©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - SUNIL BATRA 41 YEARS IITJEE PHYSICS

(HINGLISH)

ROTATIONAL MOTION

Jee Main And Advanced

1. A uniform cube of side a and mass m rests on a rough horizontal table. A horizontal force F is applied normal to one of the faces at a point that is directly above the centre of the face, at a height 3a/4 above the base. The minimum value of F which the cube begins to tip about the edge is(Assume that the cube does not slide).
2. A smooth uniform rod of length L and mass M has two identical beads of negligible size each of mass m which can slide freely along the rod. Initially the two beada are at the centre of the rod and the system is rotating with an angular velocity ω_{0} about an axis perpenducular to the rod and passing through the midpoint of the rod. There are no external forces. When the beads reach the ends of the rod, the angular velocity of the system is

- Watch Video Solution

3. A cylinder of mass M and radius R is resting on a horizontal paltform (which is parallel to the x-y plane) with its exis fixed along the y-axis and free to rotate about its axis. The platform is given a motion in the x -direction given by $x=A \cos (\omega t)$. There is no slipping between the cylinder and platform. The maximum torque acitng on the cylinder during its motion is

D Watch Video Solution

4. A stone of mass m tied to the end of a string, is whirled around in a horizontal circle. (Neglect the force due to gravity). The length of the string is reduced gradually keeping the angular momentum of the stone about the centre of the circle constant. Then, the tension in the string is given by $T=A r^{2}$ where A is a constant, r is the instantaneous radius fo the circle and $\mathrm{n}=. .$. .

- Watch Video Solution

5. A rod of weight w is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the rod is at a distance x from A.

(D) Watch Video Solution

6. A symmetric lamina of mass M consists of a square shape with a semicircular section over of the edge of the square as shown in fig. p10. The side of the square is 2 a . The moment of inertia of the lamina about an axis through its centre of mass and perpendicular to the
plane is $1.6 M a^{2}$. The moment of inertia of the lamina is

- Watch Video Solution

7. A triangular plate of uniform thickness and density is made to rotate about an axis perpendicular to the plane of the paper and (a) passing through $\mathrm{A},(\mathrm{b})$ passing through B , by the application of the same force, F, at C (midpoint of $A B$) as shown in the figure. The angular
acceleration in both the cases will be the same.

- Watch Video Solution

8. A thin uniform circular disc of mass M and radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular velocity ω. another disc of the same dimensions but of mass $M / 4$ is placed gently on the first disc coaxially. The angular velocity of the system now is $2 \omega / \sqrt{5}$.

- Watch Video Solution

9. A ring of mass 0.3 kg and radius 0.1 m and a solid cylinder of mass 0.4 kg and of the same radius are given the same kinetic energy and released simultaneously on a flat horizontal towards a wall which is at the same distance from the ring and the cylinder. The rolling friction in both cases is negligible. The cylinder will reach the wall first.

- Watch Video Solution

10. Two particles of mass 1 kg and 3 kg move towards each other under their mutual force of attraction. No other force acts on them. When the relative velocity of approach of the two particles is $2 \mathrm{~m} / / \mathrm{s}$, their centre of mass has a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. When the relative velocity of approach becomes $3 \mathrm{~m} / \mathrm{s}$. When the relative velocity of approach becomes $3 \mathrm{~m} / \mathrm{s}$, the velocity of the centre of mass is $0.75 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

11. A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity ω, Two objects, each of mass m, are attached gently to the opposite ends of a diameter of the ring. The wheel now rotates with an angular velocity.
A. $\frac{\omega M}{(M+m)}$
B. $\frac{\omega(M-2 m)}{(M+2 m)}$
C. $\frac{\omega M}{(M+2 m)}$
D. $\frac{\omega(M+2 m)}{M}$

Answer: C

- Watch Video Solution

12. Two point masses of 0.3 kg and 0.7 kg are fixed at the ends of a rod of length 1.4 m and of negligible mass. The rod is set rotating about an axis perpendicular to its length with a uniform angular speed. The
point on the rod through which the axis should pass in order that the work required for rotation of the rod is minimum, is located at a distance of
A. $0,42 \mathrm{~m}$ from mass of 0.3 kg
B. 0.70 m form mass of 0.7 kg
C. 0.98 m form mass of 0.3 kg
D. 0.98 m from mass of 0.7 kg

Answer: C

- Watch Video Solution

13. A smooth sphere A is moving on a frictionless horizontal plane with angular speed ω and centre of mass velocity v. It collides elastically and head on with an identical sphere B at rest. Neglect friction everywhere. After the collision, their angular speeds are ω_{A} and ω_{B} respectively. Then
A. $\omega_{A}<\omega_{B}$
B. $\omega_{A}=\omega_{B}$
C. $\omega_{A}=\omega$
D. $\omega_{B}=\omega$

Answer: C

D Watch Video Solution

14. A cubical block of side a is moving with velocity V on a horizontal smooth plane as shown in Figure. It hits a ridge at point O . The
angular speed fo the block after it hits O is

O
A. $3 \mathrm{~V} /(4 \mathrm{a})$
B. $3 \mathrm{~V} /(2 \mathrm{a})$
C. ${ }^{\text {sqrt(3V) } / / /(s q r t(2 a)) ~}$
D. zero

Answer: A

- Watch Video Solution

15. A long horizontal rod has a bead which can slide along its length and initially placed at a

distance L from one end A of the rod. The rod is set in angular motion about A with constant angular acceleration α. if the coefficient of friction between the rod and the bead is μ, and gravity is neglected, then the time after which the bead starts slipping is
A. $\sqrt{\mu / \alpha}$
B. ${ }^{` m u} / /$ sqrtalpha
C. $\frac{1}{\sqrt{\mu \alpha}}$
D. infinitesimal

- Watch Video Solution

16. A cubical block of side L rests on a rough horizonta surface with coefficient of friction μ. A horizontal force F is applied on the block as shown. If the coefficient of friction is sufficiently high so that the block does not slide before toppling, the minimum force required to topple the block is

A. infinitesimal
B. $\mathrm{mg} / 4$
C. $\mathrm{mg} / 2$
D. $m g(1-\mu)$

Answer: C

- Watch Video Solution

17. A thin wire of length L and uniform linear mass density ρ is bent into a circular loop with centre at O as shown. The moment of inertia of the loop about the axis XX is

A. $\frac{\rho L^{3}}{8 \pi^{2}}$
B. $\rho L^{3} \frac{)}{16 \pi^{2}}$
C. ${ }^{`}\left(5 r h o L^{\wedge} 3\right) /\left(16 \mathrm{pi}^{\wedge} 2\right)$
D. $\frac{3 \rho L^{3}}{8 \pi^{2}}$

Answer: D

- Watch Video Solution

18. An equailaral triangle $A B C$ formed from a uniform wire has two small identical beads initially located at A. The triangle is set rotating about the vertical axis AO. Then the beads are released from rest simultaneously and allowed to slide down, one along $A B$ and the other along $A C$ as shown. Neglectig frictional effects, the equatities that are
conserved as the beads slids down, are

A. angular velocity and total energy (kinetic and potential)
B. Total angular momentum and total energy
C. angular velocity and moment of inertia about the axis of rotaiton
D. total angular momentum and momento f inertia about the axis
of rotation

Answer: B
19. One quarter sector is cut from a uniform circular disc of radius R.

