O'doubtiut India's Number 1 Education App

PHYSICS

BOOKS - SUNIL BATRA 41 YEARS IITJEE PHYSICS (HINGLISH)

MODERN PHYSICS

Jee Main And Advanced

1. To produce characteristic X - rays using a Tungsten target in an x - ray generator, the accelerating should be greater then Volts and the energy of the characteristion is eV .
(The binding energy of the intermost electron in Tungsten is -40 keV).

- Watch Video Solution

2. The radioactive decay rate of a radioactive elemant is found to be 10^{3} disintegration // second at a cartain time. If the half life of the element is one second , the dacey rate after one second And after three second is

- Watch Video Solution

3. The maximum kinetic energy of electrons emited in the photoelectric effect is linearty dependent on the Of the incident radiation .

- Watch Video Solution

4. In the final Uranium radicactive series the initial nucleus is $-(238){ }^{92} U$ and the final nucleus is ${ }_{-}(82)^{206} p b$. When Uranium necleus docays to lead, the number of a - particle is And the number of β - particles emited is
5. When the number of electron striking the anode of an X - ray tube is increase, the \qquad Of the emited X - ray increases, while when the speeds of the electrons the anode are increased, the cut - off wavelength of the emitted X - ray \qquad

- Watch Video Solution

6. when Boron nuclus $\left(-(3)^{10} B\right)$ is bombarded by neudrons, a- particle are emitted . The resulting nucleus is of the elenent And has the mass different are called isotopes .

- Watch Video Solution

7. Atoms having the same but different Are colled isotopes .

- Watch Video Solution

8. The binding energy per nucleon number for deuteron ($\left.-(1) H^{2}\right)$ and belium $\left(-(2) H x^{4}\right)$ are 1.1 MeV and 7.0 MeV respectively. The energy released when two deuterons fase to form a belium nucleus ($-(2) \mathrm{He}^{4}$) is

- Watch Video Solution

9. In the forward blas arrangement of a $p-n$ junction rectifier , the p and is connected to the Terminal of the bettery and the direction of the currect is from to In the reclifier .

- Watch Video Solution

10. bissing of $p-n$ junction. Affers high resistance to currect flow across the junction. The biasing is obtained by connecting the p - side to the Terminal of the battery
11. The wavelength of the characteristic X - ray k_{α} line emited by a bydroges like element is 0.32λ. The wavelength of the K_{β} line emited by the same element will be

- Watch Video Solution

12. The Bohr radius of the fifth electron of phosphorous alom $(a \rightarrow$ micumber $=15) \quad$ acting \quad as \quad a dopant \quad in sillcon (relativedie \leq ctriccons $\tan t=12$) is \AA

- Watch Video Solution

13. For the given circult shown in fig to act as full wave reclifer , the a, c, input should be connected accoss and And the d. c. output would

- Watch Video Solution

14. In an X- ray tube, electrons accelerated through a potential different of 15000 volts strike a copper target. The speed of the emitted X - ray inside the tube is m / s

- Watch Video Solution

15. In the Bohr model to the local energy of the electron in a puantum state n is

Watch Video Solution

16. In the nuclear process, $-(6) C^{11} \rightarrow_{2} B^{11}+\beta^{11} \beta^{+}+X, X$ stadnds for.......

- Watch Video Solution

17. In a Biassed $p-\alpha$ of janction, the net flow of holes is from the n region to the p regain .

- Watch Video Solution

18. A potential diffrence, the $20 k v$ is applied across an X - ray s tube . The minimum wavelength of x-ray generated isA .

- Watch Video Solution

19. The wavelength of $k_{\alpha} \mathrm{X}$ - rays produced by an X - rays tube is $0.76 \AA$.

The atomic number of the anode material of the tube is \qquad

Watch Video Solution

20. Fill in the blanks with appropriate items :

Consider the following reaction, . ${ }^{2} H_{1}+.{ }^{2} H_{1}=.{ }^{4} H e_{2}+Q$.
Mass of the deuterium atom= $2.0141 u$, Mass of the helium atom $=$ $4.0024 u$

This is a nuclear \qquad reaction in which the energy Q is released is
\qquad MeV.

- Watch Video Solution

21. The kinetic energy of photoelectrons emitted by a photosensitive surface depends on the internsity of the incident radiation
22. In a photoelectric emission process the maximum energy of the photo

- electrons increase with increasing intensity of the incident light.

Watch Video Solution

23. For a dlode the variation of its anode current 1_{a} with the anode vollage V_{a} at two different cathode lemperatures T_{1} and T_(1)

- Watch Video Solution

24. The order of magnitude of the density of nuclear matter is $10^{4} \mathrm{kgm}^{-3}$
25. The plate resistance of a triode in 3×10^{3} aloms and its muthal of the triode is
A. 5×10^{-5}
B. 4.5
C. 45
D. $\left(0.2 \times 10^{3}\right.$

Answer: B

- Watch Video Solution

26. The half life of radioactive Radon is 3.8 days. The time at the end of which $\frac{1}{20} t h$ of the radon sample will remain undecayed is (given $\log e=0.4343$)
A. $3.8 d a y s$
B. 16.5 days
C. $33 d a y s$
D. $76 d a y s$

Answer: B

- Watch Video Solution

27. An alpha particle of energy 5 MeV is scattered through 180° by a found uramiam nucleus. The distance of appreach is of the order of
A. $1 \AA$
B. $10^{-10} \mathrm{~cm}$
C. $10^{-12} \mathrm{~cm}$
D. $10^{-15} \mathrm{~cm}$

Answer: C

28. Beta rays emitted by a radicactive material are
A. electrongnetic radiations.
B. the electrons orbiting around the nucleus .
C. charged particle emited by the nacleus .
D. ineutral particles

Answer: C

- Watch Video Solution

29. If element with particle quantum number $n>4$ were not allowed in nature , the number of posible elemant would be
A. 60
B. 32
C. 4
D. 64

Answer: A

- Watch Video Solution

30. Consider the spectral line resulting from the transition $n=2 \rightarrow n=1$ in the atoms and lons given. The shortest wavelength is produced by
A. Hydrogen atiom
B. Deuterium atoms
C. Singly lonized Helium
D. Doubly lonised Lithium

Answer: D

31. The equation
$4\left[\mathrm{H}^{+} \rightarrow_{2}^{4} \mathrm{He}^{2+}+2 e \overline{+} 26 \mathrm{MeVrepresents}\right.$
A. beta - decay`
B. λ - decay
C. flasion
D. fission

Answer: C

- Watch Video Solution

32. Fast neutrons can easily be slowed down by
A. the use of shielding
B. passing then through water
C. elastic collisions with heary ouclet
D. applying a strong electric field

Answer: B

- Watch Video Solution

33. Consider a particle, β particle and $\gamma-r a y s$, each having an energy of 0.5 MeV . In increase order of panetrating poewr, the radiation are.
A. a, β, γ
B. a, γ, β
C. β, γ, a
D. γ, β, a,

Answer: A

- Watch Video Solution

34. As energy of 24.6 eV is required to remove one of the required to remove both the electrons from a nuture brfore alon is
A. 38.2
B. 94.2
C. 51.8
D. 79.0

Answer: D

- Watch Video Solution

35. A radiacative moterial docays by simulataneous emission of two particle from the with respective half-lives 1620 and 810 year . The time, in year , after which one - fourth of the material remins is
A. 1080
B. 2430
C. 3240
D. 4860

Answer: A

- Watch Video Solution

36. The probbility of electrons to be found in the conduction band of an intrinsit semiconductor at a finile temperature
A. increase exponenially with increases band gap
B. decreases exponenially with increases band gap
C. decreases with increases temperature
D. is independent of the temperature and the band gap

Answer: B

- Watch Video Solution

37. A full - wave rectifier circult along the out - put is shown in figure. The contribution (s) from the diode 1 is are

A. C
B. A, C
C. B, D
D. A, B, C, D

Answer: B

- Watch Video Solution

38. As per Bohr model, the minimum energy (in eV) required to remove electron from the ground state of daubly joinized $L i$ alon $(Z=3)$ is
A. 1.51
B. 13.6
C. 40.8
D. 122.4

Answer: D

39. Which of the following statement is not true ?
A. The resistence of intrinsic semiconductors decreases with increase of tempareture .
B. Doping pure Si with trivalent inpurities give p - type semiconductors
C. The majority in n - type semiconductor diode are boles
D. A p-n junction can act as a semicondutrons diode

Answer: C

- Watch Video Solution

40. The maximum kinetic energy of photoelectrons emitted from a surface when photons of energy 6 eV fall on it is 4 eV . The stopping potential , in volt is
A. 2
B. 4
C. 6
D. 10

Answer: B

- Watch Video Solution

41. In hychrogen speactrun the wavelength of H_{a} line is 656 nm , where in the spactrum of a distance galaxy H_{a} line wavwlength is 706 nm . Estimated speed of the galaxy with respact to each is ,
A. $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $2 \times 10^{7} \mathrm{~m} / \mathrm{s}$
C. $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$
D. $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Answer: B

42. A particle of mass M at rest decay's into two particle of masses m_{1} and m_{2} having non zero velocity. The ratio of the de Broglie wavelengths of the masses $\lambda_{1} / \lambda_{2}$ is
A. m_{1} / m_{2}
B. m_{2} / m_{1}
C. 1.0
D. $\sqrt{m_{1}} / \sqrt{m_{2}}$

Answer: C

- Watch Video Solution

43. Which of the following is a correct statement ?
A. Beta rays are same as cathode rays
B. Gamma rays are high energy neutrons
C. Alpha particle are singly ionised helium atoms
D. Proton and nrutrons have exacily the same mass

Answer: A

- Watch Video Solution

44. Onder of magnitude of density of uranium nucleus is, [m = 1.67 xx $10^{\wedge}(-27 \mathrm{~kg}]^{`}$
A. $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
B. $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
C. $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
D. $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$

