©゙doubtnut

MATHS

BOOKS - NDA PREVIOUS YEARS

VECTORS

Math

1. Let $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar vectors and
$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$.
What is the value of

$$
(\vec{a}-\vec{b}-\vec{c}) \cdot \vec{p}+(\vec{b}-\vec{c}-\vec{a}) \cdot \vec{q}+(\vec{c}-\vec{a}-\vec{b}) \cdot \vec{r} ?
$$

A. 0
B. -3
C. 3
D. -9

Answer: C

D Watch Video Solution

2. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of corners $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or a parallelogram $A B C D$, then what is the position vector of the corner D ?
A. $\vec{a}+\vec{b}+\vec{c}$
В. $\vec{a}+\vec{b}-\vec{c}$
C. $\vec{a}-\vec{b}+\vec{c}$
D. $-\vec{a}+\vec{b}+\vec{c}$

Answer: C

3. In a $\triangle A B C$, angle B is obtuse and $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are the middle points of sides $B C, C A, A B$ respectively. Which one of the following vectors has the greatest magnitude?
A. $\overrightarrow{B C}$
B. $\overrightarrow{C A}$
c. $\overrightarrow{A B}$
D. $\overrightarrow{A D}$

Answer: B

- Watch Video Solution

4. If $\vec{p} \neq \overrightarrow{0}$ and the conditions
$\vec{p} \cdot \vec{q}=\vec{p} \cdot \vec{r}$ and $\vec{p} \times \vec{q}=\vec{p} \times \vec{r}$ hold simultaneously, then which one of the following is correct?
A. $\vec{q} \neq \vec{r}$
В. $\vec{q}=-\vec{r}$
C. $\vec{q} \cdot \vec{r}=0$
D. $\vec{q}=\vec{r}$

Answer: D

D Watch Video Solution

5. If two unit vectors \vec{p} and \vec{q} make an angle $\frac{\pi}{3}$ with each other, what is the magnitude of $\vec{p}-\frac{1}{2} \vec{q}$?
A. 0
B. $\frac{\sqrt{3}}{2}$
C. 1
D. $\frac{1}{\sqrt{2}}$

Answer: B

6. What are the values of x for which the two vectors $\left(x^{2}-1\right) \hat{i}+(x+2) \hat{j}+x^{2} \hat{k}$ and $2 \hat{i}-x \hat{j}+3 \hat{k}$ are orthogonal ?
A. No real value of x
B. $x=\frac{1}{2}$ and $x=-1$
C. $x=-\frac{1}{2}$ and $x=1$
D. $x=-1$ and $x=2$

Answer: C

- Watch Video Solution

7. Find the moment about the point $\hat{i}+2 \hat{j}+3 \hat{k}$ of a force represented by $\hat{i}+\hat{j}+\hat{k}$ acting through the point $2 \hat{i}+3 \hat{j}+\hat{k}$.
A. $2 \hat{i}+\hat{j}+2 \hat{k}$
B. $\hat{i}-\hat{j}+3 \hat{k}$
C. $3 \hat{i}+2 \hat{j}-\hat{k}$
D. $3 \hat{i}+\hat{j}-4 \hat{k}$

Answer: D

- Watch Video Solution

8. A particle is acted upon by following forces:
(i) $2 \hat{i}+3 \hat{j}+\hat{k},(i i)-5 \hat{i}+4 \hat{j}-3 \hat{k}$ and $(i i i) 3 \hat{i}-7 \hat{k}$

In which plane does it move?
A. $x-y$ plane
B. $y-z$ plane
C. $z-x$ plane
D. any arbitrary plane

Answer: B

9. What is the vector whose magnitude is 3 , and is perpendicular to $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$?
A. $3(\vec{i}+\hat{j}-\vec{k})$
B. $\sqrt{3}(\vec{i}-\vec{j}+\vec{k})$
C. $\sqrt{3}(\vec{i}+\vec{j}+\vec{k})$
D. $3(\vec{i}-\vec{j}+\vec{k})$

Answer: B

- Watch Video Solution

10. If α, β, γ be angles which the vector $\vec{r}=\lambda \vec{i}+2 \vec{j}-\vec{k}$ makes with the coordinate axes, then what is the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma ?$
A. 2
B. 1
C. $\lambda^{2}+1$
D. $1-\lambda^{2}$

Answer: A

- Watch Video Solution

11. The following question consist of two statement, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A) : If $\vec{a}=2 \vec{i}+\vec{j}-2 \vec{k}, \vec{b}=\vec{i}+\vec{j}-\vec{k}$, then $|\vec{a}| \neq|\vec{b}|$

Reason (R): Two unequal vectors can never have same magnitude.
A. Both A and R are individually true, and R is the correct explanation of A.
B. Both A and R are individually true but R is not the correct explanation of A .
C. A is true but R is false.
D. A is false but R is true.

Answer: C

- Watch Video Solution

12. OAB is a given triangle such that $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$. Also C is a point on $\overrightarrow{A B}$ such that $\overrightarrow{A B}=2 \overrightarrow{B C}$. What is $\overrightarrow{A C}$ equal to?
A. $\frac{1}{2}(\vec{b}-\vec{a})$
B. $\frac{1}{2}(\vec{b}+\vec{a})$
C. $\frac{3}{2}(\vec{a}-\vec{b})$
D. $\frac{3}{2}(\vec{b}-\vec{a})$
13. Let $A B C D$ be a p [arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$.
A. $\overrightarrow{O P}$
B. $2 \overrightarrow{O P}$
c. $3 \overrightarrow{O P}$
D. $4 \overrightarrow{O P}$

Answer: D

- Watch Video Solution

14. If $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}$ are the position vectors off thee collinear points and scalar pandq exist such that $\vec{r}_{3}=p \vec{r}_{1}+q \vec{r}_{2}$, then show that $p+q=1$.
A. 0
B. 1
C. -1
D. 2

Answer: B

D Watch Video Solution

15. Let α be the angle which the vector $\vec{V}=2 \hat{i}-\hat{j}+2 \hat{k}$ makes with the z-axis,. Then, what is the value of $\sin \alpha$?
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{\sqrt{5}}{3}$
D. $\frac{\sqrt{5}}{9}$

Answer: C

Watch Video Solution

16. If $\vec{m}, \vec{n}, \vec{r}$ are three vectors, θ is the angle between the vectors \vec{m} and \vec{n}, what is $m n r \cos \theta$ equal to ?
A. $(\vec{m} \cdot \vec{n})(\vec{r} \cdot(\vec{r} / r))$
B. $(\vec{m} \cdot \vec{n})(\vec{r} \cdot \vec{r})$
C. $(\vec{m} \cdot \vec{r})(\vec{n} \cdot(\vec{n} / n))$
D. $(\vec{m} \cdot \vec{n}) \vec{r}$

Answer: D

- Watch Video Solution

17. If the vectors $\hat{i}-2 x \hat{j}-3 y \hat{k}$ and $\hat{i}+3 x \hat{j}+2 y \hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y) ?
A. A circle
B. An ellipse
C. A parabola
D. A hyperbola

Answer: A

- Watch Video Solution

18. If the components of \vec{b} along and perpendicular to \vec{a} are $\lambda \vec{a}$ and $\vec{b}-\lambda \vec{a}$ respectively, what is λ equal to ?
A. $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
B. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
C. $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}}$
D. $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}}$

D Watch Video Solution

19. A force $m \hat{i}-3 \hat{j}+\hat{k}$ acts on a point and so the point moves from $(20,3 m, 0) \rightarrow(0,0,7)$. If the work done by the force is -48 unit, what is the value of m ?
A. 5
B. 3
C. 2
D. 1

Answer: A

- Watch Video Solution

20. For any two vectors \vec{a} and \vec{b} consider the following statement :
21. $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \Leftrightarrow \vec{a}, \vec{b}$ are orthogonal.
22. $|\vec{a}+\vec{b}|=|\vec{a}|+|\vec{b}| \Leftrightarrow \vec{a}, \vec{b}$ are orthogonal.
23. $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2} \Leftrightarrow \vec{a}, \vec{b}$ are orthogonal.

Which of the above statements is/are correct?
A. 1 and 2 only
B. 1 and 3 only
C. 2 and 3 only
D. 1, 2 and 3

Answer: B

- Watch Video Solution

21. Two vector $2 \hat{i}+m \hat{j}-3 n \hat{k}$ and $5 \hat{i}+3 m \hat{j}+n \hat{k}$ are such that their magnitudes are respectively $\sqrt{14}$ and $\sqrt{35}$, where m, n are integers.

