C/2) + c\cos^2(A/2)$?

A. 15 cm

B. 10 cm

C.
$$\frac{15}{2}cm$$

D. 13 cm

Answer: A

Watch Video Solution

- **8.** In \triangle ABC, if $\angle A: \angle B: \angle C=1:2:3$, then what is BC: CA: AB?
 - A. 1:2:3
 - B. $1:\sqrt{3}:2$
 - C. 2: $\sqrt{3}$: 1
 - D. $\sqrt{3}:1:2$

Answer: B

9. The angles A, B, C of a triangle are in the ratio 2:5:5. What is the value of tan B tan C?

A.
$$4+\sqrt{3}$$

B.
$$4+2\sqrt{3}$$

C.
$$7+4\sqrt{3}$$

D.
$$3+3\sqrt{3}$$

Answer: C

- 10. If A, B and C are angles of a triangle such than tan A = 1, tan B = 2, then what is the value of tan C?
 - A. 0
 - B. 1
 - C. 2

Answer: C

Watch Video Solution

11. What is $\sin\left[\cot^{-1}\left\{\cos\left(\tan^{-1}x\right)
ight]$ where $\mathsf{x}\ >\ \mathsf{0},$ equal to ?

A.
$$\sqrt{rac{(x^2+1)}{(x^2+2)}}$$

B.
$$\sqrt{\frac{(x^2+2)}{(x^2+1)}}$$
C. $\frac{(x^2+1)}{(x^2+2)}$

c.
$$\frac{(x^2+1)}{(x^2+2)}$$

D.
$$\frac{(x^2+2)}{(x^2+1)}$$

Answer: A

12. In a triangle ABC, if a = 2b and A = 3B then which one of the following is correct?

A. The triangle is obtuse-angled

B. The triangle is acute-angled but not right-angled

C. The triangle is right-angled

D. The triangle is isosceles but not obtuse-angled

Answer: C

- **13.** If $\sin^{-1}x=\tan^{-1}y$ what is the value of $\dfrac{1}{x^2}-\dfrac{1}{y^2}$?
 - A. 1
 - B. -1
 - C. 0

Answer: A

Watch Video Solution

14.
$$\cos\left[\tan^{-1}\left\{\tan\left(\frac{15\pi}{4}\right)\right\}\right]$$

$$\mathsf{A.} - \frac{1}{\sqrt{2}}$$

B. 0

C.
$$\frac{1}{\sqrt{2}}$$
 D. $\frac{1}{2\sqrt{2}}$

D.
$$\frac{1}{2\sqrt{2}}$$

Answer: C

15. Two angles of a triangle are $\tan^{-1}\frac{1}{2}$ and $\tan^{-1}\frac{1}{3}$. What is the third angle?

- A. 30°
- B. 45°
- C. 90°
- D. 135°

Answer: D

Watch Video Solution

16. If median of the Δ ABC through A is perpendicular to BC, then which one of the following is correct ?

- A. tan A + tan B = 0
- B. tan B tan C = 0

C. tan C + 2 tan A = 0

D. tan B + tan C = 0

Answer: B

Watch Video Solution

17. If
$$\cos^{-1}\left(\frac{1}{\sqrt{5}}\right) = \theta$$
, then what is the value of $\csc^{-1}\left(\sqrt{5}\right)$?