Answer: B

45. Ne nucleus, the after absorbing energy, decays into two $a-p a r t i c \leq$ and an unknown nucleus. The unknown nucleus is
A. nitrogen
B. carbon
C. boron
D. oxygen

Answer: B

- Watch Video Solution

46. Binding energy per vs mass curve for nucleus is shown in the figure W, X, Y and Z are four nuclei indicated on the curve . The process that
would rease energy is

A. $Y \rightarrow 2 Z$
B. $W \rightarrow X+Z$
C. $W \rightarrow 2 Y$
D. $X \rightarrow Y+Z$

Answer: C

- Watch Video Solution

47. Imagine an atom made up of a proton and a bypothetical particle of double the mass of the electron but having the same charge as the electron . Apply the Bohr atom model and consider all possible transitions of this bypothrtical particle that will be emited level. The longest wavwlength photon that will be emidet has longest wavwlength λ (given in terms of the bytherg constant R for the hydrogen aton) equal to
A. $9(5 R)$
B. $36 /(5 R)$
C. $18 /(5 R)$
D. $4 /(5 R)$

Answer: C

- Watch Video Solution

48. The electron in a hydrogen atom makes a transition from an excited state to the ground state. Which of the following statements is true?
A. Its kinetic energy increase and its potential and total energies decreases
B. Its kinetic energy decrease , potantiaL energy increase and its total energies ramain the same
C. Its kineticand total energy decrease and its energies in creases
D. Its kinetic potential and total energies decreases

Answer: A

- Watch Video Solution

49. Two radioactive X_{1} and X_{2} have docay constants 10λ and λ respecttively. If inittially they have the same number of noclei, then the radio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time .
A. $\frac{1}{10 \lambda}$
B. $\frac{1}{11 \lambda}$
C. $\frac{11}{10 \lambda}$
D. $\frac{1}{9 \lambda}$

Answer: D

- Watch Video Solution

50. Electrons with energy 80 keV are incdent on the tungsten target of an X - rays tube, k - shell electrons of tangsten have 72.5 keV energy X - rays emitted by the tube constain only
A. a contimuous X - rays spectrum (Bremasstrablung) with a miximum wavelength of $0.155 \AA$
B.a contimuous X - rays spectrum (Bremasstrablung) with all wavelength
C. the characteristic X-rays spectrum of tungsten`
D. a contimuous X - rays spectrum (Bremasstrablung) with a miximum wavelength of $0.155 \AA$ and the characteristic X - rays spectrum of tungsten.

Answer: D

D Watch Video Solution

51. The electron emitted in beta radiation orinates from
A. inner arbits of atoms
B. free electrons exitng in nuclei
C. decay of a neutron in a nucleus
D. photon escaping from the nucleus

Answer: C

52. The transition from the state $n=4 \rightarrow n=3$ in a bydrogen - like atom results in ultravioet radition infraced radiation will be obtained in the transtion
A. $2 \rightarrow 1$
B. $3 \rightarrow 2$
C. $4 \rightarrow 2$
D. $5 \rightarrow 4$

Answer: D

- Watch Video Solution

53. The intensity of X - ray from a coolidge tube is plotted againest wavelength λ as shown in the figure. The minimum wavelength found λ_{c} and the wavelength of the k_{a} line is λ_{λ}, As the accelerating voliage is
increase

A. $\lambda_{\lambda}-\lambda_{c}$ increase
B. $\lambda_{\lambda}-\lambda_{c}$ decrease
C. λ_{λ} increase
D. λ_{λ} decrease

Answer: A

- Watch Video Solution

54. A radicactive sample consider of two distinct species having equial number initially. The mean life time of one species is τ and that of the other is 5τ. The decay prodects in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time, which of the following figure best represent the from of this plot?
(a)

(b)

C.

Answer: D

- Watch Video Solution

55. The potential diffrence appling to an X - ray tube is $5 k V$ and the current through it is $3.2 m A$. Then the number of electrons striking the target per second is
A. 2×10^{16}
B. 5×10^{6}
C. 1×10^{17}
D. 4×10^{15}

Answer: A

- Watch Video Solution

56. A Hydrogen alon and Li^{++}ion are both in the second excired state.

If l_{H} and $l_{L i}$ are their respective energies, then
A. $l_{H}>l_{L I}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
B. $l_{H}=l_{L I}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
C. $l_{H}=l_{L I}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
D. $l_{H}><l_{L I}$ and $\left|E_{H}\right|><\left|E_{L i}\right|$

Answer: B

- Watch Video Solution

57. The half - life of ${ }^{\wedge}(215)$ At is $100 \mu, s$. The time taken for the radioactivity of a sample of ^ (215) At to dacay to $1 / 16^{t h}$ of its initialy value is
A. $400 \mu \mathrm{~s}$
B. $63 \mu \mathrm{~s}$
C. $40 \mu s$
D. $300 \mu s$

Answer: A

58. Which of the following process represents a $\gamma-$ decay?
A. ${ }^{\wedge}(A) X_{z}+\gamma \rightarrow^{A} X_{Z-1}+a+b$
B.
${ }^{\wedge}(A) X_{z}+{ }^{1} n_{0} \rightarrow{ }^{A-3} X_{Z-2}+c$
C. ${ }^{\wedge}(A) X_{z} \rightarrow{ }^{A} X_{Z}+f$
D. ${ }^{\wedge}(A) X_{z}+e_{-1} \rightarrow^{A} X_{Z-1}+g$

Answer: C

- Watch Video Solution

59. The elecrric potential between a proton and as electron is given by $V=V_{0} \ln \left(\frac{r}{r_{0}}\right)$, wherer r_{0} is a constant. Assuming Bohr's model to be applicable, write variation of r_{n} with n, n being the principal quantum number?
A. $r_{n} \propto n$
B. $r_{n} \propto 1 / n$
C. $r_{n} \propto n^{2}$
D. $r_{n} \propto 1 / n^{2}$

Answer: A

D Watch Video Solution

60. If the itom $\quad(100) F m^{257}$ follows the Bohr model the radius of - (100) $F m^{257}$ is a time the Bohr radius, then find n.
A. 100
B. 200
C. 4
D. $1 / 4$

Answer: D

61. For uranium nucleus low does its mass very with volume?
A. $m \propto V$
B. $m \propto 1 / V$
C. $m \propto \sqrt{V}$
D. 'm prop $1^{\wedge}(/ 2)$

Answer: A

Watch Video Solution

62. A nucles with mass number 220 initilly at rest enits an $a-p a r t i c \leq$. If the Q value of the reaction is 5.5 MeV , calculate the kinetic energy of the $a-p a r t i c \leq$
A. 4.4 MeV
B. 5.4 MeV
C. 5.6 MeV
D. 6.5 MeV

Answer: B

- Watch Video Solution

63. In a photoelectric experiment anode potential is ploted againest plate currect.

A. A and B will have different intensities while B and C will have different frequencies
B. B and C will have different intensities while A and C will have different frequencies
C. A and B will have different intensities while A and C will have different frequencies
D. B and B will have equal intensities while A and B will have different frequencies

Answer: D

D Watch Video Solution

64. A 280 days old cative substance shown an activity of 6000 dps 100 days later its activity between 3000 days what was its initial activity ?
A. $20000 d p s$
B. $24000 d p s$
C. $12000 d p s$
D. 6000 dps

Answer: B

- Watch Video Solution

65. A proton has kinetic energy $E=100 \mathrm{keV}$ which is equal to that of a photo is λ_{1}. The ratio of k_{2} / λ_{1} is proportional to
A. E^{2}
B. $E^{1 / 2}$
C. E^{-1}
D. $E^{-1 / 2}$

Answer: D

- Watch Video Solution

66. k_{a} wavelength emitted by an atom of atomic number $E=11$ is λ find the atomic number for an atomic that amils k_{a} radiation with wavwlength 43.
A. $Z=6$
B. $Z=4$
C. $Z=11$
D. $Z=44$

Answer: A

- Watch Video Solution

67. A photon collides with a stationary hydrogen atom in ground state inolestically. Energy of the order of inicro second another photon collicles with same hydrogen atom indastisically with an energy of 15 eV what will be observad by the detanctor?
A. One photon of energy 10.2 eV and an electronof energy 1.4 eV
B. 2 photon of energy of $1: 4 \mathrm{eV}$
C. 2 photon of energy of 10.2 eV
D. One photon of energy 10.2 eV and another photon of 1.4 eV

Answer: A

- Watch Video Solution

68. A beam of electronis as $Y D S E$ experiment. The slit width is d when the velocity of electron is increase, then
A. no interference is observed
B. fringer width increases
C. fringer width decreases
D. fringer width remain same

Answer: C

69. If a star can convert all the .He nuclei comnpletely into oxigen nucles , the energy released per oxigen nucles is . He nuclease is 4.0026 amu and mass of oxigen nuclease is 15.9994 amu]
A. 7.6 MeV
B. 56.12 MeV
C. $10.24 \mathrm{meV}^{-}$
D. 23.9 MeV

Answer: C

- Watch Video Solution

70. _ (87) ${ }^{223}$ Ra is a radioactive substance having half life of 4 days Find the problability that a nucleas undergoes after two half lives
A. 1
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

71. In the option given below, let E denote the rest mass energy of a nucleas and n a neutron. The correct option is
A. $E\left(_(92)^{\wedge}(236) \mathrm{U}\right) \mathrm{gt} E\left((92)^{\wedge}(236) \mathrm{I}\right)+E\left((92)^{\wedge}(236) \mathrm{Y}\right)+2 \mathrm{E}(\mathrm{n})^{\wedge}$
B. $E\left(_(92)^{\wedge}(236) \mathrm{U}\right) \mathrm{It} E\left(_(92)^{\wedge}(137) \mathrm{I}\right)+E\left((39)^{\wedge}(97) \mathrm{Y}\right)+2 \mathrm{E}(\mathrm{n})^{\wedge}$
C. $E\left(_(92)^{\wedge}(236) \mathrm{U}\right) \mathrm{It} E\left(_(56)^{\wedge}(140) \mathrm{Ba}\right)+E\left(_(36)^{\wedge}(94) \mathrm{Kr}\right)+2 \mathrm{E}(\mathrm{n})^{\wedge}$
D. $E\left(_(92)^{\wedge}(236) \mathrm{U}\right)=E\left((56)^{\wedge}(140) \mathrm{Ba}\right)+E\left(_(94)^{\wedge}(36) \mathrm{Kr}\right)+2 \mathrm{E}(\mathrm{n})^{\wedge}$
72. The largest wavelength in the ultraviolet region of the hydrogen spetrum is 122 nm . The samallest wavelength in the infrared ragaion of the hydrogen spetrum (to the nearest integer) is
A. $802 n m$
B. 823 nm
C. 1882 nm
D. 1648 nm

