©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - HC VERMA PHYSICS (HINGLISH)

CALORIMETRY

Examples

1. What is the kinetic energy of a 10 kg mass moving at a speed of $30 \mathrm{kmh}^{-1}$ in calorie?

- Watch Video Solution

2. A copper block of mass 60 kg is heated till its temperature is increased by $20^{\circ} \mathrm{C}$ Find the head supplied to the block specific head capacity of $=0.09 \mathrm{calg}^{-1}{ }^{\wedge}(\circ) C$
3. A piece of ice of mass of 100 g and at temperature $0^{\circ} \mathrm{C}$ is put in 200 g of water of 25° How much ice will melt as the temperature of the water reaches $0^{\circ} \mathrm{C}$? The specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and the latent heat of ice $=3.36 \times 10^{5} \mathrm{Jkg}^{-1}$

- Watch Video Solution

4. A colirimeter of water equiualent $15 g$ containe $165 g$ of water at
$25^{\circ} \mathrm{Cs} \leq$ amat100^(@)C
ispassedthroughthewaterf or sametime. Thetemperatureis \in creases and the mass orf the calorimater and its contents is increased by $1.5 g$ calculate the specfic latent head of toporition of water Specific head calacity of water is $1 \mathrm{calg}^{-1 \wedge}(\circ) \mathrm{C}^{-1}$

- Watch Video Solution

1. In head a coserved quantity?

- Watch Video Solution

2. The calorie is defined as $1 \mathrm{cal}=4.86$ joule Why as $1 \mathrm{cal}=4 J$ to make the conversions easy?

- Watch Video Solution

3. A calorimater is kept in a wooden box to insulate it thermally from the surroundings .Why is it neccessery?

- Watch Video Solution

4. In a calorimeter, the beat given by the bot object is assumed to be equal to the beat taken by the cold object. Does it mean that beat of the
two object taken togather remain constant?

- Watch Video Solution

5. In Regnault's apparatus for measuring specific beat capcity of a solied, there is an intel and an inlet and an outlet in the sterm cahmober .The intel is near the top and the outlet is near the bottom .Why is it better than the opposite choice where the inlet is near bottom and the outlet is near the top ?

- Watch Video Solution

6. When a solid melts or a liquir bolls, the temperature does not increase even when head is supplied .Where does not the energy go ?

- Watch Video Solution

7. What is the specific head capacity of (a) melting ice (b) boling water?
8. A person's skin is more selveely burnet when put in contact with $1 g$ of steam at 100° then when put inn contact with $1 g$ of water at 100° Explain

- Watch Video Solution

9. The atmospheric teperature in the cities on sea- coast change very little Explain

- Watch Video Solution

10. Should a theremeter bulb large beat capacity or small head capicity?

D Watch Video Solution

1. The specific head capicity of a body depends on
A. the heat given
B. the temperature released
C. the mass of the body
D. the material of the body

Answer: D

- Watch Video Solution

2. Water equivalent of a body is measueed in
A. kg
B. calorie
C. kelvin
D. m^{3}

- Watch Video Solution

3. When a hot liquid is mixed with a cold liquid, the temperature of the mixture
A. first decreases then becomes constant
B. first increases then becomes constant
C. continously increases
D. is undefined for some time and then becomes nearly constant

Answer: D

- Watch Video Solution

4. Which of the following pairs represent of the same physical quantities?
A. Kelvin and joule
B. Kelvin and calorie
C. Newton and calorie
D. joule and calorie

Answer: D

- Watch Video Solution

5. Which of the following pairsof physical ququantities may be represented in the same unit?
A. Heat and temperature
B. temperature and mole
C. Heat and work
D. Specific heat and heat

Answer: C

6. Two bodies at different temperature are mixed in a calorimater.Which of the following quantities remain conserved?
A. Sum of the temperature of the two bodies
B. Total heat of the two bodies
C. Total internal energy of the two bodies
D. Internal energy of each body

Answer: C

- Watch Video Solution

7. The mechanical equivalent of heat
A. has the same dimension as heat
B. has the same dimension as work
C. has the same dimension as energy
D. is dimensionless