A.
$$\left(\frac{\pi}{2}\right) + \theta$$

B.
$$\left(\frac{\pi}{2}\right) - \theta$$

C.
$$\frac{\pi}{2}$$

$$\mathrm{D.}-\theta$$

Answer: B

18. What is the value of
$$\tan^{-1} \left(\frac{m}{n} \right) - \tan^{-1} \left(\frac{m-n}{m+n} \right)$$
 ?

A. π

B. $\frac{\pi}{2}$

C. $\frac{\pi}{4}$

D. $\frac{\pi}{3}$

Answer: C

Watch Video Solution

19. $\tan(\cos^{-1}x)$ is equal to

A.
$$\dfrac{\sqrt{1-x^2}}{x}$$

B.
$$\frac{x}{1 + x^2}$$

C.
$$\frac{\sqrt{1+x^2}}{x}$$

D.
$$\sqrt{1-x^2}$$

Answer: A

Watch Video Solution

20. If $\sin^{-1}x - \cos^{-1}x = \frac{\pi}{6}$, then what is the value of x ?

A.
$$x = -\frac{1}{2}$$

B. x = 1

$$\mathsf{C.}\,x = \frac{1}{2}$$

D.
$$x = \frac{\sqrt{3}}{2}$$

Answer: D

Watch Video Solution

21. In a triangle ABC, b = $\sqrt{3}$ cm, c = 1 cm, $\angle A = 30^{\circ}$, what is the value of a ?

A.
$$\sqrt{2}$$
 cm

B. 2 cm

C. 1 cm

D. $\frac{1}{2}$ cm

Answer: C

Watch Video Solution

22. Let $-1 \le x \le 1$ If $\cos(\sin^{-1}x) = \frac{1}{2}$, then how many value does $an(\cos^{-1}x)$ assume?

A. One

B. Two

C. Four

D. Infinite

Answer: B

Watch Video Solution

23. The equation $\sin^{-1} \left(3x - 4x^3 \right) = 3\sin^{-1}(x)$ is true for all value of x lying in which one of the following intervals ?

A.
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$

B.
$$\left[\frac{1}{2},1\right]$$

$$\mathsf{C.}\left[\,-\,1,\;-\,\frac{1}{2}\,\right]$$

D.
$$[-1, 1]$$

Answer: D

Watch Video Solution

24. Which one of the following in not correct?

A.
$$\sin^{-1}\{\sin(5\pi/4)\} = -\pi/4$$

B.
$$\sec^{-1}\{\sec(5\pi/4)\}=3\pi/4$$

B. sec
$$\{\sec(5\pi/4)\} = 3\pi/4$$

C.
$$\tan^{-1}\{\tan(5\pi/4)\} = \pi/4$$

D.
$$\cos ec^{-1}\{\cos ec(7\pi/4)\} = \pi/4$$

Answer: D

25. If
$$\sin^{-1}x + \sin^{-1}y = \pi/2$$
 and $\cos^{-1}x - \cos^{-1}y = 0$, then value x and y respectively

A.
$$\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$$

$$\sqrt{2}$$
 $\sqrt{2}$ B. $\frac{1}{2}$, $\frac{1}{2}$

C.
$$\frac{1}{2}$$
, $-\frac{1}{2}$

$$D. \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$$

Answer: D

Watch Video Solution

26. ABC is a triangle is which AB = 6 cm, BC = 8 cm and CA = 10 cm. What is the value of cot(A/4)?

A.
$$\sqrt{5}$$
- 2

B.
$$\sqrt{5}$$
+ 2

C.
$$\sqrt{3}$$
- 1

D.
$$\sqrt{3}$$
+ 1

Answer: B

27. If the sides of a triangle are 6 cm, 10 cm and 14 cm, then what is the largest angle included by the sides ?

- A. 90°
- B. 120°
- C. 135°
- D. 150°

Answer: B

Watch Video Solution

28. For finding the area of a triangle ABC, which of the following entities are required?

- A. Angles A, B and side a
- B. Angles A, B and side b

C. Angles A, B and side c

D. Either (a) or (b) or (c)

Answer: C

Watch Video Solution

29. The formula $\sin^{-1}\Bigl\{2x\sqrt{1-x^2}\Bigr\}=2\sin^{-1}x$ is true for all values of x lying in the interval

A. [-1, 1]

B. [0, 1]

C. [-1, 0]

D. $[-1/\sqrt{2}, 1/\sqrt{2}]$

Answer: D

30. If sin A = $1/\sqrt{5}$, cos B = $3/\sqrt{10}$, A, B being positive acute angles, then what is (A + B) equal to ?

31. If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) - \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, then