Answer: B

- Watch Video Solution

73. Eletrons with de- Broglie wavwlength λ fall on the target in an X- rays tube. The cut off wavelength of the emitted X - rays is
A. lambda_(0) $=\left(2 \mathrm{mclambda}^{\wedge}(2)\right) /(\mathrm{h})^{\wedge}$
B. $\lambda_{0}=\frac{2 h}{m c}$
c. $\lambda_{0}=\frac{2 m^{2} c^{2} \lambda^{3}}{h^{2}}$
D. $\lambda_{0}=\lambda$

Answer: A

- Watch Video Solution

74. Which one of the following atatement i9s $W R O N G$ in the context of X- rays generated from X - rays tube ?
A. Wevelength of characteristic X - rays decrease when the atomic number of the target increase
B. cot - off wavelength of the contimous X - rays depends on the atomic number of the target
C. Intensity of the characteristic X -rays depend on the electrical power given to the X - rays tube
D. cut - off wavelength of the continous X - rays depends on the energy of the electrons in the X-rays tube

Answer: B

- Watch Video Solution

75. A radioactive sample S_{1} having an activity $5 \mu C i$ has twice the number of inucle as another sample S_{2} which has as activity of $10 \mu \mathrm{Ci}$. The half lives of S_{1} and S_{2} can be
A. $20 y e a r s$ and $5 y e a r s$, respectively
B. 20 years and $10 y e a r s$, respectively
C. 10yearseatch
D. 5yearseatch

- Watch Video Solution

76. photoelectric affect experiments are performer using ther different medal plates p, q and r having work functionphi_ $(\mathrm{p})=2.0 \mathrm{eV}$, phi_(e) $=2.5$ eV and phi_(r) $=\quad 3.0$ eV
respectivelyAlightbeamconta $\in \in$ gwave $\leq n>h o f 550 \mathrm{~nm}, 450 \mathrm{~nm}$ and 350nm
withequal Sensitiesillu min ateseachoftheplate. Thec or rect1 -V graphf or the \exp erimentis [Take hc $=1240 \mathrm{eV} \mathrm{nm}$]
A.

B.

C.
(c)

(d)

Answer: A

- Watch Video Solution

77. The wavelength of the spectral live the Balner series of hydrogen atom is $6561 A^{\circ}$. The wavelength of the second spectralline in the Balmer series of singly - ionized belium atom is
A. $1215 A^{2}$
B. $1640 A^{2}$
C. $2430 A^{2}$
D. $4687 A^{2}$

- Watch Video Solution

78. A pulse of light of duration 100 ns is alsorbed completely by a small object inillally at rest power of the pulse is 30 mW and the speed of light is $3 \times 10^{8} \mathrm{~ms}^{-1}$ The final momentum of the object is
A. $0.3 \times 10^{-17} \mathrm{kgms}^{-1}$
B. $3.0 \times 10^{-17} \mathrm{kgms}^{-1}$
C. $1.0 \times 10^{-17} \mathrm{kgms}^{-1}$
D. $9.0 \times 10^{-17} \mathrm{kgms}^{-1}$

Answer: B

- Watch Video Solution

79. If $\lambda_{c \mu}$ is the wavelength of
$K_{a} X-$ raysl \in eof $\cap p$ or ($a \rightarrow$ mic \quad mber 29) and lambda_(Mo)
isthewave $\leq n>$ hofthek_(a)
$X-$ raysl \in eofmolynde \quad ($a \rightarrow$ micumber42)thenratiolambda_(ca)
${ }^{\wedge}\left(1\right.$ lambda_(Mo) ${ }^{\prime}$ is close to
A. 1.99
B. 2.14
C. 0.50
D. 0.48

Answer: B

- Watch Video Solution

80. A metal is illumimated by light of two different wavelength 248 nm and 310 nm . The maximum speeds of the photoelecrtron corresponding in these wavwlength are
u_(1) and
u_(2)
respectively. Iftheratiou $u_{1}: u_{2}=2: 1$ and $h c=1240 \mathrm{eVnm}$, the work function of the inetial is rearly
A. 3.7 eV
B. 3.2 eV
C. 2.8 eV
D. 2.5 eV

Answer: A

- Watch Video Solution

81. The electrotatic energy of Z protons uniformly distributed throughout a spherical nucleus of ratio R is given by
$E=\frac{3 Z(Z-1) e^{2}}{54 \pi e_{0} R}$
The measured masses of the neutron

- $(1)^{1} H,{ }_{7}^{15} N$ and,${ }_{8}^{15}$ Oare $1.008665 u, 1.007825 u, 15.000109 u$ and 15.0030 repectively Given that the ratio of both the _(7)^(12) N and _(8)^(15) 0 nu8cles are same , $1 \mathrm{u}==931.5 \mathrm{Me} \mathrm{Vc}$ ^(2) (cisthespeedoflight) and
fmAs $\sum \in$ gtt̂hed \Leftrightarrow erencebetweentheb $\in d \in$ ge $4 \neq$ rgiesof
${ }^{(} 7_{-}^{\wedge}(15) \mathrm{N}$ and ${ }^{\prime}(8)^{\wedge}(15) \mathrm{O}$ ` is puraly due to the electric energy, The radius of the nucleas of the nuclei is
A. 2.85 fm
B. 3.03 fm
C. 3.42 fm
D. 3.80 fm

Answer: C

- Watch Video Solution

82. As accident in a nuclear laboratory resulting in deposition of a certain amount of radioaction radioctive material of half life 18days inside the loboratory Teste revealed that the radiation was 64 times more than the permissible lovel repuered for save operation of the laboratory what is
the minimum number of days after which the laboratory can be considered safe for use?
A. 64
B. 90
C. 108
D. 120

Answer: C

- Watch Video Solution

83. The shorted wavelength of X- rays emitted from an X- rays tube depends on
A. the currect in the tube
B. the vollage applied to the tube
C. the nuture of the gas in tube
D. the atomic number of the target material

Answer: B::D

- Watch Video Solution

84. The threshold wavelength for photoelectric from a material is $5200 \AA$ photoelectric will be emittillumnated with when this meterial is illiuminated with monecharnatic radiation from a
A. 50 watt infrared lamp
B. 1 - watt infra- red lamp
C. 50watt ubraviolet lamp
D. 1 - watt ahraviolet lamp

Answer: C::D

- Watch Video Solution

85. from the following equation pick out the possible nuclear fasion reactions
A. $-(6) C^{13}+{ }_{1} H^{1} \rightarrow_{6} C^{14}+4.3 M e V$
B. $-(6) C^{12}+{ }_{1} H^{1} \rightarrow_{7} C^{13}+2 M e V$
C. $-(6) C^{14}+{ }_{1} H^{1} \rightarrow_{6} C^{15}+7.3 M e V$
D. (92) $\mathrm{U}^{\wedge}(235)+{ }_{\mathrm{Z}}(0) \mathrm{n}^{\wedge}(1)$ rarr _(54) $\mathrm{Xe} \mathrm{A}^{\wedge}(140)+{ }_{-}(38) \mathrm{st}{ }^{\wedge}(94)+$

$$
\text { _(0) } \mathrm{n}^{\wedge}(1)+{ }_{-}(0) \mathrm{n}^{\wedge}(1)+\text { gamma }+200 \mathrm{MeV}
$$

Answer: B::C

- Watch Video Solution

86. In Both 's model of the hydrogen atom
A. the radius of theorbit is propertional to n^{2}
B. the total energy of the electron in nth orbit is an propertional to n
C. the engular momentum of the electron in an orbit is an integral mulliple of ${ }^{`}(h) /(2 \mathrm{pi})$
D. the magnatube of potential energy of the electron in any orbit is grater then in K.E.