Which one of the following is correct?
A. m takes 1 value, n takes 1 value
B. m takes 1 value, n takes 2 values
C. m takes 2 value, n takes 1 value
D. m takes 2 value, n takes 2 values

Answer: D

- Watch Video Solution

22. Two vectors \vec{a} and \vec{b} are non-zero and non-collinear. What is the value of x for which the vectors $\vec{p}(x-2) \vec{a}+\vec{b}$ and $\vec{q}=(x+1) \vec{a}-\vec{b}$ are collinear?
A. 1
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. 2

D Watch Video Solution

23. If \vec{a} and \vec{b} are position vectors of the points A and B respectively, then what is the position vector of a point C on $A B$ produced such that $\overrightarrow{A C}=\overrightarrow{2 A B}$?
A. $2 \vec{a}-\vec{b}$
B. $2 \vec{b}-\vec{a}$
C. $\vec{a}-2 \vec{b}$
D. $\vec{a}-\vec{b}$

Answer: B

- Watch Video Solution

24. If $|\vec{a}|=3,|\vec{b}|+4$, then for what value of 1 is $(\vec{a}+\lambda \vec{b})$ perpendicular to $(\vec{a}-\lambda \vec{b})$?
A. $\pm \frac{3}{4}$
B. $\pm \frac{4}{3}$
C. $\pm \frac{9}{16}$
D. $\pm \frac{3}{5}$

Answer: A

- Watch Video Solution

25. What is the magnitude of the moment of the couple consisting of the force $\vec{F}=3 \hat{i}+2 \hat{j}-\hat{k}$ acting through the point $\hat{i}-\hat{j}+\hat{k}$ and $-\vec{F}$ acting through the point $2 \hat{i}-3 \hat{j}-\hat{k}$?
A. $2 \sqrt{5}$
B. $3 \sqrt{5}$
C. $5 \sqrt{5}$
D. $7 \sqrt{5}$

Answer: C

- Watch Video Solution

26. Let $\vec{a}=2 \vec{j}-3 \vec{k}, \vec{b}=\hat{j}+3 \hat{k}$ and $\vec{c}=3 \vec{i}+3 \hat{j}+\hat{k}$. Let \widehat{n} be a unit vector such that $\vec{a} \cdot \widehat{n}=\vec{b} \cdot \widehat{n}=0$. What is the value of $\vec{c} \cdot \widehat{n}$?
A. 1
B. $\sqrt{19}$
C. 3
D. -3

Answer: D
$\vec{u}=\hat{i}-\hat{j}, \vec{v}=2 \hat{i}+5 \hat{j}, \vec{w}=4 \hat{i}+3 \hat{j}$ and $\vec{p}=\vec{u}+\vec{v}+\vec{w}$.
Which one of the following is correct ?
A. $-3 \vec{u}+2 \vec{v}=\vec{p}$
B. $3 \vec{u}-2 \vec{v}=\vec{p}$
C. $3 \vec{u}+2 \vec{v}=\vec{p}$
D. $-3 \vec{u}-2 \vec{v}=\vec{p}$

Answer: C

- Watch Video Solution

28. If \vec{a} and \vec{b} are unit vectors inclined at an angle of 30° to each other, then which one of the following is correct?
A. $|\vec{a}+\vec{b}|>1$
B. $1>|\vec{a}+\vec{b}|<2$
c. $|\vec{a}+\vec{b}|=2$
D. $|\vec{a}+\vec{b}|<2$

Answer: B

- Watch Video Solution

29. Which one of the following is correct ? If the vector \vec{c} is normal to the vectors \vec{a} and \vec{b}, then \vec{c}, is :
A. parallel to both $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$
B. $\vec{a}-\vec{b}$ and parallel to $\vec{a}+\vec{b}$
C. normal to $\vec{a}+\vec{b}$ and parallel to $\vec{a}-\vec{b}$
D. normal to both $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$

Answer: D

30. Which one of the following statements is not correct?
A. Vector product is commutative
B. Vector product is not associative
C. Vector product is distributive over addition
D. Scalar product is commutative

Answer: A

- Watch Video Solution

31. If a $\hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}$, and $\hat{i}+\hat{j}+c \hat{k}$ are coplanar vectors, then what is the value of $a+b+c-a b c$?
A. 0
B. 1
C. 2
D. -2

D Watch Video Solution

32. For any three non-zero vectors \vec{a}, \vec{b} and \vec{c} if $|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=$
A. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a} \neq 0$
B. $\vec{a} \cdot \vec{b}=0$ only
C. $\vec{b} \cdot \vec{c}=0$ only
D. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$

Answer: D

- Watch Video Solution

33. If $\vec{a}=\vec{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+\lambda \hat{k}$ and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{a}-\vec{b}$, then what is the value of λ ?
A. -2 only
B. ± 2
C. 3 only
D. ± 3

Answer: B

- Watch Video Solution

34. The vectors $\overrightarrow{A B}=\vec{c}, \overrightarrow{B C}=\vec{a}, \overrightarrow{C A}=\vec{b}$, are the sides of a triangles $A B C$. Which of the following vectors represent (s) the median $\overrightarrow{A D}$?
35. $\frac{1}{2} \vec{a}+\vec{c}$
36. $-\frac{1}{2} \vec{b}+\frac{1}{2} \vec{c}$
37. $\frac{\overrightarrow{1}}{2} \vec{a}+\vec{b}$

Select the correct answer using the code given below
A. 1 and 2
B. 1 and 3
C. $10 n l y$
D. 2only

Answer: C

- Watch Video Solution

35. If \vec{a} is a position vector of a point $(1,-3)$ and A is another point $(-1,5)$, then what are the coordinates of the point B such that $\overrightarrow{A B}=\vec{a}$?
A. $(2,0)$
B. $(0,2)$
C. $(-2,0)$
D. $(0,-2)$

Answer: B

36. If $\vec{a}=2 \hat{i}-3 \hat{j}-\hat{k}, \vec{b}=\hat{i}+4 \hat{j}-2 \hat{k}$, then what is $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$ equal to ?
A. $2(\vec{a} \times \vec{b})$
B. $-2(\vec{a} \times \vec{b})$
C. $(\vec{a} \times \vec{b})$
D. $-(\vec{a} \times \vec{b})$

Answer: B

- Watch Video Solution

37. If $\rightarrow a$ is a nonzero vector of magnitude a and λ a nonzero scalar, then $\lambda \rightarrow a$ is unit vector if (A) $\lambda=1$ (B) $\lambda=$
$a=|\lambda|$ (D) $a=\frac{1}{|\lambda|}$

$$
\text { A. } \lambda= \pm 1
$$

B. $a=|\lambda|$
C. $a=\frac{1}{|\lambda|}$
D. $a=\frac{1}{\lambda}$ only

Answer: C

- Watch Video Solution

38. Let \vec{a} and \vec{b} be the position vectors of A and B respectively. If C is the point $3 \vec{a}-2 \vec{b}$, then which one of the following is correct?
A. C is in between A and B
B. A is in between C and B
C. B is in between A and C
D. A, B, C are not collinear

Answer: B

39. Consider the following

If \vec{a} and \vec{b} are the vectors forming consecutive sides of a regular hexagon $A B C D E F$, then

1. $\overrightarrow{C E}=\vec{b}-2 \vec{a} \quad$ 2. $\overrightarrow{A E}=2 \vec{b}-\vec{a}$
2. $\overrightarrow{F A}=\vec{a}-\vec{b}$

Which of the above are correct?
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1, 2, and 3

Answer: D

- View Text Solution

40. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that \vec{a} is perpendicular to the plane of \vec{b}, \vec{c}, and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$
Then, what is $|\vec{a}+\vec{b}+\vec{c}|$?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

41. What is the locus of the point (x, y) for which the vectors $(\hat{i}-x \hat{j}-2 \hat{k})$ and $(2 \hat{i}+\hat{j}+y \hat{k})$ are orthogonal?
A. A circle
B. An ellipse
C. A parabola
D. A straight line

Answer: D

Watch Video Solution

42. The number of vectors of unit length perpendicular to vectors
$\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is a. one b. two c. three d. infinite
A. 1
B. 2
C. 3
D. 4

Answer: B
43. What is the area of the rectangle of which $\vec{r}=a \hat{i}+b \hat{j}$ is a semidiagonal?
A. $a^{2}+b^{2}$
B. $2\left(a^{2}+b^{2}\right)$
C. $4\left(a^{2}+b^{2}\right)$
D. $4 a b$

Answer: D

- Watch Video Solution

44. If $(3 \vec{a}-\vec{b}) \times(\vec{a}+3 \vec{b})=k \vec{a} \times \vec{b}$ then what is the value of k ?
A. 10
B. 5
C. 8
D. -8

Answer: A

- Watch Video Solution

45. What is the value of λ if the triangle whose vertices are \hat{i}, \hat{j} and $\hat{i}+\hat{j}+\lambda \hat{k}$ will be right angled?
A. 2
B. 0
C. -1
D. 1

Answer: B

- View Text Solution

46. The scalar triple product $(\vec{A} \times \vec{B}) \cdot \vec{C}$ of three vectors $\vec{A}, \vec{B}, \vec{C}$ determines
A. Volume of a parallelepiped
B. Volume of a tetrahedron
C. Volume of an ellipsoid
D. None of the above