A.
$$\pi/6$$

B.
$$\pi/4$$

C.
$$\pi/3$$

D.
$$\pi/2$$

Answer: B

D.
$$\frac{a-b}{1+ab}$$

Answer: D

Watch Video Solution

32. If in a \triangle ABC, cos B = (sin A)/(2 sin C), then the triangle is

- A. Isosceles triangle
- B. Equilateral triangle
- C. Right angled triangle
- D. Scalene triangle

Answer: A

33. If $\sin^{-1}x + \cot^{-1}(1/2) = \pi/2$, then what is the value of x ?

A. 0

B. $1/\sqrt{5}$

 $C. 2/\sqrt{5}$

D. $\sqrt{3}/2$

Answer: B

Watch Video Solution

34. In a Δ ABC, a + b = 3 $\left(1+\sqrt{3}\right)$ cm and a - b = 3 $\left(1-\sqrt{3}\right)$ cm. If angle A is 30° , then what is the angle B?

A. 120°

 $B.90^{\circ}$

C. 75°

 $D.60^{\circ}$

Answer: D

Watch Video Solution

- **35.** What is the principle value of $\csc^{-1} \big(\sqrt{2} \big)$?
 - A. $\frac{\pi}{4}$
 - B. $\frac{\pi}{2}$
 - $\mathsf{C.} \frac{\pi}{4}$

D. 0

Answer: C

- **A.** 1
- B. 7
- C. 13
- D. 17

Answer: C

Watch Video Solution

37. If angles A, B and C are in AP, then what is sin A + 2 sin B + sin C equal to ?

A.
$$4\sin B\cos^2\left(\frac{A-C}{2}\right)$$

$$\operatorname{B.}4\sin B\cos^2\!\left(\frac{A-C}{4}\right)$$

C.
$$4\sin(2B)\cos^2\left(\frac{A-C}{2}\right)$$

D.
$$4\sin(2B)\cos^2\left(\frac{A-C}{4}\right)$$

Answer: B

Watch Video Solution

38. Statement I: If $-1 \le x < 0$, then $\cos \left(\sin^{-1} x\right) = -\sqrt{1-x^2}$ Statement II: If $-1 \le x < 0$, then $\sin \left(\cos^{-1} x\right) = \sqrt{1-x^2}$ Which one of the following is correct is respect of the above

statements?

A. Both statement I and II are independently correct and statement
II is the correct explanation of statement I

- B. Both statements I and II are independently correct but
 - statement II is not the correct explanation of statement I
- C. Statement I is correct but statement II is false
- D. Statement I is false but statement II is correct.

Answer: D

39. In a triangle ABC, BC = $\sqrt{39}$, AC = 5 and AB = 7. What is the measure of the angle A?

A.
$$\frac{\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\mathsf{C.}\,\frac{\pi}{2}$$

D.
$$\frac{\pi}{6}$$

Answer: B

- **40.** What is the value of $\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3}$?
 - A. $\frac{\pi}{3}$

- D. $\frac{\pi}{6}$

Answer: B

Watch Video Solution

41. ABC is a triangle in which BC = 10 cm, CA = 6 cm and AB = 8 cm.

Which one of the following is correct?

- A. ABC is an acute angled triangle
 - B. ABC is an obtuse angled triangle
 - C. ABC is a right angled triangle
- D. None of these

Answer: C

42. In a
$$\Delta$$
ABC, if c = 2, A = 120° , a = $\sqrt{6}$, then what is C equal to ?

- A. 30°
- B. 45°
- C. 60°
- D. 75°

Answer: B

Watch Video Solution

43. ABC is a right angles triangle at B. The hypotenuse AC is four times

the perpendicular BD drawn to it from the opposite vertex and AD

- A. 15°
- B. 30°

C. 45°

D. None of these

Answer: A

Watch Video Solution

44. ABC is a right angles triangle at B. The hypotenuse AC is four times

the perpendicular BD drawn to it from the opposite vertex and AD

A. 15°

B. $30\,^\circ$

C. 45°

D. None of these

Answer: A

45. ABC is a triangle right-angled at B. The hypotenuse (AC) is four the perpendicular (BD) drawn to it from the opposite vertex AD < DC.