Answer: A::C::D

- Watch Video Solution

87. Selected the correct statement from the following
A. A diode can be used as a neclifier
B. A triode connot be used as a recifier
C. the currect is a diode is always propotianal to the applilled vollage
D. The linner porton odf the $1-V$ characteristic of a triode is used for amplification without distortion
88. for a give a plate voltage, the plate currect in a triode cvalve is maximum when the potential of
A. the grid is positive and plate is negetive
B. the grid is zero and plate is positive
C. the grid is negative and plate is positive
D. the grid is positive and plate is positive

Answer: D

- Watch Video Solution

89. The X - rays beam coming from an X - rays tube will be
A. monuchromatic
B. having all wavwlength smaller than a cortain maximum wavelength
C. having all wavwlength largest than a cortain maximum wavelength
D. having all wavwlength lying between a minimum and a maximum wavelength

Answer: C

- Watch Video Solution

90. The mass number of a nucleus is
A. always less then its number is
B. always more then its number is
C. sometimes equal to its atomic number
D. sometimes more then and sometimes equal to its atomic number

Answer: C::D

91. photoelectric effect supports quantion nuture of light because
A. ther is a minimum frequency of light below which no photoelectric are emitted
B. the maximum kinetic energy of photo electros depends only on the
frequency of light and not on its intesity
C. even on the metal surface is fandly illumnated the photoelectronic
leave the surface immedanetely
D. electric charge of the photoelectron is quanized

Answer: A::B::C

- Watch Video Solution

92. Dividing a negative beta dacay
A. as atomic electron is ejection
B. as electron which is already present within the nuclease is ejection
C. a neclues in the nuclease decay emiting an electron
D. a part of the necule the binding energy of the nuclease is converted
into an electron

Answer: C

- Watch Video Solution

93. During a nuclear fasion reaction
A. a heavy nuclease break into two fragments by itself
B. a light nucleus bomberded by theremal neutrous breaks up
C. a heavy nucleus bombered by thermal neudrons break up
D. two light nucleus combered by thermal and posibly other product

Answer: D

94. The potential different applied to an X-rays tube is increase .As a result, in the emitted radiation
A. the intersity increase
B. the minimum wavelength increasres
C. the intencity remain unchanged
D. the minimum wavelength decrease

Answer: C::D

- Watch Video Solution

95. A freshly prepared radioactive source of half life 2 hr emited radiation of intencity which is 64 times the permissibe level. The minimum time after which it would be possible to work safely with this source is
A. $6 h r$
B. $12 h r$
C. $24 h r$
D. $128 h r$

Answer: B

- Watch Video Solution

96. impurity atoms with which pure silicon should be doped to make a p type semiconductor are those of
A. phosphorus
B. boron
C. antimoiny
D. aluminium

Answer: B::D

97. Two identical $\mathrm{p}=-\mathrm{a}$ junctions may be connected in seres in which a bettery in three ways, fig. The potential drops access the two $\mathrm{p}-\mathrm{n}$ junction are equal in

Circuit 3
A. circuit 1 and circuit2
B. circuit 2 and circuit3
C. circuit 3 and circuit1
D. circuit 1 only

Answer: B

98. The decay constant of a radiaoacation sample is λ. The half life and mean life of the sample are respectively given by
A. $1 / \lambda$ and $(\epsilon 2) / \lambda$
B. $(\in 2) / \lambda a n d 1 / /$ lambda`
C. $\lambda(\in 2)$ and $1 / \lambda$
D. $\lambda /(\in 2)$ and $1 / \lambda$

Answer: B

- Watch Video Solution

99. When a monochromatic point source of light is at a distance of 0.2 m from a photoelectron cell the cut off voltage and the saturation currect are respectively 0.6 V and 18.0 mA if the same is plased 0.6 m away from the photoelectric cell , then
A. the stopping potential will be $0.2 \mathrm{Vo}<$
B. the stopping potential will be $0.6 \mathrm{Vo}<$
C. the stopping potential will be $6.0 \mathrm{Vo}<$
D. the stopping potential will be $2.0 \mathrm{Vo}<$

Answer: B::D

- Watch Video Solution

100. In an n - $p-n$ transistor cirrect, the collectorcurrect is 10 mA if 90% of the electrons reach the collector.
A. the emitter currect will be $9 m A$
B. the base currect will be $1 m A$
C. the emitter currect will be $11 m A$
D. the base currect will be $-1 m A$

Answer: B::C

101. A star initially has 10^{40} deuterons it product energy via the process - (1) $H^{2}+{ }_{1} H^{2}+\rightarrow_{1} H^{3}+p$ and $\quad-(1) H^{2}+{ }_{1} H^{3}+\rightarrow_{2} H e^{4}+n$ If the deuteron supply of the average power radiated by the state is $10^{16} \mathrm{~W}$, the deuteron supply of the state is exhausted in a time of the order of.

The masses of the nuclei are as follows:
$M\left(H^{2}\right)=2.014 a \mu$,
$' M(p)=1.007 \mathrm{amu}, M(n)=1.008 \mathrm{amu}, M\left(\mathrm{He}^{\wedge}(4)\right)=4.001 \mathrm{amu}$.
A. $10^{\wedge}(6) \mathrm{s}$.
B. $10^{\wedge}(8) \mathrm{s}$.
C. $10^{\wedge}(12) \mathrm{s}$.
D. $10^{\wedge}(16) \mathrm{s} .{ }^{\text {. }}$

Answer: C

102. photons of energy 4.25 eV strike the surface of metal A , the ejection photoelectric have maximum kinetic energy
$T_{A} e V e \neq r g y 4.70 \mathrm{eVis} T_{B}=\left(T_{A}-1.50\right) \mathrm{eV}$ if the de Brogle wavelength of these photoelec tron is $\lambda_{B}=2 \lambda_{A}$, then
A. The work function of $A i s 2.25 \mathrm{eV}$
B. The work function of $B i s 4.20 \mathrm{eV}$
C. $T_{A}=2.00 \mathrm{eV}$
D. $T_{B}=2.75 \mathrm{eV}$

Answer: A: B::C

- Watch Video Solution

103. which of the following statement (s) is (are) correct ?
A. The rest mass of a stable nucleus is less then the sum of the rest mases opf its separated niuceons
B. The rest mass of a stable nucleus is greater then the sum of the rest mases opf its separated niuceons
C. in nuclear fission , energy is released by fasing two nuclei of medium mass (approximately $100 a \mu$)
D. in nuclear fission, energy is released by fregmentation of a very heavy nucleus

Answer: A::D

- Watch Video Solution

104. Holes are charge carriers in
A. intrinsic semicondutors
B. ionic solids
C. p-type samiondactors
D. inctals

Answer: B::C

- Watch Video Solution

105. A transister is used in the common emitted mode as no amplifer, Then
A. the base-emitter junction is forward-biassed
B. the base-emitter junction is reverse- biassed
C. the input signal is connected in series with the voltage applied to has the base- emitter junction
D. the input signal is connected in series with the voltage applied to
has the base- collector junction

Answer: A::C

106. Let m_{p} be the mass of a poton, M_{1} the mass of a $-(10)^{20} N e$ nucleus and M_{2} the mass of a ${ }_{-}(20)^{40} C a$ nucleus. Then
A. $M_{2}=2 M_{1}$
B. $M_{2}>2 M_{1}$
C. $M_{2}<2 M_{1}$
D. $M_{1}<10\left(m_{n}+m_{p}\right)$

Answer: C::D

- Watch Video Solution

107. The electron in a hydrogen atom make a transtion $n_{1} \rightarrow n_{2}$ where n_{1} and n_{2} are the priocipal quantum number of the two states. Assume the Bohr model to be valid. The time period of the electron in the initial
state is eight time that in the state. THe possible values of n_{1} and n_{2} are
A. $n_{1}=4, n_{2}=2$
B. $n_{-}(1)=8, n_{-}(2)=2^{`}$
C. $n_{-}(1)=8, n_{-}(2)=1$ '
D. $n_{-}(1)=6, n_{-}(2)=3^{`}$

Answer: A::D

- Watch Video Solution

108. The half - liofe of ^ (131)1is days Given a sample of ^ $(131) 1$ at time $t=0$, we get that
A. no nucleus will decay $t=4 d a y s$
B. no nucleus will decay $t=8$ days
C. no nucleus will decay $t=16$ days
D. a given nucleus may dacay at any time after $t=0$

Answer: D

- Watch Video Solution

109. In a p-n junction diode not connected to any circuit,
A. the potential is the same everwhere
B. the p - type side is at a bigher potential that the n -type side
C. then is an electric at the junction directed from
D. there is an electric fied at the junction directed from the p - type side to the n - type side

Answer: C

110. X - rays are produced in an X - rays tube operating at a given accelerating voltage. The wavelength of the contimous X - rays has values from
A. $0 \rightarrow \infty$
B. $\lambda_{\text {min }} \rightarrow \infty$ where $\lambda_{\text {min }}>0$
C. $0 \rightarrow \lambda_{\max }$ where $\lambda_{m x}<\infty$
D. $\lambda_{\text {min }} \rightarrow \lambda_{\text {max }}$ where $0<\lambda_{\text {min }}<\rightarrow \lambda_{\text {max }}<\infty$

Answer: B

- Watch Video Solution

111. The work function of a substance is 4.0 eV The longest wavwlength of light that can cause photoelectron emission from this substance is approximately
A. 540 nm
B. 400 nm
C. 310 nm
D. 220 nm

Answer: C

- Watch Video Solution

112. The half - life period of a radioactive element X is same as the mean life time of the another radicoactive electront Y initial both of then the same number of atom. Then
A. X and Y have the same decay rate initial ly
B. X and Y dacay at the same decay rate always
C. Y will dacay at a faster rate then X
D. X will dacay at a faster rate then Y

Answer: C

113. The graph between the stopping potential $\left(V_{0}\right)$ and $\left(\frac{1}{\lambda}\right)$ is shown in the figure ϕ_{1}, ϕ_{2} and ϕ_{3} are work function, which of the following is //are correct

A. $\phi_{1}: \phi_{2}: \phi_{3}=1: 2: 4$
B. $\phi_{1}: \phi_{2}: \phi_{3}=4: 2: 1$
C. $\tan \theta \propto \frac{h c}{€}$
D. ultravioletight can be used emit photoelectrons from metal 2 and

D Watch Video Solution

114. Assume that the nucles binding energy per nucleus (B / A) versus mass number (A) is as shown in the figure Use this plate to choose the energy the correct (s) given below

A. fusion of two nucleus with mass number typing in the range of $1<A<50$ will release energy
B. fusion of two nucleus with mass number typing in the range of $51<A<100$ will release energy
C. fusion of a nucleus typing in the mass of $100<A<200$ will release energy when broken into two equal fragments
D. fusion of a nucleus typing in the mass range of $200<A<260$ will release energy when broken into two equal fragments

Answer: B::D

- Watch Video Solution

115. The radius of the orbit of an electron in a Hydrogen - like atom is $4.5 s_{0}$ where s_{0} is the bohr radius its orbital angular momentum is $\frac{3 b}{2 \pi}$ it is given that is is plank constant and R is rabdery constant. The possible wavelength (s), when the atom de- exciter, is (are)
A. $\frac{9}{32 R}$
B. $\frac{9}{16 R}$
C. $\frac{9}{5 R}$
D. $\frac{4}{3 R}$