This sector has mass M. it is made to rotate about a line perpendicular to its plane and passing through the center of the original disc. Its moment of inertia about the axis of rotation is

A. $\frac{1}{2} M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $\frac{1}{8} M R^{2}$
D. $\sqrt{2} M R^{2}$
20. A cylinder rolls up an inclined plane, reaches some height, and then rolls down (without slipping throughout these motions). The directions of the frictional force acting on the cylinder are.
A. up the incline while ascending and down the incline descending
B. up the incline while ascending as well as descending
C. down the incline while ascending and up the incline while descending
D. down the incline while ascending as well as descending.

Answer: B

- Watch Video Solution

21. A circular plarform is free to rotate in a horizontal plane about a vertical axis passing through its centre. A tortoise is sitting at the edge of the platform. Now, the platform is given an angular velocity ω_{0}
. When the tortoise move along a chord of the platform with a constant velocity (with respect to the platform), the angular velocity of the platform $\omega(t)$ will vary with time t as
(a)

A.
(b)

B.

C.
D.

Answer: B

- Watch Video Solution

22. Consider a body, shown in figure, consisting of two identical balls, each of mass M connected by a light rigid rod. If an impulse $J=M V$ is imparted to the body at one of its ends what would be it angular velocity?

L

M
$\mathbf{J}=\mathbf{M V}$
A. $\frac{V}{L}$
B. $2 \frac{V}{L}$
C. $\frac{V}{3} L$
D. $\frac{V}{4} L$

Answer: A

(D) Watch Video Solution

23. A particle undergoes uniform circular motion. About which point on the plane of the circle, will the angular momentum of the particle remain conserved?
A. centre of the circle
B. on the circumference of the circle.
C. inside the circle
D. outside the circle.

Answer: A

24. A horizontal circular plate is rotating about a vertical exis passing through its centre with an angular velocity ω_{0}. A man sitting at the centre having two blocks in his hands stretches out his hands so that the moment of inertia of the system doubles. if the kinetic energy oif the system is K initially, its final kinetic energy will be
A. $2 K$
B. $\frac{K}{2}$
C. K
D. $\frac{K}{4}$

Answer: B

D Watch Video Solution

25. A disc is rolling without slipping with angular velocity ω. P and Q are two points equidistant from the centre C . the order of magnitude fo velocity is

A. $v_{Q}>v_{C}>v_{P}$
B. $v_{P}>v_{C}>v_{Q}$
C. $v_{P}=v_{C}, v_{Q}=\frac{v_{C}}{2}$
D. $v_{P}<v_{C}>v_{Q}$

Answer: B
26. A block of mass m is at rest under the action of force F against a wall as shown in figure. Which of the following statement is incorrect?

A. $f=m g[f$ friction force]
B. $\mathrm{F}=\mathrm{N}$ [N normal force]
C. F will not produce torque
D. N will not produce torque

Answer: D

27. A thin disc of mass $9 M$ and radius R from which a disc of radius $R / 3$ is cut shown in figure. Then moment of inertia of the remaining disc about O , perpendicular to the plane of disc is -

A. $4 M R^{2}$
B. $\frac{40}{9} M R^{2}$
C. $10 M R^{2}$
D. $\frac{37}{9} M R^{2}$

Answer: A

- Watch Video Solution

28. A particle is confined to rotate in a circular path decreasing linear speed, then which of the following is correct?
A. \vec{L} (angular momentum) is conserved about the centre
B. only direction of angular momentum \vec{L} is conserved
C. it spirals towards the centre
D. its acceleration is towards the centre.

Answer: B

29. A solid sphere of mass M and radius R having moment of inertia I about its diameter is recast into a solid disc abut an axis passing the edge and perpendicular to the plane remains I. Then R and r are related as
A. $r=\frac{\sqrt{2}}{15} R$
B. $r=\frac{2}{\sqrt{15}} R$
C. $r=\frac{2}{15} R$
D. $r=\frac{\sqrt{2}}{15} R$

Answer: B

- Watch Video Solution

30. A small object of uniform density rolls up a curved surface with an initial velocity v. it reaches up to a maximum height of ${ }^{\prime}\left(3 \mathrm{v}^{\wedge} 2\right) /(4 \mathrm{~g})$

with respect to the initial position. The object is
A. ring
B. solid
C. hollow sphere
D. disc

Answer: D
31. A bob of mas M is suspended by a massless string of length L. The horizontal velocity v at position A is just sufficient to make it reach the point B. The angle θ at which the speed of the bob is half of that at A, satisfies.

A. $\theta=\frac{\pi}{4}$
B. $\frac{\pi}{4}<\theta<\frac{\pi}{2}$
C. $\frac{\pi}{2}<\theta<\frac{3 \pi}{4}$
D. $\frac{3 \pi}{4}<\theta<\pi$

Answer: D

- Watch Video Solution

32. Look at the drawing given in the figure which has been drawn with ink of uniform line-thickness. The mass of ink used to draw each of the two inner circles, and each of the two line segments is m. The mass of the ink used to draw the outer circle is 6 m . The coordinates of the centres of the different parts are: outer cicle (0,0), left circle ($-a, a$), right inner circle (a,a), vertical line (0,0) and horizontal line ($0,-\mathrm{a}$). The
y-coordinate of the centre of mass of the ink in this drawing is

A. $\frac{a}{10}$
B. $\frac{a}{8}$
C. $\frac{a}{12}$
D. $\frac{a}{3}$

Answer: A
33. A small mass m is attached to a massless string whose other end is fixed at P as shown in the figure. The mass is undergoing circular motion in the x - y plane with centre at O and constant angular speed ω. If the angular momentum of the system. calculated about O and P are denoted. by $v a c L_{O}$ and $v a c_{P}$ respectively, then.

A. \vec{L}_{O} and \vec{L}_{P} do not vary with time.
B. \vec{L}_{O} varies with time while \vec{L}_{P} remains constant
C. \vec{L}_{O} remains constant while \vec{L}_{P} varies with time
D. \vec{L}_{O} and \vec{L}_{P} both vary with time

Answer: C

- Watch Video Solution

34. A thin uniform rod, pivoted at O , is rotating in the horizontal plane with constatn angular speed ω, as shown in the figure. At time $t=0$, a small insect starts from O and moves with constant sped v , with respect to the rod towards the other end. It reaches the end of the rod at $\mathrm{t}=\mathrm{T}$ and stops. The angular speed of the system remains ω throughout. The magnitude of the torque $(|\vec{\pi}|)$ about O , as a function of time is best represented by which plot?

(a)

A.
(b)

B.
(c)

C.
(d)

D.

Answer: B

- Watch Video Solution

35. A uniform wooden stick of mass 1.6 kg and length I rests in an inclined mannar on a smooth, vertical wall of height $h(<l)$ such that a small portion of the stick extends beyond the wall. The reaction force
of th wall on the stick is perpendicular to the stick. The stick makes an angle of 30° with the wall and the bottom of the stick is on a rough floor. The reaction of the wall on the stick is equal in magnitude to the reaction of the floor on the stick. The ratio h / l and the friectional force f at the bottom of the stick are $\left(g=10 m s^{2}\right)$
A. $\frac{h}{l}=\frac{\sqrt{3}}{16}, f=\frac{16 \sqrt{3}}{3} N$
B. $\frac{h}{l}=\frac{3}{16}, f=\frac{16 \sqrt{3}}{3} N$
c. $\frac{h}{l}=\frac{3 \sqrt{3}}{16}, \frac{f(8 \sqrt{3})}{3} N$
D. $\frac{h}{l}=\frac{3 \sqrt{3}}{16}, \frac{f(16 \sqrt{3})}{3} N$

Answer: D

- Watch Video Solution

36. Two particles A and B initially at rest, move towards each other, under mutual force of attraction. At an instance when the speed of A
is v and speed of B is $2 v$, the speed of centre of mass $(C M)$ is
A. 3 V
B. V
C. 1.5 V
D. zero

Answer: D

- Watch Video Solution

37. A mass M moving with a constant velocity parlale to the X-axis. Its angular momentum with respect to the origin
A. is zero
B. remains constant
C. goes on increasing
D. goes on decreasing

Answer: B

- Watch Video Solution

38. When a bicycle is motion the force of friction exerted by the ground on the two wheels is such that is acts .
A. in the backward directon on the front wheel and in the forward direction on the rear wheel.
B. in the forward direction on the front wheel and in the backward direction on the rear wheel.
C. in the backward direction on both the front and the rear wheels.
D. in the forward direction on both the front the rear wheels.

