© ${ }^{\text {T doubtnut }}$
 India's Number 1 Education App

PHYSICS

BOOKS - SUNIL BATRA 41 YEARS IITJEE PHYSICS (HINGLISH)

HEAT AND THERMODYNAMICS

Jee Main And Advanced

1. One mole of a mono-atomic ideal gas is mixed with one mole of a diatomic ideal gas. The molar specific heat of the mixture at constant volume is

- Watch Video Solution

2. The variation of temprature of a material as heat is given to it at a constant rate is shown in the figure. The material is in solid state at the
point O. The state of the material at the point P is.....

- Watch Video Solution

3. During an experiment, an ideal gas is found to obey an additional law $V P^{2}=$ cons $\tan t$, The gas is initially at a temprature T , and volume V . When it expands to a volume $2 V$, the temperature becomes.......

- Watch Video Solution

4.300 grams of water at $25^{\circ} C$ is added to 100 grams of ice at $0^{\circ} C$. The final temperature of the mixture is^@C

- Watch Video Solution

5. The earth receives at its surface radiation from the sun at the rate of $1400 \mathrm{Wm}^{-2}$. The distance of the centre of the sun from the surface of the earth is $1.5 \times 10^{11} \mathrm{~m}$ and the radius of the sun is $7 \times 10^{8} \mathrm{~m}$. Treating the sun as a black body, it follows from the above data taht its surface temperature is K

- Watch Video Solution

6. A solid copper sphere (density rho and specific heat c) of radius r at an initial temperature 200 K is suspended inside a chamber whose walls are at almost 0 K . The time required for the temperature of the sphere to drop to 100 K is

- Watch Video Solution

7. A point source of heat of power P is placed at the centre of a spherical shell of mean radius R. The material of the shell has thermal conductivity K. If the temperature difference between the outer and inner surface of the shell in not to exceed T , the thickness of the shell should not be less than

- Watch Video Solution

8. A substance of mass $M \mathrm{~kg}$ requires a power input of P wants to remain in the molten state at its melting point. When the power source is turned off, the sample completely solidifies in time t seconds. The latent heat of fussion of the substance is \qquad

- Watch Video Solution

9. A container of volume $1 m^{3}$ is divided into two equal parts by a partition. One part has an ideal gas at 300 K and the other part is vacuum. The whole system is thermally isolated from the surroundings. When the
partition is removed, the gas expands to occupy the whole volume. Its temperature will now be

- Watch Video Solution

10. An ideal gas with pressure P, volume V and temperature T is expanded isothermically to a volume 2 V and a final pressure P_{i}, If the same gas is expanded adiabatically to a volume 2 V , the final pressure P_{a}. The ratio of the specific heats of the gas is 1.67 . The ratio $\frac{P_{a}}{P_{1}}$ is \qquad

- Watch Video Solution

11. Two metal cubes A and B of same size are arranged as shown in Figure.

The extreme ends of the combination are maintened at the indicated temperatures. The arrangement is thermally insulted. The coefficients of thermal conductivity of A and B are $300 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and $200 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, respectively. After steady state is reached the temperature t of the
interface will be

- Watch Video Solution

12. A ring shaped tube contain two ideal gases with equal masses and relative molar masses $M_{1}=32$ and $M_{2}=28$.

The gases are separated by one fixed partion and another movable stopper S which can move freely without friction inside the ring. The
angle α as shown in the figure is degrees.

- Watch Video Solution

13. Earth recieves $1400 \mathrm{~W} / \mathrm{m}^{2}$ of solar power. If all the solar energy falling on a lens of area $0.2 m^{2}$ is focused on to a block of ice of mass 280 grams, the time taken to melt the ice will be..... Minutes. $\left(\right.$ Latentheatoffusionofice $\left.=3.3 \times 10^{5} \mathrm{~J} / \mathrm{kg}.\right)$

- Watch Video Solution

14. The root-mean square speeds of the molecules of different ideal gses, maintained at the same temperature are the same.

- Watch Video Solution

15. The volume V versus temperature T graphs for a cetain amount of a perfect gas at two pressure p_{1} and p_{2} are as shown in Fig. It follows from the graphs that p_{1} is greater than p_{2}.

- Watch Video Solution

16. Two different gases at the same temperature have equal root mean square velocities.

- Watch Video Solution

17. The ratio of the velocity of sound in Hydrogen gas $\left(\gamma=\frac{7}{5}\right)$ to that in Helium gas $\left(\gamma=\frac{5}{3}\right)$ at the same temperature is sqrt(21/3).

- Watch Video Solution

18. The curves A and B in the figure shown $P-V$ graphs for an isothermal and an adiabatic process for an idea gas. The isothermal process is
represented by the curve A.

- Watch Video Solution

19. At a given temperature, the specific heat of a gas at constant pressure is always greater than its specific heat at constant volume.

- Watch Video Solution

20. The root mean square (rms) speed of oxygen molecules $\left(\mathrm{O}_{2}\right)$ at a certain tempereture T (degree absolute) is V . If the temperatrue is
doubled and oxygen gas dissociates into atomic oxygen, the rms speed remains unchanged.

- Watch Video Solution

21. Two spheres of the same material have radii 1 m and 4 m and temperatures 4000 K and 2000 K respectively. The energy radiated per second by the first sphere is greater than that by the second.

Watch Video Solution

22. A constant volume gas thermometer works on
A. The Principle of Archimedes
B. Boyel's Law
C. Pascal's Law
D. Charle's Law

Answer: D

D Watch Video Solution

23. A metal ball immersed in alcohol weights $W_{1} a t 0^{\circ} \mathrm{C}$ and $W_{2} a t 50^{\circ} \mathrm{C}$. The coefficient of expansion of cubical the metal is less than that of the alcohol. Assuming that the density of the metal is large compared to that of alcohol, it can be shown that
A. $W_{1}>W_{2}$
B. $W_{1}=W_{2}$
C. $W_{1}<W_{2}$
D. None of these

Answer: C

- Watch Video Solution

24. A wall has two layers A and B, each made of different material. Both the layers have the same thickness. The thermal conductivity of the meterial of A is twice that of B. Under thermal equilibrium, the temperature difference across the wall is $36^{\circ} \mathrm{C}$. The temperature difference across the layer A is
A. $6^{\circ} \mathrm{C}$
B. $12^{\circ} \mathrm{C}$
C. $18^{\circ} \mathrm{C}$
D. $24^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

25. An ideal monatomic gas is taken round the cycle ABCDA as shown in the $P-V$ diagram. The work time during the cycle is

A. PV
B. $2 P V$
C. $\frac{1}{2} P V$
D. zero

Answer: A

Watch Video Solution

26. If one mole of a monatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with one mole of a diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of gamma for mixture is
A. 1.40
B. 1.50
C. 1.53
D. 3.07

Answer: B

- Watch Video Solution

27. From the following statements concerning ideal gas at any given temperature T , select the correct one (s)
A. The coefficient of volume expansion at constant pressure is the same for all idea gases
B. The average translational kinetic energy per molecule of oxygen gas
is $3 k T$, k being Boltzmann constant
C. The mean-free path of molecules increases with increases in the pressure
D. In a gaseous mixture, the average translational kinetic energy of the
molecules of each component is different

Answer: A

- Watch Video Solution

28. Three rods of identical area of cross-section and made from the same metal from the sides of an isosceles triangle. ABC, right angled at B. The points A and B are maintained at temperatures T and $\sqrt{2} T$ RESPECTIVELY. In the steady state the temperature of the point C is T_{C}.
Assuming that only heat conduction takes place,$\frac{T_{C}}{T}$ is equal to
A. $\frac{1}{2 \sqrt{2}-1}$
B. $\frac{3}{\sqrt{2}+1}$
C. $\frac{1}{\sqrt{3}(2 \sqrt{2}-1)}$
D. $\frac{1}{\sqrt{2}+1}$

Answer: B

- Watch Video Solution

29. Two metallic spheres S_{1} and S_{2} are mode of the same material and have got identical surface finish. The mass of S_{1} is thrice that of S_{2}. Both the spheres are heated to the same high temperature and placed in the same room having lower temperature but are thermally insulted from each other. The ratio of the initial rate of coiling of S_{1} to that of S_{2} is
A. $\frac{1}{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{\sqrt{3}}{1}$
D. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$

Answer: D
30. The average translational kinetic energy of O_{2} (relative molar mass 32) molecules at a particular temperature is 0.048 eV . The translational kinetic energy of N_{2} (relative molar mass 28) molecules in eV at the same temperature is
A. 0.0015
B. 0.003
C. 0.048
D. 0.768

Answer: C

- Watch Video Solution

31. A vessel contains 1 mole of O_{2} gas (relative molar mass 32) at a temperature T. The pressure of the gas is P. An identical vessel containing
one mole of He gas (relative molar mass 4) at temperature 2 T has a pressure of
A. $\frac{P}{8}$
B. P
C. $2 P$
D. $8 P$

Answer: C

- Watch Video Solution

32. A spherical black body with a radius of 12 cm radiates 450 W power at 500K. If the radius were halved and the temperature doubled, the power radiated in watt would be
A. 225
B. 450
C. 900
D. 1800

Answer: D

- Watch Video Solution

33. A closed compartment containing gas is moving with some acceleration in horizontal direction. Neglect effect of gravity. Then the pressure in the compartment is
A. same everywhere
B. lower in the front side
C. lower in the rear side
D. lower in the upper side

Answer: B

- Watch Video Solution

34. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is
A. $4 R T$
B. $15 R T$
C. $9 R T$
D. $11 R T$

Answer: D

- Watch Video Solution

35. The ratio of the speed of sound in nitrogen gas to that in helium gas, at 300 K is
A. $(\sqrt{2 / 7})$
B. $(\sqrt{1 / 7})$
C. $(\sqrt{3}) / 5$
D. $(\sqrt{6}) / 5$

Answer: C

- Watch Video Solution

36. A monatomic ideal gas, initially at temperature T_{1}, is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed to expand adiabatically to a temperature T_{2} by releasing the piston suddenly. If L_{1} and L_{2} are the length of the gas column before expansion respectively, then $\frac{T_{1}}{T_{2}}$ is given by
A. $\left(\frac{L_{1}}{L_{2}}\right)^{2 / 3}$
B. $\left(\frac{L_{1}}{L_{2}}\right)$
C. $\left(\frac{L_{2}}{L_{1}}\right)$
D. $\left(\frac{L_{2}}{L_{1}}\right)^{2 / 3}$

D Watch Video Solution

37. A block of ice at $-10^{\circ} C$ is slowly heated and converted to steam at $100^{\circ} \mathrm{C}$. Which of the following curves represents the phenomenon qualitatively?
(a)

B.
(b)

Heat supplied \longrightarrow
C. Heat supplied \rightarrow
D. \backslash
38. An ideal gas is initially at temperature T and volume V. Its volume is increased by ΔV due to an increase in temperature ΔT, pressure remaining constant. The quantity $\delta=\frac{\Delta V}{V \Delta T}$ varies with temperature as
(a)

A.

Temperature K
(b)

B.

Temperature K
(c)

C.