Answer: A

- Watch Video Solution

47. If \vec{a} and \vec{b} are unit vectors then write the value of $|\vec{a} \times \vec{b}|^{2}+(\vec{a} \vec{b})^{2}$.
A. 0
B. 2
C. 1
D. $1 / 2$

Answer: C

- Watch Video Solution

48. Two forces are equal to $2 \overrightarrow{O A}$ and $3 \overrightarrow{B O}$, their resultant being $\lambda \overrightarrow{O G}$, where G is the point on AB such that $\frac{B G}{A G}=-\frac{2}{3}$. What is the value of λ ?
A. 1
B. -1
C. 2
D. None of the above

Answer: B

49. If \vec{a} and \vec{b} are two unit vectors inclined at angle 60° to each other, then which one of the following is correct?
A. $|\vec{a}+\vec{b}|<1$
B. $|\vec{a}+\vec{b}|>1$
c. $|\vec{a}-\vec{b}|<1$
D. $|\vec{a}-\vec{b}|>1$

Answer: B

- Watch Video Solution

50. Let $\vec{a}=(1,-2,3)$ and $\vec{b}=(3,1,2)$ be two vectors and \vec{c} be a vector of length I and parallel to $(\vec{a}+\vec{b})$. What is \vec{c} equal to ?
A. $\frac{1}{\sqrt{4}}(-2,-3,1)$
B. $\frac{1}{\sqrt{2}}(1,0,1)$
C. $\frac{1}{\sqrt{42}}(-5,-4,1)$
D. None of these

Answer: D

- View Text Solution

51. If $\overrightarrow{r_{1}}=\lambda \vec{i}+2 \hat{j}+\hat{k}, \overrightarrow{r_{2}}=\hat{i}+(2-\lambda) \hat{j}+2 \hat{k}$ are such that $\left|\overrightarrow{r_{1}}\right|>\left|\overrightarrow{r_{2}}\right|$, then λ satisfies which one of the following?
A. $\lambda=0$ only
B. $\lambda=1$
C. $\lambda<1$
D. $\lambda<1$

Answer: D
52. If P, Q, R are the mid-points of the sides $A B, B C$ and $C A$ respectively of a triangle $A B C$ and a, p, q are the position vectors of A, P, Q respectively, then what is position vector of R ?
A. $2 \vec{a}-(\vec{p}-\vec{q})$
B. $(\vec{p}-\vec{q})-2 \vec{a}$
C. $\vec{a}-(\vec{p}-\vec{q})$
D. $\vec{a} / 2-(\vec{p}-\vec{q}) / 2$

Answer: C

- Watch Video Solution

53. What is the length of the vector $(1,1)$?
A. 0
B. 1
C. $\sqrt{2}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

54. Which one of the following vectors of magnitude $\sqrt{51}$ makes equal angles with three vectors
$\vec{a}=\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{3}, \vec{b}=\frac{-4 \hat{i}-3 \hat{k}}{5}$ and $\vec{c}=\hat{j}$?
A. $5 \hat{i}-\hat{j}-5 \hat{k}$
B. $5 \hat{i}+\hat{j}+5 \hat{k}$
C. $-5 \hat{i}-\hat{j}+5 \hat{k}$
D. $5 \hat{i}+5 \hat{j}-k$

Answer: A

55. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|$, then what is $\vec{a} \cdot \vec{b}$ equal to?
A. 4
B. 6
C. 8
D. 10

Answer: B

- Watch Video Solution

56. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then which one of the following is correct?
A. \vec{a} is parallel to \vec{b}
B. \vec{a} is perpendicular to \vec{b}
C. $\vec{a}=\vec{b}$
D. Both \vec{a} and \vec{b} are unit vectors

D Watch Video Solution

57. If $\vec{a}=\hat{i}-2 \hat{j}+5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k} \quad$ then what is $(\vec{b}-\vec{a}) \cdot(3 \vec{a}+\vec{b})$ equal to ?
A. 106
B. -106
C. 53
D. -53

Answer: B

(D) Watch Video Solution

58. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively. Under which one of the following conditions are the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$

collinear?

A. $\vec{a} \times \vec{b}=\overrightarrow{0}$
B. $\vec{b} \times \vec{c}$ is parallel to $\vec{a} \times \vec{b}$
C. $\vec{a} \times \vec{b}$ is perpendicular to $\vec{b} \times \vec{c}$
D. $(\vec{a} \times \vec{b})+(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})=\overrightarrow{0}$

Answer: D

- View Text Solution

59. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$, then what is $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})$ equal to?
A. $2 \hat{i}+3 \hat{j}-\hat{k}$
B. $2 \hat{i}-3 \hat{j}-\hat{k}$
C. $3 \hat{i}+\hat{j}+\hat{k}$
D. $\overrightarrow{0}$

- Watch Video Solution

60. The following item consists of two statements, one labelled the Assertion (A) and the other labelled the Reason (R). You are to examine these two statements carefully and decide if the Assertion (A) and Reason (R) are individually true and if so, whether the reason is a correct explanation of the Assertion. Select your answer using the codes given below.

Assertion (A) : The work done when the force and displacement are perpendicular to each other is zero. Reason (R) : the dot product $\vec{A} \cdot \vec{B}$ vanishes, if the vector \vec{A} and \vec{B} are perpendicular.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false.
D. A is false but R is true.

Answer: B

- Watch Video Solution

61. If \hat{a} and \hat{b} are the unit vectors along \vec{a} and \vec{b} respectively, then what is the projection of \vec{b} on \vec{a} ?
A. $\vec{a} \cdot \vec{b}$
B. $\widehat{a} . \hat{b}$
C. $\widehat{a} . \vec{b}$
D. $|\vec{a} \times \vec{b}|$

Answer: A

- Watch Video Solution

62. What are the unit vectors parallel to $x y$-plane and perpendicular to the vector $4 \hat{i}-3 \hat{j}+\hat{k}$?
A. $\pm(3 \hat{i}+4 \hat{j}) / 5$
B. $\pm(4 \hat{i}+3 \hat{j}) / 5$
C. $\pm(3 \hat{i}-4 \hat{j}) / 5$
D. $\pm(4 \hat{i}-3 \hat{j}) / 5$

Answer: A

- View Text Solution

63. What is the vector in the xy-plane through origin and perpendicular to the vector $\vec{r}=a \vec{i}+b \hat{j}$ and of the same length?
A. $-a \hat{i}-b \vec{j}$
B. $a \hat{i}-b \hat{j}$
C. $-a \hat{i}+b \hat{j}$
D. $b \hat{i}-a \hat{j}$

Answer: D

- Watch Video Solution

64. Given $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and \hat{b} is a unit vector codirectional with \widehat{a}. If m is a scalar such that $\hat{b}=m \vec{a}$, then what is the value of m ?
A. $1 / 5$
B. $1 / \sqrt{5}$
C. $1 / 29$
D. $1 / \sqrt{29}$

Answer: D

- Watch Video Solution

65. The magnitude of the vectors \vec{a} and \vec{b} are equal and the angle between them is 60°. If the vectors $\lambda \vec{a}+\vec{b}$ and $\vec{a}-\lambda \vec{b}$ are perpendicular to each other, then what is the value of λ ?
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

66. If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}-\vec{b}|=5$, then what is the value of $|\vec{a}+\vec{b}|=$?
A. 3
B. 2
C. 1
D. 0

Answer: C

- Watch Video Solution

67. Consider the diagonals of a quadrilateral formed by the vectors $3 \hat{i}+6 \hat{j}-2 \hat{k}$ and $4 \hat{i}-\hat{j}+3 \hat{k}$. The quadrilateral must be a
A. Square
B. Rhombus
C. Rectangle
D. None of these

Answer: B
68. What is the area of the triangle with vertices $(0,2,2),(2,0,-1)$ and $(3,4,0)$?
A. $\frac{15}{2}$ sq unit
B. 15 sq unit
C. $\frac{7}{2}$ sq unit
D. 7 sq unit

Answer: A

- Watch Video Solution

69. If the angle between the vectors \vec{a} and \vec{b} is $\frac{\pi}{3}$, what is the angle between $-5 \vec{a}$ and $6 \vec{b}$?
A. $\frac{\pi}{6}$
B. $\frac{2 \pi}{3}$
C. $\frac{2 \pi}{5}$
D. $\frac{3 \pi}{7}$

Answer: B

- Watch Video Solution

70. Consider the following statements
71. For any three vectors $\vec{a}, \vec{b}, \vec{c}$,
$\vec{a} \cdot\{(\vec{a}+\vec{c}) \times(\vec{a}+\vec{b}+\vec{c})\}=0$
72. For any three coplanar unit vectors
$\vec{d}, \vec{e}, \vec{f},(\vec{d} \times \vec{e}) \cdot \vec{f}=1$
Which of the statements given above is/are correct?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

D Watch Video Solution

71. Let \vec{a} and \vec{b} be two unit vectors and α be the angle between them, then $\vec{a}+\vec{b}$ is a unit vectors, if $\alpha=\frac{\pi}{4}$ b. $\alpha=\frac{\pi}{3}$ c. $\alpha=\frac{2 \pi}{3}$ d. $\alpha=\frac{\pi}{2}$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{2 \pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

72. What is the value of λ for which the vectors $\hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+\hat{j}-\hat{k}$ and $\lambda \hat{i}-\hat{j}+\lambda \hat{k}$ are co-planar?
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

73. What is the geometric interpretation of the identity $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$?
74. If the diagonals of a given parallelogram are used as sides of a second parallelogram, then the area of the second parallelogram is twice that of the given parallelogram.
75. If the semi-diagonals of a given parallelogram are used as sides of a second parallelogram, then the area of the second parallelogram is half that of the given parallelogram.