Answer: A::C

- Watch Video Solution

39. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the projectile abut the point of projection when the particle is at its maximum height h is.
A. zero
B. $\frac{(m v)^{3}}{4 \sqrt{2} g}$
C. $\frac{(m v)^{3}}{\sqrt{2} g}$
D. $m \sqrt{2 g h^{3}}$

Answer: B::D

(D) Watch Video Solution

40. A uniform bar of length 6 a and mass 8 m lies on a smooth horizontal table. Two point masses m and $2 m$ moving in the same horizontal plane with speed 2 v and v , respectively, strike the bar [as
shown in the fig.] and stick to the bar after collision. Denoting angular velocity (about the centre of mass), total energy and centre of mass velocity by ω, E and v_{c} respecitvely, we have after collison

A. $v_{c}=0$
B. $\omega=\frac{3 v}{5 a}$
C. omeag $=\frac{v}{5 a}$
D. $E=\frac{3 m v^{2}}{5}$

Answer: A::C::D
41. The moment of inertia of a thin square plate $A B C D$, fig, of uniform thickness about an axis passing through the centre O and perpendicular to the plane of the plate is where l_{1}, l_{2}, l_{3} and l_{4} are respectively the moments of intertial about axis $1,2,3$ and 4 which are in the plane of the plate.

A. $l_{1}+l_{2}$
B. $l_{3}+l_{4}$
C. $l_{1}+l_{3}$
D. $l_{1}+l_{2}+l_{3}+l_{4}$

Answer: A:B::C

- Watch Video Solution

42. A tube of length L is filled completely with an incompressible liquid of mass M and closed at both the ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity ω. Determine the force exerted by the liquid at the other end.
A. $\frac{M \omega^{2} L}{2}$
B. $M \omega^{2} L$
C. $\frac{M \omega^{2} L}{4}$
D. $\frac{M \omega^{2} L^{2}}{2}$

Answer: A

- Watch Video Solution

43. A car is moving in a circular horizonta track of radius 10 m with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. A pendulum bob is suspended from the roof of the cat by a light rigid rod of length 1.00 m . The angle made by the rod with track is
A. zero
B. 30°
C. 45°
D. 60°

Answer: C

- Watch Video Solution

44. Let I be the moment of interia of a uniform square plate about an axis $A B$ that passses through its centre and is parallel to two its sides. $C D$ is a line in the plane of the plate that passes through the
centre of the plate and makes an angle θ with $A B$. The moment of inertia of the plate about the axis $C D$ is then equal to-
A. I
B. $I \sin ^{2} \theta$
C. $I \cos ^{2} \theta$
D. $I \cos ^{2}\left(\frac{\theta}{2}\right)$

Answer: A

- Watch Video Solution

45. The torque τ on a body about a given point is found to be equal to $A \times L$, where A is constant vector and L is the angular momentum of the body that point. From this, it follows that
A. $\frac{d L}{d t}$ is perpendicular to L at all instants of time.
B. the component of L in the direction of A does not change with time.
C. the magnitude of L does not change with time.
D. L does not change with time

Answer: A::B::C

- Watch Video Solution

46. A solid cylinder is rolling down a rough inclined plane of inclination
θ. Then
A. The friction force is dissipative
B. The friction force is necessarily changing
C. The friction force will aid rotation but hinder translation
D. The friction force is reduced if θ is reduced

Answer: C::D

- Watch Video Solution

47. If the resultant of all the external forces acting on a system of particles is zero. Then from an inertial frame, one can surely say that
A. linearmomentum of the system does not change in time
B. kinetic energy of the system does not change in time
C. angular momentum of the system does not chagne in time
D. potential energy of the system does not change in time

Answer: A

- Watch Video Solution

48. A sphere is rolling without slipping on a fixed horizontal plane surface. In the figure, A is the point of contact, B is the centre of the sphere and C is its topmost point. Then

A. $v a c V_{C}-v a c V_{A}=2\left(v a c V_{B}-v a c_{C}\right)$
B. $v a c V_{C}-v a c V_{B}=v a c_{B}-v a c_{A}$
C. $\left|v a c V_{C}-v a c_{A}\right|=2\left|v a c V_{B}-v a c_{C}\right|$
D. $\left|v a c V_{C}-v a c V_{A}\right|=4\left|v a c V_{B}\right|$

Answer: B::C
49. Two solid spheres A and B of equal volumes but of different densities d_{A} and d_{B} are connected by a string. They are fully immersed in a fluid of density d_{F}. They get arranged into an equilibrium state as shown in the figure with a tension in the string.

The arrangement is possible only if

A. $d_{A}<d_{F}$
B. $d_{B}>d_{F}$
C. $d_{A}>d_{F}$
D. $d_{A}+d_{B}=2 d_{F}$

- Watch Video Solution

50. A thin ring of mass 2 kg and radius 0.5 m is rolling without slipping on a horizontal plane with velocity $1 \mathrm{~m} / \mathrm{s}$. A small ball of mass 0.1 kg , moving with velocity $20 \mathrm{~m} / \mathrm{s}$ in the opposite direction hits the ring at a height of 0.75 m and goes vertically up with velocity $10 \mathrm{~m} / \mathrm{s}$. Immediately after the collision

A. the ring has pure roation about its stationary CM .
B. the ring comes to a complete stop.
C. friction between the ring and the
D. there is no friction between the ring and the ground.

Answer: C

D Watch Video Solution

51. The figure shows a system consisting of (i) a ring the outer radius 3R rolling clockwise without slipping on a horizontal surface with angular speed ω and (ii) an inner disc of radius 2 R rotating anti clockwise with angular speed $\omega / 2$. The ring and disc are separated.

The point P on the inner disc is at a distance R from the origin, where OP makes an angle of 30° with the horizontal. Then with respect to the horizontal surface,
A. the point O has linear velocity $3 R \omega \hat{i}$
B. the point P has linear velocity $\frac{11}{4} R \omega \hat{i}+\frac{\sqrt{3}}{4} R \omega \hat{k}$.
C. the point P has linear velocity $\frac{13}{4} R \omega \hat{i}-\frac{\sqrt{3}}{4} R \omega \hat{k}$
D. the point P has linear velocity $\left(\left(3-\frac{\sqrt{3}}{4}\right) R \omega \hat{i}+\frac{1}{4} R \omega \hat{k}\right.$.

Answer: A::B

- Watch Video Solution

52. Two solid cylinders P and Q of same mass and same radius start rolling down a fixed inclined plane from the same height at the same time. Cylinder P has most of its mass concentrated near its surface, while Q has most its mass concentrated near the axis. Which statement(s) is (are) correct?
A. Both cylinders P and Q reach the ground at the same time.
B. Cylinders P has larger linear acceleration than cylinder Q.
C. Both cylinders reach the ground with same translational kinetic
D. Cylinder Q reaches the ground with larger angular speed.