What is AD: DC equal to?

- A. $(7-2\sqrt{3}):1$
- B. $(7-4\sqrt{3}):1$
- C. 1: 2
- D. None of these

Answer: B

Watch Video Solution

46. ABC is a right angles triangle at B. The hypotenuse AC is four times

the perpendicular BD drawn to it from the opposite vertex and AD

A. 0

- B. 1
- C. 2
- D. None of these

Answer: D

Watch Video Solution

47. Consider the following

$$\operatorname{I.}\operatorname{cosec}^{-1}\!\left(\,-\,\frac{2}{\sqrt{3}}\right)=\,-\,\frac{\pi}{3}$$

II.
$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{6}$$

Which of the above is/are correct?

- A. Only I
- B. Only II
- C. Both I and II

D. Neither I nor II

Answer: C

Watch Video Solution

- **48.** If $\sin\left(\sin^{-1}\frac{1}{5}+\cos^{-1}x\right)=1$, then what is x equal to ?
 - A. 0
 - B. 1
 - c. $\frac{4}{5}$
 - D. $\frac{1}{5}$

Answer: D

49. What is the principle value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$?

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.}\,\frac{\pi}{4}$$

D. $\frac{\pi}{6}$

Answer: D

Watch Video Solution

50. In any triangle ABC, the sides are 6 cm, 10 cm and 14 cm. Then the triangle is obtuse angled with the obtuse angle equal to

A.
$$150^{\circ}$$

B.
$$135^{\circ}$$

C.
$$120^{\circ}$$

D. 105°

Answer: C

Watch Video Solution

51. In a triangle ABC, if A = $an^{-1} 2$ and $B = an^{-1} 3$, then C is equal to

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- $\operatorname{C.}\frac{\pi}{6}$
- D. $\frac{\pi}{2}$

Answer: B

52. If the sides of a triangle are in the ratio $2:\sqrt{6}:1+\sqrt{3}$, then what is the smallest angle of the triangle ?

- A. 75°
- B. 60°
- C. 45°
- D. 30°

Answer: C

53. In a triangle ABC, A = 8, b = 10 and c = 12. What is the angle C equal to ?

- A. A/2
- B. 2A

C. 3A

D. 3A/2

Answer: B

Watch Video Solution

54. The sides a, b, c of a triangle ABC are in arithmetic progression and

'a' is the smallest side. What is cos A equal to?

A.
$$\frac{3c-4b}{2c}$$

B.
$$\frac{3c-4b}{2b}$$

C.
$$\frac{4c-3b}{2c}$$

D.
$$\frac{3b-4c}{2c}$$

Answer: C

55. What is the value of
$$\cos\left\{\cos^{-1}\frac{4}{5}+\cos^{-1}\frac{12}{13}\right\}$$
 ?

- A. 63/65
- B. 33/65
- C. 22/65
- D. 11/65

Answer: B

Watch Video Solution

56. In a triangle ABC if the angles A, B, C are in AP, then which one of

- the following is correct?
 - A. c = a + b
 - B. $c^2=a^2+b^2-ab$
 - $\mathsf{C.}\,a^2=b^2+c^2-bc$

D.
$$b^2=a^2+c^2-ac$$

Answer: D

Watch Video Solution

- **57.** If $\sin^{-1} 1 + \sin^{-1} \frac{4}{5} = \sin^{-1} x$, then what is x equal to?
 - A. 3/5
 - $\mathsf{B.}\,4/5$
 - C. 1
 - D. 0

Answer: A

58. If two angles of a triangle are \tan^1 , 2 and \tan^1 , 3, what is the third angle.

A. $tan^{-1} 2$

 $B. \tan^{-1} 4$

 $\mathsf{C}.\,\pi/4$

D. $\pi/3$

Answer: C

Watch Video Solution

59. What is the value of $\sec^2 \tan^{-1} \left(\frac{5}{11} \right)$?

A. 121/96

B. 211/921

C. 146/121

D. 267/121

Answer: C

Watch Video Solution

- **60.** What is $\sin\left[\sin^{-1}\left(\frac{3}{5}\right)+\sin^{-1}\left(\frac{4}{5}\right)\right]$ equal to ?
 - A. 0
 - $\mathsf{B.}\,1/2$
 - C. 1
 - D. 2