Select the correct answer using the code given below
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

D Watch Video Solution

74. The \vec{b} which is collinear with the vector $\vec{a}=(2,1,-1)$ and satisfies the relation $\vec{a} \cdot \vec{b}=3$ is
A. $(1,1 / 2,-1 / 2)$
B. $(2 / 3,1 / 3,-1 / 3)$
C. $(1 / 2,1 / 4,-1 / 4)$
D. $(1,1,0)$
75. The vectors $\vec{a}=x \vec{i}+y \vec{j}+z \vec{k}, \vec{b}=\hat{k}, \vec{c}$ are such that they form a right handed system. What is \vec{c} equal to ?
A. \hat{j}
B. $y \hat{j}-x \hat{k}$
C. $y \hat{i}-x \hat{j}$
D. $x \hat{i}-y \hat{j}$

Answer: C

- Watch Video Solution

76. If the position vector of a point p with respect to the origin O is $\hat{i}+3 \hat{j}-2 \hat{k}$ and that of a point Q is $3 \hat{i}+\hat{j}-2 \hat{k}$, then what is the position vector of the bisector of the $\angle P O Q$?
A. $\hat{i}-\hat{j}-\hat{k}$
B. $\hat{i}+\hat{j}-\hat{k}$
C. $\hat{i}+\hat{j}+\hat{k}$
D. None of these

Answer: B

- Watch Video Solution

77. Let a, b and c be the distinct non-negative numbers. If the vectors $a \hat{i}+c \hat{k}, \hat{i}+\hat{k}, c \hat{i}+c \hat{j}+b \hat{k}$ lie on a plane, then which one of the following is correct?
A. c is thed arithmetic mean of a and b
B. c is the geometric mean of a and b
C. c is the harmonic mean of a and b
D. c is equal to zero

D Watch Video Solution

78. If $\vec{a}=h t(i)-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k}$
$\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$.
then $\vec{a} \cdot(\vec{b} \times \vec{c})$ depends on
A. x only
B. y only
C. Both x and y
D. Neither x nor y

Answer: D

D Watch Video Solution

79.

$\overrightarrow{P Q}=3 \hat{i}+2 \hat{j}-m \hat{k}, \overrightarrow{P S}=\hat{i}+3 \hat{j}+\hat{k}$ and the area of the parallelogram is $\sqrt{90}$. What is the value of m ?
A. 1
B. -1
C. 2
D. -2

Answer: A

- Watch Video Solution

80. What is the vector equally inclined to the vectors $\hat{i}+3 \hat{j}$ and $3 \hat{i}+\hat{j}$
?
A. $\hat{i}+\hat{j}$
B. $2 \hat{i}-\hat{j}$
C. $2 \hat{i}+\hat{j}$
D. None of these

Answer: A

- Watch Video Solution

81. ABCD is a quadrilateral. Forces $\overrightarrow{A B}, \overrightarrow{C B}, \overrightarrow{C D}$ and $\overrightarrow{D A}$ act along its sides. What is their resultant ?
A. $2 \overrightarrow{C D}$
B. $2 \overrightarrow{D A}$
C. $2 \overrightarrow{B C}$
D. $2 \overrightarrow{C B}$

Answer: D

82. Find the area of the triangle whose vertices are $A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$.
A. $\frac{\sqrt{165}}{2}$
B. $\frac{\sqrt{135}}{2}$
C. 4
D. 2

Answer: A

- Watch Video Solution

83. What is the value of b such that the scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with the unit vector parallel to the sum of the vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $b \hat{i}+2 \hat{j}+3 \hat{k}$ is unity ?
A. -2
B. -1
C. 0
D. 1

Answer: D

D Watch Video Solution

84. Let p, q, r and s be respectively the magnitudes of the vectors $3 \hat{i}-2 \hat{j}, 2 \hat{i}+2 \hat{j}+\hat{k}, 4 \hat{i}-\hat{j}+\hat{k}, 2 \hat{i}+2 \hat{j}+3 \hat{k}$. Which one of the following is correct?
A. $r>s>q>p$
B. $s>r>p>q$
C. $r>s>p>q$
D. $s>r>q>p$

Answer: C

85. If $x \hat{i}+y \hat{j}+z \hat{k}$ is a unit vector and $x: y: z=\sqrt{3}: 2: 3$, then what is the value of z ?
A. $\frac{3}{16}$
B. 3
C. $\frac{3}{4}$
D. 2

Answer: C

- Watch Video Solution

86. Which one of the following is the unit vector perpendicular to the vectors $4 \hat{i}+2 \hat{j}$ and $-3 \hat{i}+2 \hat{j}$?
A. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
B. $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$
C. \hat{k}
D. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$

Answer: C

- Watch Video Solution

87. Consider the following statements in respect of the vectors
$\overrightarrow{u_{1}}=(1,2,3), \overrightarrow{u_{2}}=(2,3,1), \overrightarrow{u_{3}}=(1,3,2)$ and $\overrightarrow{u_{4}}=(4,6,2)$
I. $\overrightarrow{u_{1}}$ is parallel to $\overrightarrow{u_{4}}$.
II. $\overrightarrow{u_{2}}$ is parallel to $\overrightarrow{u_{4}}$.
III. $\overrightarrow{u_{2}}$ is parallel to $\overrightarrow{u_{3}}$.

Which of the statements given above is/are correct?
A. Only I
B. Only II
C. Only III
D. Both I and III

D Watch Video Solution

88. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of a.
A. -8
B. 4
C. 8
D. 12

Answer: C

D Watch Video Solution

89. What is the sine of angle between the vectors $\hat{i}+2 \hat{j}+3 \hat{k}$ and $-\hat{i}+2 \hat{j}+3 \hat{k}$?
A. $\sqrt{\frac{13}{7}}$
B. $\frac{\sqrt{13}}{7}$
C. $\frac{13}{\sqrt{7}}$
D. None of these

Answer: B

- Watch Video Solution

90. The vector \vec{a} lies in the plane of vectors \vec{b} and \vec{c}. Which one of the following is correct ?
A. $\vec{a} \cdot(\vec{b} \times \vec{c})=0$
B. $\vec{a} \cdot(\vec{b} \times \vec{c})=1$
c. $\vec{a} \cdot(\vec{b} \times \vec{c})=-1$
D. $\vec{a} \cdot(\vec{b} \times \vec{c})=3$
91. What is the projection of the vector $\hat{i}-2 \hat{j}-\hat{k}$ on the vector $4 \hat{i}-4 \hat{j}+7 \hat{k} ?$
A. $\frac{\sqrt{5}}{2}$
B. $\frac{19}{9}$
C. $\frac{\sqrt{5}}{4}$
D. $\frac{11}{3}$

Answer: B

- Watch Video Solution

92. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$ then which one of the following is correct ?
A. \vec{a} is parallel to \vec{b}
B. \vec{a} is perpendicular to \vec{b}
C. Either \vec{a} or \vec{b} is a null vector
D. None of the above

Answer: C

- Watch Video Solution

93. If the vectors $-\hat{i}-2 x \hat{j}-3 y \hat{k}$ and $\hat{i}-3 x \hat{j}-2 y \hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y) ?
A. a straight line
B. an ellipse
C. A parabola
D. a circle

Answer: D

94. If \vec{c} is a unit vector perpendicular to the vectors \vec{a} and \vec{b} write another unit vector perpendicular \vec{a} and \vec{b}.
A. $\vec{a} \times \vec{a}$
B. $\vec{c} \times \vec{b}$
C. $-\frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$
D. $\frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$

Answer: D

- Watch Video Solution

95. For what value of m are the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $m \hat{i}+11 \hat{j}$ collinear ?
A. -8
B. 4
C. 8
D. 12