Answer: D

- Watch Video Solution

53. In the figure, a ladder of mass m is shown leaning against a wall. It is in static equilibrium making an angle θ with the horizontal floor. The coefficient of friction between the wall and the ladder is μ_{1} and that between the floor and the ladder is μ_{2}. the normal reaction of the wall on the ladder is N_{1} and that of the floor is N_{2}. if the ladder is about to slip. than

μ_{2}
A. $\mu_{1}=0, \mu_{2} \neq$ and $N_{2} \tan \theta=\frac{m g}{2}$
B. $\mu_{1} \neq 0, \mu_{2}=0$ and $N_{1} \tan \theta=\frac{m g}{2}$
C. $\mu_{1} \neq 0, \mu_{2} \neq 0$ and $N_{2}=\frac{m g}{1+\mu_{1} \mu_{2}}$
D. $\mu_{1}=0, \mu_{2} \neq 0$ and $N_{1} \tan \theta=\frac{m g}{2}$

Answer: C::D

- Watch Video Solution

54. A ring of mass M and radius R is rotating with angular speed ω about a fixed vertical axis passing through its centre O with two point masses each of mass $\frac{M}{8}$ at rest at O . These masses can move radially outwards along two massless rods fixed on the ring as shown in the figure. At some instant the angular speed of the system is $\frac{8}{9} \omega$ and one fo the masses is at a distance of $\frac{3}{5} R$ from O . At this instant the
distance of the other mass from O is

A. $\frac{2}{3} R$
B. $\frac{1}{3} R$
C. $\frac{3}{5} R$
D. $\frac{4}{5} R$

Answer: D

- Watch Video Solution

55. Two thin circular discs of mass m and $4 m$, having radii of a and $2 a$, respectively, are rigidly fixed by a massless, rigid rod of length $l=\sqrt{24 a}$ through their centres. This assembly is laid on a firm and flat surface, and set rolling without slipping on the surface so that the angular speed about the axis of the rod is ω. The angular momentum of the entire assembly about the point ' O ' is \vec{L} (see the figure). Which of the following statement (s) is (are) true?

A. The centre of mass of the assembly rotates about the z-axis with an angular speed of $\omega / 5$
B. The magnitude of angular momentum of center of mass of the assembly about the point O is $81 m a^{2} \omega$
C. The magnitude of angular momentum of the assembly about its center of mass is $17 m a^{2} \omega / 2$
D. the magnitude of the z -componet of $v a c \operatorname{Lis} 55 m a^{2} \omega$.

Answer: A::C

- Watch Video Solution

56. The position vector vacr of the z-component of \vec{L} is $55 m a^{2} \omega$.

Following equation
$\operatorname{vacr}(t)=\alpha t^{3} \hat{i}+\beta^{2} \hat{j}$,
where $\alpha=10 / 3 \mathrm{~ms}^{-3}, \beta=5 \mathrm{~ms}^{-2}$ and $\mathrm{m}=0.1 \mathrm{~kg}$. At $\mathrm{t}=1 \mathrm{~s}$, which of the following statement (s) is (are) true about the particle?
A. The velocity vacv is given by vacv $=(10 \hat{i}+10 \hat{j}) m s^{-1}$
B. The angular momentum vacL with respect to the origin is given

$$
\text { by } v a c L=-5 / 3) \hat{k} N m s \text {. }
$$

C. The force $v a c F$ is given by ${ }^{\text {vacF }}=($ hati +2 hatj $) \mathrm{N}$
D. The torque vact with respect to the origin is given by

$$
v a c \tau=-(20 / 3) \hat{k} N m
$$

Answer: A::B

- Watch Video Solution

57. A 40 kg mass, hanging at the end fo a rope of length I, oscillates in a vertical plane with an angular amplitude θ_{0}. What is the tension in the rope when it makes en angle θ with the vertical ? If the breaking strength of the rope is 80 kg , what is the maximum amplitude with which the mass can oscillate without the rope breaking?
58. A large mass M and a small mass m hang at two ends of a string that passes over a smooth tube as shown in the figure. The mass m moves around a circular path which lies in a horizontal plane. The length of string from the mass m to the top of the tube is I and θ is the 'angle' this length makes with the vertical. What should be the frequency of rotation of mass m, so that the mass M remains stationary?

59. A circular plate of unifrom thickness has a diameter of 56 cm . A circular portion of diameter 42 cm is removed from the edge of the plate as shown in Fig. Find the position of centre of mass of the remaining portion.

- Watch Video Solution

60. A block of mass M with a semicircualr of radius R, rests on a horizontal frictionless surface. A uniform cylinder of radius r and mass m is released from rest the top point A The cylinder slips on the semicircular frictionless track. How far has the block moved when the cylinder reaches the bottom (point B) of the track? How fast is the block moving when the cylinder reaches the bottom of the track?

- Watch Video Solution

61. A particle is projected at time $t=0$ from a point P on the ground with a speed v_{0}, at an angle of 45° to the horizontal. Find the
magnitude and direction of the angular momentum of the particle about P at tiem $t=v_{0} / g$

- Watch Video Solution

62. A small sphere rolls down without slipping from the top of a track in a vertical plane. The track has an elevated section and a horizontal part, The horizontal part, is 1.0 metre above the ground lenvel and the top of the track is 2.4 meters above the ground. Find the distance on the ground with respect to the point B (which is vertically below the end of the track as shown i fig.) where the sphere lands. During its flight as a projectlie, does the sphere continue to rotate about its
centre of mass? Explain.

- Watch Video Solution

63. A thin uniform bar lies on a frictionless horizonta surface and is free to move in any way on th surface. Its mass is 0.16 kg and length $\sqrt{3}$ meters. Two particless, each of mass 0.08 kg , are moving on the same surface and towards the bar in a direction perpendicular to the bar, one with a velocity of $10 \mathrm{~m} / \mathrm{s}$, and other with $6 \mathrm{~m} / \mathrm{s}$ as shown in fig. The first particle strikes the bar at point A and the other at point B. Points A and B are at a distane of 0.5 m from the centre of the bar. The particles strike the bar at the same instant of time and stick to the bar
on collision. Calculate the loss of the kinetic energy of the system in the above collision process.

- Watch Video Solution

64. A homogeneous rod $A B$ of length $L=1.8 \mathrm{~m}$ and mass M is pivoted at the center O in such a way that it can rotate it can rotate freely position. An insect S of the same mass M falls vertically with speed V on the point C , midway between the points O and B . Immediately after falling, the insect moves towards the end B such that the rod rotates with a constant angular velocity omega.
(a) Determine the angular velocity ω in terms of V and L .
(b) If the insect reaches the end B when the rod has turned through an angle of 90°, determine V .

(D) Watch Video Solution

65. A uniform thin rod of mass m and length L is standing vertically along the y-axis on a smooth horizontal surface, with its lower end at the origin $(0,0)$. A slight disturbane at $\mathrm{t}=0$ causes the lower end t slip on the smooth surface along the positive x-axis, and the rod starts falling.
(i) What is the path followed by the centr of mass of the rod during its fall?
(ii) Find the equaiton to the trajectory of a point on the rod shape of the path of this point?

- Watch Video Solution

66. A block X of mass 0.5 kg is held by a long massless string on a frictionless inclined plane of inclination 30° to the horizontal. The string is wound on a uniform solid cylindrical drum Y of mass 2 kg and of radius 0.2 and of radius 0.2 m as shown in Fingure. The drum is given an initial angular velocity such that the block X starts moving up the plane.
(i) Find the tension in the string during the motion.
(ii) At a certain instant of time the magnitude of the angular velocity of $\mathrm{Y} s 10 \mathrm{rads}^{-1}$ calculate the distance travelled by X from that instant
of time until it comes to rest

- Watch Video Solution

67. Two uniform thin rods A and B of length 0.6 m each and of masses 0.01 kg and 0.02 kg respectively are rigidly joined end to end. The combination is pivoted at the lighter end, P as shown in fig. Such that it can freely rotate about point P in a vertical plane. A small object of mass 0.05 kg , moving horizontally, hits the lower end of the combination and sticks to it what should be the velocity of the object
so that the system could just be reised to the horizontal position.