Temperature K
(d)

Answer: C

39. Starting with the same initial conditions, an ideal gas expands from volume $V_{1} \rightarrow V_{2}$ in three different ways. The work done by the gas is $\mathrm{W}_{-} 1$ if the process is purely isothermal, W_{2} if purely isobaric and W_{3} if purely adiabatic. Then

A. $W_{2}>W_{1}>W_{3}$
B. $W_{1}>W_{2}>W_{3}$
C. $W_{2}>W_{3}>W_{1}$
D. $W_{2}>W_{1}>W_{3}$

D Watch Video Solution

40. The plots of intensity versus wavelength for three black bodies at temperature T_{1}, T_{2} and T_{3} respectively are as shown. Their temperatures are such that

A. $T_{1}>T_{2}>T_{3}$
B. $T_{1}>T_{3}>T_{2}$
C. $T_{2}>T_{3}>T_{1}$
D. $T_{3}>T_{2}>T_{1}$

Answer: B

- Watch Video Solution

41. Three rods made of same material and having the same cross-section have been joined as shown. In the figure.Each rod is of the same length. The left and right ends are kept at $0^{\circ} C$ and $90^{\circ} C$ respectively. The temperature of the junction of the three rods will be

A. $45^{\circ} \mathrm{C}$
B. $60^{\circ} \mathrm{C}$
C. $30^{\circ} \mathrm{C}$
D. $20^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

42. In a given process on an ideal gas, $d W=0$ and $d Q<0$. Then for the gas
A. the temperature will decrease
B. the volume will increase
C. the pressure will remain constant
D. the temperature will increase

Answer: A

43. P-V plots for two gases during adiabatic processes are shown in the figure. Plots 1 and 2 should corresponds respectively to

A. He and O_{2}
B. O_{2} and He
C. $H e$ and $A r$
D. O_{2} and N_{2}

Answer: B

44. When a block of iron in mercury at $0^{\circ} C$, fraction K_{1} of its volume is submerged, while at the temperature $60^{\circ} \mathrm{C}$, a fraction K_{2} is seen to be submerged. If the coefficient of volume expansion of iron is $\gamma_{F e}$ and that of mercury is $\gamma_{H g}$, then the ratio $\left(K_{1}\right) /\left(K_{2}\right)$ can be expressed as
A. $\frac{1+\left(60 \gamma_{F e}\right)}{1+\left(60 \gamma_{h g}\right)}$
B. $\frac{1-\left(60 \gamma_{F e}\right)}{1+\left(60 \gamma_{H g}\right)}$
C. $\frac{1+\left(60 \gamma_{F e}\right)}{1-\left(60 \gamma_{H g}\right)}$
D. $\frac{1+\left(60 \gamma_{H g}\right)}{1+\left(60 \gamma_{F e}\right)}$

Answer: A

- Watch Video Solution

45. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$, as shown in the figure, If the net heat supplied to the gas in the cycle is 5 J, the work
done by the gas in the process CtoA is

A. $-5 J$
B. $-10 J$
C. $-15 J$
D. $-20 J$

Answer: A

0
 Watch Video Solution

46. Which of the following graphs correctly represents the variation of $\beta=-\frac{d V / d P}{V}$
with P for an ideal gas at constant temperature?
(a)

B.
(b)

C.

D.
(d) β

Answer: A

47. An ideal Black-body at room temperature is thrown into a furnace. It is observed that
A. initially it is the darkest body and at later times the brightest
B. it is the darkest body at all times
C. it cannot be distinguished at all times
D. initially it is the darkest body and at later times it cannot be distinguished

Answer: A

- Watch Video Solution

48. The graph, shown in the adjacent diagram, represents the variation of temperature (T) of two bodies, x and y having same surface area, with time (t) due to the emission of radiation. Find the correct relation
between the emissivity and absorptivity power of the two bodies

A. $E_{x}>E_{y} \& a_{x}<a_{y}$
B. $E_{x}<E_{y} \& a_{x}>a_{y}$
C. $E_{x}>E_{y} \& a_{x}>a_{y}$
D. $E_{x}<E_{y} \& a_{x}<a_{y}$

Answer: C

- Watch Video Solution

49. Two rods, one of aluminium and the other made of steel, having initial length l_{1} and l_{2} are connected together to from a single rod of length $l_{1}+l_{2}$. The coefficients of linear expansion for aluminium and steel are α_{a} and α_{s} and respectively. If the length of each rod increases by the same amount when their temperature are raised by $t^{0} C$, then find the ratio $l_{1} /\left(l_{1}+l_{2}\right)$
A. $\left(\alpha_{s}\right) /\left(\alpha_{a}\right)$
B. $\left(\alpha_{a}\right) /\left(\alpha_{s}\right)$
C. $\left(\alpha_{s}\right) /\left(\left(\alpha_{a}\right) /\left(\alpha_{s}\right)\right)$
D. $\left(\alpha_{a}\right) /\left(\left(\alpha_{a}\right) /\left(\alpha_{s}\right)\right)$

Answer: C

- Watch Video Solution

50. The PT diagram for an ideal gas is shown in the figure, where AC is an adiabatic process, find the corresponding PV diagram.

A.
(a)

(b)

c.
(d)

Answer: B
51. 2 kg of ice at $20^{C} \circ$ is mixed with 5 kg of water at $20^{C} \circ$ in an insulating vessel having a negligible heat capacity. Calculate the final mass of water remaining in the container. It is given that the specific heats of water \& ice are $1 \mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C} 0.5$
$\mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ while the latent heat of fusion of ice is $80 \mathrm{kcal} / \mathrm{kg}$
A. 7 kg
B. 5 kg
C. 4 kg
D. 2 kg

Answer: B

- Watch Video Solution

52. Three discs A, B and C having radii 2,4 and 6 cm respectively are coated with carbon black. Wavelength for maximum intensity for the three discs
are 300,400 and 500 nm respectively. If Q_{A}, Q_{B} and Q_{C} are power emitted by A, B and D respectively, then
A. Q_{A} will be maximum
B. Q_{B} will be maximum
C. Q_{C} will be maximum
D. $Q_{A}=Q_{B}=Q_{C}$

Answer: B

- Watch Video Solution

53. If liquefied oxygen at 1 atmospheric pressure is heated from 50 K to 300k by supplying heat at constant rate. The graph of temperature vs time will be
(a)

B.
(b)

C.
(c)

D.

Answer: C

D Watch Video Solution

54. Two identical rods are connected between two containers on of tehm is at $100^{\circ} \mathrm{C}$ and another is at $0^{\circ} \mathrm{C}$. If rods are connected in parralel them the rate of melting of ice is $q_{1} g m / s e c$.

If they are connected in series then the rate is q_{2}. The ratio q_{2} / q_{1} is
A. 2
B. 4
C. $1 / 2$
D. $1 / 4$

Answer: D

- Watch Video Solution

55. An ideal gas is initially at P_{1}, V_{1} is expands to P_{2}, V_{2} and then compressed adiabatically to the same volume V_{1} and pressure P_{3}. If W is the net work done by the gas in complete process which of the following is true.
A. $W>0, P_{3}>P_{1}$
B. $W<0, P_{3}>P_{1}$
C. $W>0, P_{3}<P_{1}$
D. $W<0, P_{3}<P_{1}$

Answer: B

- Watch Video Solution

56. Variation of radiant energy emitted by sun, filament of tungsten lamp and welding arc as a function of its wavelength is shown in figure. Which of the following option is the correct match?

A. Sun $-T_{3}$, tungstenfilament $-T_{1}$, weld \in garc $-T_{2}$
B. Sun $-T_{2}$, tungstenfilament $-T_{1}$, weld \in garc $-T_{3}$
C. Sun $-T_{3}$, tungstenfilament $-T_{2}$, weld \in garc $-T_{1}$
D. Sun $-T_{1}$, tungstenfilament $-T_{2}$, weld \in garc $-T_{3}$

Answer: A

- Watch Video Solution

57. In which of the following process, convection does not take place primarily
A. Sea and land breeze
B. boiling of water
C. heating air around a furnace
D. warming of glass of bulb due to filament

Answer: D

- Watch Video Solution

58. A spherical body of area A, and emissivity e $=0.6$ is kept inside a black body. What is the rate at which energy is radiated per second at temperature T
A. $0.4 A T^{4}$
B. $0.8 A T^{4}$
C. $6.0 A T^{4}$
D. $1.0 A T^{4}$

Answer: None of these

- Watch Video Solution

59. Calorie is defined as the amount of heat required to raise temperature of 1 g of water by $1^{\circ} \mathrm{C}$ abd it is defined under which of the following conditions?
A. From $14.5^{\circ} \mathrm{C} \rightarrow 15.5^{\circ} \mathrm{C}$ at 760 mm of Hg .
B. From $98.5^{\circ} \mathrm{C} \rightarrow 99.5^{\circ} \mathrm{C}$ at 760 mm of Hg .
C. From $13.5^{\circ} \mathrm{C} \rightarrow 14.5^{\circ} \mathrm{C}$ at 76 mm of Hg .
D. From $3.5^{\circ} C \rightarrow 4.5^{\circ} C$ at 76 mm of Hg .

Answer: A

- Watch Video Solution

60. Water of volume 2 litre in a container is heated with a coil of $1 k W a t 27^{\circ} C$. The lid of the container is open and energy dissipates at rate of $160 \mathrm{~J} / \mathrm{s}$. In how much time temperature will rise from $27^{\circ} C \rightarrow 77^{\circ} C$ [Given specific heat of water is
$4.2 k J / k g]$
A. 7 min
B. $6 \min 2 s$
C. 8 min 20s ${ }^{`}$
D. 14 min

Answer: C

- Watch Video Solution

61. Water is filled up to a height h in a beaker of radiys R as shown in the figure. The density of water is ρ, the surface tension of water is T and the atmospheric pressure is P_{0}. Consider a vertical section $A B C D$ of the water column through a diameter of the beaker. The force on water on one side on this section by water on the other side of this section has
magnitude

A. $\left|2 P_{0} R H+\pi R^{2} \rho g h-2 R T\right|$
B. $\left|2 P_{0} R g h+R \rho g h^{2}+2 R T\right|$
C. $\left|P_{0} \pi R^{2}+R \rho g h^{2}-2 R T\right|$
D. $\left|P_{0} \pi R^{2}+R \rho g h^{2}+2 R T\right|$

Answer: B

D Watch Video Solution

62. An ideal gas is expanding such that $P T^{\circ}=c o n s \tan t$. The coefficient of colume expansion of the gas is-
A. $1 / T$
B. $1 / T$
C. $3 / T$
D. $4 / T$

Answer: C

- Watch Video Solution

63. A real gas behaves like an ideal gas if its
A. pressure is temperature are both high
B. pressure is temperature are both low
C. pressure is high temperature are both low
D. pressure is low temperature are both high

Answer: D

- Watch Video Solution

64. 5.6 liter of helium gas at STP is adiabatically compressed to 0.7 liter.