Answer: C

61. In any triangle ABC, if
$$a=\ 18, b=\ 24, c=\ 30$$
, findsinA, sinB, sinC

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{3}$$

$$\mathsf{C.}\;\frac{1}{2}$$

D. 1

Answer: D

62. If
$$\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \sin^{-1}\left(\frac{2b}{1+b^2}\right) = 2\tan^{-1}x$$
 then $x = a^2$

A.
$$\frac{a-b}{1+ab}$$

B.
$$\frac{a-b}{1-ab}$$

C.
$$\frac{2ab}{1+ab}$$

D.
$$\frac{a+b}{1-ab}$$

Answer: D

Watch Video Solution

63. If the angles of a triangle are $30^0 and 45^0$ and the included side is $(\sqrt{3}+1)cm$ then the area of the triangle is____.

A.
$$\frac{\sqrt{3}+1}{2}$$

B.
$$2(\sqrt{3}+1)$$

$$\mathsf{C.}\,\frac{\sqrt{3}+1}{3}$$

$$\mathsf{D.}\,\frac{\sqrt{3}-1}{2}$$

Answer: A

A.
$$\frac{\pi}{2}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{4}$$

D.
$$\frac{\pi}{6}$$

Answer: C

65. If x and y are positive and
$$xy>1$$
, then what is $an^{-1}x+ an^{-1}y$ to?

A.
$$\tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

B.
$$\pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right)$$

$$\mathsf{C.}\,\pi-\tan^{-1}\!\left(\frac{x+y}{1-xy}\right)$$

$$\mathsf{D}.\tan^{-1}\!\left(\frac{x-y}{1+xy}\right)$$

Answer: B

Watch Video Solution

66. Consider the following statement:

- 1. There exixts no triangle ABC for which $\sin A + \sin B = \sin C$.
- 2. If the angle of a triangle are in the ratio 1 : 2 : 3, then its sides will be in the ratio 1 : $\sqrt{3}$: 2.

Which of the above statement is/are correct?

- A. 1 only
- B. 2 only
- C. Both 1 and 2
- D. Neither 1 nor 2

Answer: C

67. Consider the following statement :

- 1. $\tan^{-1} 1 + \tan^{-1} (0.5) = \pi/2$
- $2.\sin^{-1}(1/3) + \cos^{-1}(1/3) = \pi/2$

Which of the above statement is/are correct?

- A. 1 only
- B. 2 only
- C. Both 1 and 2
- D. Neither 1 nor 2

Answer: B

- **68.** If A + B + C = π , then what is $\cos(A + B) + \cos C$ equal to ?
 - A. 0

B. 2 cos C

C. cos C - sin C

D. 2 sin C

Answer: A

Watch Video Solution

69. What is $\sin^{-1}\sin\frac{3\pi}{5}$ equal to ?

A.
$$\frac{3\pi}{5}$$

 $\mathrm{B.}\,\frac{2\pi}{5}$

C. $\frac{\pi}{5}$

D. None of these

Answer: B

70. What is $\sin^{-1}\frac{3}{5}-\sin^{-1}\frac{4}{5}$ equal to ?

A.
$$\pi/2$$

B.
$$\pi/3$$

C.
$$\pi/4$$

D.
$$\pi/6$$

Answer: A

Watch Video Solution

71. In a triangle ABC, c = 2, A = 45° , a = $2\sqrt{2}$, than what is C equal to ?

A. 30°

B. 15°

C. 45°

D. None of these

Answer: A

Watch Video Solution

72. In a triangle $ABC, \sin A - \cos B = \cos C$, then angle B is

A. π

B. $\pi/3$

C. $\pi/2$

D. $\pi/4$

Answer: C

73. If in triangle ABC, $\left(a=\left(1+\sqrt{3}\right)cm,b=2cm,and\angle C=60^{0}\right)$, then find the other two angles and the third side.

