©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SUNIL BATRA 41 YEARS IITJEE PHYSICS (HINGLISH)

MOMENTUM \& IMPULSE

Jee Main And Advanced

1. A particle of mass 4 m which is at rest explodes into three fragments. Two of the
fragments each of mass m are found to move with a speed v each in mutually perpendicular directions. The total energy released in the process of explosion is

D Watch Video Solution

2. The magnitude of the force (in newtons) acting on a body varies with time t (in micro seconds) as shown in the fig $A B, B C$ and $C D$ are straight line segments. The magnitude of the total impulse of the force on the body from
$t=4 \mu s$ to $t=16 \mu s$ isNs

D Watch Video Solution

3. Two particles of masses m_{1} and m_{2} in projectile motion have velocities \vec{v}_{1} and \vec{v}_{2} respectively at time $t=0$. They collide at time t_{0}. Their velocities become
\vec{v}_{1}^{\prime} and \vec{v}_{2}^{\prime} at time $2 t_{0}$ while still moving

in \begin{tabular}{c}
air.

 The

value

$\left|\left(m_{1} \vec{v}_{1}^{\prime}+m_{2} \vec{v}_{2}^{\prime}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$
\end{tabular}

is
A. zero
B. $\left(m_{1}+m_{2}\right)>_{0}$
C. $\frac{1}{2}\left(m_{1}+m_{2}\right)>_{0}$
D. $2\left(m_{1}+m_{2}\right)>_{0}$

Answer: D

4. Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of $14 m / s$ to the heavier block in the direction of the lighter block. The velocity of the centre of mass is
A. $30 m / s$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $5 m / s$

Answer: C

D Watch Video Solution

5. A ball of mass 0.2 kg rests on a vertical post of height 5 m . A bullet of mass 0.01 kg , travelling with a velocity $V m / s$ in a horizontal direction, hits the centre of the ball.

After the collision, the ball and bullet travel independently. The ball hits the ground at a distance of 20 m and the bullet at a distance of 100 m from the foot of the post. The
velocity V of the bullet is

A. $250 m / s$
B. $250 \sqrt{2} m / s$
C. $400 \mathrm{~m} / \mathrm{s}$
D. $500 \mathrm{~m} / \mathrm{s}$

Answer: D

- Watch Video Solution

6. A particle of mass m is projected from the ground with an initial speed u_{0} at an angle α with the horizontal. At the highest point of its trajectory, it makes a completely inelastic collision with another identical particle, which was thrown vertically upward from the ground with the same initial speed u_{0}. The angle that the composite system makes with the horizontal immediately after the collision is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{4}+\alpha$
C. $\frac{\pi}{4}-\alpha$
D. $\frac{\pi}{2}$

Answer: A

D Watch Video Solution
7. A ball hits the floor and rebounds after an
inelastic collision. In this case
A. the momentum of he ball just after the
collision is the same as that just before the collision.
B. the mechanical energy of the ball remains the same in the collision
C. the total momentum of the ball and the
earth is conserved
D. the total energy of the ball and the
earth is conserved

- Watch Video Solution

8. A shell is fired from a cannon with a velocity
$v(m / \mathrm{sec}$.$) at an angle \theta$ with the horizontal direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed (in m / sec.) of the other piece immediately after the explosion is
A. $3 v \cos \theta$
B. $2 v \cos \theta$
C. $\frac{3}{2} v \cos \theta$
D. $\sqrt{\frac{3}{2}} v \cos \theta$

Answer: A

D Watch Video Solution

9. Two blocks A and B, each of mass m, are connected by a masslesss spring of natural
length L and spring constant K. The blocks are initially resting on a smooth horizontal floor with the spring at its natural length, as shown
in fig. A third identical block C , also of mass m , moves on the floor with a speed v along the line joining A and B, and collides elastically with A. Then

A. the kinetic energy of the A-B system, at maximum compression of the spring, is zero.
B. the kinetic energy of the A-B system, at maximum compression of the spring, is $m v^{2} / 4$.
C. the maximum compression of the spring

$$
\text { is } v \sqrt{(m / K)}
$$

D. the maximum compression of the spring

$$
\text { is } v \sqrt{(m / 2 K)}
$$

Answer: B::D

D Watch Video Solution

10. The balls, having linear momenta
$\vec{p}_{1}=\vec{\pi}$ and $\vec{p}_{2}-2=-\vec{\pi}$, undergo a
collision in free space. There is no external
force acting on the balls. Let $\vec{p}^{\prime}{ }_{1}$ and $\vec{p}{ }_{2}$
be their final momenta. The following option
(s) is (are) NOT ALLOWED for any non-zero
value of $p, a_{1}, a_{2}, b_{1}, b_{2}, c_{1}$ and c_{2}.