Taking the initial temperature to be T_{1}, the work done in the process is
A. $\frac{9}{8} R T_{1}$
B. $\frac{3}{2} R T_{1}$
C. $\frac{15}{8} R T_{1}$
D. $\frac{9}{2} R T_{1}$
65. A mixture of 2 moles of helium gas $(a \rightarrow$ micmass $=4 a \mu)$ and 1 mole of argon gas $(a \rightarrow$ micmass $=40 a \mu)$ is kept at 300 K in a container. The ratio of the rms speeds $\left(\frac{v_{r m s}(\text { helium })}{\left(v_{r m s}(\text { argon })\right)}\right.$ is
A. 0.32
B. 0.45
C. 2.24
D. 3.16

Answer: D

- Watch Video Solution

66. Two moles of ideal helium gas are in a rubber balloon at $30^{\circ} \mathrm{C}$. The balloon is fully expandable and can be assumed to require no energy in its expansion. The temperature of the gas in the balloon is slowly
changed to $35^{\circ} \mathrm{C}$. The amount of heat required in raising the temperature is nearly (take R

$$
=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K})
$$

A. 62 J
B. 104 J
C. 124 J
D. 208 J

Answer: D

- Watch Video Solution

67. Two rectangular blocks, having identical dimensions, an be arranged either in configuration-I or in configuration-II as shown in the figure. One of the blocks has thermal conductivity k and the other $2 k$. The temperature difference between the ends along the x-axis is the same in both the configurations. It takes 9 s to transport a certain amount of heat from the hot end to the cold end in the configuration-l. The time to
transport the same amount of heat in the configuration-II is

A. $2.0 s$
B. 4.5 s
C. $3.0 s$
D. 6.0 s

Answer: A

- Watch Video Solution

68. Two non-reactive monoatomic ideal gases have their atomic masses in the ratio $2: 3$. The ratio of their partial pressures, when enclosed in a vessel kept at a constant temperature, is $4: 3$. The ratio of their densities is
A. 1:4
B. 1:2
C. 6: 9
D. 8: 9

Answer: D

Watch Video Solution

69. Parallel rays of light of intensity $I=912 W M^{-2}$ are incident on a spherical black body kept in surroundings of temperature 300K. Take Stefan-Boltzmann constant $\sigma=5.7 \times 10^{-8}$
$W m^{-2} K^{-4}$ and assume that the energy exchange with the
surroundings is only through radiation. The final steady state temperature of the black body is close to
A. 330 K
B. 660 K
C. $990 K$
D. 1550 K

Answer: A

- Watch Video Solution

70. A water cooler of storages capacity 120 liters can cool water at a constant rate of P watts. In a closed circulation system (as shown schematically in the figure), the water from the cooler is used to cool an external device that generates constantly 3 kW of heat (thermal load). The temperature of water fed into the device cannot exceed $30^{\circ} \mathrm{C}$ and the entire stored 120 liters of water is initially cooled to $10^{\circ} \mathrm{C}$. The entire system is thermally insulated. The minimum value of P (in watts) for
which the device can be operated for 3hours is

(Specific heat of water is $4.2 \mathrm{kJkg}^{-1} \mathrm{~K}^{-1}$ and the density of water is $1000 \mathrm{kgm}^{-3}$)
A. 1600
B. 2067
C. 2533
D. 3933

Answer: B
71. A gas is enclosed in a cylinder with a movable frictionless piston. Its initial thermodynamic state at pressure $P_{i}=10^{5} \mathrm{~Pa}$ and volume $V_{i}=10^{-3} m^{3} \quad$ changes to a final state at $P_{f}=(1 / 32) \times 10^{5} \mathrm{~Pa}$ and $V_{f}=8 \times 10^{-3} \mathrm{~m}^{3}$ in an adiabatic quasistatic process, such that $P^{3} V^{3}=$ cons $\tan t$. Consider another thermodynamic process that brings the system form the same initial state to the same final state in two steps: an isobaric expansion at P_{i} followed by an isochoric (isovolumetric) process at volume V_{r}. The amount of heat supplied to the system i the two-step process is approximately
A. 112 J
B. 294 J
C. 588 J
D. 813 J

Answer: C

72. The ends Q and R of two thin wires, $P Q$ and $R S$, are soldered (joined) together. Initially each of the of wire has a length of 1 m at $10^{\circ} \mathrm{C}$. Now the end P is maintained at $10^{\circ} \mathrm{C}$, while the ends S is heated and maintained at $400^{\circ} \mathrm{C}$. The system is thermally insultated from its surroundings. If the thermal conductivity of wire $P Q$ is twice that of the wire RS and the coefficient of linear thermal expansion of PQ is $1.2 \times 10^{-5} \mathrm{~K}^{-1}$, the change in length of the wire PQ is
A. 0.78 mm
B. 0.90 mm
C. 1.56 mm
D. 2.34 mm

Answer: A

- Watch Video Solution

73. At room temperature the rms speed of the molecules of a certain diatomic gas is formed to be $1930 \mathrm{~m} / \mathrm{sec}$ The gas is .
A. H_{2}
B. F_{2}
C. O_{2}
D. $C l_{2}$

Answer: A

- Watch Video Solution

74.70 calories of heat required to raise the temperature of 2 moles of an ideal gas at constant pressure from $30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}$. The amount of heat required (in calories) to raise the temperature of the same gas through the same range $\left(30^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}\right)$ at constant volume is:
A. 30
B. 50
C. 70
D. 90

Answer: B

- Watch Video Solution

75. Steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$ till the temperature of the calorimeter and its content rises to $80^{\circ} \mathrm{C}$. What is the mass of steam condensed? Latent heat of steam $=536 \mathrm{cal} / \mathrm{g}$.
A. 0.130
B. 0.065
C. 0.260
D. 0.135

Answer: A

- Watch Video Solution

76. A cylinder of radius R made of a material of thermal conductivity K_{1} is surrounded by a cylinderical shell of inner radius R and outer radius 2 R made of a material of thermal conductivity K_{2}. The two ends of the combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical surface and the system is in steady state. The effictive thermal conductivity of the system is
A. $K_{1}+K_{2}$
B. $K_{1} K_{2} /\left(K_{1}+K_{2}\right)$
C. $\left(K_{1}+3 K_{2}\right) / 4$
D. $\left(3 K_{1}+3 K_{2}\right) / 4$

Answer: C

77. For an ideal gas :
A. the change in internal energy in a constant pressure process from temperature $T_{1} \rightarrow T_{2}$ is equal to $n C_{v}\left(T_{2}-T_{1}\right)$, where C_{v} is the molar specific heat at constant volume and n the number of moles of the gas.
B. the change in internal energy of the gas and the work done by the gas are equal in magnitude in an adiabatic process.
C. the internal energy does not change in an isothermal process.
D. no heat is added or removed in an adiabatic process.

Answer: A::B::C::D

- Watch Video Solution

78. When an ideal diatomic gas is heated at constant pressure, the fraction of the heat energy supplied which increases the internal energy of the gas is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{7}$
D. $\frac{5}{7}$

Answer: D

- Watch Video Solution

79. Three closed vessels A, B and C are at the same temperature T and contain gasses which obey the Maxwellian distribution of velocities. Vessel A contain only O_{2} and N_{2}. If the average speed of the O_{2} molecules in vessel A is v_{1} that of the N_{2} molecules in vessel B us v_{2}, the average speed of the O_{2} molecules in vessel C is
A. $\frac{v_{1}+v_{2}}{2}$
B. v_{1}
C. $\left(v_{1} v_{2}\right)^{\frac{1}{2}}$
D. $\sqrt{\frac{3 k T}{M}}$

Answer: B

- Watch Video Solution

80. An ideal gas is taken from the state A (pressure P, volume V) to the state B (pressure $p / 2$, volume 2 V) along a straight line path in the $\mathrm{P}-\mathrm{V}$ diagram. Select the correct statement (s) from the following :
A. The work done by the gas in the process A to B exceeds the work that would be done by it if the system were taken from A to B along the isotherm.
B. In the T-V diagram, the path AB becomes a part of a parabola
C. In the P-T diagram, the path AB becomes a part of a hyperbola
D. In going from A to B, the temperature T of the gas first increases to a maximum value and then decreases.

Answer: A::B::D

- Watch Video Solution

81. Two bodies A and B ahave thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power of the same rate. The wavelength λ_{B} corresponding to maximum spectral radiancy in the radiation from B shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A, by $1.00 \mu m$. If the temperature of A is 5820K:
A. the temperature of B is $1934 K$
B. $\lambda_{B}=1.5 \mu \mathrm{~m}$
C. the temperature of B is 11604 K
D. the temperature of B is 2901 K

Answer: A::B

- Watch Video Solution

82. The temperature of an ideal gas is increased from 120 K to 480 K . If at

120K the root-mean-squre velocity of the gas molecules is v , at 480 K it becomes
A. $4 v$
B. $2 v$
C. $v / 2$
D. $v / 4$

Answer: B

- Watch Video Solution

83. A given quantity of a ideal gas is at pressure P and absolute temperature T . The isothermal bulk modulus of the gas is
A. $\frac{2}{3} P$
B. P
C. $\frac{3}{2} P$
D. $2 P$

Answer: B

(Watch Video Solution

84. Two cylinders A and B fitted with pistons contain equal amounts of an ideal diatomic gas at 300 K . The piston of A is free to move, while that B is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of the gas in A is $30 K$, then the rise in temperature of the gas in B is
A. $30 K$
B. 18 K
C. 50 K
D. 42 K

Answer: D

- Watch Video Solution

85. During the melting of a slab of ice at 273 K at atmospheric pressure,
A. positive work is done by the ice-water system on the atmosphere.
B. positive work is done on the ice-water system by the atmosphere.
C. the internal energy of the ice-water system increases.
D. the internal energy of the ice-water system decreases.

Answer: B::C

86. A blackbody is at a temperature of 2880 K . The energy of radiation emitted by this object with wavelength between 499nm and 500 nm is U_{1}, between 999 nm and 1000 nm is U_{2} and between 1499 nm and 1500 nm is U_{3}. The Wien constant $b=2.88 \times 10^{6} n m K$. Then
A. $U_{1}=0$
B. $U_{3}=0$
C. $U_{1}>U_{2}$
D. $U_{2}>U_{1}$

Answer: D

- Watch Video Solution

87. A bimetallic strip is formed out of two identical strips one of copper and the other of brass. The coefficients of linear expansion of the strip goes up by ΔT and the strip bends to from an arc of radius of curvature R. Then R is.
A. proportional to ΔT
B. inversely proportional to ΔT
C. proportional to $\left|\alpha_{B}-\alpha_{C}\right|$
D. inversely proportional to $\left|\alpha_{B}-\alpha_{C}\right|$

Answer: B::D

- Watch Video Solution

88. Two identical containers A and B with frictionless pistons contain the same ideal gas at the same temperature and the same velocity V . The mass of the gas in A is m_{A}, and that in B is m_{B}. The gas in each cylinder is now allowed to expand isothermally to the same final volume 2 V . The changes in the pressure in A and B are found to be ΔP and $1.5 \Delta P$ respectively. Then
A. $4 m_{A}=9 m_{B}$
B. $2 m_{A}=3 m_{B}$
C. $3 m_{A}=2 m_{B}$
D. $9 m_{A}=4 m_{B}$

Answer: C

- Watch Video Solution

89. Let $\bar{v}, v_{r m s}$ and v_{p} respectively denote the mean speed. Root mean square speed, and most probable speed of the molecules in an ideal monatomic gas at absolute temperature T . The mass of a molecule is m . Then
A. no molecules can have a speed greater than $\sqrt{2} v_{r m s}$
B. no molecule can have a speed less than $v_{p} / \sqrt{2}$
C. $v_{p}<\bar{v}<v_{r m s}$
D. the average kinetic energy of a molecules is $\frac{3}{4} m v_{p}^{2}$.