Answer: C

(D) Watch Video Solution

> 96. For what value of m are the vectors
> $2 \hat{i}-3 \hat{j}+4 \hat{k}, \hat{i}+3 \hat{j}-\hat{k}$ and $m \hat{i}-\hat{j}+2 \hat{k}$ coplanar ?
A. 0
B. $\frac{2}{5}$
C. 1
D. $8 / 5$

Watch Video Solution

97. the area of triangle whose vertices are (1,2,3),(2,5-1) and ($-1,1,2$) is
A. $\frac{\sqrt{155}}{2}$ square units
B. $\frac{\sqrt{175}}{2}$ square units
c. $\frac{\sqrt{155}}{4}$ square units
D. $\frac{\sqrt{175}}{4}$ square units

Answer: A

- Watch Video Solution

98. What is the area of the rectangle having vertices A, B, C and D with positive
$-\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}$ and $-\hat{1}-\frac{1}{2} \hat{j}+4 \hat{k}$?
A. $1 / 2$ square unit
B. 1 square unit
C. 2 square unit
D. 4 square unit

Answer: C

- Watch Video Solution

99. If $\vec{a}=(2,1,-1), \vec{b}=(1,-1,0), \vec{c}=(5,-1,1)$, then what is the unit vector parallel to $\vec{a}+\vec{b}-\vec{c}$ in the opposite direction?
A. $\frac{\hat{i}+\hat{j}-2 \hat{k}}{3}$
B. $\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{3}$
C. $\frac{2 \hat{i}-\hat{j}+2 \hat{k}}{3}$
D. None of the above

Answer: C

100. If the magnitudes of two vectors a and b are equal then which one of the following is correct?
A. $(\vec{a}+\vec{b})$ is parallel to $(\vec{a}-\vec{b})$
B. $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=1$
C. $(\vec{a}+\vec{b})$ is perpendicular to $(\vec{a}-\vec{b})$
D. None of the above

Answer: C

- Watch Video Solution

101. Let O be the origin nad P, Q, R be the points such that $\overrightarrow{P O}+\overrightarrow{O Q}=\overrightarrow{Q O}+\overrightarrow{O R}$. Then which one of the following is correct?
A. P, Q, R are the vertices of an equilateral triangle
B. P, Q, R are the vertices of an isosceles triangle
C. P, Q, R are collinear
D. None of the above

Answer: C

- Watch Video Solution

102. What is the value of m if the vectors
$2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+m \hat{j}+5 \hat{k}$ are coplanar?
A. -2
B. 2
C. -4
D. 4

Answer: C
103. If $|\vec{c}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, then what is the value of $|\vec{a} \times \vec{b}| ?$
A. 12
B. 16
C. 20
D. 24

Answer: B

- Watch Video Solution

104. If the vectors $\hat{i}-x \hat{j}-y \hat{k}$ and $\hat{i}+x \hat{j}+y \hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y) ?
A. a parabola
B. an ellipse
C. a circle
D. a straight line

Answer: C

- Watch Video Solution

105. EFGH is a rhombus such that the angle EFG is 60°. The magnitude of vectors $\overline{F H}$ and $\{\mathrm{m} \overline{E G}\}$ are equal where m is a scalar. What is the value of m ?
A. 3
B. 1.5
C. $\sqrt{2}$
D. $\sqrt{3}$

Answer: D

- Watch Video Solution

106. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=\overrightarrow{0}$ then which one of the following is correct ?
A. \vec{a} is parallel to \vec{b}
B. \vec{a} is perpendicular to \vec{b}
C. $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$
D. None of the above

Answer: C

- Watch Video Solution

107. The vector $\vec{a} \times(\vec{b} \times \vec{a})$ is coplanar with :
A. \vec{a} only
B. \vec{b} only
C. Both \vec{a} and \vec{b}
D. Neither $\vec{a} n$ or \vec{b}

D Watch Video Solution

108. Consider the following :
109. $4 \hat{i} \times 3 \hat{i}=\hat{0} \quad$ 2. $\frac{4 \hat{i}}{3 \hat{i}}=\frac{4}{3}$

Which of the above is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: A

D Watch Video Solution

109. What is the value of λ for which

$$
(\lambda \hat{i}+\hat{j}-\hat{k}) \times(3 \hat{i}-2 \hat{j}+4 \hat{k})=(2 \hat{i}-11 \hat{j}-7 \hat{k}) ?
$$

A. 2
B. -2
C. 1
D. 7

Answer: A

- Watch Video Solution

110. The magnitude of the scalar p for which the vector $p(-3 \hat{i}-2 \hat{j}+13 \hat{k})$ is of unit length is :
A. $1 / 8$
B. $1 / 64$
C. $\sqrt{182}$
D. $\frac{1}{\sqrt{182}}$

Answer: D

- Watch Video Solution

111. The vector $2 \hat{j}-\hat{k}$ lies:
A. in the plane of $X Y$
B. in the plane of $Y Z$
C. in the plane of XZ
D. along the X -axis

Answer: B

- Watch Video Solution

112. ABCD is a parallelogram. If $\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$, then what $\overrightarrow{B D}$ equal to ?
A. $\vec{a}+\vec{b}$
B. $\vec{a}-\vec{b}$
C. $-\vec{a}-\vec{b}$
D. $-\vec{a}+\vec{b}$

Answer: D

- Watch Video Solution

113. If $\vec{\beta}$ is perpendicular to both $\vec{\alpha}$ and $\vec{\lambda}$ where $\vec{\alpha}=\hat{k}$ and $\vec{\lambda}=2 \hat{i}+3 \hat{j}+4 \hat{k}$, then what is $\vec{\beta}$ equal to ?
A. $3 \hat{i}+2 \hat{j}$
B. $-3 \hat{i}+2 \hat{j}$
C. $2 \hat{i}-3 \hat{j}$
D. $-2 \hat{i}+3 \hat{j}$

Answer: B

- Watch Video Solution

114. For any vector $\vec{\alpha}$, what is $(\vec{\alpha} \cdot \hat{i}) \hat{i}+(\vec{\alpha} \cdot \hat{j}) \hat{j}+(\vec{\alpha} \cdot \hat{k}) \hat{k}$ equal to ?
A. $\vec{\alpha}$
B. $3 \vec{\alpha}$
C. $-\vec{\alpha}$
D. $\overrightarrow{0}$

Answer: A

115. If the magnitudes of $\vec{a} \times \vec{b}$ equals to $\vec{a} \cdot \vec{b}$, then which one of the following is correct ?
A. $\vec{a}=\vec{b}$
B. The angle between \vec{a} and \vec{b} is 45°
C. \vec{a} is parallel to \vec{b}
D. \vec{a} is perpendicular to \vec{b}

Answer: B

- Watch Video Solution

116. If $|\vec{a}|=\sqrt{2},|\vec{b}|=\sqrt{3}$ and $|\vec{a}+\vec{b}|=\sqrt{6}$, then what is $|\vec{a}-\vec{b}|$ equal to ?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

117. Which one of the following vectors is normal to vector $\hat{i}+\hat{j}+\hat{k}$
?
A. $\hat{i}+\hat{j}-\hat{k}$
B. $\hat{i}-\hat{j}+\hat{k}$
C. $\hat{i}-\hat{j}-\hat{k}$
D. None of the above

Answer: D

118. If θ is the angle between the vectors is $4(\hat{i}-\hat{k})$ and $\hat{i}+\hat{j}+\hat{k}$, then what is $(\sin \theta+\cos \theta)$ equal to ?
A. 0
B. $\frac{1}{2}$
C. 1
D. 2

Answer: C

(D) Watch Video Solution

119. If the angle between the vectors $\hat{i}-m \hat{j}$ and $\hat{j}+\hat{k}$ is $\frac{\pi}{3}$, then what is the value of m ?
A. 0
B. 2
C. -2
D. None of these

Answer: D

- Watch Video Solution

120. What is the vector perpendicular to both the vectors $\hat{i}-\hat{j}$ and \hat{i} ?
A. \hat{i}
B. $-\hat{j}$
C. \hat{j}
D. \hat{k}

Answer: D

- Watch Video Solution

121. The position vectors of the points A and B are respectively $3 \hat{i}-5 \hat{5}+2 \hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$. What is the length of $A B$?
A. 11
B. 9
C. 7
D. 6

Answer: C

- Watch Video Solution

122. If the vectors $\hat{i}-2 x \hat{j}-3 y \hat{k}$ and $\hat{i}+3 x \hat{j}+2 y \hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y) ?
A. hyperbola
B. ellipse
C. parabola
D. circle

Answer: D

- Watch Video Solution

123. What is the value of P for which the vector $p(2 \hat{i}-\hat{j}+2 \hat{k})$ is of 3 units length ?
A. 1
B. 2
C. 3
D. 6

Answer: A

124. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are three vectors such that $\vec{a}+t \vec{b}$ is perpendicular to \vec{c}, then what is t equal to ?
A. 8
B. 6
C. 4
D. 2