Answer: D

- Watch Video Solution

Objective 2

1. The head capacity of a body depends on
A. the heat given
B. the temperature released
C. tha mass of the body
D. the material of the body

Answer: C::D

2. The ratio of specific to molar heat capacity of a body
A. is a universal constant
B. depends on the mass of the body
C. depends on the molecular weight of the body
D. is dimensionless

Answer: C

- Watch Video Solution

3. If head a supplied to a solid, its temperature
A. must increase
B. may increase
C. may remain constant
D. may decrease

Answer: B::C

- Watch Video Solution

4. The tempetature of a solidobject is observed to be constant during a period .In this period
A. heat may have supplied to the body
B. heat may have been extracted from the body
C. no heat is supplied to the body
D. no heat is extracted from the body

Answer: A: B

- Watch Video Solution

5. The temperature of an object is observed to rise in a period. In this period
(i) Heat is certainly supplied to it
(ii) Heat is certainly not supplied to it
(iii) heat may have been supplied to it
(iv) work may have been done on it.
A. heat is certainly supplied to it
B. heat is certainly not supplied to it
C. heat may have been supplied to it
D. work may have been done on it

Answer: C::D

- Watch Video Solution

6. Head and work are equivalent.This means
A. when we supply heat to a body we do work on it
B. when we do work on a body we supply heat to it
C. the temperature of a body can be increased by doing work on it
D. a body at rest may be can be set into motion along a line by suppliying heat to it

Answer: C

- Watch Video Solution

Exercises

1. An aluminium vessel of mass 0.5 kg contains 0.2 kg of water at $20^{\circ} \mathrm{C} \mathrm{A}$ block of iron of mass $0.2 \mathrm{kgat} 100^{\circ} \mathrm{C}$ is gently put into the water. Find the equilibrium temperature of the mixture,Specific beat capactities of aluminium iron and water are $910 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1} 470 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and $420 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ respectively

- Watch Video Solution

2.

100giskept \in sideafurnace f or alongtimeput \in acal or imeterofwater $10 \mathrm{gconta} \in \in g 240 \mathrm{~g}$ of water at $20^{\circ} \mathrm{C}$ The mixture attains an equilibrium temperature of $60^{\circ} C$ Find the temperature of the furnce specfic beat capacity of iron $=470 \mathrm{Jkg}^{-1} \wedge(\circ) \mathrm{C}^{-1}$

- Watch Video Solution

3. The temperature of equal masses of three different liquied A, B and C are $12^{\circ}, 18^{\circ}, 19^{\circ}$ and 28° respectively. The temperature when A and B are mixed is 16° and when Band C are mixed it is 23° what will be the temperaturewhen A and C are mixed?

(Watch Video Solution

4. Four $2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ cubes of ice are taken from a refrigerator are put in 200 ml of a drink when at $10^{\circ} \mathrm{C}$ (a) find the temperature is attained in it (b) If the ice cubes do not malt completaly find the amount melted

Assumes that no beat is lost to the outside of the drink and that of ice
$=900 \mathrm{kgm}^{-8}$ densityof the drink $=1000 \mathrm{kgm}^{-8}$ specific head capacity og the drink $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ latant beat capacity of drink of ice $=3.4 \times 10^{6} \mathrm{Jkg}^{-1}$

- Watch Video Solution

5. Indian style of cooling drinking water is to kept it is a pitcher having porous walls water comes to the outer surface very alowly and evaporates. Most of the itself and the water is cooles down .Assums that a pitcher containe 10 kg water and $0.2 g$ of water comes from the itomsphere decrease by $5^{\wedge}(@)$ Cspec if icbeat \cap icityofwater $=4200 \mathrm{~J}$ $\operatorname{kg}^{\wedge}(-1)^{\wedge}(@) \mathrm{C}^{\wedge}(-1)$ and \leq tentheadofvap or izationofwater $=2.27 \mathrm{xx}$ $10^{\wedge}(6) \mathrm{J} \mathrm{kg}^{\wedge}(-1)^{`}$