Answer: C::D

90. A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300K. The ratio of the average rorational kinetic energy per O_{2} molecules to that per N_{2} molecules is
A. 1:1
B. 1: 2
C. 2: 1
D. depends on the moments of inertia of the two molecules

Answer: A

- Watch Video Solution

91. A black body of temperature T is inside chamber of T_{0} temperature initially. Sun rays are allowed to fall from a hole in the top of chamber. If the temperature of black body (T) and chamber $\left(T_{0}\right)$ remains constant,

T_{0}

A. Black body will absorb more radiation
B. Black body will absorb less radiation
C. Black body emit more energy
D. Black body emit energy equal to enrgy absorbed by it

Answer: A::C::D

- Watch Video Solution

92. C_{v} and C_{p} denote the molar specific heat capacities of a gas at costant volume and constant pressure, respectively. Then
A. $C_{p}-C_{v}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas
B. $C_{p}+C_{v}$ is larger for a diatomic ideal gas than for a monatomic ideal gas
C. C_{p} / C_{v} is larger for a diatomic ideal gas than for a monoatomic ideal gas
D. $C_{p} . C_{v}$ is larger for a diatomic ideal gas than for a monoatomic ideal gas

Answer: B::D

- Watch Video Solution

93. The figure shows the P-V plot of an ideal gas taken through a cycle ABCDA. The part ABC is a semi-circle and CDA is half of an ellipse. Then,

A. the process during the path $A \rightarrow B$ is isothermal
B. work done during the path $B \rightarrow C \rightarrow D$
C. heat flows out of the gas during the path $B \rightarrow C \rightarrow D$
D. the process during the path $A \rightarrow B$ is isothermal

Answer: B::D

- Watch Video Solution

94. One mole of an ideal gas in initial state A undergoes a cylic process ABCA, as shown in the figure. Its pressure at A is P_{0}. Choose the correct option (s) from the following

A. Internal energies at A and B are the same
B. Work done by the gas in process AB is $P_{0} V_{0} \ln 4$
C. Pressure at C is $\frac{P_{0}}{4}$
D. Temperature at C is $\frac{T_{0}}{4}$

Answer: A: B

- Watch Video Solution

95. A composite block is made of slabs A, B, C, D and E of different thermal conductivities (given in terms of a constant K and sizes (given in terms of length, L) as shown in the figure. All slabs are of same width. Heat 'Q' flows only from left to right through the blocks. Then in steady state

A. heal flow through A and E slabs are same.
B. heat flow through slab E is maximum
C. temperature difference across slab E is smallest.
D. heat flow through $C=$ heat flow through $B+$ heat flow throughD.

Answer: A::C::D

96. The figure below shows the variation of specific heat capacity (C) of a solid as a function of temperature (T). The temperature is increased continuousely form 0 to 500 K at a constant rate. Ignorign any volume change, the following statement (s) is (are) correct to a reasonable approximation.

A. The rate at which heat is absorbed in the range $0-100 \mathrm{~K}$ varies linearly with temperature T .
B. Heat absorbed in increasing the temperature from $0-100 \mathrm{~K}$ is less than the heat required for increasing the temperature from 400-

500K.
C. There is no change in the rate of heat absorption in the range 400500K.
D. The rate of heat absorption increases in the range 200-300K.

Answer: A::B::C::D

- Watch Video Solution

97. A container of fixed volume has a mixture of a one mole of hydrogen and one mole of helium in equilibrium at temperature T. Assuming the gasses are ideal, the correct statement (s) is (are)
A. The average energy per mole of the gas mixture is 2RT
B. The ratio of speed of sound in the gas mixture to tah tin helium gas is $\sqrt{6 / 5}$
C. The ratio of the rms speed of helium atoms to that of hydrogen
D. The ratio of the rms speed of helium atoms to that of hydrogen molecules is $\frac{1}{\sqrt{2}}$

Answer: A::B::C

- Watch Video Solution

98. An ideal monoatomic gas is confined in a horizontal cylinder by a spring loaded piston (as shown in the figure). Initially the gas is at temperature T_{1}, pressure P_{1} and volume V_{1} and the spring is in its relaxed state. The gas is tehn heated very slowly to temperature T_{2} ,pressure P_{2} and volume V_{2}. During this process the piston moves out by a distance x . Ignoring the friction between the piston and the cylinder,
the correct statement (s) is (are)

A. If $V_{2}=2 V_{1}$ and $T_{2}=3 T_{1}$, then the o the energy stored in the spiring is $\frac{1}{4} P_{1} V_{1}$
B. If $V_{2}=2 V_{1}$ and $T_{2}=3 T_{1}$, then the change in internal energy is $3 P_{1} V_{1}$
C. If $V_{2}=3 V_{1}$ and $T_{2}=4 T_{1}$, then the work done by the gas is

$$
\frac{7}{3} P_{1} V_{1}
$$

D. If $V_{2}=3 V_{1}$ and $T_{2}=4 T_{1}$, then the heat supplied to the gas is

$$
\frac{17}{6} P_{1} V_{1}
$$

Answer: B::C

- Watch Video Solution

99. A sinker of weight w_{0} has an apparent weight w_{1} when weighed in a liquid at a temperature t_{1} and w_{2} when weight in the same liquid at temperature t_{2}. The coefficient of cubical expansion of the material of sinker is β. What is the coefficient of volume expansion of the liquid.

(Watch Video Solution

100. Three rods of material X and three rods of material Y are connected as shown in the figure. All the rods are of identical length and crosssectional area. If the end A is maintained at $60^{\circ} \mathrm{C}$ and the junction E at $10^{\circ} \mathrm{C}$. Calculate the temperature of the junction B, C and D . The thermal conductivity of X is $0.92 \mathrm{cal} / \mathrm{sec}-\mathrm{cm}^{\circ} \mathrm{C}$ and that of Y is
$0.46 \mathrm{cal} / \mathrm{sec}-\mathrm{cm}-{ }^{\circ} \mathrm{C}$.

- Watch Video Solution

101. Given samples of 1 c.c. of hydrogen and 1 c.c. of oxygen, both at N.T.P.
which sample has a larger number of molecules?

- Watch Video Solution

102. A solid material is supplied with heat at a constant rate. The temperature of the material is changing with the heat input as shown in the graph in figure. Study the graph carefully and answer the following

questions:

(i) What do the horizontal regions $A B$ and $C D$ represent?

If $C D$ is equal to $2 A B$, what do you infer?
What does the slope of DE represents?
The slope of OAgtthe slope of $B C$. What does this indicate?

- Watch Video Solution

103. A jar contains a gas and a few drops of water at absolute temperture T_{1}. The pressure in the jar is 830 mm of mercury. The temperature of the jar is reduced by 1%. The saturation vapour pressures of water at the
two temperatures are 30 mm of mercury and 25 mm of mercury. Calculate the new pressure in the jar.

- Watch Video Solution

104. A cyclic process $A B C A$ shown in the $V-T$ diagram is performed with a constant mass of an ideal gas. Show the same process on a $p-V$ diagram. In the figure, $C A$ is parrallel to the V axis and $B C$ is parallel to the T-axis.

- Watch Video Solution

105. A lead bullet just melts when stopped by an obstacle. Assuming that 25 per cent of the heat is absorbed by the obstacle, find the velocity of the bullet if its initial temperature is $27^{\circ} \mathrm{C}$. (Melting point of lead $=327^{\circ} \mathrm{C}$, specific heat of lead $=0.03 \mathrm{cal}$ or ies $/ \mathrm{gm} /{ }^{\circ} \mathrm{C}$, latent jeat of fusion of lead $=6 c a l$ or ies $/ g m, J=4.2 j o \underline{e} s / c a l$ or $i e)$.
106. Calculate the work done when one mole of a perfect gas is compressed adiabatically. The initial pressure and volume of the gas are $105 \mathrm{~N} / \mathrm{m}^{2}$ and 6 litres respectively. The final volume of the gas are 2 litre. Molar specific heat of the gas at constant volume is $3 R / 2$.

- Watch Video Solution

107. A solid sphere of copper of radius R and a hollow sphere of the same materail of inner radius r and outer radius A are heated to the same temperature and allowed to cool in the same environment. Which of tehm starts cooling faster?

- Watch Video Solution

108. 1 g mole of oxygen at $27^{\circ} \mathrm{C}$ and 1 atmosphere pressure is enclosed in
(a) Assuming the molecules to be moving with $v_{r m s}$, find the number of collisions per second which the molecules make with one square metre area of the vessel wall.
(b) The vessel is next thermally insulated and moves with a constant speed v_{0}. It is then suddenly stoppes. The process results in a rise of temperature of the gas by $1^{\circ} C$. Calculate the speed $v_{0} .\left[k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right.$ and $\left.N_{A}=6.02 \times 10^{23} / \mathrm{mol}\right]$.

Watch Video Solution

109. A rectangualr box (shown in figure) has a movable and smooth portition which can slide along the length of the box. Both chambers contains 1 mole of monoatomic gas ($\gamma=\frac{5}{3}$) at a pressure walls of box and partition are thermally insulated. Due to heating, gas in left chamber expands until pressure in both chambers become $32 P_{0}$ determine (a) The final temperature of gas in each chamber
(b) The work done by the gas in the right chamber.

partition (movable)

- Watch Video Solution

110. Two glass bulbs of equal volume are connected by a narrow tube and are filled with a gas at $0^{\circ} \mathrm{C}$ and a pressure of 76 cm of mercury. One of the bulbs is then placed in melting ice and the other is placed in a water bath maintained at $62^{\circ} \mathrm{C}$. What is the new value of the pressure inside the bulbs? The volume of the connecting tube is negligible.

- Watch Video Solution

111. A thin tube of uniform cross section is sealed at both ends. It lies horizontally, the middle 5 cm containing mercury and the parts on its two sides containing air at the same pressure p. When the tube is held at and angle of 60° with the vertical, the length of the air column above and below the mercury pellet are 46 cm and 44.5 cm respectively. Calculate the pressure in centimeters of mercury, The temperature of the system is kept at $30^{\circ} C$.

- Watch Video Solution

112. An ideal gas has a specific heat at constant pressure $C_{P}=\frac{5 R}{2}$. The gas is kept in a closed vessel of volume $0.0083 m^{3}$, at a temperature of 300K and a pressure of $1.6 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$. An amount of 2.49×10^{4} Joules of heat energy is supplied to the gas. Calculate the final temperature and pressure of the gas.

- Watch Video Solution

113. Two moles of helium gas $(\lambda=5 / 3)$ are initially at temperature $27^{\circ} \mathrm{C}$ and occupy a volume of 20 litres. The gas is first expanded at constant pressure until the volume is doubled. Then it undergoes an adiabatic change until the temperature returns to its initial value.
(i) Sketch the process on a p-V diagram.
(ii) What are the final volume and pressure of the gas?
(iii) What is the work done by the gas ?

- Watch Video Solution

114. An ideal monatomic gas is confined in a cylinder by a spring-loaded piston of cross-section $8.0 \times 10^{-3} \mathrm{~m}^{2}$. Initially the gas is at 300 K and occupies a volume of $2.4 \times 10^{-3} \mathrm{~m}^{3}$ and the spring is in its relaxed (unstretched, unompressed) state, fig. The gas is heated by a small electric heater until the piston moves out slowly by 0.1m. Calculate the final temperature of the gas and the heat supplied (in joules) by the heater. The force constant of the spring is $8000 \mathrm{~N} / \mathrm{m}$, atmospheric pressure is $1.0 \times 10^{5} \mathrm{Nm}^{-2}$. The cylinder and the piston are thermally
insulated. The piston is massless and there is no friction between the piston and the cylinder. Neglect heat loss through lead wires of the heater. The heat capacity of the heater coil is negligible. Assume the spring to be massless.

- Watch Video Solution

115. An ideal gas having initial pressure P, volume V and temperature T is allowed to expands adiabatically until its volume becomes 5.66 V while its temperature falls to $\mathrm{T} / 2$.
(i) How many degrees of freedom do the gas molecules have?

Obtain the work done by the gas during the expansion as a function of the initial pressure P and volume V .

- Watch Video Solution

116. Three moles of an ideal gas $\left(C_{p}=\frac{7}{2} R\right)$ at pressure, P_{A} and temperature T_{A} is isothermally expanded to twice its initial volume. It is then compressed at constant pressure to its original volume. Finally gas is compressed at constant volume to its original pressure P_{A}.
(a) Sketch P-V and P-T diagrams for the complete process.
(b) Calculate the net work done by the gas, and net heat supplied to the gas during the complete process.