$$
\begin{aligned}
& \text { A. } \vec{p}_{1}^{\prime}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k} \\
& \vec{p}_{2}^{\prime}=a_{2} \hat{i}+b_{2} \hat{j} \\
& \text { В. } \vec{p}_{1}^{\prime}=c_{1} \hat{k} \\
& \vec{p}_{2}^{\prime}=c_{2} \hat{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \vec{p}_{1}^{\prime}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k} \\
& \qquad \vec{p}_{2}^{\prime}=a_{2} \hat{i}+b_{2} \hat{j}-c_{1} \hat{k} \\
& \text { D. } \vec{p}_{1}^{\prime}=a_{1} \hat{i}+b_{1} \hat{j} \\
& \qquad \vec{p}_{2}^{\prime}=a_{2} \hat{i}+b_{1} \hat{j}
\end{aligned}
$$

Answer: A::D

D Watch Video Solution

11. A point mass of 1 kg collides elastically with
a stationary point mass of 5 kg . After their collision, the 1 kg mass reverses its direction
and moves with a speed of $2 m s^{-1}$. Which of
the following statements (s) is (are) correct for the system of these two masses?
A. Total momentum of the system is
$3 \mathrm{kgms}^{-1}$
B. Momentum of 5 kg mass after collision is

$$
4 \mathrm{kgms}^{-1}
$$

C. Kinetic energy of the centre of mass is
0.75 J
D. Total kinetic energy of the system is 4 J

Answer: A::C

D Watch Video Solution

12. A particle of mass m is attached to one end of a mass-less spring of force constant k, lying on a frictionless horizontal plane. The other end of the spring is fixed. The particle starts moving horizontally from its equilibrium position at time $t=0$ with an initial velocity u_{0}. when the speed of the particle is $0.5 u_{0}$, it
collides elastically with a rigid wall. After this collision
A. The speed of the particle when it returns
to its equilibrium position is u_{0}.
B. The time at which the particle passes
through the equilibrium position for the
first time is $t=\pi \sqrt{\frac{m}{k}}$
C. The time at which the maximum
compression of the spring occurs is

$$
t=\frac{4 \pi}{3} \sqrt{\frac{m}{k}}
$$

D. The time at which the particle passes
through the equilibrium position for the
second time is $t=\frac{5 \pi}{3} \sqrt{\frac{m}{k}}$

Answer: A::D

D Watch Video Solution

13. A body of mass m moving with velocity V in the X-direction collides with another body of mass M moving in Y -direction with velocity v . They coalesce into one body during collision.

Calculate :

(i) the direction and magnitude of the momentum of the final body.
(ii) the fraction of initial kinetic energy transformed into heat during the collision in terms of the two masses.

D Watch Video Solution

14. Three particles A, B and C of equal mass
move with equal speed V along the medians of
an equilateral triangle as shown in hgure. They
collide at the centroid G of the triangle. After the collision, A comes to test, B retraces its path with the speed V . What is the velocity of

C?

- Watch Video Solution

15. Two bodies A and B of masses m and $2 m$
respectively are placed on a smooth floor. They are connected by a spring. A third body C of mass m moves with velocity v_{0} along the line joining A and B and collides elastically with A as shown in Fig.

At a certain instant of time t_{0} after collision, it
is found that the instantaneous velocities of A
and B are the same. Further at this instant the compression of the spring is found to be x_{0}. Determine (i) the common velocity of A and B at time t_{0}, and (ii) the spring constant.

D Watch Video Solution

16. A ball of mass 100 gm is projected vertically
upwards from the ground with a velocity of
$49 \mathrm{~m} / \mathrm{sec}$. At the same time another identical
ball is dropped from a height of 98 m to fall
freely along the same path as that followed by
the first ball. After some time the two balls collide and stick together and finally fall to the ground. Find the time of flight of the masses.

D Watch Video Solution

17. A bullet of mass M is fired with a velocity
$50 \mathrm{~m} / \mathrm{s}$ at an angle with the horizontal. At the highest point of its trajectory, it collides headon with a bob of mass 3 M suspended by a massless string of length $10 / 3$ metres and
gets embeded in the bob. After the collision, the string moves through an angle of 120°.

Find
(i) the angle θ,
(ii) the vertical and horizontal coordinates of the initial position of the bob with respect to the point of firing of the bullet. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

D Watch Video Solution

18. A block ' A ' of mass $2 m$ is placed on another
block 'B' of mass 4 m which in turn is placed on
a fixed table. The two blocks have a same
length 4d and they are placed as shown in fig
The coefficient of friction (both static and
kinetic) between the block ' B ' and table is μ.

There is no friction between the two blocks. A
small object of mass moving horizontally
along a line passing through the centre of mass (cm.) of the block B and perpendicular to
its face with a speed v collides elastically with
the block B at a height d above the table.

(a) What is the minimum value of v (call it v_{0}) required to make the block A topple?
(b) If $v=2 v_{0}$,find the distance (from the point
P in the figure) at which the mass m falls on
the table after collision. (Ignore the role of friction during the collision).
19. A cart is moving along $+x$ direction with a
velocityof $4 m / s$. A person on the cart throws
a stone with a velocity of $6 \mathrm{~m} / \mathrm{s}$ relative to
himself. In the frame of reference of the cart
the stone is thrown in y-z plane making an
angle of 30° with vertical z-axis. At the highest
point of its trajectory, the stone hits an object
of equal mass hung vertically from the branch
of a tree by means of a string of length L. A
completely inelastic collision occurs, in which
the stone gets embedded in the object.