- Watch Video Solution

68. A rectangular rigid fixed block has a long horizontal edge. A solid homogeneous cylinder of radus R is placed horizontally at rest its length parallel to the edge such that the exis of the cylinder and the endg of the block are in the same vertical plane as shown in the figure below. Ther is sufficinet friction present at the edge s that a very small displacement causes the cylinder to roll off the edge without slipping. Determine:

(a) the angle θ_{c} through which the cylinder rotates before it leaves contact with the edge,
(b) the speed of the centre of mass of the cylinder before leaving contact with the edge, and
(c) the ratio of the translational to rotational kinetic energy of the cylinder when its centre of mass is in horizontal line with the edge.

- Watch Video Solution

69. A small sphere of radius R is held against the inner surface of a larger sphere of radius 6 . The masses of large and small spheres are $4 M$ and M, respectively, this arrangement is placed on a horizontal
table. There is no friction between any surfaces of contact. The small sphere is now released. Find the coordinates of the centre of the larger sphere when the smaller sphere reaches the other extreme position.

- Watch Video Solution

70. Two thin circular disks of mass 2 kg and radius 10 cm each are joined by a rigid massless rod of length 20 cm . the axis of the rod is along the perpendicular to the planes of the disk through their centres. This object is kept on a truck in such a way that the axis of the object is horizontal and perpendicular to the direction of the motion
of the truck. Its friction with the floor of the truck is large enough so that the object can roll on the truck without slipping. Take x axis as the direction of motion of the truck and z-axis as the vertically upwards direction. if the truck has an acceleration of $9 \mathrm{~m} / \mathrm{s}^{2}$ Calculate:
(i) The force fo friction on each disk,
(ii) The magnitude and the direction of the frictional torque acting on each disk about the centre of mass O of the object. Express the torque in the vector form in terms of unit vectors \hat{i}, \hat{j} and \hat{k} in the x, y, and z directions.

(D) Watch Video Solution

71. A wedge of mass m and triangular cross- section ($A B=B C=C A=2 R$) is moving with a constant velocity $-v^{\wedge}$ । towards a sphere of radius R fixed on a smooth horizontal table as shown in figure. The wadge makes an elastic collision with the fixed sphere and returns along the same path without any rotaion. Neglect all friction and suppose that the wedge remains in contact with the sphere for a very shot time.
Δt, during which the sphere exerts a constant force F on the wedge.

(a) Find the force F and also the normal force N exerted by the table on the wedge during the time Δt.
(b) Ler h denote the perpendicular distance between the centre of mass of the wedge and the line of action of F . Find the magnitude of
the torque due to the normal force N about the centre of the wedge, during the interval Δt.

- Watch Video Solution

72. A uniform circula disc has radius R and mass m . A particle also of mass m, is fixed at a point A on the edge of the disc as shown in figure.

The disc can rotate freely about a fixed horizontal chord PQ that is at a distance $R / 4$ from the centre C of the disc. The line $A C$ is perpendicular to PQ. Initially, the disc is held vertical with the point A at its highes position.

73. A man pushes a cylinder of mass m_{1} with the help of a plank of mass m_{2} as shown in figure. There in no slipping at any contact. The horizontal component of the force applied by the man is F.
(a) the acceleration fo the plank and the center of mass of the cylinder, and

(b) the magnitudes and direction of frictional force at contact points.
74. Two heavy metallic plates are joined together at 90° to each other.

A laminar sheet of mass 30 kg is hinged at the line $A B$ joining the two heavy metallic plates. The hinges are frictionless. The moment of inertia of the laminar sheet about an axis parallel to $A B$ and passing through its center of mass is $1.2 \mathrm{~kg} m^{2}$. Two rubber obstacles P and Q are fixed, one on each metallic plate at a distance 0.5 m from the line $A B$. This distance is chosen so that the reaction due to the hinges on the laminar sheet is zero during the impact. Initially the laminar sheet hits one of the obstacles with an angular velocity $1 \mathrm{rad} / \mathrm{s}$ and turns back. If the impulse on the sheet due to each obstacle is 6 N -s,
(a) Find the location of the center of mass of the laminar sheet from

AB.
(b) At what angular velocity does the laminar sheet come back after the first impact?
(c) After how many impacts, does the laminar sheet come to rest?

- Watch Video Solution

75. Three particles A, B and C each of mass m, are connected to each other by three massless rigid rods to form a rigid, equilateral triangular body of side I . This body is placed on a horizonta frictionsess table (x-y plane) and is hinged to it at the point A so that it can move without friction about the vertical axis through A. the body is set into rotational motion on the table about A with a constant angular velocity ω.

(a) Find the magnitude of the horizontal force exerted by the hinge on the body.
(b) At time T, when the side $B C$ is parallel to the x-axis, a force F is applied on B along $B C$ (as shown). Obtain the x-component and the y component of the force exerted by the hinge on the body, immediately after time T .

D Watch Video Solution

76. A wooden log of mass M and length L is hinged by a frictionless nail at O.A bullet of mass m strikes with velocity v and sticks to it. Find
angular velocity of the system immediately after the collision abouto.

- Watch Video Solution

77. A cylinder of mass m and radius R rolls down an inclined plane of inclination θ. Calculate the linear acceleration of the axis of cylinder.

D Watch Video Solution

78. Two identical ladders, each of mass M and length L are resting on the rough horizontal surface as shown in the figure. A block of mass m
hangs from P. if the system is in equilibrium, find the magnitude and the direction of frictional force at A and B .

- Watch Video Solution

79. A rectangular plate of mass M and dimension $a \times b$ is held in horizontal position by striking n small balls (each of mass m) per unit area per second. The balls are striking in the shaded half region of the plate. The collision of the balls with the plate is elastic. What is v ?
$\left(\right.$ Givenn $\left.=100, M=3 k g, m=0.01 \mathrm{~kg}, b=2 m, a=1 m, g=10 \frac{m}{s^{2}}\right)$.

- Watch Video Solution

80. Two discs A and B are mounted coaxiallay on a vertical axle. The discs have moments of inertia I and 2 I respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the entire potential energy of a spring compressed by a distance x_{1} Disc B is imparted an angular velocity ω by a spring having the same spring constant and compressed by a distance x_{2} Both the discs rotate in the clockwise direction.

The ratio x_{1} / x_{2} is
A. 2
B. $\frac{1}{2}$
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: C

- Watch Video Solution

81. Two discs A and B are mounted coaxiallay on a vertical axle. The discs have moments of inertia I and 2 I respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the entire potential energy of a spring compressed by a distance x_{1} Disc B is imparted an angular velocity ω by a spring having the same spring constant and compressed by a distance x_{2} Both the discs rotate in the clockwise direction.

When disc B is brought in contact with disc A , they acquire a common
angular velocity in time t. The average frictional torque on one disc by the other during this period is
A. $\frac{2 I \omega}{3 t}$
B. $\frac{9 I \omega}{2 t}$
C. $\frac{9 I \omega}{4 t}$
D. $\frac{3 I \omega}{2 t}$

Answer: A

- Watch Video Solution

82. Two discs A and B are mounted coaxiallay on a vertical axle. The discs have moments of inertia I and 2 I respectively about the common axis. Disc A is imparted an initial angular velocity 2ω using the entire potential energy of a spring compressed by a distance x_{1} Disc B is imparted an angular velocity ω by a spring having the same spring constant and compressed by a distance x_{2} Both the discs rotate in the

clockwise direction.