- Watch Video Solution

117. Two moles of helium gas undergo a cyclic process as shown in Fig. Assuming the gas to be ideal, calculate the following quantities in this

(a) The net change in the heat energy
(b) The net work done
(c) The net change in internal energy

- Watch Video Solution

118. One mole of a monoatomic ideal gas is taken through the cycle shown in Fig:
$A \rightarrow B$: adiabatic expansion
$B \rightarrow C$: cooling at constant volume
$C \rightarrow D$: adiabatic compression
$D \rightarrow A$: heating at constant volume

The pressure and temperature at A,B,etc. are denoted by $P_{A}, T_{A}, P_{B}, T_{B}$ etc. respectively. Given that $T_{A}=1000 K$, $P_{B}=(2 / 3) P_{A}$ and $P_{C}=(1 / 3) P_{A}$, calculate the following quantities:
(i) The work done by the gas in the process $A \rightarrow B$
(ii) The heat lost by the gas in the process $B \rightarrow C$.
(iii) The temperature T_{D}. [Given : $(2 / 3)^{2 / 5}=0.85$]

- Watch Video Solution

119. An ideal gas is taken through a cyclic thermodynamic process through four steps. The amounts of heat involved in these steps are $Q_{1}=5960 J, Q_{2}=-5585 J, Q_{3}=-2980 J$ and $Q_{4}=3645 J$,
respectively. The corresponding quantities of work involved are $W_{1}=2200 J, W_{2}=-825 J, W_{3}=-1100 J$ and W_{4} respectively.
(1) Find the value of W_{4}.
(2) What is the efficiency of the cycle

D Watch Video Solution

120. A closed container of volume $0.02 m^{3}$ contains a mixture of neon and argon gases, at a temperature of $27^{\circ} \mathrm{C}$ and pressure of $1 \times 10^{5} \mathrm{Nm}^{-2}$. The total mass of the mixture is 28 g . If the molar masses of neon and argon are 20 and $40 \mathrm{gmol}^{-1}$ respectively, find the masses of the individual gasses in teh container assuming them to be ideal (Universal gas constant $R=8.314 \mathrm{~J} / \mathrm{mol}-K)$.

- Watch Video Solution

121. A gaseous mixture enclosed in a vessel of volume V consists of one mole of a gas A with $\gamma=\left(C_{p} / C_{v}\right)=5 / 3$ and another gas B with $\gamma=7 / 5$ at a certain temperature T . The relative molar masses of the
gasses A and B are 4 and 32, respectively. The gases A and B do not react with each other and are assumed to be ideal. The gaseous mixture follows the equation $P V^{19 / 13}=c o n s \tan t$, in adiabatic processes.
(a) Find the number of moles of the gas B in the gaseous mixture.
(b) Compute the speed of sound in the gaseous mixture at $T=300 K$.
(c) If T is raised by 1 K from 300 K , find the $\%$ change in the speed of sound in the gaseous mixture.
(d) The mixtrue is compressed adiabatically to $1 / 5$ of its initial volume V .

Find the change in its adaibatic compressibility in terms of the given quantities.

- Watch Video Solution

122. At $27^{\circ} C$ two moles of an ideal monoatomic gas occupy a volume V . The gas expands adiabatically to a volume 2 V . Calculate (i) the final temperature of the gas, (ii) change in its internal enegy, and (iii) the work done by the gas during this process.
123. The temperature of 100 g of water is to be raised from $24^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$ by adding steam to it. Calculate the mass of the steam required for this purpose.

- Watch Video Solution

124. One mole of a diatomic ideal gas $(\gamma=1.4)$ is taken through a cyclic process starting from point A. The process $A \rightarrow B$ is an adiabatic compression, $B \rightarrow C$ is isobaric expansion, $C \rightarrow D$ is an adiabatic expansion, and $D \rightarrow A$ is isochoric. The volume ratios are $V_{A} / V_{B}=16$ and $V_{C} / V_{B}=2$ and the temperature at A is $T_{A}=300 K$.

Calculate the temperature of the gas at the points B and D and find the efficiency of the cycle.

- Watch Video Solution

125. The apparatus shown in the figure consists of four glass columns connected by horizontal section. The height of two central column B and

C are 49 cm each. The two outer columns A and D are open to the temperature. A and C are maintained at a temperature of $95^{\circ} \mathrm{C}$ while the columns B and D are maintained at $5^{\circ} \mathrm{C}$. The height of the liquid in A and D measured from the base the are 52.8 cm and 51 cm respectively. Determine the coefficient of thermal expansion of the liquid

- Watch Video Solution

126. One mole of an ideal monatomic gas is taken round the cyclic process

ABCA as shown in figure. Calculate

(a) the work done by the gas.
(b) the heat rejected by the gas in the path CA and the heat absorbed by the gas in the path $A B$,
(c) the net heat absorbed by the gas in the path $B C$,
(d) the maximum temperature attained by the gas during the cycle.

- Watch Video Solution

127. A solid body X of heat capacity C is kept in an atmosphere whose temperature is $T_{A}=300 \mathrm{~K}$. At time $t=0$ the temperature of X is $T_{0}=400 \mathrm{~K}$. It cools according to Newton's law of cooling. At time t_{1}, its temperature is found to be 350 K . At this time $\left(t_{1}\right)$, the body X is
connected to a large box Y at atmospheric temperature is T_{4}, through a conducting rod of length L, cross-sectional area A and thermal conductivity K. The heat capacity Y is so large that any variation in its temperature may be neglected. The cross-sectional area A of hte connecting rod is small compared to the surface area of X . Find the temperature of X at time $t=3 t_{1}$.

- Watch Video Solution

128. Two moles of an ideal monatomic gas, initially at pressure p_{1} and volume V_{1}, undergo an adiabatic compression until its volume is V_{2}. Then the gas is given heat Q at constant volume V_{2}.
(i) Sketch the complete process on a $\mathrm{p}-\mathrm{V}$ diagram.
(b) Find the total work done by the gas, the total change in its internal energy and the final temperature of the gas. [Give your answer in terms of p_{1}, V_{1}, V_{2}, Q and $\left.R\right]$

- Watch Video Solution

129. Two moles of an ideal monatomic gas is taken through a cycle $A B C A$ as shown in the P-T diagram. During the process $A B$, pressure and temperature of the gas very such that $P T=C o n s t a n t$. It $T_{1}=300 K$, calculate

(a) the work done on the gas in the process $A B$ and
(b) the heat absorbed or released by the gas in each of hte processes. Give answer in terms of the gas constant R.

- Watch Video Solution

130. An ice cube of mass 0.1 kg at $0^{\circ} \mathrm{C}$ is placed in an isolated container which is at $227^{\circ} \mathrm{C}$. The specific heat S of the container varies with
temperature T according to the empirical relation $S=A+B T$, where $A=100 \mathrm{cal} / \mathrm{kg}-K$ and $B=2 \times 10^{-2} \mathrm{cal} / \mathrm{kg}-K^{2}$. If the final temperature of the container is $27^{\circ} \mathrm{C}$, determine the mass of the container. (Latent heat of fusion of water $=8 \times 10^{4} \mathrm{cal} / \mathrm{kg}$, Specific heat of water $\left.=10^{3} \mathrm{cal} / \mathrm{kg}-K\right)$.

- Watch Video Solution

131. A monoatomic ideal gas of two moles is taken through a cyclic process starting from A as shown in figure. The volume ratios are $\frac{V_{B}}{V_{A}}=2$ and $\frac{V_{D}}{V_{A}}=4$. If the temperature T_{A} at A is $27^{\circ} \mathrm{C}$.

Calculate,
(a) the temperature of the gas at point B ,
(b) heat absorbed or released by the gas in each process,
(c) the total work done by the gas during the complete cycle. Express your answer in terms of the gas constant R.

- Watch Video Solution

132. A cubical box of side 1 meter contains heluim gas (atomic weight 4) at a pressure of $100 \mathrm{~N} / \mathrm{m}^{2}$. During and obervation time of 1 second, an atom travelling with the root-mean-square speed parallel to one of the edges of the cube, was found to make 500 hits with a particular wall, without any collision with other atoms. Take $R=\frac{25}{3} J m o \leq-K$ and $k=1.38 \times 10^{-23} J / K$
(a) Evalute the temperature of the gas.
(b) Evalute the average kinetic energy per atom.
(c) Evalute the total mass of helium gas in the box.

- Watch Video Solution

133. An insulated container containing monoatomic gas of molar mass s is moving with a velocity v_{0}. If the container is suddenly stopped, find the change in temperature.

- Watch Video Solution

134. Hot oil is circulated thorugh an insulated container with a wooden lid at the top whose conductivity $K=0.149 J /\left(m-{ }^{\circ} C-\mathrm{sec}\right)$, thickness $t=5 \mathrm{~mm}$, emissivity $=0.6$ Temperature of the top of the lid is maintaining at $T_{l}=127^{\circ} \mathrm{C}$. If the ambient temperature $T_{a}=27^{\circ} \mathrm{C}$.

Calculate:
(a) rate of heat loss per unit area due to radiation from the lid.
(b) temperature of the oil. (Given $\left.\sigma=\frac{17}{3} \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}\right)$

- Watch Video Solution

135. A diatomic gas is enclosed in a vessel fitted with massless movable piston. Area of cross section of vessel is $1 m^{2}$. Initial height of the piston is 1 m (see the figure). The initial temperature of the gas is 300 K . The temperature of the gas is increased to 400 K , keeping pressure constant, calculate the new height of the piston. The piston is brought to its initial position with no heat exchange. Calculate the final temperature of the gas. You can leave answer in fraction.

(Watch Video Solution

136. A small spherical body of radius r is falling under gravity in a viscous medium. Due to friction the meduim gets heated. How does the rate of heating depends on radius of body when it attains terminal velocity?

- Watch Video Solution

137. A cylinder rod of length 1 , thermal conductivity K and area of cross section A has one end in the furnace at temperature T_{1} and the other end in surrounding at temperature T_{2}. Surface of the rod exposed to the surrounding has emissivity e. Also $T_{2}=T_{s}+\Delta T$ and $T_{s} \gg \Delta T$. If
$T_{1}-T_{s} \propto \Delta T$, find the proportionality constant.

- Watch Video Solution

138. A cubical block of co-efficient of linear expansion α_{s} is submerged partially inside a liquid of co-efficient of volume expansion γ_{l}. On increasing the temperature of the system by ΔT, the height of the cube inside the liquid remains unchanged. Find the relation between α_{s} and γ_{l}.
139. A cylinder of mass 1 kg is given heat of 20,000 J at atmospheric pressure. If initially the temperature of cylinder is $20^{\circ} \mathrm{C}$, find
(a) final temperature of the cylinder.
(b) work done by the cylinder.
(c) change in internal energy of the cylinder
(Given that specific heat of cylinder=400 $\mathrm{Jkg}^{-1} \wedge \circ \mathrm{C}^{-1}$, Atmospheric pressure $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and Density of cylinder $=9000 \mathrm{~kg} / \mathrm{m}^{3}$)

- Watch Video Solution

140. 0.05 kg steam at 373 K and 0.45 kg of ice at 253 K are mixed in an insultated vessel. Find the equilibrium temperature of the mixture. Given, $L_{f u s i o n}=80 \mathrm{cal} / \mathrm{g}=336 \mathrm{~J} / \mathrm{g}, L_{\text {vap } \text { or ization }}=540 \mathrm{cal} / \mathrm{g}=2268 \mathrm{~J} / \mathrm{g}, C_{i c e}=$

- Watch Video Solution

141. A fixed thermally conducting cylinder has a radius R and height L_{0}. The cylinder is open at ita bottom and has a small hole at its top. A piston
of mass M is held at a distance L from the top surface, as shown in the figure. The atmospheric pressure is P_{0}.

The piston is now pulled out slowly and held at a distance 2 L from the top. The pressure in the cylinder between its top and the piston will then be
A. P_{0}
B. $\frac{P_{0}}{2}$
c. $\frac{P_{0}}{2}+\frac{M g}{\pi R^{2}}$
D. $\frac{P_{0}}{2}-\frac{M g}{\pi R^{2}}$

Answer: A

142. A fixed thermally conducting cylinder has a radius R and height L_{0}. The cylinder is open at ita bottom and has a small hole at its top. A piston of mass M is held at a distance L from the top surface, as shown in the figure. The atmospheric pressure is P_{0}.