Answer: A

- Watch Video Solution

125. The vertices of a triangle $A B C$ are $A(2,3,1), B(-2,2,0)$, and $C(0,1,-1)$.

What is the cosine of angle $A B C$?
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{2}{\sqrt{6}}$
D. None of these

Answer: A

- Watch Video Solution

126. The vertices of a triangle $A B C$ are $A(2,3,1), B(-2,2,0)$, and $C(0,1,-1)$.

What is the cosine of angle ABC ?
A. $6 \sqrt{2}$ square unit
B. $3 \sqrt{2}$
C. $10 \sqrt{3}$ square unit
D. None of these

Answer: B

127. The vertices of a triangle $A B C$ are $A(2,3,1), B(-2,2,0)$, and $C(0,1,-1)$.

What is the magnitude of the line joining mid points of the sides AC and $B C$?
A. $\frac{1}{\sqrt{2}}$ unit
B. 1 unit
C. $\frac{3}{\sqrt{2}}$ unit
D. 2 unit

Answer: C

- Watch Video Solution

128. Consider the vectors $\bar{a}=\hat{i}-2 \hat{j}+\hat{k}$ and $\bar{b}=4 \hat{i}-4 \hat{j}+7 \hat{k}$.

What is the scalar projection of \bar{a} on \bar{b} ?
A. 1
B. $19 / 9$
C. 17/9
D. $23 / 9$

Answer: B

- Watch Video Solution

129. Consider the vectors $\bar{a}=\hat{i}-2 \hat{j}+\hat{k}$ and $\bar{b}=4 \hat{i}-4 \hat{j}+7 \hat{k}$.

What is the vector perpendicular to both the vectors?
A. $-10 \hat{i}-3 \hat{j}+4 \hat{k}$
B. $-10 \hat{i}+3 \hat{j}+4 \hat{k}$
C. $10 \hat{i}-3 \hat{j}+4 \hat{k}$
D. None of these

Answer: A

130. Let a vector \bar{r} make angle $60^{\circ}, 30^{\circ}$ with x and y -axes respectively. What angle does \bar{r} make with z -axis ?
A. 30°
B. 60°
C. 90°
D. 120°

Answer: C

- Watch Video Solution

131. Let a vector \bar{r} make angle $60^{\circ}, 30^{\circ}$ with x and y -axes respectively. What are the direction cosines of \bar{r} ?
A. $\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right\rangle$
B. $\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right\rangle$
c. $\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle$
D. $\left\langle-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right\rangle$

Answer: A

- View Text Solution

132. Let $|\bar{a}|=7,|\bar{b}|=11,|\bar{a}+\bar{b}|=10 \sqrt{3}$

What is $|\bar{a}-\bar{b}|$ equal to ?
A. $2 \sqrt{2}$
B. $2 \sqrt{10}$
C. 5
D. 10

Answer: B

133. Let $|\bar{a}|=7,|\bar{b}|=11,|\bar{a}+\bar{b}|=10 \sqrt{3}$

What is the angle between $(\bar{a}+\bar{b}$ and $(\bar{a}-\bar{b})$?
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. None of these

Answer: D

- View Text Solution

134. If $|\vec{a}|=2,|\vec{b}|=5$ and $|\vec{a} \times \vec{b}|=8$, then what is $\vec{a} \cdot \vec{b}$ equal to ?
A. 6
B. 7
C. 8
D. 9

Answer: A

- Watch Video Solution

135. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then which one of the following is correct?
A. $|v e(a)|=|\vec{b}|$
B. \vec{a} is parallel to \vec{b}.
C. \vec{a} is perpendicular to \vec{b}.
D. \vec{a} is unit vector.

Answer: C

D Watch Video Solution

136. What is the area of the triangle $O A B$ where O is the origin, $\overrightarrow{O A}=3 \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{O B}=2 \hat{i}+\hat{j}-3 \hat{k} ?$
A. $5 \sqrt{6}$ square unit
B. $\frac{5 \sqrt{6}}{2}$ square unit
C. $\sqrt{6}$ square unit
D. $\sqrt{30}$ square unit

Answer: B

(D) Watch Video Solution

137. Which one of the following is the unit vector perpendicular to both

$$
\vec{a}=-\hat{i}+\hat{j}+\hat{k} \text { and } \vec{b}=\hat{i}-\hat{j}+\hat{k} ?
$$

A. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
B. \hat{k}
C. $\frac{\hat{j}+\hat{k}}{\sqrt{2}}$
D. $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$

Answer: A

- Watch Video Solution

138. What is the interior acute angle of the parallelogram whose sides $\begin{array}{ccc}\text { are } & \text { represented } & \text { by } \\ \frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\hat{k} \text { and } \frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}+\hat{k} ? & \end{array}$
A. 60°
B. 45°
C. 30°
D. 15°

Answer: A
139. For what value of λ are the vectors $\lambda \hat{i}+(1+\lambda) \hat{j}+(1+2 \lambda) \hat{k}$ and $(1-\lambda) \hat{i}+\lambda \hat{j}+2 \hat{k}$ perpendicular ?
A. $-1 / 3$
B. $1 / 3$
C. $2 / 3$
D. 1

Answer: A

- Watch Video Solution

140. Vector \vec{a}, \vec{b} and \vec{c} are such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ and $|a|=3,|\vec{b}|=5$ and $|\vec{c}|=7$. Find the angle between \vec{a} and \vec{b}.
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: C

- Watch Video Solution

141. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ such that $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$. What is $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ equal to ?
A. -83
B. $-83 / 2$
C. 75
D. $-75 / 2$

Answer: B

142. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ such that $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$. What is cosine of the angle between \vec{b} and \vec{c} ?
A. $11 / 12$
B. $13 / 14$
C. $-11 / 12$
D. $-13 / 14$

Answer: D

- Watch Video Solution

143. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ such that $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$. What is $|\vec{a}+\vec{b}|$ equal to ?
A. 7
B. 8
C. 10

D. 11

Answer: A

- Watch Video Solution

144. The adjacent sides $A B$ and $A C$ of a triangle $A B C$ are represented by the vectors $-2 \hat{i}+3 \hat{j}+2 \hat{k}$ and $-4 \hat{i}+5 \hat{j}+2 \hat{k}$ respectively. The area of the triangle $A B C$ is
A. 6 square units
B. 5 square units
C. 4 square units
D. 3 square units

Answer: D

D Watch Video Solution

145. A force $\vec{F}=3 \hat{i}+4 \hat{j}-3 \hat{k}$ is applied at the point P , whose position vector is $\vec{r}=\widehat{2 i}-2 \hat{j}-3 \hat{k}$. What is the magnitude of the moment of the force about the origin ?
A. 23 units
B. 19 units
C. 18 units
D. 21 units

Answer: A

- Watch Video Solution

146. Given that the vectors α and β are non-collinear. The values of x and y for which $\vec{u}-\vec{v}=\vec{w}$ holds true if $\vec{u}=2 x \alpha+y \beta, \vec{v}=2 y \alpha+3 x \beta$ and $\vec{w}=2 \alpha-5 \beta$ are A. $x=2, y=1$
B. $x=1, y=2$
C. $x=-2, y=1$
D. $x=-2, y=-1$

Answer: A

- Watch Video Solution

147. If $|\vec{a}|=7,|\vec{b}|=11$ and $|\vec{a}+\vec{b}|=10 \sqrt{3}$, then $|\vec{a}-\vec{b}|$ is equal to
A. 40
B. 10
C. $4 \sqrt{10}$
D. $2 \sqrt{10}$
148. Let α, β, λ be distinct real numbers. The points with position vectros $\alpha \hat{i}+\beta \hat{j}+\lambda \hat{k}, \beta \hat{i}+\lambda \hat{j}+\alpha \hat{k}$ and $\lambda \hat{i}+\alpha \hat{j}+\beta \hat{k}$
A. are collinear
B. form an equilateral triangle
C. form a scalene triangle
D. form a right-angled triangle

Answer: B

- Watch Video Solution

149. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, then which of the following is/are correct?
150. $\vec{a}, \vec{b}, \vec{c}$ are coplanar.
151. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$

Select the correct answer using the code given below.
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

- Watch Video Solution

150. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, then which one of the following is correct?
A. $\vec{a}=\lambda \vec{b}$ for some scalar λ
B. \vec{a} is parallel to \vec{b}.
C. \vec{a} is perpendicular to \vec{b}
D. $\vec{a}=\vec{b}=\overrightarrow{0}$

Answer: C

151. The area of the square, one of whose diagonals is $3 \hat{i}+4 \hat{j}$ is
A. 12 square unit
B. 12.5 square unit
C. 25 square unit
D. 156.25 square unit

Answer: B

- Watch Video Solution

152. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\overrightarrow{O B}+\vec{O} C+\vec{O} D=4 \vec{O} P$
A. $4 \overrightarrow{O P}$
B. $2 \overrightarrow{O P}$
c. $\overrightarrow{O P}$
D. Null vector