The loss of kinetic energy in the above process is
A. $\frac{I \omega^{2}}{2}$
B. $\frac{I \omega^{2}}{3}$
C. $\frac{I \omega^{2}}{4}$
D. $\frac{I \omega^{2}}{6}$

Answer: B

- Watch Video Solution

83. A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless springs of spring constatn k which are fixed to the wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L. The disk is
initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disk rolls without slipping with velocity $\vec{V}_{0}=v a c V_{0} \hat{i}$. The coefficinet of friction is μ.

The net external force acting on the disk when its centre of mass is at displacement x with respect to its equilibrium position is.
A. $=-k x$
B. $-2 k x$
C. $-2 k x / s$
D. $-4 k x / 3$

- Watch Video Solution

84. A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless springs of spring constatn k which are fixed to the wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre.

The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L . The disk is initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disk rolls without slipping with velocity $\vec{V}_{0}=\operatorname{vac} V_{0} \hat{i}$. The coefficinet of friction is μ.

The centre of mass of the disk undergoes simple harmonic motion with angular frequency ω equal to -
A. $\operatorname{sqer}\left(\frac{k}{M}\right)$
B. $\sqrt{\frac{2}{M}}$
C. $\sqrt{\frac{2 k}{3 M}}$
D. $\sqrt{\frac{4 k}{3 M}}$

Answer: D

- Watch Video Solution

85. A uniform thin cylindrical disk of mass M and radius R is attaached to two identical massless springs of spring constatn k which are fixed to the wall as shown in the figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in horizontal plane. the unstretched length of each spring is L. The disk is
initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disk rolls without slipping with velocity $\vec{V}_{0}=\operatorname{vac} V_{0} \hat{i}$. The coefficinet of friction is μ.

The maximum value of V_{0} for whic the disk will roll without slipping is-
A. $\mu g \sqrt{\frac{M}{k}}$
B. $\mu g \sqrt{\frac{M}{2 k}}$
C. $\mu g \sqrt{\frac{3 M}{k}}$
D. $\mu g \sqrt{\frac{5 M}{2 k}}$

Answer: C

86. The general motion of a rigid body can be considered to be a combination of (i) a motion of its centre of mass about an axis, and (ii) its motion about an instantaneous exis passing through the centre of mass. These axes need not be stationary. Consider, for example, a thin uniform disc welded (rigidly fixed) horizontally at its rim to a massless, stick as shown in the figure. When the disc-stick system is rotated about the origin on a horizontal frictionless plane with angular speed ω the motion at any instant can be taken as a combination of (i) a rotation of the disc through an instantaneous vertical axis passing through its centre of mass (as is seen from the changed orientation of points P and Q). Both these motions have the same angular speed ω in this case

Now consider two similar system as shown in the figure: Case (a) the disc with its face vertical and parallel to $x-z$ plane, Case (b) the disc with its face making an angle of 45° with $x-y$ plane and its horizontal diameter parallel to x-axis. In both the cases, the disc is welded at
point P, and the systems are rotated with constant angular speed ω about the $z-a x i s$.

Which of the following statements about the instantaneous axis (passing through the centre of mass) is correct?
A. It is vertical for both thecases (a) and (b)
B. It is vertical for case (a), and it at 45° to the $x-z$ plane and lies in the plane of the disc for case (b).
C. It is vertical for case (a), and is 45° to the $x-z$ plane and is normal to the plane of the disc for case (b)
D. It is vertical for case (a), and is 45° to the $\mathrm{x}-\mathrm{z}$ plane and is normal to the plane of the disc for case (b).

Answer: A

- Watch Video Solution

87. The general motion of a rigid body can be considered to be a combination of (i) a motion of its centre of mass about an axis, and (ii) its motion about an instantaneous exis passing through the centre of mass. These axes need not be stationary. Consider, for example, a thin uniform disc welded (rigidly fixed) horizontally at its rim to a massless, stick as shown in the figure. When the disc-stick system is rotated about the origin on a horizontal frictionless plane with angular speed ω the motion at any instant can be taken as a combination of (i) a rotation of the disc through an instantaneous vertical axis passing through its centre of mass (as is seen from the changed orientation of points P and Q). Both these motions have the same angular speed ω in this case

Now consider two similar system as shown in the figure: Case (a) the disc with its face vertical and parallel to $x-z$ plane, Case (b) the disc with its face making an angle of 45° with $x-y$ plane and its horizontal diameter parallel to x-axis. In both the cases, the disc is welded at point P, and the systems are rotated with constant angular speed ω about the $z-a x i s$.

Which of the following statements regarding the angular speed about the instantaneous axis (passing through the centre of mass) is correct?
A. it is $\sqrt{2} \omega$ for both the cases
B. it is ω for cases (a), and $\omega / \sqrt{2}$ for case (b)
C. it is ω for case (a), and $\sqrt{2} \omega$ for case (b)
D. it is ω for both the cases.

Answer: B

- Watch Video Solution

88. Satement-1: if there is no external torque on a body about its centre of mass, then the velocity of the center of mass remains constant.

Statement-2: The linear momentum of an isolated system remains constant.
A. Statement-1 is true Statement -2 is True, Statement- 2 is a correct explanation for Statement -1
B. Statement -1 is True, Statement -2 is True, Statement-2 is NOT a correct explanation for Statement -1
C. Statement-1 is True, Statement-2 is False
D. Statement -1 is False, Statement-2 is True

Answer: D

- Watch Video Solution

89. Satement-1: two cylinder one hollow (metal) and the other side (wood) with the same mass and identical dimensions are simultaneously allowed to roll wihtout slipping down an inclined plane from the same height. The hollow cylinder will reach the bottom of the inclined plane first.

Statement-2: By the principle of conservation of energy, the total kinetic energies of both the cylinder are identical when they reach the bottom of the incline.
A. Statement- 1 is true Statement -2 is true, statement- 2 is a correct explanation for statement-1
B. Statement -1 is true, Statement -2 is true, Statement- 2 is not a correct explanation for statement -1
C. Statement-1 is True, Statement-2 is False
D. Statement -1 is False, Statement-2 is True

Answer:

- Watch Video Solution

90. A binary star consists of two stars $A\left(\right.$ mass $\left.2.2 M_{s}\right)$ and B (mass $11 M_{s}$) where M_{s} is the mass of the sun, they are separted by distane d and are rotating about their center of mass, which is stationary. The ratio of the total angular momentum of the binary to the angular momentum of star B about the centre of mass is

- Watch Video Solution

91. A boy is pushing a ring of mass 2 kg and radius 0.5 m with a stick as shown in figure. The stick applies a force of 2 N on the ring and rolls it without slipping with an acceleration of $0.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. The coefficient of friction between the ground and the ring is large enough that rolling always occurs and the coefficient of friction between the stick and the ring of $(P / 10)$. The value of P is

Stick

- Watch Video Solution

92. Four solid spheres each of diameter $s q a r t 5 \mathrm{~cm}$ and mass 0.5 kg are placed with their centers at the corners of a square of side 4 cm . The
moment is $N \times 10^{-4} \mathrm{~kg}-\mathrm{m}^{2}$, then N is .