While the piston is at a distance 2 L from the top, the hole at the top is sealed. The piston is then released, to a position where it can stay in equilibrium. In this condition, the distance of the piston from the top is
A. $\left(\frac{2 P_{0} \pi R^{2}}{\pi R^{2} P_{0}+M g}\right)(2 L)$
B. $\left(\frac{P_{0} \pi R^{2}-M g}{\pi R^{2} P_{0}}\right)(2 L)$
c. $\left(\frac{P_{0} \pi R^{2}+M g}{\pi R^{2} P_{0}}\right)(2 L)$
D. $\left(\frac{P_{0} \pi R^{2}}{\pi R^{2} P_{0}-M g}\right)(2 L)$

Answer: D

- Watch Video Solution

143. A fixed thermally conducting cylinder has a radius R and height L_{0}. The cylinder is open at ita bottom and has a small hole at its top. A piston of mass M is held at a distance L from the top surface, as shown in the figure. The atmospheric pressure is P_{0}.

The piston is taken completely out of the cylinder. The hole at the top is
sealed. A water tank is brought below the cylinder and put in a position so that the water surface in the tank is at the same level as the top of the cylinder as shown in the figure. The density of the water is ρ. In equilibrium, the height H of the water coulmn in the cylinder satisfies

A. $\rho g\left(L_{0}-H\right)^{2}+P_{0}\left(L_{0}-H\right)+L_{0} P_{0}=0$
B. $\rho g\left(L_{0}-H\right)^{2}-P_{0}\left(L_{0}-H\right)-L_{0} P_{0}=0$
C. $\rho g\left(L_{0}-H\right)^{2}+P_{0}\left(L_{0}-H\right)-L_{0} P_{0}=0$
D. $\rho g\left(L_{0}-H\right)^{2}-P_{0}\left(L_{0}-H\right)+L_{0} P_{0}=0$

Answer: C
144. A small spherical monoatomic ideal gas bubble $(\gamma=5 / 3)$ is trapped inside a liquid of density ρ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas.

The temperature of the gas when the bubble is at the bottom is T_{0}, the height of the liquid is H and the atmospheric pressure P_{0} (Neglect surface tension).

As the bubble moves upwards, besides the buyoncy force the following forces are acting on it
A. Only the force of gravity
B. The force due to gravity and the force due to the pressure of the liquid
C. The force due to gravity, the force due to the pressure of the liquid and the force due to viscocity of the liquid
D. The force due to gravity and the force due to viscocity of the liquid

Answer: D

- Watch Video Solution

145. A small spherical monoatomic ideal gas bubble $(\gamma=5 / 3)$ is trapped inside a liquid of density ρ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_{0}, the height of the liquid is H and the atmospheric pressure P_{0} (Neglect surface tension).

When the gas bubble is at a height y from the bottom, its temperature is-
A. $T_{0}\left(\frac{P_{0}+\rho_{l} g H}{P_{0}+\rho_{l} g y}\right)^{2 / 5}$
B. $T_{0}\left(\frac{P_{0}+\rho_{l} g(H-y)}{P_{0}+\rho_{l} g H}\right)^{2 / 5}$
C. $T_{0}\left(\frac{P_{0}+\rho_{l} g H}{P_{0}+\rho_{l} g y}\right)^{3 / 5}$
D. $T_{0}\left(\frac{P_{0}+\rho_{l} g(H-y)}{P_{0}+\rho_{l} g H}\right)^{3 / 5}$

Answer: B

- Watch Video Solution

146. A small spherical monoatomic ideal gas bubble $(\gamma=5 / 3)$ is trapped inside a liquid of density ρ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T_{0}, the height of the liquid is H and the atmospheric pressure P_{0} (Neglect surface tension).

The buyoncy force acting on the gas bubble is (Assume R is the universal gas constant)

$$
\begin{aligned}
& \text { A. } \rho_{l} n R g T_{0} \frac{\left(P_{0}+\rho_{l} g H\right)^{2 / 5}}{\left[P_{0}+\rho_{l} g y\right]^{7 / 5}} \\
& \text { B. } \frac{\rho_{l} n R g T_{0}}{\left(P_{0}+\rho_{l} g H\right)^{2 / 5}\left[P_{0} \rho_{l} g(H-y)\right]^{3 / 5}}
\end{aligned}
$$

C. $\rho_{l} n R g T_{0} \frac{\left(P_{0}+\rho_{l} g H\right)^{3 / 5}}{\left[P_{0}+\rho_{l} g y\right]^{8 / 5}}$
D. $\frac{\rho_{l} n R g T_{0}}{\left(P_{0}+\rho_{l} g H\right)^{3 / 5}\left[P_{0} \rho_{l} g(H-y)\right]^{2 / 5}}$

Answer: B

- Watch Video Solution

147. In the figure, a container is shown to have a movable (without friction) piston on top. The container and the piston are all made of perfectly insulated material allowing no heat transfer between outside and inside the container. The container is divided into two compartments by a rigid partition made of a thermally conducting material that allows slow transfer of heat. The lower compartment of the container is filled with 2 moles of an ideal monatomic gas at 700 K and the upper compartment is filled with 2 moles of an ideal diatmoic gas at 400K. The heat capacities per mole of an ideal monatomic gas are $C_{V}=\frac{3}{2} R, C_{P}=\frac{5}{2} R$, and those for an ideal diatomic gas are $C_{V}=\frac{5}{2} R, C_{P}=\frac{7}{2} R$,

Consider the partition to be rigidly fixed so that it does not move. When equilibrium is achieved, the final temperature of the gasses will be
A. 550 K
B. 525 K
C. 513 K
D. 490 K

Answer: B
148. In the figure, a container is shown to have a movable (without friction) piston on top. The container and the piston are all made of perfectly insulated material allowing no heat transfer between outside and inside the container. The container is divided into two compartments by a rigid partition made of a thermally conducting material that allows slow transfer of heat. The lower compartment of the container is filled with 2 moles of an ideal monatomic gas at 700 K and the upper compartment is filled with 2 moles of an ideal diatmoic gas at 400K. The heat capacities per mole of an ideal monatomic gas are $C_{V}=\frac{3}{2} R, C_{P}=\frac{5}{2} R$, and those for an ideal diatomic gas are $C_{V}=\frac{5}{2} R, C_{P}=\frac{7}{2} R$,

Now consider the partition to be free to move without friction so that
the pressure of gasses in both compartments is the same. The total work done by the gases till the time they achives equilibrium will be
A. -200 K
B. $200 R$
C. $100 R$
D. $-100 R$

Answer: D

- Watch Video Solution

149. Statement-1: The total translational kenetic energy of fall the molecules of a given mass of an ideal gas is 1.5 times the product of its pressure and its volume because.

Statement-2: The molecules of a gas collide with each other and the velocities of the molecules change due to the collision.
A. Statement-1 is True,Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement--1
C. Statement- 1 is True, Statement-2 is False
D. Stement-2 is False, Statement-2 is True

Answer: B

- Watch Video Solution

150. A metal rod $A B$ of length $10 x$ has its one end A in ice at $0^{\circ} C$, and the other end B in water at $100^{\circ} \mathrm{C}$. If a point P one the rod is maintained at $400^{\circ} C$, then it is found that equal amounts of water and ice evaporate and melt per unit time. The latent heat of evaporation of water is $540 \mathrm{cal} / g$ and latent heat of melting of ice is $80 \mathrm{cal} / \mathrm{g}$. If the point P is at a distance of λx from the ice end A , find the value λ. [Neglect any heat loss to the surrounding.]

(D) Watch Video Solution

151. A piece of ice (heat capacity $=2100 \mathrm{Jkg}^{-1} \wedge \circ C^{-1}$ and latent heat $=3.36 \times 10^{5} \mathrm{Jkg}^{-1}$) of mass m grams is at $-5^{\circ} \mathrm{C}$ at atmospheric pressure. It is given 420J of heat so that the ice starts melting. Finally when the ice-water mixture is in equilibrium, it is found that 1 gm of ice has melted. Assuming there is no other heat exhange in the process, the value of m is

- Watch Video Solution

152. Two spherical bodies, $A($ radius 6 cm) and B (radius 18 cm) are at temperature T_{1} and T_{2}, respectively. The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm . Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to that of B ?
153. A diatomic ideal gas is compressed adaibatically to $1 / 32$ of its initial volume. If the initial temperature of the gas is T_{i} (in Kelvin) and the final temperature is a T_{i}, the value of a is

- Watch Video Solution

154. Steel wire of length 'L' at $40^{\circ} \mathrm{C}$ is suspended from the ceiling and then a mass ' m ' is hung from its free end. The wire is cooled down from $40^{\circ} C \rightarrow 30^{\circ} C$ to regain its original length 'L'. The coefficient of linear thermal expansion of the steel is $10^{-5} /{ }^{\circ} \mathrm{C}$, Young's modulus of steel is $10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and radius of the wire is 1 mm . Assume that $L \gg$ diametere of the wire. Then the value of ' m ' in kg is nearly

- Watch Video Solution

155. A thermodynamic system is taken from an initial state I with internal energy $U_{i}=-100 J$ to the final state f along two different paths iaf and ibf, as schematically shown in the figure. The work done by the system $W_{a f}=200 J, W_{i b}=50 J$ and $W_{b f}=100 J$ respectively. The heat supplied to the system along the path iaf, ib and bf are $Q_{i a f}, Q_{i b}, Q_{b f}$ respectively. If the internal energy of the system in the state b is $U_{b}=200 \mathrm{~J}$ and $Q_{i a f}=500 \mathrm{~J}$, The ratio $\frac{Q_{b f}}{Q_{i b}}$ is

- Watch Video Solution

156. Two spherical stars A and B emit blackbody radiation. The radius of A is 400 times that of B and A emits 10^{4} times the power emitted from B. The ratio $\left(\frac{\lambda_{A}}{\lambda_{B}}\right)$ of their wavelengths λ_{A} and λ_{B} at which the peaks occur in their respective radiation curves is
157. A metal is heated in a furnace where a sensor is kept above the metal surface to read the power radiated (P) by the metal. The sensor has scale that displays $\log _{2},\left(P / P_{0}\right)$, where P_{0} is constant. When the metal surface is at a temperature of $487^{\circ} \mathrm{C}$, the sensor shows a value 1 . Assume that the emissivity of the metallic surface remains constant. What is the value displyed by the sensor when the temperature of the metal surface is raised to $2767^{\circ} \mathrm{C}$?

- Watch Video Solution

158. Which statement is incorrect ?
A. all reversible cyles have same efficiency
B. reversible cycle has more efficiency than an irreversible one
C. Carnot cycle is reversible one
D. Carnot cycle has the maximum efficiency in all cylces.

- Watch Video Solution

159. Heat given to a body which raises its temperature by $1^{\circ} \mathrm{C}$ is
A. water equivalent
B. thermal capacity
C. specific heat
D. temperature gradient

Answer: B

- Watch Video Solution

160. Infrared radiation is detected by
A. spectrometer
B. pyrometer
C. nanometer
D. photometer

Answer: B

- Watch Video Solution

161. Which of the following is more close to a black body?
A. black board paint
B. green leaves
C. black holes
D. red roses

Answer: A

162. Cooking gas container are kept in a lorry moving with uniform speed.

The temperature of the gas molecules inside will
A. increase
B. decrease
C. remain same
D. decrease for some, while increase for others

Answer: A

- Watch Video Solution

163. If mass-energy equilivalence is taken into account, when water is cooled to from ice, the mass of water should
A. increase
B. remains unchanged
C. decrease
D. first increase then decrease

Answer: C

- Watch Video Solution

164. At what temperature is the r.m.s velocity of a hydrogen molecule equal to that of an oxygen molecule at $24^{\circ} \mathrm{C}$?
A. 80 K
B. -73 K
C. $3 K$
D. 20 K

Answer: D

- Watch Video Solution

165. Even Carnot engine cannot give 100% efficiency because we cannot
A. prevent radiation
B. find ideal sources
C. reach absolute zero temperature
D. eliminate friction.