Answer: A

(D) Watch Video Solution

153. If \vec{b} and \vec{c} are the position vectors of the points B and C respectively, then the position vector of the point D such that $\overrightarrow{B D}=4 \overrightarrow{B C}$ is
A. $4(\vec{c}-\vec{b})$
B. $-4(\vec{c}-\vec{b})$
C. $4 \vec{c}-3 \vec{b}$
D. $4 \vec{c}+3 \vec{b}$

Answer: C

154. If the position vector \vec{a} at the point $(5, n)$ is such that $|\vec{a}|=13$ find the value of n.
A. ± 8
B. ± 12
C. 8 only
D. 12 only

Answer: B

- Watch Video Solution

155. If $|\vec{a}|=2$ and $|\vec{b}|=3$, then $|\vec{a} \times \vec{b}|^{2}+|\vec{a} \cdot \vec{b}|^{2}$ is equal to
A. 72
B. 64
C. 48
D. 36

Answer: D

- Watch Video Solution

156. Consider the following inequalities in respect of vectors \vec{a} and \vec{b} :
157. $|\vec{a}+\vec{b}| £|\vec{a}|+|\vec{b}|$
158. $|\vec{a}-\vec{b}| 3|\vec{a}|-|\vec{b}|$

Which of the above is/are correct ?
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: C

157. If the magnitude of difference of two unit vectors is $\sqrt{3}$, then the magnitude of sum of the two vectors is
A. $\frac{1}{2}$ unit
B. 1 unit
C. 2 unit
D. 3 unit

Answer: B

- Watch Video Solution

158. If the vectors $\alpha \hat{i}+\alpha \hat{j}+\lambda \hat{k}, \hat{i}+\hat{k}$ and $\lambda \hat{i}+\lambda \hat{j}+\beta \hat{k}$ lie on a plane, where α, β and λ are distinct non-negative numbers, then λ is
A. Arithmetic mean of α and β
B. Geometric mean of α and β
C. Harmonic mean of α and β
D. None of the above

Answer: B

D Watch Video Solution

159. The vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are such that $\vec{a} \times \vec{b}=\vec{c} \times d$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$. Which of the following is/are correct?
160. $(\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})=\overrightarrow{0}$
161. $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$

Select the correct answer using the code given below :
A. 1 only
B. 2only
C. Both 1 and 2
D. Neither 1 nor 2

- Watch Video Solution

160. Let \hat{a}, \hat{b} be two unit vectors and θ be the angle between them.

What is $\cos \left(\frac{\theta}{2}\right)$ equal to ?
A. $\frac{|\widehat{a}-\hat{b}|}{2}$
B. $\frac{|\widehat{a}+\hat{b}|}{2}$
C. $\frac{|\hat{i}-\hat{b}|}{4}$
D. $\frac{|\widehat{a}+\hat{b}|}{4}$

Answer: B

D Watch Video Solution

161. Let \widehat{a}, \hat{b} be two unit vectors and θ be the angle between them. What is $\sin \left(\frac{\theta}{2}\right)$ equal to ?
A. $\frac{|\widehat{a}-\hat{b}|}{2}$
B. $\frac{|\widehat{a}+\hat{b}|}{2}$
C. $\frac{|\hat{i}-\hat{b}|}{4}$
D. $\frac{|\widehat{a}+\hat{b}|}{4}$

Answer: A

- Watch Video Solution

162. What is a vector of unit length orthogonal to both the vectors $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+3 \hat{j}-\hat{k}$?
A. $\frac{-4 \hat{i}+3 \hat{j}-\hat{k}}{\sqrt{26}}$
B. $\frac{-4 \hat{i}+3 \hat{j}+\hat{k}}{\sqrt{26}}$
c. $\frac{-3 \hat{i}+2 \hat{j}-\hat{k}}{\sqrt{14}}$
D. $\frac{-3 \hat{i}+2 \hat{j}+\hat{k}}{\sqrt{14}}$

Answer: B

- Watch Video Solution

163. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocenter is at the origin, then
A. $\vec{a}+\vec{a}+\vec{c}=\overrightarrow{0}$
B. $\vec{a}+\vec{b}+\vec{c}=$ unit vector
c. $\vec{a}+\vec{b}=\vec{c}$
D. $\vec{a}=\vec{b}+\vec{c}$

Answer: A

164. What is the area of the parallelogram having diagonals $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$?
A. $5 \sqrt{5}$ square units
B. $4 \sqrt{5}$ square units
C. $5 \sqrt{3}$ square units
D. $15 \sqrt{2}$ square units

Answer: C

- Watch Video Solution

165. Let $\vec{a}=\hat{i}+\hat{j}, \vec{b}=3 \hat{i}+4 \hat{k}$ and $\vec{b}=\vec{c}+\vec{d}$, where \vec{c} is parallel to \vec{a} and \vec{d} is perpendicular to \vec{a}.

What is \vec{c} equal to ?
A. $\frac{3(\hat{i}+\hat{j})}{2}$
B. $\frac{2(\hat{i}+\hat{j})}{3}$
C. $\frac{(\hat{i}+\hat{j})}{2}$
D. $\frac{(\hat{i}+\hat{j})}{3}$

Answer: A

- Watch Video Solution

166. Let $\vec{a}=\hat{i}+\hat{j}, \vec{b}=3 \hat{i}+4 \hat{k}$ and $\vec{b}=\vec{c}+\vec{d}$, where \vec{c} is parallel to \vec{a} and \vec{d} is perpendicular to \vec{a}.

If $\vec{d}=x \hat{i}+y \hat{j}+z \hat{k}$, then which of the following equations is/are correct ?

1. $y-x=4$
2. $2 z-3=0$

Select the correct answer using the code given below:
A. 1 only
B. 2 only
C. Both 1 and 2
D. Neither 1 nor 2

Answer: D

- View Text Solution

167. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=10,|\vec{b}|=6$ and $|\vec{c}|=14$.
What is $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$. equal to?
A. -332
B. -166
C. 0
D. 166
168. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=10,|\vec{b}|=6$ and $|\vec{c}|=14$.
What is the angle between \vec{a} and \vec{b} ?
A. 30°
B. 45°
C. 60°
D. 75°

Answer: C

- Watch Video Solution

169. If in a right-angled triangle $A B C$, hypotenuse $A C=p$, then what is $\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$ equal to ?
A. P, Q, R are the vertices of an equilateral triangle
B. p^{2}
C. $2 p^{2}$
D. $\frac{p^{2}}{2}$

Answer: B

- Watch Video Solution

170. Find the moment of \vec{F} about point (2, -1, 3), where force $\vec{F}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ is acting on point $(1,-1,2)$.
A. $\hat{i}+4 \hat{j}+4 \hat{k}$
B. $2 \hat{i}+\hat{j}+2 \hat{k}$
C. $2 \hat{i}-7 \hat{j}-2 \hat{k}$
D. $2 \hat{i}+4 \hat{j}-\hat{k}$

Answer: C

171. If $\vec{a}=\hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{c}=\hat{i}-m \hat{j}+n \hat{k}$ are three coplanar vectors and $|\vec{c}|=\sqrt{6}$, then which one of the following is correct?
A. $m=2$ and $n= \pm 1$
B. $m= \pm 2$ and $n=-1$
C. $m=2$ and $n=-1$
D. $m= \pm 2$ and $n=1$

Answer: D

- Watch Video Solution

172. Let $A B C D$ be a p[arallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$.
A. $2 \overrightarrow{O P}$
B. $4 \overrightarrow{O P}$
C. $6 \overrightarrow{O P}$
D. $8 \overrightarrow{O P}$

Answer: B

- Watch Video Solution

173. $A B C D$ is a quadrilateral whose diagonals are $A C$ and $B D$. Which one of the following is correct?
A. $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{A C}+\overrightarrow{D B}$
B. $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{B D}+\overrightarrow{C A}$
c. $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{A C}+\overrightarrow{B D}$
D. $\overrightarrow{B A}+\overrightarrow{C D}=\overrightarrow{B C}+\overrightarrow{A D}$

Answer: B

Watch Video Solution

174. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, then which one of the following is correct?
A. $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs and $|\vec{a}|=|\vec{c}|$ and $|\vec{b}|=1$
B. $\vec{a}, \vec{b}, \vec{c}$ are non-orthogonal to each other
C. $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs but $|\vec{a}| \neq|\vec{c}|$
D. $\vec{a}, \vec{b}, \vec{c}$ are orthogonal is pairs but $|\vec{b}| \neq 1$

Answer: A

- Watch Video Solution

175. If $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}-\lambda \hat{k}$ are perpendicular, then what is the value of λ ?
A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