(D) Watch Video Solution

93. A lamina is made by removing a small disc of diameter $2 R$ from a bigger disc of uniform mass density and radius $2 R$, as shown in the figure. The moment of inertia of this lamina about axes passing though O and P is I_{O} and I_{P} respectively. Both these axes are perpendiucalr to the plane of the lamina. The ratio $\frac{I_{P}}{I_{O}}$ ot the nearest integer is

94. A uniform circular disc of mass 50 kg and radius 0.4 m is rotating with an angular velocity of $10 \mathrm{rads}^{-1}$ about its own axis, which is vertical. Two uniform circular rings, each of mass 6.25 kg and radius 0.2 m , are gently placed symmetrically on the disc in such a manner that they are touching each other along the axis of the disc and are horizontal. Assume that the friction is large enough such that the rings are at rest relative to the disc and the system rotates about the original axis. The new angular velocity $\left.\left(\in \epsilon^{-1}\right)^{-1}\right)$ of the system is

D Watch Video Solution

95. A horizontal circular platform of radius 0.5 m and mass axis. Two massless spring toy-guns, each carrying a steel ball of mass 0.05 kg are attached to the platform at a distance 0.25 m from the centre on its either sides along its diameter (see figure). Each gun simultaneously fires the balls horizontally and perpendicular to the diameter in opposite directions. After leaving the platform, the balls have
horizontal speed of $9 \mathrm{~ms}^{-1}$ with respect to the ground. The rotational speed of the platform in rads ${ }^{-1}$ after the balls leace the platform is

(D) Watch Video Solution

96. A uniform circular disc of mass 1.5 kg and raius 0.5 m is initially ar rest on a horiozntal frictonless surface. Three forces of equal matgnitude $F=0.5 \mathrm{~N}$ are applied simultaneously along the three sides of an equilateral triangle XYZ with its vertices on the perimeter of the disc (see figure). One second after applying the forces the angular
speed of the disc in rads ${ }^{-1}$ is

- Watch Video Solution

97. Two identical uniform discs roll without slipping on tow different sufaces $A B$ and $C D$ (see figure) starting at A and C with linear speeds v_{1} and v_{2} respectively, and always remain in contact with the surfaces. If they reach B and D with the same linear speed $v_{1}=3 m / s t h e n v_{2} \in m / s i s\left(g=10 m / s^{2}\right)$

D Watch Video Solution

98. The densitis of two solid spheres A and B of the same radii R very
with radial distance $\operatorname{rasp}_{A}(r)=k\left(\frac{r}{R}\right)$ and $p_{B}(r)=k\left(\frac{r}{(R)^{5}}\right.$,
respectively, where k is a constant. The moments of inertia of the inividual spheres about axes passing throgh their centres are I_{A} and I_{B} respectively. if $\frac{I_{B}}{I_{A}}=\frac{n}{10}$, the value of n is

- Watch Video Solution

99. Initial angular velocity of a circualr disc of mass M is ω_{1}. The tow sphere of mass ma re attached gently to diametrically opposite points ont eh edge of the disc. What is the final angular velocity on the disc?
A. $\left(\frac{M+m}{M}\right) \omega_{1}$
B. $\left(\frac{M+m}{M}\right) \omega_{1}$
C. $\left(\frac{M}{M+4 m}\right) \omega_{1}$
D. $\left(\frac{M}{M+2 m}\right) \omega_{1}$

Answer: C

100. The minimum velocity (in $\mathrm{ms}^{\wedge}(-1)$) with which a car driver must traverse a flat curve of radius 150 m and coefficient of friction 0.6 to avoid skidding is
A. 60
B. 30
C. 15
D. 25

Answer: B

- Watch Video Solution

101. A cylinder of height 20 m is completely filled with water. The velocity of effux of water $\left(\in m s^{-1}\right)$ through a small hole on the side wall of the cylinder near its bottom is
B. 20
C. 25.5
D. 5

Answer: B

- Watch Video Solution

102. Two identical particles move towards each other with velocity 2 v and v respectively. The velocity of centre of mass is
A. v
B. $\frac{v}{3}$
C. $\frac{v}{2}$
D. zero.

Answer: C

103. A solid sphere, a hollow sphere and a ring are released from top of an inclined plane (frictionless) so that they slide down the plane.

Then maximum accelerraton down the plane is for (no rolling)
A. solid sphere
B. hollow sphere
C. ring
D. all same.

Answer: D

D Watch Video Solution

104. Moment of inertia of a circular wire of mass M and radius R about its diameter is
A. $M \frac{R^{2}}{2}$
B. $M R^{2}$
C. $2 M R^{2}$
D. $M \frac{R^{2}}{4}$

Answer: A

- Watch Video Solution

105. A particle of mass m moves along line PC with velocity v as shown.

What is the angular momentum of the particle about P?

A. $m v L$
B. mvl
C. mvr
D. zero

Answer: D

D Watch Video Solution

106. A circular disc X of radius R is made from an iron plate of thickness t , and another disc Y of radius 4R is made from an iron plate of thickness $\frac{t}{4}$. Then the relation between the moment of inerita I_{X} and I_{Y} is
A. $I_{Y}=32 I_{X}$
B. $I_{Y}=16 l_{X}$
C. $I_{Y}=i_{X}$
D. $I_{Y}=64 I_{X}$

Answer: D

Watch Video Solution

107. A particle performing uniform circular motion has angular frequency is doubled \& its kinetic energy halved, then the new angular momentum is
A. $\frac{L}{4}$
B. 2 L
C. 4L
D. $\frac{L}{2}$

Answer: A
108. Let \vec{F} be the force acitng on a paritcle having positon vector \vec{r} and \vec{T} be the torque of this force about the origin. Then
A. vacr. $v a c T=0$ and $v a c F . v a c T \neq 0$
B. vacr. $v a c T \neq 0$ and $v a c F . v a c T=0$
C. vacr. vacT $\neq 0$ and vacF. vacT $\neq 0$
D. vacr. $v a c T=0$ and $v a c F . v a c T=0$

Answer: D

- Watch Video Solution

109. A solid sphere is rotating in free space. If the radius of the sphere is increased keeping mass same which one of the following wil not be affected?
A. angular velocity
B. Angular momentum
C. Moment of inertia
D. Rotational kinetic energy

Answer: B

- Watch Video Solution

110. One solid sphere A and another hollow spher B are of same mass and same outer radii. Their moment of inertia aobut their diameters are respectively I_{A} and I_{B} such that where d_{A} and d_{B} are their densities,
A. $I_{A}<I_{B}$
B. $I_{A}>I_{B}$
C. $I_{A}=I_{B}$
D. $\frac{I_{A}}{I_{B}}=\frac{d_{A}}{d_{B}}$

Answer: A

- Watch Video Solution

111. A body A of mass M while falling wertically downwards under gravity brakes into two parts, a body B of mass $\frac{1}{3} \mathrm{M}$ and a body C of mass $\frac{2}{3} M$. The center of mass of bodies B and C taken together shifts compared to that of body A towards
A. does not shift
B. depends on height of breaking
C. body B
D. body C

Answer: A

- Watch Video Solution

112. The moment of inertia of a uniform semicircular disc of mass disc through the centre is
A. $\frac{2}{5} M r^{2}$
B. $\frac{1}{4} M r^{2}$
C. $\frac{1}{2} M r^{2}$
D. $M r^{2}$

Answer: C

- Watch Video Solution

113. A 'T' shaped object with dimensions shown in the figure, is lying on a smooth floor. A froce ' $v a c F^{\prime}$ ' is applied at the point P parallel to AB , such that the object has only the translational motion without
rotaion. Find the location of P with respect C .