- A. $45^{\,\circ}~$ and $75^{\,\circ}$
- $B.30^{\circ}$ and 90°
- C. 105° and 15°
- D. 100° and 20°

Answer: A

Watch Video Solution

74. A solution of the equation

 $an^{-1}(1+x) + an^{-1}(1-x) = rac{\pi}{2}$ is

- A. x = 1
- B. x = -1

C.
$$x = 0$$

D.
$$x=rac{1}{2}$$

Answer: C

75.

Watch Video Solution

$$\tan^{-1}\left(\frac{1}{5}\right), y = \tan^{-1}\left(\frac{1}{70}\right) \text{ and } z = \tan^{-1}\left(\frac{1}{99}\right).$$

Х

Conisder

What is x equal to?

A.
$$\tan^{-1}\left(\frac{60}{119}\right)$$

B.
$$\tan^{-1}\left(\frac{120}{119}\right)$$

$$\mathsf{C.}\tan^{-1}\!\left(\frac{90}{169}\right)$$

$$D. \tan^{-1} \left(\frac{170}{169} \right)$$

Answer: B

$$\tan^{-1}\left(\frac{1}{5}\right), y = \tan^{-1}\left(\frac{1}{70}\right) \text{ and } z = \tan^{-1}\left(\frac{1}{99}\right).$$

What is x - y equal to?

A.
$$\tan^{-1}\left(\frac{828}{845}\right)$$

B.
$$\tan^{-1} \left(\frac{8287}{8450} \right)$$

C.
$$\tan^{-1} \left(\frac{8281}{8450} \right)$$
D. $\tan^{-1} \left(\frac{8287}{8471} \right)$

Answer: C

77. Conisder
$$x = \tan^{-1}\left(\frac{1}{5}\right), y = \tan^{-1}\left(\frac{1}{70}\right) \text{ and } z = \tan^{-1}\left(\frac{1}{99}\right).$$

What is
$$x - y + z$$
 equal to?

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{6}$$
D. $\frac{\pi}{4}$

Answer: D

78. The value of
$$an\left(2 an^{-1}rac{1}{5}-rac{\pi}{4}
ight)$$
 is

A.
$$-\frac{7}{17}$$

$$\mathsf{B.}\,\frac{5}{16}$$

c.
$$\frac{5}{4}$$

D.
$$\frac{7}{17}$$

Answer: A

Watch Video Solution

79. Consider the following statements : 1. $\sin^{-1}\frac{4}{5}+\sin^{-1}\frac{3}{5}=\frac{\pi}{2}$ and 2. $\tan^{-1}\sqrt{3}+\tan^{-1}1=-\tan^{-1}\left(2+\sqrt{3}\right)$ Which of the above statement(s) is/are correct?

- A. 1 only
- B. 2 only
- C. Both 1 and 2
- D. Neither 1 nor 2

Answer: A

80. If
$$a,b$$
 and c are the sides of a $riangle ABC$, then $a^{1/p}+b^{1/p}-c^{1/p},$ where $p>1,$ is

A. always negative

B. always positive

C. always zero

D. positive if 1 and negative if <math>p > 2

Answer: B

Watch Video Solution

81. Consider a triangle ABC in
$$\cos A + \cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$$

which

What is the value of $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$?

$$\cdot \frac{1}{2}$$

B.
$$\frac{1}{4}$$

C.
$$\frac{1}{8}$$

D.
$$\frac{1}{16}$$

Answer: C

Watch Video Solution

82. Consider a triangle ABC in which
$$\cos A + \cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$$

What is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)\cos\left(\frac{C+A}{2}\right)$?