Answer: A:C

- Watch Video Solution

116. For photo - electric effect with incident photo wavelength λ the stopping is V_{0} identify the correct variation(s) of V_{0} with λ and $1 / \lambda$
(a)

A.
(b)

B.
(c) $V_{0} \uparrow \underset{1 / \lambda}{ }$
C.
(d) $V_{0} \uparrow \longrightarrow 1 / \lambda$
D.

Answer: A: $:$ C

D Watch Video Solution

117. A fission reaction is given by $-(92)^{236} U \rightarrow{ }_{54}^{140} X e+{ }_{38}^{94} S t+x+y$, where x and y are two particle Consider $\quad(92)^{236} U$ to be at rest , the kinetic energies of the products are deneted by $k_{x e} K_{s t} K_{s}(2 \mathrm{MeV})$ and repectively . Let the binding energy per nucleus of _ $(92)^{236} U,{ }_{54}^{140} \mathrm{Xe}$ and ${ }_{38}^{94} \mathrm{Stbe} 7.5 \mathrm{MeV}, 8.4 \mathrm{MeV}$ and 8.5 MeV , respectively Considering different conservation laws, the correct sption (s) is (are)
A. $x=n, y=n, K_{S t}=129 \mathrm{MeV}, K_{x e}=86 \mathrm{MeV}$
B. $x=p, y=e^{-}, K_{S t}=129 \mathrm{MeV}, K_{x e}=86 \mathrm{MeV}$
C. $x=p, y=n, K_{S t}=129 \mathrm{MeV}, K_{x e}=86 \mathrm{MeV}$
D. $x=n, y=n, K_{S t}=86 \mathrm{MeV}, K_{x e}=129 \mathrm{MeV}$

Answer: A

- Watch Video Solution

118. Hight excited state for hydrogen - like atom (also called rydherg quanitum number n , where ngtgt1 which of the following statement is (are) true?
A. Relative change in the radil of two consecative orbiats does niot depend on Z
B. Relative change in the radil of two consecative orbiats varies as
$1 / n$
C. Relative change in the energy of two consecative orbiats varies as $1 / n^{3}$
D. Relative change in the angular moments of two consecative orbiats

- Watch Video Solution

119. Light of wavelength $\lambda_{p h}$ falls on a plate a vacum teke as shown in the figure. The work function of the conducting meterial kept at a distance d from the cathon A petential different V is maximum between the electrodes if the minimum de Brogle waveleeength of the electrons passing through the anode is λ_{e} which of the following statement (s) is (are) true?

A. λ_{e} decrease with increase in ϕ and $\lambda_{p h}$
B. λ_{e} is approximentily balved, if d is doubled
C. for large potential diffrence $(V \gg \phi / e) . \Lambda_{e}$ is approximately halved if V is made four time
D. λ_{e} increase at the same rate as $\lambda_{p h} f$ or $\lambda_{p h}<h c / \phi$

Answer: C

- Watch Video Solution

120. A single electron orbikt around a stationary nucleus of charge $+Z e$
when Z is a constant and e is the magnitube of the electronic charge if 47.2eVexcitethee \leq ctronomthe sec ondbohr or bit \rightarrow thethirdbohhr or \rightarrow thefourthbohr or bit(iii)Thewave $\leq n>$ hofthee \leq ctronmag $\neq t i$ \neq rgypotentiale \neq rgypotentiale \neq rgy and theangarmomentumofthes \neq rgyofhydro $\geq n a \rightarrow m$
$=13.6 \mathrm{eV}$ bohrradius $=5.3 \mathrm{xx} 10^{\wedge}(-11)$ matrevelocityoflight= $3 \mathrm{xx} 10^{\wedge}(8)$ $\mathrm{m} / / \mathrm{secplanks} s^{\prime}$ scons $\tan t=6.6 \times x$ 10^(-34) ' jules -sec$)$

- Watch Video Solution

121. Hydrogen atom is ground state is excied by mean of monochromatic radiation of wavelength $975 \AA$ How many asume different lines are possible is the resulting spactrum ? Calculate the lorgest energy for hydrogen atom as 13.6 eV

- Watch Video Solution

122. How many electron potons and mass number in a nucleus of atomic number 11 and mass 24 ?
(i) number of electron = (ii)number of proton $=$ (iii)number of neutrons $=$

- Watch Video Solution

123. The energy needed to detach the electron of a hydrogen like ion in ground state is a system(a) what is the wavelength of the radiation emitted when the electron jumps from the first excited state to the ground state? (b) What is the radius of the orbit for this atom?
124. A double ionised lithium atom is hydrogen like with atomic number 3
(i)Find the wavelength of the radiation to excite the electron in Li^{++} from the first to the third bohr orbit (lonisection energy of the hydrogen atom equals 13.6)
(ii) How many spectral lines are observed in the emission spetrum of the above excled system ?

- Watch Video Solution

125. A triod has plate characteristies in the from of purallet lines in the region of our interest At a given in terms of platevoltage V (in volts) by the algebraic relation
$1=0.125 V-7.5$
for grid of -3 volts is 5 millanpers, determine the plate resistance of(r_(p)) transcondutance (g)and the arrplfication facter (u) for the trid
126. A particle of charge equal to that of an electron-e, and mass in a clarcus orbita nucleus the charge $+3 E$ (Take the mass of the nucleus to be infinite Assuming that the bohr model of the atom is applicable to this system
(i) Derve an expression for the radius of the bohr orbit
(ii) find the value of a which the radius is approtimated the same as that of the bohr orbit fo the hydrogen atome
(iii) find the wavelength of the radiation emitted when the mu- meson jump from the thiord orbit of the first orbit

- Watch Video Solution

127. A gas of identical hydrogen-like atoms has some atoms in the lowest in lower (ground) energy level A and some atoms in a partical upper (excited) energy level B and there are no atoms in any other energy level.The atoms of the gas make transition to higher energy level by absorbing monochromatic light of photon energy 2.7 eV .

Subsequenty, the atom emit radiation of only six different photon
energies. Some of the emitted photons have energy 2.7 eV some have energy more , and some have less than 2.7 eV .
a Find the principal quantum number of the intially excited level B
b Find the ionization energy for the gas atoms.
c Find the maximum and the minimum energies of the emitted photons.

- Watch Video Solution

128. Electrons in hydrogen like atom $(Z=3)$ make transtion from the fifth is the fourth orbit and from the third orbit The resulting madition are incided nurmally an a meal plate and eject photoelectron the stopping potential for the photoelectron ejected by the longer wavelength
$\left(\right.$ Rydhery constant $=1.094 \times 10^{7} \mathrm{~m}^{-1}$

- Watch Video Solution

129. It is propssed to use the nucles fasion

- $(1)^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{4} H e$
in a nucleas of $200 M W$ rating if the energy from the above reaction is used with a 25 per cast effecincy in the rector, low maney game of deuterium fiel will be needed per day (The masses of _ (1) $)^{2} \mathrm{H}$ and ${ }_{4}^{2}$ Heare2.0141atomic mass unit and 4.0028atyomic mass uniot repertively)

- Watch Video Solution

130. A monochormatic point source radiating wavelength $6000 \AA$ with power 2 vate an aperture A of diameeter 0.1 m and a lorge screen SC are placed as shown in fig, A photoemissive detector D of surface area $0.5 \mathrm{~cm}^{2}$ is placed at the centre of the screen. The efficiency of the detector for the photoelectron generation per incident photon is 0.9

(a) Calculate the photon flat at the centre of the screen and the photocurrwect in the detector.
(b) If the concave lens L of focal length 0.6 m is inserted in the aperture as shown. find the new values of photon flot and photocurrect Assume a uniform average transmission of 80% from the lens.
(c) If the work function of the photoemissive surface is 1 eV . calculate the values of the stopping potential in the two cases (within and with the lelens in the epertuire).

- Watch Video Solution

131. A nucleus X, initially at rest, undergoes alpha dacay according to the equation,
${ }_{-}(92)^{A} X \rightarrow{ }_{2}^{228} Y+a$
(a) Find the value of A and Z in the above process.
(b) The alpha particle producted in the above process is found to move in a circular track of radius 0.11 m in a uniform mmagnatic field of 3 Tesia find the energy (in MeV) released during the process and the binding energy of the patent nucleus X

Given that : $m(\gamma)=228.03 u, m\left(-(0)^{1}\right)=1.0029 u$.
$m\left(-(2)^{4} H e\right)=4.003 u, m\left(-(1)^{1} H\right)=1.008 u$

- Watch Video Solution

132. Light from a discharge tube containing hydrogen atoms falls on the surface of a piece of sodium . The kinetic energyof the fastest photonelectrons emittede from from sodium is 0.73 eV . The work function for sodium is $1.82 e C V$ find
(a) the energy of the photons causing the photoelectric emission ,
(b) the quantum number of the two level inveloved in the emission of there photons,
(c) the change in the angular momentum of the electron in the hydrogen atom in the above transition and,
(d)the recoll speed of emitted atom assuming it to be at rest before the transition.
(Ionization potential of hydrogen is 13.6 eV)

Watch Video Solution

133. A small quantity of solution containing $N e^{24}$ radio nucliode (half life $=15$ hour $)$ of activity 1.0 microcurlar is injected into the blood of a person A sample of the blood of volume $1 \mathrm{~cm}^{3}$ taken a after 5 hour shown an activity of the blood in the body of the person. Assume that redicative solution mixed uniformly in the blood of the person $\left(1\right.$ curie $=3.7 \times 10^{10}$ disntegrations per sound $)$

- Watch Video Solution

134. A hydrogen like atom (atomic number Z) is uin a higher excleted atate of quantum n , The excited atom can make a two photon of energy 10.2 and 17.0 eV respactively, Alernately the atom from the same excited state by successively eniting two photons of energies 4.25 eV and 5.95 eV respectively Determine the value of n and Z (lonization energy of H - atom $=13.6 \mathrm{eV}$)

- Watch Video Solution

135. As electron in a hydrogen - like atom, is in an excited state it has a total energy of -3.45 eV Calculate (i) the kinetyic energy and (ii) the de Brogle wavelength of the electron.