Determine :
(i) The speed of the combined mass immediately after the collision with respect to an observer on the ground,
(ii) The length L of the string such that the tension in the string becomes zero when the string becomes horizontal during the subsequent motion of the combined mass.

D Watch Video Solution

20. A car P is moving with a uniform speed
$5 \sqrt{3} m / s$ towards a carriage of mass 9 kg at
rest kept on the rails at a point B as shown in
figure. The height AC is 120 m . Cannon balls of

1 kg are fired from the car with an initial velocity $100 \mathrm{~m} / \mathrm{s}$ at an angle 30° with the horizontal. The first cannon hall hits the stationary carriage after a time t_{0} and sticks to it. Determine t_{0}.

At t_{0}, the second cannon ball is fired. Assume
that the resistive force between the rails and
the carriage is constant and ignore the vertical motion of the carriage throughout. If the second ball also hits and sticks to the carriage, what will be the horizontal velocity of the carriage just after the second impact?

D Watch Video Solution

21. A particle of mass m, moving in a cicular path of radius R with a constant speed v_{2} is
located at point $(2 R, 0)$ at time $t=0$ and a
man starts moving with a velocity v_{1} along the

+ ve y-axis from origin at time $t=0$. Calculate
the linear momentum of the particle w.r.t. the man as a function of time.

D Watch Video Solution
22. STATEMENT-I : In an elastic collision between two bodies, the relative speed of the bodies after collision is equal to the relative speed before the collision.

STATEMENT-2 : In an elastic collision, the linear momentum of the system is conserved.
A. Statement-1 is True, Statement-2 is True,

Statement-2 is a correct explanation for

Statement-1.
B. Statement-1 is True, Statement-2 is True,

Statement-2 is NOT a correct explanation
for Statement-1
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

D Watch Video Solution

23. A bob of mass m, suspended by a string of
length l_{1} is given a minimum velocity required to complete a full circle in the vertical plane.

At the highest point, it collides elastically with
another bob of mass m suspended by a string
of length l_{2}, which is initially at rest. Both the
strings are mass-less and inextensible. If the second bob, after collision acquires the minimum speed required to complete a full circle in the vertical plane, the ratio $\frac{l_{1}}{l_{2}}$ is
24. A machine gun fires a bullet of mass 40 g with a velocity $1200 \mathrm{~ms}^{-1}$. The man holding it can exert a maximum force of 144 N on the gun. How many bullets can be fire per second at the most?
A. Two
B. Four
C. One
D. Three

Answer: D

- Watch Video Solution

25. Two sphere A and B of masses
m_{1} and m_{2} respectivelly colides. A is at rest initally and B is moving with velocity v along x -axis. After collision B has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction. The mass A moves after collision in the direction.
A. $\sqrt{3} v$
B. v
C. $\frac{v}{\sqrt{3}}$
D. $\frac{2}{\sqrt{3}} v$

Answer: D

D Watch Video Solution

26. A bomb of mass 16 kg at rest explodes into two pieces of masses 4 kg and 12 kg . The velolcity of the 12 kg mass is $4 m s^{-1}$. The kinetic energy of the other mass is
A. $144 J$
B. 288 J
C. 192 J
D. 96 J

Answer: B

D Watch Video Solution

27. Statement 1 : Two particles moving in the same direction do not lose all their energy in a completely inelastic collision.

Statement 2 : The principle of conservation of momentum holds true for all kinds of collisions.
A. (a) Statement -1 is true, Statement -2 is
true , Statement -2 is the correct explanation of Statement 1.
B. b) Statement -1 is true, Statement -2 is
true, Statement -2 is not the correct
explanation of Statement -1

C. (c) Statement -1 is false, Statement -2 is

 true.D. (d) Statement - 1 is true, Statement -2 is false.

Answer: A

D Watch Video Solution
28. The figure shows the position-time ($x-t$) graph of one-dimensional motion of a body of
mass 0.4 kg . The magnitude of each impulse is

A. $0.4 N s$
B. 0.8 Ns
C. 1.6 Ns
D. 0.2 Ns

Answer: B

- Watch Video Solution

29. This question has statement I and
statement II. Of the four choices given after
the statements, choose the one that best describes the two statements.

Statement I: A point particle of mass m moving with speed v collides with stationary point particle of mass M. If the maximum energy loss possible glven as $f\left(\frac{1}{2} m v^{2}\right)$ then $f=\left(\frac{m}{M+m}\right)$

Statement II: Maximum energy loss occurs
when the particles get stuck together as a result of the collision.
A. (a) Statement -I is true, Statment -II is
true, Statement -II is the correct explanation of Statement -I.
B. (b) Statement-I is true, Statment -II is
true, Statement -II is not the correct explanation of Statement -II.
C. (c) Statement -I is true, Statment -II is
false.

D. Statement -I is false, Statement -II is true.

Answer: D

D Watch Video Solution

30. A particle of mass m moving in the x direction with speed $2 v$ is hit by another particle of mass 2 m moving in they y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to :
A. 56%
B. 62%
C. 44%
D. 50%

Answer: A

- Watch Video Solution