176. If α, β and λ are the angles which the vector $\overrightarrow{O P}$ (O being the origin) makes with positive direction of the coordinate axes, then which of the following are correct?
177. $\cos ^{2} \alpha+\cos ^{2} \beta=\sin ^{2} \lambda$
178. $\sin ^{2} \alpha+\sin ^{2} \beta=\cos ^{2} \lambda$
179. $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \lambda=2$

Select the correct answer using the code given below.
A. 1 and 2 only
B. 2 and 3 only
C. 1 and 3 only
D. 1,2 and 3

Answer: C

D Watch Video Solution

177. Let $\vec{\alpha}=\hat{i}+2 \hat{j}-\hat{k}, \vec{\beta}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{\lambda}=2 \hat{i}+\hat{j}+6 \hat{k}$ be three vectors. If $\vec{\alpha}$ and $\vec{\beta}$ are both perpendicular to the vector $\vec{\delta}$ and $\vec{\delta} \cdot \vec{\lambda}=10$, then what is the magnitude of $\vec{\delta}$?
A. $\sqrt{3}$ units
B. $2 \sqrt{3}$ units
C. $\frac{\sqrt{3}}{2}$ unit
D. $\frac{1}{\sqrt{3}}$ unit

Answer: B

178. If \widehat{a} and \hat{b} are two unit vectors, then vector $(\widehat{a}+\hat{b}) \times(\widehat{a} \times \hat{b})$ is parallel to
A. $(\widehat{a}-\hat{b})$
B. $(\widehat{a}+\hat{b})$
C. $(2 \widehat{a}-\hat{b})$
D. $(2 \widehat{a}+\hat{b})$

Answer: A

- Watch Video Solution

179. A force $\vec{F}=\hat{i}+3 \hat{j}+2 \hat{k}$ acts on a particle to displace it from the point $\mathrm{A}(\hat{i}+2 \hat{j}-3 \hat{k})$ to the point $B(3 \hat{i}-\hat{j}+5 \hat{k})$. The work done by the force will be
A. 5 units
B. 7 units
C. 9 units
D. 10 units

Answer: C

D Watch Video Solution

180. For any vector $\vec{a},|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$ is equal to
A. $|\vec{a}|^{2}$
B. $2|\vec{a}|^{2}$
C. $3|\vec{a}|^{2}$
D. $4|\vec{a}|^{2}$

Answer: B

181. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c \hat{k}(a, b, c, \neq 1)$ are coplanar, then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is equal to
A. 0
B. 1
C. $a+b+c$
D. abc

Answer: B

- Watch Video Solution

182. If $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, find the angle between \vec{a} and \vec{b}.
A. 30°
B. 45°
C. 60°
D. 90°

Answer: A

- Watch Video Solution

183. Let p and q be the position vectors of P and Q respectively with respect to O and $|p|=p,|q|=q$. The points R and S divide PQ internally and externally in the ratio $2: 3$ respectively. If $\overrightarrow{O R}$ and $\overrightarrow{O S}$ are perpendicular, then (A) $9 p^{2}=4 q^{2}$ (B) $4 p^{2}=9 q^{2}$ (C) $9 p=4 q$ (D) $4 p=9 q$
A. $9 p^{2}=4 q^{2}$
B. $4 p^{2}=9 p^{2}$
C. $9 p=4 q$
D. $4 p=9 q$

Answer: A

184. What is the moment about the point $\hat{i}+2 \hat{j}-\hat{k}$ of a force represented by $3 \hat{i}+\hat{k}$ acting through the point $2 \hat{i}-\hat{j}+3 \hat{k}$?
A. $-3 \hat{i}+11 \hat{j}+9 \hat{k}$
B. $3 \hat{i}+2 \hat{j}+9 \hat{k}$
C. $3 \hat{i}+4 \hat{j}+9 \hat{k}$
D. $\hat{i}+\hat{j}+\hat{k}$

Answer: A

- Watch Video Solution

185.

$\vec{a}+2 \vec{b}+3 \vec{c}=\overrightarrow{0}$ and $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\lambda(\vec{b} \times \vec{c})$,
then what is the value of λ ?
A. 2
B. 3
C. 4
D. 6

Answer: D

- Watch Video Solution

186. If the vectors \vec{k} and \vec{A} are parallel to each other, what is $\vec{k} \times \vec{A}$ equal to ?
A. $k^{2} \vec{A}$
B. $\overrightarrow{0}$
C. $-k^{2} \vec{A}$
D. \vec{A}

Answer: B

187. Let $\mid \vec{a}\lceil=0,|\vec{b}|=0$
$(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|\vec{b}|^{2}$ holds if and only if
A. \vec{a} and \vec{b} are perpendicular
B. \vec{a} and \vec{b} are parallel
C. \vec{a} and \vec{b} are inclined at an angle of 45°
D. \vec{a} and \vec{b} are anti-parallel

Answer: A

- Watch Video Solution

188. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, then what is $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})$ equal to?
A. x
B. $x+y$
C. $-(x+y+z)$
D. $(x+y+z)$

Answer: D

- Watch Video Solution

189. A unit vector perpendicular to each of the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}-4 \hat{j}-\hat{k}$ is
A. $\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$
B. $\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{2} \hat{j}+\frac{1}{2} \hat{k}$
C. $\frac{1}{\sqrt{3}} \hat{i}-\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$
D. $\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}+\frac{1}{\sqrt{3}} \hat{k}$

Answer: A
190. If $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{a}-\vec{b}|=5$, then what is the value of $|\vec{a}+\vec{b}|=$?
A. 8
B. 6
C. $5 \sqrt{2}$
D. 5

Answer: D

- Watch Video Solution

191. Let \vec{a}, \vec{b} and \vec{c} be three mutually perpendicular vectors each of unit magnitud.
$\vec{A}=\vec{a}+\vec{b}+\vec{c}, \vec{B}=\vec{a}-\vec{b}+\vec{c}$ and $\vec{C}=\vec{a}-\vec{b}-\vec{c}$, then
which one of the following is correct?
A. $|\vec{A}|>|\vec{B}|>|\vec{C}|$
B. $|\vec{A}|=|\vec{B}| \neq|\vec{C}|$
c. $|\vec{A}|=|\vec{B}|=|\vec{C}|$
D. $|\vec{A}| \neq|\vec{B}| \neq|\vec{C}|$

Answer: C

- Watch Video Solution

192. What is $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$ equal to?
A. $\overrightarrow{0}$
B. $\vec{a} \times \vec{b}$
C. $2(\vec{a} \times \vec{b})$
D. $|\vec{a}|^{2}-|\vec{b}|^{2}$

Answer: C

193. A spacecraft at $\hat{i}+2 \hat{j}+3 \hat{k}$ is subjected to a force $\lambda \hat{k}$ by firing a rocket. The spacecraft is subjected to a moment of magnitude
A. λ
B. $\sqrt{3} \lambda$
C. $\sqrt{5} \lambda$
D. None of these

Answer: C

- Watch Video Solution

194. In a triangle $A B C$, if taken in order, consider the following statements:
195. $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
196. $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}$
197. $\overrightarrow{A B}-\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
198. $\overrightarrow{B A}-\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$

How many of the above statements are correct?
A. One
B. Two
C. Three
D. Four

Answer: A

- Watch Video Solution

195. If $\vec{a}=\hat{i}-2 \hat{j}+5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$ then what is $(\vec{b}-\vec{a}) \cdot(3 \vec{a}+\vec{b})$ equal to ?
A. 106
B. -106
C. 53

D. -53

Answer: B

- Watch Video Solution

196. If the position vectors of points A and B are $3 \hat{i}-2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}-3 \hat{k}$ respectively, then what is the length of $\overrightarrow{A B}$?
A. $\sqrt{14}$
B. $\sqrt{29}$
C. $\sqrt{43}$
D. $\sqrt{53}$

Answer: D

- Watch Video Solution

197. If in a right-angled triangle $A B C$, hypotenuse $A C=p$, then what is $\overrightarrow{A B} \cdot \overrightarrow{A C}+\overrightarrow{B C} \cdot \overrightarrow{B A}+\overrightarrow{C A} \cdot \overrightarrow{C B}$ equal to ?
A. p^{2}
B. $2 p^{2}$
C. $\frac{p^{2}}{2}$
D. p

Answer: A

- Watch Video Solution

198. The sine of the angle between vectors

$$
\vec{a}=2 \hat{i}-6 \hat{j}-3 \hat{k} \text { and } \vec{b}=4 \hat{i}+3 \hat{j}-\hat{k}
$$

A. $\frac{1}{\sqrt{26}}$
B. $\frac{5}{\sqrt{26}}$
C. $\frac{5}{26}$
D. $\frac{1}{26}$

Answer: B

- Watch Video Solution

199. What is the value of λ for which the vectors $3 \hat{i}+4 \hat{j}-\hat{k}$ and $-2 \hat{i}+\lambda \hat{j}+10 \hat{k}$ are perpendicular?
A. 1
B. 2
C. 3
D. 4

Answer: D