- Watch Video Solution

136. As a given instant there are 25% undercayed radio - active nucles in az sample. After 10 second the number of undecayed nucles reduces to 12.5 \% Calculate (i() mean - like of the nucleus, and (ii) the time in which
the number of undecayed nuclei will further to 6.25% of the reducted number.

- Watch Video Solution

137. Assume that the de Brogie wave associated with an electron can can from a standing wave between the atome arrange in a one dimensional array with nodes at each of the atomic sites it is found that one such standing wave if the distance d between the aloms of the arry is $2 M 139$ waveisaga $\in f$ or mad if dis \in creased $\rightarrow 2.5 \AA ̊$. A similar standing in the distance if d find the energy of the electrons velts and tghe least value of d for which the standing wave type described above can from .

- Watch Video Solution

138. The elecron curium _ $(96)^{248}$ On has a mean life of 10^{13} second ist pirmary dacay mode with a probilly of 8% and the letter with a probillty of 92% Each fission released 200 MeV of energy. The masses involved in
$-(96)^{248} C m=248.072220 u, 94 \cdot(244) P u=244.064100 u$ and ${ }_{2}^{4} H e=4.002603 u$
calculate the power output from a sample of $10^{20} C m a \rightarrow m\left(1 u=931 M e V / e^{2}\right)$

- Watch Video Solution

139. Nuclei of a radioactive A are being produceted at a constant rate a .

The electro has a decay constant λ. At time $t=0$ there are N_{0} nucleius of the element .
(a) calculate the number N of nuclei of A at same t
(b) if a = a _(0) lambda) calcatethe $\nu \mathrm{mberof} \mathrm{\nu c} \leq \operatorname{iof} \mathrm{A}$
aftero \neq half $-l$ if eofA and the \lim it \in gvalueofNast rarr oo`

- Watch Video Solution

140. photoelectrons are emited when 40 nm radiation is incident on a surface of work function 1.9 eV These photoelectron pass tjhrough a ragain cotaining a - particle A maximum energy electron conbines with an
a - particle to from a He^{+}ion emitting a single photon in this process He^{+}ions thus formed are in their fourth excited state find the energies in eV of the photons typing is the 2 to $4 e \mathrm{~V}$ rage, that are likrly to be emitted during and after the combiution $\left[\right.$ Takeh $\left.=4014 \times 10^{-15} \mathrm{eVs}\right]$

- Watch Video Solution

141. A hydrogen - like atom of atomic number Z is in an excited state of quantion number $2 n$ it can emit a maximum energy photon of energy $40.8 e V i s e m i e d f \in d n, Z$ and thegroundstatee $\neq \operatorname{rgy}(\in e V) f$ or thisa - exclation, Groundstatee \neq rgyofhydro $\geq n a \rightarrow$ mis $-13.6 e V$

- Watch Video Solution

142. when a beam of 10.6 eV photons of intensity $2.0 \mathrm{~W} / \mathrm{m}^{2}$ falls on a platinum surface of area $1.0 \times 10^{4} \mathrm{~m}^{2}$ and work function $5.6 \mathrm{eV}, 0.53 \%$ of the incidentphotons eject photoelectrons find the number of photoelectrons emited per second and their minimum energies (in eV) Take $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
143. In a nuclear reaction ^(235)Uundergoesfissionliberat $\in g 200$ $\mathrm{MeV} \quad e \neq$ rgy. Thereac \rightarrow rhasa 10 \%efficiency and \prod uces 1000 $M W$ power . If the reactor is to function for $10 y e a r$. Find the total mass of required.

- Watch Video Solution

144. A nucleus at rest undergoes a decay emitting an a particle of de Broglie wavelength $\lambda=5.76 \times 10^{-15} \mathrm{~m}$ if the mass of particle is $4.002 a \mu$, determine the total kinetic energy in the final state Hence , obratain the mass of the parent nucleus in amu ($\left.1 \mathrm{amu}=931.470 \mathrm{MeV} / / \mathrm{e}^{\wedge}(2)\right)^{`}$

Watch Video Solution

145. A radioactive nucleus X decay to a nucleus Y with a decay with a decay Concept $\lambda_{x}=0.1 s^{-1}, \gamma$ further decay to a stable nucleus Z with a
decay constant $\lambda_{y}=1 / 30 s^{-1}$ initialy, there are only X nuclei and their number is $N_{0}=10^{20}$ set up the rate equations for the population of $\left.X^{9}\right) Y$ and Z The population of Y nucleus as a function of time is givenby
$\left.N_{y}(1)=N_{0} \lambda_{x} l\left(\lambda_{x}-\lambda_{y}\right)\right)\left(\exp \left(-\lambda_{y} 1\right)\right) F \in$ dthetimeatwhich $\mathrm{N}_{-}(\mathrm{y})$ is max $i \mu m$ and det er min ethepop *ion X and Y at that instant.

- Watch Video Solution

146. A hydrogen - like atom (described by the Bohr model) is observed to emit six wavelength, originating from all possible transitions between -0.85 eV and -0.544 eV (inclading bohr these values)
(a) Find the atomic number of the atom
(b) Calculate the smallest wavelength emitted in these transitions .
(Take $h c=1240) e V-n m$, ground state energy of hydrogen atom $=13.6 \mathrm{eV})$

- Watch Video Solution

147. Two metallic plate A and B, each of area $5 \times 10^{-4} \mathrm{~m}^{2}$, are placed parallel to each at a separation of 1 cm plate B carries a positive charge of $33.7 \times 10^{-12} C$ A monocharonatic beam of light, with photoes of energy 5 eV each , starts falling on plate A at $t=0$ so that 10^{16} photons fall on it per sqare mater for every 10^{6} incident photons fall on it per square meter per second Assume that one photoelectron is emitted for every 10^{6} incident photons. Also assume that all the emitted photoelectron are collected by plate B and the work function of plate A remain constant at the value 2 eV Determine
(a) the number of photoelectrons emitted up to $i=10 s$,
(b) the magnitude of the electron field between the plate A and B at
$i=10 s$, and
(c) the kinetic energy of the most energotic photoelectrons emitted at $i=10 s$ whenit reaches plate B

Negilect the time taken by the photoelectrons to reach plate BTake $\left._{0}=8.85 \times 10^{-12} C^{2} N-m^{2}\right)$

- Watch Video Solution

148. frequency of a photon emitted due to transition of electron of a cerrain element from $L \rightarrow K$ shell is found to be $4.2 \times 10^{18} \mathrm{~Hz}$ using moseley 's law, find the atomic number of the element, given that the Rydberg's constant $R=1.1 \times x 10^{\wedge}(7) \mathrm{m}^{\wedge}(-1){ }^{\wedge}$

- Watch Video Solution

149. A radioative sample emit $n \beta$-particle is 2 sec , in next 5 eV sec itemit 0.75 n beta' - particle , what is the mean life of the sample?

- Watch Video Solution

150. In a photon electric experiment set upm, photons of energy 5 eV falls on the cathode having work function 3 eV (a) if the seturation current is $i=4 \mu A$ for intensity $10^{-5} \mathrm{~W} / \mathrm{m}^{2}$, then plot a graph between anode potential and current (b) Also draw a graph for intensity of incident radiation $2 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}$
151. A radoactive sample of ^ $(238) U$ decay to pb through a process for which the half is 4.5×10^{9} year Find the rate of number of nuclei of $p b \rightarrow{ }^{238}$ Uafter a time of 1.5×10^{9} year Given $(2)^{19}=1.26$

- Watch Video Solution

152. The photons from the balmer series in Hydrogen spectrum having wavelength between 450 nm to 700 nm are incident on a metal surface of work function $2 e V$ find the maximum kinetic energy os ejected electron (Given hc = 1242 eV nm) ${ }^{\text {' }}$

- Watch Video Solution

153. The potential energy of a particle of mass m is given by
$V(x)=$ lambda_(1) and
lambda
(2)
arethede - Brog \leq wave $\leq n>$ hofthepartic \leq, when $=$ lex le 1
and xgt 1repectively, if the \rightarrow tale \neq rgyofpartic $\leq i s 2 \mathrm{E}_{-}(0)$ find $\lambda_{1} / \lambda_{2}$

- Watch Video Solution

154. Highly energetic electron are bombarded in a target of an element containing 30 neutrons Tne ratio of nucleus to that of Helium nucleus is $(14)^{1 / 3}$. Find (a) atomic number of the nucleus (b) the frequency of k_{a} line of the X - rays producted $\left(R=1.1 \times 10^{7} \mathrm{~m}^{-1}\right.$ and $\left.c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

- Watch Video Solution

155. In hydrogen - like atom $(z=1)$ with line of Lyman series has wavelength λ the de - broglie's wavelength of electron in the level from which it originated is also λ Find the value of n ?