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{2}$$

$$\cdot \frac{1}{16}$$

D. None of these

Answer: D

Watch Video Solution

83. Consider the following statements:

1. There exists $heta\in\Big(-rac{\pi}{2},rac{\pi}{2}\Big)$ for which $an^{-1}(an heta)
eq heta.$

$$2.\sin^{-1}\left(\frac{1}{3}\right)-\sin^{-1}\left(\frac{1}{5}\right)=\sin^{-1}\left(\frac{2\sqrt{2}\left(\sqrt{3}-1\right)}{15}\right)$$

Which of the above statements is/are correct?

- A. 1 only
- B. 2 only
- C. Both 1 and 2
- D. Neither 1 nor 2

Answer: B

84. Consider the following statements:

1.
$$\tan^{-1} x + \tan^{-1} \left(\frac{1}{x} \right) = \pi$$

2. There exist x, y $\in [-1,1]$, where x eq y such that $\sin^{-1} x + \cos^{-1} y = \frac{\pi}{2}.$

Which of the above statement is/are correct?

A. 1 only

B. 2 only

C. Both 1 and 2

D. Neither 1 nor 2

Answer: D

Watch Video Solution

85. Consider the following statement :

1. If ABC is an equilateral triangle, then $3 \tan(A + B) \tan C = 1$.

 $an\!\left(rac{A}{2}+C
ight)< an A$

3. If ABC is any triangle, then
$$an\!\left(\frac{A+B}{2}\right)\!\sin\!\left(\frac{C}{2}\right)<\cos\!\left(\frac{C}{2}\right)$$

2. If ABC is a triangle in which $A=78^{\circ}, B=66^{\circ},$ then

Which of the above statements is/are correct?

A. 1 only

B. 2 only

C. 1 and 2

D. 2 and 3

Answer: B

Watch Video Solution

86. The value of $\cos(2\cos^{-1}0.8)$ is

A. 0.81

B. 0.56

C. 0.48

D. 0.28

Answer: D

Watch Video Solution

87. Consider the following for triangle ABC:

1.
$$\sin\!\left(\frac{B+C}{2}\right) = \cos\!\left(\frac{A}{2}\right)$$

$$2.\tan\biggl(\frac{B+C}{2}\biggr)=\cot\biggl(\frac{A}{2}\biggr)$$

 $3. \sin (B + C) = \cos A$

 $4. \tan(B + C) = -\cot A$

Which of the above are correct?

A. 1 and 3

B. 1 and 2

C. 1 and 4

D. 2 and 2

Answer: B

Watch Video Solution

88. The value of $\sin^{-1}\!\left(\frac{3}{5}\right) + \tan^{-1}\!\left(\frac{1}{7}\right)$ is equal to

A. 0

 $\operatorname{B.}\frac{\pi}{4}$

 $\operatorname{C.}\frac{\pi}{3}$

D. $\frac{\pi}{2}$

Answer: B

89. In a triangle ABC,
$$a-2b+c=0$$
.The value of $\cot\left(rac{A}{2}
ight)\cot\left(rac{C}{2}
ight)$

is

A.
$$\frac{9}{2}$$

B. 3

 $\mathsf{C.}\ \frac{3}{2}$

D. 1

Answer: B

Watch Video Solution

90. In ΔABC If, $\dfrac{\sin^2 A + \sin^2 B + \sin^2 C}{\cos^2 A + \cos^2 B + \cos^2 C}$ =2 Then the triangle is

A. right-angled

B. equilateral

C. isosceles

D. obtuse-angled

Answer: A

Watch Video Solution

91. The principal value of $\sin^{-1} x$ lies in the interval

A.
$$\Big(-rac{\pi}{2},rac{\pi}{2}\Big)$$

$$\mathtt{B.}\left[\,-\,\frac{\pi}{2},\,\frac{\pi}{2}\right]$$

C.
$$\left[0, \frac{\pi}{2}\right]$$

$$\mathrm{D.}\left[0,\pi\right]$$

Answer: B

92. In a triangle ABC if a = 2, b = 3 and sin A = $\frac{2}{3}$, then what is angle B equal to?

A.
$$\frac{\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{2}$$

C.
$$\frac{\pi}{3}$$
D. $\frac{\pi}{6}$

Answer: B

- **93.** The principle value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is
 - A. $\frac{\pi}{4}$
 - $\operatorname{B.}\frac{\pi}{2}$
 - C. $\frac{\pi}{3}$

D.
$$\frac{2\pi}{3}$$

Answer: C

Watch Video Solution

94. If x, x - y and x + y are the angles of a triangle (not an equilateral triangle) such that tan(x - y), tan x and tan(x + y) are in GP, then what is x equal to ?