A. $\frac{3}{2} l$
B. $\frac{2}{3} l$
C. 1
D. $\frac{4}{3} l$

Answer: D
114. Consider a two particle system with particles having masses m_{1} and m_{2} if the first particle is pushed towards the centre of mass through a distance d, by what distance should the second particle is moved, so as to keep the center of mass at the same positon?
A. $\frac{m_{2}}{m_{1}} d$
B. $\frac{m_{1}}{m_{1}+m_{2}} d$
C. $\frac{m_{1}}{m_{2}} d$
D. d

Answer: C

- Watch Video Solution

115. Four point masses, each of value m, are placed at the corners of a squre $A B C D$ of side I. The moment of inertia of the is system about an axis passing through A and parallel to $B D$ is
A. $2 m l^{2}$
B. $\sqrt{3} m l^{2}$
C. $3 m l^{2}$
D. $m l^{2}$

Answer: C

D Watch Video Solution

116. A force of $-F \hat{k}$ actgs on O , the origin of the coodinate system.

The torque about the point $(1,-1)$ is

A. $F(\hat{i}-\hat{j})$
B. $-F(\hat{i}+\hat{j})$
C. $F(\hat{i}+\hat{j})$
D. $-F(\hat{i}-\hat{j})$

Answer: B

- Watch Video Solution

117. A thin circular ring of mass M and radius r is rotating about its axis with a constant angular velocity ω, Two objects, each of mass m, are attached gently to the opposite ends of a diameter of the ring. The wheel now rotates with an angular velocity $\omega=$
A. $\left(\omega \frac{m+2 M}{m}\right.$
B. $\left(\omega \frac{m-2 M}{m+2 m}\right.$
C. $\frac{\omega m}{m+M}$
D. $\frac{\omega m}{m+2 M}$

Answer: D

D Watch Video Solution

118. A circular disc of radius R is removed from a bigger circular disc of radius 2 R such that the cirucmferences of the discs coincide. The centre of mass of the new disc is $\frac{\alpha}{R}$ from the center of the bigger disc. The value of α is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{6}$

Answer: B

119. A round unifrom body of radius R, mass M and moment of inertia I rolls down (without slipping) an inclined plane making an angle theta with the horizontal. Then its acceleration
A. $\frac{g \sin \theta}{1-M \frac{R^{2}}{I}}$
B. $\frac{g \sin \theta}{1+I \mid M R^{2}}$
C. $\frac{g \sin \theta}{1+M R^{2} \mid I}$
D. $\frac{g \sin \theta}{1-I \mid M R^{2}}$

Answer: B

- Watch Video Solution

120. Angular momentum of the particle rotating with a central force is constant due to
A. constant torque
B. constatn force
C. constant linear momentum
D. zero torque

Answer: D

D Watch Video Solution

121. For the given uniform square lamina $A B C D$, whose centre is O,

A. $I_{A C}=\sqrt{2} I_{E F}$
B. $\sqrt{2} I_{A C}=I_{E F}$
C. $I_{A D}=3 I_{E F}$
D. $I_{A C}=I_{E F}$

Answer: D

D Watch Video Solution

122. A thin rod of length L is lying along the x-axis with its ends at $x=0$ and $\mathrm{x}=\mathrm{L}$. Its linear density (mass/length) varies with x as $k\left(\frac{x}{L}\right)^{n}$ where n can be zero or any positive number. If the position $X_{C M}$ of the centre of mass of the rod is plotted against n, which of the following graphs best approximates the dependence of $X_{C M}$ on n ?
(b) $\frac{\mathrm{L}}{2} \square$
B.
C.

D.
(d)

Answer: A

D Watch Video Solution

123. Consider a uniform square plate of side 'a' and mass ' m ' The moment of inertia of heis plate about an axis perpendiucalar to its plane and passing through one of its corners is
A. $(5)(6) m a^{2}$
B. $\frac{1}{2} m a^{2}$
C. $\frac{7}{12} m a^{2}$
D. $\frac{2}{3} m a^{2}$

Answer: D

- Watch Video Solution

124. A thin uniform rod of length I and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω. Its cenre of mass rises to a maximum height of:
A. $\frac{1 l \omega}{6 g}$
B. $\frac{1 l^{2} \omega^{2}}{g}$
C. $\frac{1 l^{2} \omega^{2}}{6 g}$
D. $1 l^{2} \omega^{2} \frac{)}{3 g}$

Answer: C

125. A mas m hangs with help of a string wraped around a pulley on a frictionless bearling. The pulley has mass m and radius R. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass m , if the string does not slip on the pulley, is:
A. g
B. $\frac{2}{3} g$
C. $\frac{g}{3} g$
D. $\frac{3}{2} g$

Answer: B

D Watch Video Solution

126. A thin horizontal circular disc is roating about a vertical axis passing through its centre. An insect is at rest at a point near the rim
of the disc. The insect now moves along a diameter of the disc to reach its other end. During the journey of the insect, the angular speed of the disc.
A. continuously decreases
B. comtinuously increases
C. first increases and then decreases
D. remains unchanged

Answer: C

- Watch Video Solution

127. A pulley os radius $2 m$ is rotated about its axis by a force $F=\left(20 t-5 t^{2}\right)$ newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is $10 \mathrm{kgm}^{2}$ the number of rotaitons made by the pulley before its direction of motion is reversed, is:
A. more than 3 but less than 6
B. more than 6 but less than 9
C. more than 9
D. less than 3

Answer: A

- Watch Video Solution

128. A hoop of radius r and mass m rotating with an angular velocity ω_{0} is placed on a rough horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases ot slip?
A. $\frac{r \omega_{0}}{4}$
B. $\frac{r \omega_{0}}{3}$
C. $\frac{r \omega_{0}}{2}$
D. $r \omega_{0}$

Answer: C

- Watch Video Solution

129. A bob of mass m attached to an inextensible string of length I is suspended from a vertical support. The bob rotates in a horizontal circle with an angular speed ω red/s about the vertical. About the point of suspension:
A. angular momentum is conserved.
B. angular momentum changes in magnitude but not is direction.
C. angular momentum changes in direction but not in magnitude.
D. angular momentum changes both in direction and magnitude.

Answer: C

130. Distance of the centre of mass of a solid uniform cone from its vertex is z_{0}. If the radius of its base is R and its height is h then z_{0} is equal to:
A. $\frac{5 h}{8}$
B. $\frac{3 h^{2}}{8 R}$
C. $\frac{h^{2}}{4 R}$
D. $\frac{3 h}{4}$

Answer: D

- Watch Video Solution

131. From a solid sphere of M and radius R a cube of maximum possible volume is cut. Moment of inertia of cube about an axis passing through its centre and perpendiular to one of its faces is:
A. $\frac{(4 M R)^{2}}{9 \sqrt{3} \pi}$
B. $\frac{(4 M R)^{2}}{3 \sqrt{3} \pi}$
C. $\frac{(M R)^{2}}{32 \sqrt{2} \pi}$
D. $\frac{(M R)^{2}}{16 \sqrt{2} \pi}$

Answer: A

- Watch Video Solution

132. A roller is made by joining together two cones at their vertices 0 , ti is kept on two rails $A B$ and $C D$, which are placed asymmetrically with its axis perpendiuclar to $C D$ and its center O at the centre of line joining $A B$ and $C d$ it is given a light push so that it starts rolling with its centre O moving parallel to CD in the direction shown As it moves,
the roller wil tand to:

A. go straight
B. tum left and right alternately.
C. trun left.
D. turn right.

Answer: C

D Watch Video Solution

1. A disc of mass M and radius R is rolling with angular speed ω on a horizontal plane as shown in figure. The magnitude of angular momentum of the disc about the origin O is

A. $(1 / 2) M R^{2} \omega$
B. $M R^{2} \omega$
C. $(3 / 2) M R^{2} \omega$
D. $2 M R^{2} \omega$

Answer: C

- View Text Solution