Answer: C

- Watch Video Solution

166. 1 mole of a gas with $\gamma=7 / 5$ is mixed with 1 mole of a gas with $\gamma=5 / 3$, then the value of γ for the resulting mixture is
A. $7 / 5$
B. $2 / 5$
C. $24 / 16$
D. $12 / 7$

Answer: C

- Watch Video Solution

167. Two spheres of the same material have radii 1 m and 4 m and temperatures 4000K and 2000K respectively. The ratio of the energy radiated per second by the first sphere to that by the second is
A. 1: 1
B. 16: 1
C. $4: 1$
D. 1:9

Answer: A

168. "Heat cannot by itself flow from a body at lower temperature to a body at higher temperature" is a statement or consequence of
A. second law of thermodynamics
B. conservation of momentum
C. conservation of mass
D. first law of thermodynamics

Answer: A

- Watch Video Solution

169. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_{P} / C_{V} for the gas is
A. $\frac{4}{3}$
B. 2
C. $\frac{5}{3}$
D. $\frac{3}{2}$

Answer: D

- Watch Video Solution

170. Which of the following parameters does not characterize the thermodynamic state of matter?
A. Temperature
B. pressure
C. Work
D. Volume

Answer: C

171. A Carnot engine takes $3 \times 10^{6} \mathrm{cal}$. of heat from a reservoir at $62^{\circ} \mathrm{C}$, and gives it to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is
A. $4.2 \times 10^{6} J$
B. $8.4 \times 10^{6} J$
C. $16.8 \times 10^{6} J$
D. zero

Answer: B

- Watch Video Solution

172. The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by
A. Rayleigh Jeans law
B. Plank's law of radiation
C. Stefan's law of radiation
D. Wien's law

Answer: D

- Watch Video Solution

173. According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta \theta)^{n}$, where $\Delta \theta$ is the difference of the temperature of the body and the surroundings, and n is equal to
A. two
B. three
C. four
D. one

Answer: D

- Watch Video Solution

174. One mole of ideal monoatomic gas $(\gamma=5 / 3)$ is mixed with one mole of diatomic gas $(\gamma=7 / 5)$. What is γ for the misture? γ Denotes the ratio of specific heat at constant pressure, to that at constant volume
A. $35 / 23$
B. $23 / 15$
C. $3 / 20$
D. $4 / 3$

Answer: C

- Watch Video Solution

175. If the temperature of the sun were to increase form T to 2 T and its radius from R to $2 R$, then the ratio of the radiant energy received on earth to what it was previously will be
A. 32
B. 16
C. 4
D. 64

Answer: D

- Watch Video Solution

176. Which of the following statements is correct for any thermodynamic system?
A. The change in entropy can never be zero
B. Inernal energy and entropy and state functions
C. The internal energy changes in all process
D. The work done in an adiabatic process is always zero.

Answer: B

- Watch Video Solution

177. Two thermally insulated vessel 1 and 2 are filled with air at temperature $\left(T_{1} T_{2}\right)$, volume $\left(V_{1} V_{2}\right)$ and pressure $\left(P_{1} P_{2}\right)$ respectively. If the valve joining the two vessels is opened, the temperature inside the vessel at equilibrium will be
A. $T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right) /\left(P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}\right)$
B. $\left(T_{1}+T_{2}\right) / 2$
C. $T_{1}+T_{2}$
D. $T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right) /\left(P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}\right)$

Answer: A

- Watch Video Solution

178. The temperature of the two outer surfaces of a composite slab, consisting of two materails having coefficients of two materails having coefficients of termal conductivity K and 2 K and thickness x and 4 x , respectively, are T_{2} and $T_{1}\left(T_{1}>T_{1}\right)$. The rate of heat transfer through
the slab, in a steady state is $\left(\frac{A\left(T_{2}-T_{1}\right) K}{2}\right) f$, with f equal to

A. $\frac{2}{3}$
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

Answer: D

(Watch Video Solution

179. Which of the following is incorrect regarding the first law of thermodynamics?
A. It is a restatement of the principle of conservation of energy
B. It is not applicable to any cyclic process
C. It introduces the concept of the internal energy
D. It introduces the concept of the internal energy

Answer: B::C

- Watch Video Solution

180. The figure shows a system of two concentric spheres of radii r_{1} and r_{2} are kept at temperature T_{1} and T_{2}, respectively. The radial rate of flow of heat in a substance between the two concentric spheres is
proportional to

A. $\operatorname{In}\left(\frac{r_{2}}{r_{1}}\right)$
B. $\frac{r_{2}-r_{1}}{r_{1} r_{2}}$
C. $\left(r_{1}-r_{2}\right)$
D. $\frac{r_{1} r_{2}}{r_{2}-r_{1}}$

Answer: D

0
 Watch Video Solution

181. A system goes from A and B via two processes. I and II as shown in figure. If ΔU_{1} and ΔU_{2} are the changes in internal enregies in the processes I and II respectively, then

A. relation between ΔU_{1} and Δu_{2} can not be determined
B. $\Delta U_{1}=\Delta U_{2}$
C. $\Delta U_{2}<\Delta U_{1}$
D. $\Delta U_{2}>\Delta U_{1}$

Answer: B

182. The temperature -entropy diagram of a reversible engine cycle is given in the figure. Its efficiency is

A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

Answer: D

183. A gaseous mixture consists of 16 g of helium and 16 g of oxygen. The ratio $\frac{C_{p}}{C_{v}}$ of the mixture is
A. 1.62
B. 1.59
C. 1.54
D. 1.4

Answer: A

- Watch Video Solution

184. Assuming the Sun to be a spherical body of radius R at a temperature of TK, evalute the total radiant powerd incident of Earth at a distance r from the sun
where r_{0} is the radius of the Earth and σ is Stefan's constant.
A. $4 \pi r_{0}^{2} R^{2} \sigma \frac{T^{4}}{r^{2}}$
B. $\pi r_{0}^{2} R^{2} \sigma \frac{T^{4}}{r^{2}}$
C. $r_{0}^{2} R^{2} \sigma \frac{T^{4}}{4 \pi r^{2}}$
D. $R^{2} \sigma \frac{T^{4}}{r^{2}}$

Answer: B

D Watch Video Solution

185. Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature T_{0}, while Box contains one mole of helium at temperature $\left(\frac{7}{3}\right) T_{0}$. The boxes are then put into thermal contact with each other, and heat flows between them until the gasses reach a common final temperature (ignore the heat capacity of boxes). Then, the final temperature of the gasses, T_{f} in terms of T_{0} is
A. $T_{f}=\frac{3}{7} T_{0}$
B. $T_{f}=\frac{7}{3} T_{0}$
C. $T_{f}=\frac{3}{2} T_{0}$
D. $T_{f}=\frac{5}{2} T_{0}$

Answer: C

- Watch Video Solution

186. The work of 142 kJ is performed in order to compress one kilo mole of gas adiabatically and in this process the temperature of the gas increases by $7^{\circ} C$. The gas is $\left(R=8.3 \mathrm{Jmol}^{-1} K^{-1}\right)$
A. diatomic
B. triatomic
C. a mixture of monoatomic and diatomic
D. monoatomic

Answer: A

187. When a system is taken from state i to state f along the path iaf, it is found that $Q=50 \mathrm{cal}$ and $W=20 \mathrm{cal}$. Along the path ibf $Q=36 \mathrm{cal} . \mathrm{w}$ along the path ibf is

A. 14 cal
B. 6 cal
C. 16 cal
D. 66 cal

Answer: B

188. A Carnot engine, having an efficiency of $\eta=1 / 10$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J , the amount of energy absorbed from the reservoir at lower temperature is
A. 100 J
B. 99 J
C. 90 J
D. 1 J

Answer: C

- Watch Video Solution

189. One end of a thermally insulated rod is kept at a temperature T_{1} and the other at T_{2}. The rod is composed of two sections of length l_{1} and l_{2} and thermal conductivities K_{1} and K_{2} respectively. The temperature at
the interface of the two section is

A. $\frac{K_{1} l_{1} T_{1}+K_{2} l_{2} T_{2}}{K_{1} l_{1}+K_{2} l_{2}}$
B. $\frac{K_{2} l_{2} T_{1}+K_{1} l_{1} T_{2}}{K_{1} l_{1}+K_{2} l_{2}}$
C. $\frac{K_{2} l_{1} T_{1}+K_{1} l_{2} T_{2}}{K_{2} l_{1}+K_{1} l_{2}}$
D. $\frac{K_{1} l_{2} T_{1}+K_{2} l_{1} T_{2}}{K_{1} l_{2}+K_{2} l_{1}}$

Answer: D

- Watch Video Solution

190. If C_{P} and C_{v} denote the specific heats nitrogen per unite mass at constant pressure and constant volume respectively, then
(1) $C_{P}-C_{v}=\frac{R}{28}$ (2) $C_{P}-C_{v}=\frac{R}{14}$
(3) $C_{P}-C_{v}=R$ (4) $C_{P}-C_{v}=28 R$
A. $C_{P}-C_{V}=28 R$
B. $C_{P}-C_{V}=R / 28$
C. $C_{P}-C_{V}=R / 14$
D. $C_{P}-C_{V}=R$

Answer: B

- Watch Video Solution

191. The speed of sound in oxygen $\left(O_{2}\right)$ at a certain temperature is $460 \mathrm{~ms}^{-1}$. The speed of sound in helium (He) at the same temperature will be (assume both gases to be ideal)
A. $1421 m s^{-1}$
B. $500 m s^{-1}$
C. $650 \mathrm{~ms}^{-1}$
D. $330 \mathrm{~ms}^{-1}$

Answer: A

- Watch Video Solution

192. An insulated container of gas has two chambers separated by an insulating partition. One of the chmabers has volume V_{1} and contains ideal gas at pressure P_{1} and temperature T_{1}. The other chamber has volume V_{2} and contains ideal gas at pressure P_{2} and temperature T_{2}. If the partition is removed without doing any work on the gas, the final equilibrium temperature of the gas in the container will be
A. $\left(T_{1} T_{2} \frac{P_{1} V_{1}+P_{2} V_{2}}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}\right.$
B. $\frac{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}{P_{1} V_{1}+P_{2} V_{2}}$
C. $\frac{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}{P_{1} V_{1}+P_{2} V_{2}}$
D. $\frac{T_{1} T_{2}\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}$

Answer: A

- Watch Video Solution

193. A long metallic bar is carrying heat from on eof its ends to the other end under steady-state. The variation of temperature θ along the length x of the bar from its hot end is best described by which of the following figures?
A.
(a)

B.