- A. $\frac{\pi}{4}$
- $\operatorname{B.}\frac{\pi}{3}$
- C. $\frac{\pi}{6}$
- D. $\frac{\pi}{2}$

Answer: B

95. ABC is a triangle inscribed in a circle with centre O. Let $\alpha=\angle BAC$, where $45^\circ<\alpha<90^\circ$. Let $\beta=\angle BOC$. Which one of the following is correct ?

A.
$$\cos \beta = \dfrac{1- an^2 lpha}{1+ an^2 lpha}$$
B. $\cos \beta = \dfrac{1+ an^2 lpha}{1- an^2 lpha}$
C. $\cos \beta = \dfrac{2 an lpha}{1+ an^2 lpha}$

D.
$$\sin eta = 2 \sin^2 lpha$$

Answer: A

Watch Video Solution

96. What is $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$ equal to ?

A. 0

B. $\frac{\pi}{4}$

C.
$$\frac{\pi}{3}$$

$$\mathrm{D.}\,\frac{\pi}{2}$$

Answer: B

Watch Video Solution

97. If $A+B+C=180^{\circ}$, then what is \sin 2A - \sin 2N - \sin 2C equal to ?

 $A = 4 \sin A \sin B \sin C$

 $B.-4\cos A\sin B\cos C$

 $\mathsf{C.} - 4\cos A\cos B\sin C$

 $D. - 4 \sin A \cos B \cos C$

Answer: D

98. Consider the following values of x:

- 1.8
- 2. -4
- 3. $\frac{1}{6}$
- 4. $-\frac{1}{4}$

Which of the above values of x is/are the solutions of the equation

 $an^{-1}(2x) + an^{-1}(3x) = rac{\pi}{4}.$

- A. 3 only
- B. 2 and 3 only
- C. 1 and 4 only
- D. 4 only

Answer: A

99. Let the slope of the curve $y=\cos^{-1}$ (sin x) be $\tan\, \theta$: Then the value of θ in the interval $(0,\pi)$ is

A.
$$\frac{\pi}{6}$$

$$\mathrm{B.}~\frac{3\pi}{4}$$

C.
$$\frac{\pi}{4}$$

D. $\frac{\pi}{2}$

Answer: B

100. What is the value of
$$\sin^{-1}\frac{4}{5} + \sec^{-1}\frac{5}{4} - \frac{\pi}{2}$$
?

A.
$$\frac{\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{2}$$

C.
$$\pi$$

Answer: D

Watch Video Solution

101. if
$$\sin^{-1}\left(\frac{2p}{1+p^2}\right)-\cos^{-1}\left(\frac{1-q^2}{1+q^2}\right)=\tan^{\frac{2x}{1-x^2}}$$
 prove that $x=\frac{p-q}{1+pq}$ where $p,q\varepsilon(0,1)$

A.
$$\frac{p+q}{1+pq}$$

B.
$$\frac{p-q}{1+pq}$$

C.
$$rac{pq}{1+pq}$$

D.
$$\frac{p+q}{1-pq}$$

Answer: B

102. If in triangle the angles be to the one another as $1\!:\!2\!:\!3$, prove that the corresponding sides are $1\!:\!\sqrt{3}\!:\!2$.

103. What is the derivative of $\sec^2(\tan^{-1}x)$ with respect to x ?

- A. 1:2:3
- B. 3:2:1
- C. 1: $\sqrt{3}$: 2
- D. 1: $\sqrt{3}$: $\sqrt{2}$

Answer: C

- - A. 2x
 - B. $x^2 + 1$
 - C. x + 1

D. x^2

Answer: A