- Watch Video Solution

156. In a mixture of $H-\mathrm{He}^{+}$gas ($\mathrm{He}+$ is singly ionized He atom), H atom and $\mathrm{He}+$ ions are excited to their respective first sxcited state subequendy H atoms transfer their total excilation energy to $H e+$ ions (by collsions) Assume that the bohr model of atom is exactly veld. The questum number n of the state fnally populand in He^{+}inos is -
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

157. In a mixture of $H-\mathrm{He}^{+}$gas ($\mathrm{He}+$ is singly ionized He atom), H atom and $\mathrm{He}+$ ions are excited to their respective first sxcited state subequendy H atoms transfer their total excilation energy to $H e+$ ions
(by collsions) Assume that the bohr model of atom is exactly veld.
The wavelength of light emitted in the visible region by $H e+$ lons after collisions with H atoms is -
A. $6.5 \times 10^{-7} m$
B. $3.6 \times 10^{-7} m$
C. $4.8 \times 10^{-7} \mathrm{~m}$
D. $4.0 \times 10^{-7} \mathrm{~m}$

Answer: C

- Watch Video Solution

158. In a mixture of $H-\mathrm{He}^{+}$gas ($\mathrm{He}+$ is singly ionized He atom), H atom and $\mathrm{He}+$ ions are excited to their respective first sxcited state subequendy H atoms transfer their total excilation energy to $H e+$ ions (by collsions) Assume that the bohr model of atom is exactly veld. The ratio of the kinetic energy of the $n=2$ electron for the H atom to the of He^{+}Ion is -
A. 14
B. $1 / 2$
C. 1
D. 2

Answer: A

- Watch Video Solution

159. Scienists are working hard to develop inclear fusion reactor Nocies of heavy hydrogen, $-(1)^{2} H$, known as deuteron and denoted by D, can be thought of as a candidate for fusion rector. The $D-D$ reaction is - $(1)^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{1} H e+n+e \neq r g y$ in the core of fasion reactor a gas of heavy hydrogen of $\quad(1)^{2} H$ nucles and electrons is know as plasma. The nuclei move randonity in the reactor to take place Unally, the temperature in the reactor core are too ligh and to natrual will can be used to confine the to pleama for a time $I_{-}(0)$ before the particles by away from the case if n is the denasity (number volume) of determines,
the product $n t_{0}$ is called Lavson number in one of the criteria , a reactor is termed successful if Lawson number is greater then $5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{2}$
it may be helpfull to use the following botczmann constant
$\lambda=8.6 \times 10^{-5} \mathrm{eV} / k, \frac{e^{2}}{4 \pi s_{0}}=1.44 \times 10^{-9} \mathrm{eVm}$ in the cure of nucleus fusion reactor, the gas become plasma because of
A. strong nucleus force acting between the deuterons
B. coulomb force acting between the deuterons
C. coulmb force acting between deuteron - ecectron pairs
D. the hight temperature maintained inside the reactor

Answer: D

- Watch Video Solution

160. Scienists are working hard to develop inclear fusion reactor Nocies of heavy hydrogen, _ (1) ${ }^{2} H$, known as deuteron and denoted by D, can be thought of as a candidate for fusion rector. The $D-D$ reaction is _ (1) ${ }^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{1} H e+n+e \neq r g y$ in the core of fasion reactor a
gas of heavy hydrogen of $-(1)^{2} H$ nucles and electrons is know as plasma . The nuclei move randonity in the reactor to take place Unally, the temperature in the reactor core are too ligh and to natrual will can be used to confine the to pleama for a time I_(0) before the particles by away from the case if n is the denasity (number volume) of determines, the product $n t_{0}$ is called Lavson number in one of the criteria , a reactor is termed successful if Lawson number is greater then $5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{2}$ it may be helpfull to use the following botczmann constant
$\lambda=8.6 \times 10^{-5} \mathrm{eV} / k, \frac{e^{2}}{4 \pi s_{0}}=1.44 \times 10^{-9} \mathrm{eVm}$
Assume that two deuteron nuclei in the core of fasion reactor at temperacture energy T are moving toward each other, each with kinectic energy $1.5 k T$, whenn the seperation between them is large enogh to leglect coulomb potential energy. Also neglate any interaction from other particle in the core. The minimum temperature T required for them to reach a separation of $4 \times 10^{-15} \mathrm{~m}$ is in the range

$$
\text { A. } 1.0 \times 10^{9} K<T<2.0 \times 10^{9} K
$$

B. $2.0 \times 10^{9} K<T<3.0 \times 10^{9} K$
C. $3.0 \times 10^{9} K<T<4.0 \times 10^{9} K$
D. $4.0 \times 10^{9} K<T<5.0 \times 10^{9} K$

Answer: A

- Watch Video Solution

161. Scienists are working hard to develop inclear fusion reactor Nocies of heavy hydrogen, _(1) ${ }^{2} H$, known as deuteron and denoted by D, can be thought of as a candidate for fusion rector. The $D-D$ reaction is - (1) $)^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{1} H e+n+e \neq r g y$ in the core of fasion reactor a gas of heavy hydrogen of ${ }_{-}(1)^{2} H$ nucles and electrons is know as plasma. The nuclei move randonity in the reactor to take place Unally, the temperature in the reactor core are too ligh and to natrual will can be used to confine the to pleama for a time I_(0) before the particles by away from the case if n is the denasity (number volume) of determines, the product $n t_{0}$ is called Lavson number in one of the criteria, a reactor is termed successful if Lawson number is greater then $5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{2}$ it may be helpfull to use the following botczmann constant
$\lambda=8.6 \times 10^{-5} \mathrm{eV} / k, \frac{e^{2}}{4 \pi s_{0}}=1.44 \times 10^{-9} \mathrm{eVm}$

Result of calulations for fopur different desine of a fasion reactor using $D-D$ reaction are given below which of these is most promising based on Lawson crierion ?
A. deuteron density $=2.0 \times 10^{12} \mathrm{~cm}^{-3}$,
confinement time $=5.0 \times 10^{-3} s$
B. deuteron density $=8.0 \times 10^{14} \mathrm{~cm}^{-3}$,
confinement time $=9.0 \times 10^{-1} s$
C. deuteron density $=4.0 \times 10^{23} \mathrm{~cm}^{-3}$,
confinement time $=1.0 \times 10^{-11} s$
D. deuteron density $=1.0 \times 10^{24} \mathrm{~cm}^{-3}$
confinement time $=4.0 \times 10^{-12} s$

Answer: B

- Watch Video Solution

162. When a particle is restricted to move along x - axis between $x=0$ and $x=4$ whwre a is opf nanometer demension, its energy can take only certain spscfic values. The allowed energies of the particles only in such a restiricted regain, correspond to the formation of standing wave with nodes at its end $x=0$ and $x=a$.The wavelength of this standing wave is related to the linear momentum p of the paarticle according to the de Broglie relation. The energy of the particle of mass m is reated to its linear momentum as
$E=\frac{p^{2}}{2 m}$.thus, the energy of the particle can be denoted by a quantum number n taking value $1,2,3, \ldots(n=1$, cal \leq dthegroundstate $)$ corresponding to the number of loops in the standing wave use the model described above to answer the following there question for a
particle moving in the line
$x=0 \rightarrow x=a$ Takeh $=6.6 \times 10^{-34} \mathrm{~J} s$ and $e=1.6 \times 10^{-19} C$
The alloewd energy for the particle for a particular value of n is proportional to
A. a^{-2}
B. $a^{-3 / 2}$
C. a^{-1}
D. a^{2}

Answer: A

- Watch Video Solution

163. When a particle is restricted to move along x - axis between $x=0$ and $x=4$ whwre a is opf nanometer demension, its energy can take only certain spscfic values. The allowed energies of the particles only in such a restiricted regain, correspond to the formation of standing wave with nodes at its end $x=0$ and $x=a$.The wavelength of this standing wave is related to the linear momentum p of the paarticle according to the de Broglie relation. The energy of the particle of mass m is reated to its linear momentum as
$E=\frac{p^{2}}{2 m}$. thus, the energy of the particle can be denoted by a quantum number n taking value $1,2,3, \ldots(n=1$, cal \leq dthegroundstate $)$
corresponding to the number of loops in the standing wave use the model described above to answer the following there question for a particle moving in the line $x=0 \rightarrow x=a$ Takeh $=6.6 \times 10^{-34} \mathrm{~J} s$ and $e=1.6 \times 10^{-19} \mathrm{C}$ If the mass of the particle is $m=1.0 \times 10^{-30} \mathrm{~kg}$ and $a=6.6 \mathrm{~nm}$ the energyof the particle in its ground state is closest to
A. 0.8 meV
B. 8 meV
C. 80 meV
D. 800 meV

Answer: B

- Watch Video Solution

164. When a particle is restricted to move along x - axis between $x=0$ and $x=4$ whwre a is opf nanometer demension, its energy can take only certain spscfic values. The allowed energies of the particles only
in such a restiricted regain, correspond to the formation of standing wave with nodes at its end $x=0$ and $x=a$.The wavelength of this standing wave is related to the linear momentum p of the paarticle according to the de Broglie relation. The energy of the particle of mass m is reated to its linear momentum as
$E=\frac{p^{2}}{2 m}$. thus, the energy of the particle can be denoted by a quantum number n taking value $1,2,3, \ldots(n=1$, cal $\leq d$ thegroundstate $)$ corresponding to the number of loops in the standing wave use the model described above to answer the following there question for a particle moving in the line $x=0 \rightarrow x=a T a k e h=6.6 \times 10^{-34} J s$ and $e=1.6 \times 10^{-19} C$ The speed of the particle, that can take discrete values, is propotional to
A. $n^{-3 / 2}$
B. n^{-1}
C. $n^{1 / 2}$
D. n`

Answer: D

- Watch Video Solution

165. The key feature of Bohr'[s spectrum of hydrogen atom is the quantization of angular momentum when an electron is revolving around a proton we will extend this to a general rotational motion to find quntized rotantized rotational energy of a diatomic molecule assuming it to be right . The rate to energy applied is Bohr's quantization condition A diatomic molecute has moment of inertie 1by Bohr's quantization condition its rotational energy in the $n^{\text {th }}$ level ($n=0 i s \neg$ allowed $)$ is
A. $\frac{1}{n^{2}}\left(\frac{h^{2}}{8 \pi^{2} 1}\right)$
B. $\frac{1}{n}\left(\frac{h^{2}}{8 \pi^{2} 1}\right)$
C. $n\left(\frac{h^{2}}{8 \pi^{2} 1}\right)$
D. $n^{2}\left(\frac{h^{2}}{8 \pi^{2} 1}\right)$