C.
(c)

D.
(d)

Answer: A

Watch Video Solution

194. Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram

Assuming the gas to be ideal the work done on the gas in taking it form A to B is :
A. $300 R$
B. $400 R$
C. 500 R
D. $200 R$

Answer: B

- Watch Video Solution

195. Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram

The work done on the gas in taking it from D to A is :
A. $+414 R$
B. $-690 R$
C. +690 R
D. $-414 R$

Answer: A

- Watch Video Solution

196. Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram

The net work done on the gas in the cycle $A B C D A$ is :
A. $276 R$
B. $1076 R$
C. $1904 R$
D. zero

Answer: A

197. One kg of a diatomic gas is at pressure of $8 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $4 \mathrm{~kg} / \mathrm{m}^{3}$. What is the energy of the gas due to its thermal motion?
A. $5 \times 10^{4} J$
B. $6 \times 10^{4} J$
C. $7 \times 10^{4} J$
D. $3 \times 10^{4} J$

Answer: A

- Watch Video Solution

198. Statement-1: The temperature dependence of resistance is usually given as $R=R_{0}(1+\alpha \Delta T)$. The resistance of a wire changes from $100 \Omega \rightarrow 150 \Omega$ when its temperature is increased from $27^{\circ} \mathrm{C} \rightarrow 227^{\circ} \mathrm{C}$. This implies that $\alpha=2.5 \times 10^{-3} /{ }^{\circ} \mathrm{C}$.

Statement 2: $R=R_{0}(1+\alpha \Delta T)$ is valid only when the change in the temperature ΔT is small and $\Delta R=\left(R-R_{0}\right) \ll R_{0}$.
A. Statement-1 is True,Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement--1
C. Statement-1 is False, Statement-2 is True
D. Stement-1 is True, Statement-2 is False.

Answer: C

- Watch Video Solution

199. A diatomic ideal gas is used in a Carnot engine as the working substance. If during the adiabatic expansion part of the cycle the volume of the gas increase from V to 32 V , the efficenecy of the engine is

A. 0.5

B. 0.75
C. $0.99^{`}$
D. 0.25

Answer: B

- Watch Video Solution

200. A themallly insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ. It is moving with speed v and it's suddenly brought to rest. Assuming no heat is lost to the surroundings, Its temperature increases by:
A. $\frac{\gamma-1}{2 \gamma R} M v^{2} K$
B. $\frac{\gamma M v^{2}}{2 R} K$
C. $\frac{\gamma-1}{2 R} M v^{2} K$
D. $\frac{\gamma-1}{2(\gamma+1) R} M v^{2} K$

Answer: C

- Watch Video Solution

201. Three perfect gases at absolute temperature T_{1}, T_{2}, and T_{3} are mixed. The masses of molecules are n_{1}, n_{2} and n_{3} respectively. Assuming to loss of energy, the final temperature of the mixture is:
A. $\frac{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}{n_{1}+n_{2}+n_{3}}$
B. $\frac{n_{1} T_{1}^{2}+n_{2} T_{2}^{2}+n_{3} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$
C. $\frac{n_{1}^{2} T_{1}^{2}+n_{2}^{2} T_{2}^{2}+n_{3}^{2} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$
D. $\left(T_{-} 1+T_{-} 2+T_{-} 3\right) / 3^{`}$

Answer: A

- Watch Video Solution

202. A Carnot engine operating between temperature T_{1} and T_{2} has efficiency $1 / 6$. When T_{2} is lowered by 62 K its efficiency increase to $1 / 3$. Then T_{1} and T_{2} are, respectively:
A. $372 K$ and $330 K$
B. $330 K$ and $268 K$
C. $310 K$ and $248 K$
D. $372 K$ and $310 K$

Answer: D

- Watch Video Solution

203. 100 g of water is heated from $30^{\circ} \mathrm{C} \rightarrow 50^{\circ} \mathrm{C}$. Ignoring the slight expansion of the water, the change in its internal energy is (specific heat of water is $4184 \mathrm{~J} / \mathrm{kg} / \mathrm{K})$:
A. $8.4 k J$
B. $84 k J$
C. $2.1 k J$
D. 4.2 kJ

Answer: A

D Watch Video Solution

204. A wooden wheel of radius R is made of two semicircular part . The two parts are held together by a ring made of a metal strip of cross sectional area S and length $\mathrm{L} . \mathrm{L}$ is slightly less than $2 \pi R$. To fit the ring on the wheel, it is heated so that its temperature rises by ΔT and it just steps over the wheel. As it cools down to surrounding temperature, it process the semicircle parts together. If the coefficient of linear expansion of the metal is α, and it Young's modulus is Y , the force that
one part of the wheel applies on the other part is:

A. $2 \pi S Y \alpha \Delta T$
B. $S Y \alpha \Delta T$
C. $\pi S Y \alpha \Delta T$
D. $2 S Y \alpha \Delta T$

Answer: D

- Watch Video Solution

205. Helium gas goes through a cycle ABCDA (consisting of two isochoric and isobaric lines) as shown in figure Efficiency of this cycle is nearly: (Assume the gas to be close to ideal gas)

A. 15.4%
B. 9.1%
C. 10.5%
D. 12.5%

Answer: A

206. A liquid in a beaker has temperature $\theta(t)$ at time t and θ_{0} is temperature of surroundings, then according to Newton's law of cooling the correct graph between $\log _{e}\left(\theta-\theta_{0}\right)$ and t is :
A.
(b)
B.

C.
(c)

D.

Answer: A

207. A Carnot engine, whose efficiency is 40%, takes in heat from a source maintained at a temperature of 500 K . It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be:
A. efficiency of Carnot engine cannot be made larger than 50%
B. 1200 K
C. 750 K
D. 600 K

Answer: C

- Watch Video Solution

208.

The above p-v diagram represents the thermodymic cycle of an engine, operating with an ideal monatomic gas. The amount of heat, extracted from the source in a single cycle is
A. $p_{0} v_{0}$
B. $\left(\frac{13}{2}\right) p_{0} v_{0}$
C. $\left(\frac{11}{2}\right) p_{0} v_{0}$
D. $4 p_{0} v_{0}$

Answer: B

209. If a piece of metal is heated to temperature θ and the allowed to cool in a room which is at temperature θ_{0}, the graph between the temperature T of the metal and time t will be closet to
(a)

B.

(b)
(c)
C.

D.

Answer: C

210. The pressure that has to be applied to the ends of a steel wire of length 10 cm to keep its length constant when its temperature is raised by $100^{\circ} \mathrm{C}$ is : (For steel Young's modulus is $2 \times 10^{11} \mathrm{Nm}^{-2}$ and coefficient of thermal expansion is $1.1 \times 10^{-5} \mathrm{~K}^{-1}$)
A. $2.2 \times 10^{8} \mathrm{~Pa}$
B. $2.2 \times 10^{9} \mathrm{~Pa}$
C. $2.2 \times 10^{7} P a$
D. $2.2 \times 10^{6} \mathrm{~Pa}$

Answer: A

- Watch Video Solution

211. There is a circular tube in a vertical plane. Two liquids which do not mix and of densities d_{1} and d_{2} are filled in the tube. Each liquid substends 90° angle at centre. Radius joining their interface make an
angle α with vertical. Ratio $\frac{d_{1}}{d_{2}}$ is :

A. $\frac{1+\sin a p l h a}{1-\sin \alpha}$
B. $\frac{1+\cos a p l h a}{1-\cos \alpha}$
C. $\frac{1+\tan \text { aplha }}{1-\tan \alpha}$
D. $\frac{1+\sin a p l h a}{1-\cos \alpha}$

Answer: C

212. Three rods of Copper, Brass and Steel are welded together to from a Y shaped structure. Area of cross-section of each rod $=4 \mathrm{~cm}^{2}$. End of copper rod is maintained at $100^{\circ} \mathrm{C}$ where as ends of brass and steel are kept at $0^{\circ} \mathrm{C}$. Lengths of the copper, brass and steel rods are 46,13 and 12 cm respectively. The rods are thermally insulated from surroundings excepts at ends. Thermal cunductivities of copper, brass and steel are $0.92,0.26$ and 0.12 CGS units respectively. Rate of heat flow through copper rod is :
A. $1.2 \mathrm{cal} / \mathrm{s}$
B. $2.4 \mathrm{cal} / \mathrm{s}$
C. $4.8 \mathrm{cal} / \mathrm{s}$
D. $6.0 \mathrm{cal} / \mathrm{s}$

Answer: C

- Watch Video Solution

213. One mole of a diatomic ideal gas undergoes a cyclic process $A B C$ as shown in figure. The process $B C$ is adiabatic. The temperature at A, B and C are $400 \mathrm{~K}, 800 \mathrm{~K}$ and 600 K respectively. Choose the correct statement:

A. The change in internal energy in whole cyclic process is 250R.
B. The change in internal process CA is 700R.
C. The change in internal energy in the process $A B$ is -350 R .
D. The chang in internal energy in the process $B C$ is -500 R .

Answer: D

214. A solid body of constant heat capacity $1 J /{ }^{\circ} C$ is being heated by keeping it contact with reservoirs in two ways:
(i) Sequentially keeping in contact with 2 reservoirs such that each reservoir supplies same amount of heat.
(ii) Sequentially keeping in contact with 8 reservoir such that each reservoir supplies same amount of heat.

In both the cases body is brought from initial temperature 100^{C} to final temperature $200^{\circ} \mathrm{C}$. Entropy change of the body in the tow cases respectively is :
A. $\ln 2,2 \ln 2$
B. $2 \ln 2,8 \ln 2$
C. $\ln 2,4 \ln 2$
D. $\ln 2, \ln 2$

Answer: D

215. Consider a spherical shell of radius R at temperature T. The black body radiation inside it can be considered as an ideal gas of photons with internal energy per unit volume $u=\frac{U}{V} \propto T^{4}$ and pressure $P=\frac{1}{3}\left(\frac{U}{V}\right)$. If the shell now undergoes an adiabatic expansion the relation between T and R is :
A. $T \propto \frac{1}{R}$
B. $T \propto \frac{1}{R^{3}}$
C. $T \propto e^{-R}$
D. $T \propto e^{-3 R}$

Answer: A

- Watch Video Solution

216. Consider an ideal gas confined in an isolated closed chamber. As the gas undergoes an adiabatic expansion, the average time of collision
between molecules increase as V^{q}, where V is the volume of the gas. The value of q is : $\left(\gamma=\frac{C_{p}}{C_{v}}\right)$
A. $\frac{\gamma+1}{2}$
B. $\frac{\gamma-1}{2}$
C. $\frac{3 \gamma+5}{6}$
D. $\frac{3 \gamma-5}{6}$

Answer: A

- Watch Video Solution

217. n' moles of an ideal gas undergoes a process $A \rightarrow B$ as shown in the figure. The maximum temperature of the gas during the process will be:

A. $\frac{9 P_{0} V_{0}}{2 n R}$
B. $\frac{9 P_{0} V_{0}}{n R}$
C. $\frac{9 P_{0} V_{0}}{4 n R}$
D. $\frac{3 P_{0} V_{0}}{2 n R}$

Answer: C
218. A pendulam clock loses 12 s a day if the temperature is $40^{\circ} \mathrm{C}$ and gains 4 s a day if the temperature is $20^{\circ} \mathrm{C}$, The temperature at which the
clock will show correct time, and the co-efficient of linear expansion (α) of the metal of the pendulam shaft are respectively:
A. $30^{\circ} \mathrm{C}: \alpha=1.85 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
B. $55^{\circ} \mathrm{C}: \alpha=1.85 \times 10^{-2} /{ }^{\circ} \mathrm{C}$
C. $25^{\circ} \mathrm{C}: \alpha=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
D. $60^{\circ} \mathrm{C}: \alpha=1.85 \times 10^{-4} /{ }^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

219. An ideal gas under goes a quasi static, reversible process in whichh its molar heat capacity C remains constant. If during this process the relation of pressure P and volume V is given by $P V^{n}=c o n s \tan t$, then n is given by (Here C_{P} and C_{V} are molar specific heat at constant pressur and constant volume, respectively):
A. $n=\frac{C_{P}-C}{C-C_{V}}$
B. $n=\frac{C-C_{V}}{C-C_{P}}$
C. $n=\frac{C_{P}}{C_{V}}$
D. $n=\frac{C-C_{P}}{C-C_{V}}$

Answer: D

- Watch Video Solution