- Watch Video Solution

6. A cabe of iron (density $=8000 \mathrm{kgm}^{-1}$ specific beat capacity $\left.=470 \mathrm{~g} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)$ is heated to a high temperature and is placed on a
larger block of ice at $0^{\circ} C$ The cubemelts the ice below it displaces the water and sinks in the final equilibriumposition its upper surface just inside the ice calculate th initial temperature of the cube .Noglect any loss of head outside the ice and the cube .The density of ice $=900 \mathrm{kgm}^{-1}$ and the latent head of fasion of ice $=3.36 \times 10^{5} \mathrm{Jkg}^{-1}$

- Watch Video Solution

7. 1 kg ice at $0^{\circ} \mathrm{C}$ is mixed with 1 kg of steam at $100^{\circ} \mathrm{C}$ what will be the composition of the system when thermal equilibrium is reached ? Latent beat of fusion of ice $=3.36 \times 10^{5} \mathrm{Jkg}^{-1}$ and latent head of vaporization of water $=2.26 \times 10^{6} \mathrm{Jkg}^{-1}$

- Watch Video Solution

8. Calculate the time required to beat 20 kg of water from $10^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}$ using an immersion heater 1000 W Assums that 8% of the power input is used to bead the water specific beat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

(D) Watch Video Solution

9. On a winter day temperature of the tap water is $20^{\circ} \mathrm{C}$ where as the room temperature is $5^{\circ} \mathrm{C}$ water is stored in a tank of capacity $0.5 \mathrm{~m}^{3}$ for household use .If it were possible to use the beat liberated by the water to lift a 10 kg mass vertically , how high can it be lifted as the water comes to the room temperature ? Take $g=10 \mathrm{~ms}^{-2}$

- Watch Video Solution

10. A bullet of mass $20 g$ enters into a fixed wooden block with a speed of $40 \mathrm{~ms}^{-1}$ and stope in it .Find the change in internal energy during the process

- Watch Video Solution

11. A 50 kg man is running at a speed of $18 \mathrm{kmH}^{-1}$ If all the kinetic energy of the man be uses to increase the temperature of water from $30^{\circ} \mathrm{Chow}$
much water can be beated with this energy?

- Watch Video Solution

12. A brick weighing 4.0 kg is dropped into a 1.0 m deep river from a height of 2.0 m Assuming that 80% of the gravitational potential energy is finally converted into thermal energy, find this thermal energy in calorie.

- Watch Video Solution

13. A van of mass 1500 kg travelling at a speed of $54 \mathrm{kmh}^{-1}$ is stopped in $10 s$ Assuming that all the machantical energy lost appeats as thermal energy in the brake mechanical find the evarage in the brake of thermal energy in cal s^{-1}

- Watch Video Solution

14. A block of mass $100 g$ slides on a rought horizontal surface .If the speed of the block decreases from $10 m s^{-1} \rightarrow 5 m s^{-1}$, find the thermal energy developed in the process

- Watch Video Solution

15. Two blocks of masses 10 kg and 20 kg moving at speeds of $10 \mathrm{~ms}^{-1}$ and $20 \mathrm{~ms}^{-1}$ respectively in opposite direction approach each other and colide .If the collision is completely inelastic, find the thermal energy developed in the process

- Watch Video Solution

16. A ball is dropped on a floor from a height of 2.0 m After the collision it rises up to a height of 1.5 m . Assume that 40% of the mechanical energy lost goes as thermal energy into the ball. Calculate the rise in the temperature of the ball in the collision heat capacity of the ball is $800 \mathrm{JK}^{-1}$

- Watch Video Solution

17. A copper cube of mass 200 g slides down an a rought inclined plane of inclination 37° an a constant speed Assume that any loss in mechanical energy goes into the copper block as thermal energy. Find the increase in the temperature of the block as if slides down through 60 cm Specific head capacity of capper $=420 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

- Watch Video Solution

18. A metal block of density $6000 \mathrm{kgm}^{-3}$ and mass 1.2 kg is respended throught a spring of spring constant $200 \mathrm{Nm}^{-1}$.The spring - block system is dipped in water kept in a vessel . The water has a mass of 250 g and the block is at a height 40 cm above the bottom of the vassel .If the support to the spring is broken, what will be the rise in the temperature of the water specific beat capacity of the block is $250 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and that of water is $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ Head capacities of the vessel and the spring are nogligible