Answer: D

- Watch Video Solution

166. The key feature of Bohr'[s spectrum of hydrogen atom is the quantization of angular momentum when an electron is revolving around a proton we will extend this to a general rotational motion to find quntized rotantized rotational energy of a diatomic molecule assuming it to be right. The rate to energy applied is Bohr's quantization condition it is found that the excitation from ground to the first excited state of rotation for the $C O$ molecule is close to $\frac{4}{\pi} \times 10^{11} \mathrm{~Hz}$ then the moment of inertia of $C O$ molecule about its center of mass is close to
$\left(\right.$ Takeh $\left.=2 \pi \times 10^{-34} J s\right)$
A. $2.76 \times 10^{-46} \mathrm{kgm}^{2}$
B. $1.87 \times 10^{-46} \mathrm{kgm}^{2}$
C. $4.67 \times 10^{-47} \mathrm{kgm}^{2}$
D. $1.17 \times 10^{-47} \mathrm{kgm}^{2}$

Answer: B

167. The key feature of Bohr'[s spectrum of hydrogen atom is the quantization of angular momentum when an electron is revolving around a proton we will extend this to a general rotational motion to find quntized rotantized rotational energy of a diatomic molecule assuming it to be right . The rate to energy applied is Bohr's quantization condition In a $C O$ molecule, the distance between $C($ mass $=12 a . m . u)$ and $O($ mass $=16 a . m . u)$ where 1 a.m.u $=$ (5)/(3) $x \times 10^{\wedge}(-27) \mathrm{kg}$, ì close to
A. $2.4 \times 10^{-10} m$
B. $1.9 \times 10^{-10} m$
C. $1.3 \times 10^{-10} m$
D. $4.4 \times 10^{-11} \mathrm{~m}$

Answer: C

- Watch Video Solution

168. The β - decay process, discoverwd around 1900 , is basically the decay of a neutron (n) in the laboratory, a proton (p) and an electron $\left(e^{-}\right)$are observed as the decay that the kinetic energy of the electron should be a constant. But experimentally, if was observed that the electron kinectic energy has continuous spectrum Considering a threebody decay process , i.e.
$n \rightarrow p+e^{-}+\bar{\nu}_{e}$, around 1930 , pauli expained the observed $\left(\bar{\nu}_{e}\right)$ to be massaless and possessing negligible energy, and the neutrino to be at rest, momentum and energy conservation principle are applied from this calculate , the maximum kinectic energy of the electron is $0.8 \times 10^{6} \mathrm{eV}$ The kinectic energy carrect by the proton is only the recoil energy If the - neutrono had a mass of $3 \mathrm{eV} / \mathrm{c}^{2}$ (where c is the speed of light) insend of zero mass , what should be the range of the kinectic energy K. of the electron ?
A. $0 \leq k \leq 0.8 \times 10^{6} \mathrm{eV}$
B. $3.0 \mathrm{eV} \leq k \leq 0.8 \times 10^{6} \mathrm{eV}$
C. $3.0 \mathrm{eV} \leq k \leq 0.8 \times 10^{6} \mathrm{eV}$

$$
\text { D. } 0 \leq k \leq 0.8 \times 10^{6} \mathrm{eV}
$$

Answer: D

- Watch Video Solution

169. The β - decay process, discoverwd around 1900 , is basically the decay of a neutron (n) in the laboratory, a proton (p) and an electron $\left(e^{-}\right)$are observed as the decay that the kinetic energy of the electron should be a constant. But experimentally, if was observed that the electron kinectic energy has continuous spectrum Considering a threebody decay process , i.e.
$n \rightarrow p+e^{-}+\bar{\nu}_{e}$, around 1930 , pauli expained the observed $\left(\bar{\nu}_{e}\right)$ to be massaless and possessing negligible energy, and the neutrino to be at rest, momentum and energy conservation principle are applied from this calculate , the maximum kinectic energy of the electron is $0.8 \times 10^{6} \mathrm{eV}$ The kinectic energy carrect by the proton is only the recoil energy

What is the maximum energy of the anti-neutrino ?
A. zero
B. Mach less then $0.8 \times 10^{6} \mathrm{eV}$
C. Nearly $0.8 \times 10^{6} \mathrm{eV}$
D. Mach large then $0.8 \times 10^{6} \mathrm{eV}$

Answer: C

- Watch Video Solution

170. STATEMENT - 1

If the accelerating potential in an X - rays tube is increased, the wavelength of the characteristic X - rays do not change .

STATEMENT -2

When an electron beam strikes the target in an X- rays tube, part of the kinectic energy is converted into X - rays energy .
A. Statement -1 is true , Statement -2 is true Statement -2 is a correct
B. Statement -1 is true, Statement -2 is true Statement -2 is a NOT a correct explanation for Statement - 1
C. Statement -1 is true, Statement -2 is false
D. Statement -1 is false, Statement -2 is true

Answer: B

D Watch Video Solution

171. An α-particle and a proton are accelerated from rest by a potential difference of 100V. After this, their de-Broglie wavelengths are λ_{a} and λ_{p} respectively. The ratio $\frac{\lambda_{p}}{\lambda_{a}}$, to the nearest integer, is.

- Watch Video Solution

172. To determine the half life of a radioactive element, a student plot a graph of in $\left|\frac{d N(t)}{d t}\right|$ versus t, Here $\left|\frac{d N(t)}{d t}\right|$ is the rate of radiation decay at time t, if the number of radioactive nuclei of this element decreases by
a factor of p after $4.16 y e a r$ the value of p is

- Watch Video Solution

173. The activity of a freshly prepared radioactive sample is 10^{10} disintegrations per second, whose mean life is $10^{9} s$ The mass of an atom of this radioisotope is $10^{-25} \mathrm{~kg}$ The mass (in mg) of the radioactive is

- Watch Video Solution

174. A silver of radius 1 cm and work function 4.7 eV is suspended from an insulating thread in freepace it is under continuous illumination of

200 nm wavelength light AS photoelectron are emitted the sphere gas charged and acquired a potential . The maximum number of photoelectron emitted from the sphere is $A \times 10^{e}($ where $1<A<10)$ The value of z is

- Watch Video Solution

175. A proton is first from very loward a nucleus with charge $Q=120 e$, where e is the nucles The de Brogle wavelength (in unit of fin) of the proton at its start is (tke the proton mass

$$
m_{p}=(5 / 3) \times 10^{-27} \mathrm{kgh} / \mathrm{s}=4.2 \times 10^{-15} \mathrm{Js} / \mathrm{C},
$$

$\frac{1}{4 \pi s_{0}}=9 \times 10^{9} \mathrm{~m} / F, 1 \mathrm{fm}=10^{-15} \mathrm{~m}$

- Watch Video Solution

176. The work function of Silver and sodium are 4.6 and 2.3 eV , respectively . The ratio of the slope of the stopping potential versus frequency plot for silver to that of sodium is
177. A fresbly prepared of a radioisotope of half - life $1386 s$ has activety 10^{3} disentegrations per second Given that $\ln 2=0.693$ the fraction of the initial number of nuclei (expressedin nearest integer percentage) that will decay in the first $80 s$ after preparation of the sample is

- Watch Video Solution

178. A nuclear power supplying electrical power to a villages uses a radioactive meterial of half life T year as the fiel. The amount of fuel at the beginning is such that the total power requirement of the village is 12.5% of the electrical power available from the plate at that time if the plate is able to meet the total power needs of the village for a maximum period of $n T$ year, then the value of n is

- Watch Video Solution

179. Consider a hydrogen atom with its electron in the $n^{\text {th }}$ orbital An electomagnetic radiation of wavelength 90 nm is used to ionize the atom . If the kinetic energy of the ejected electron is 10.4 eV , then the value of $n i s(h c=1242 e V m n)$

- Watch Video Solution

180. For a radioactive meterial, its activity A and rate of charge of its activity R are defined as $A=-\frac{d N}{d t}$ and $R=\frac{d A}{d t}$ where $N(t)$ is the number of nuclei at time I .Two radioactive source $P($ meanl if $e \tau)$ and $Q($ meanl if $e 2 \tau)$ have the same activity at $t=2 \tau R_{p}$ and R_{Q} respectively, if $\frac{R_{p}}{R_{Q}}=\frac{n}{e}$

Watch Video Solution

181. An electron is an excited state of $L i^{2+}$ ion angular mometum $3 b / 2 \pi$.

The de Broglie wavelength of the electron in this state is $p \pi s_{0}\left(\right.$ wherea ${ }_{0}$ is the bohr radius) The value of p is

- Watch Video Solution

182. The isotope $-(5)^{12} B$ having a mass 12.014uundergoes β - decay $\rightarrow_{6}^{12} C_{6}^{12}$ Chas an excited state of the nucleus $\left(-(6)^{12} C^{*} a t 4.041 \mathrm{MeV}\right.$ above its ground state if _ $(5)^{12}$ Edecay $\rightarrow_{6}^{12} C^{*}$, the maximum kinetic energy of the $\beta-$ partic \leq in unit of $\operatorname{MeVis}\left(1 u=931.5 \mathrm{MeV} / c^{2}\right.$ where is the speed of light in vacume).

- Watch Video Solution

183. A hydrogen atom in its ground state is by light of wavelength $970 \AA T a k \in g h c / e=1.237 \times 10^{-6} \mathrm{eVm}$ and the ground state energy of hydrogen atom as -13.6 eV the number of lines present in the emmission spectrum is

- Watch Video Solution

184. If 13.6 eV energy is required to ionized the hydrogen atom, then the energy required to remove an electron from $n=2$ is
A. $10.2 e \mathrm{~V}$
B. 0 eV
C. 3.4 eV
D. 6.8 eV

Answer: C

- Watch Video Solution

185. At absolute zero , Si acts as
A. non - metal
B. metal
C. insulator
D. none of these

Answer: C

D Watch Video Solution

186. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound cannot emit
A. I,ii,iii
B. I,ii,iii,iv
C. iv
D. ii,iii

Answer: A

- Watch Video Solution

187. Sodium and copper have work functions 2.3 eV and 4.5 eV respectively . Then the ratio of the wavelength is nearest
A. $1: 2$
B. $4: 1$
C. 2: 1
D. 1: 4

Answer: C

D Watch Video Solution

188. Formation of covelent bonds in compound exhibits
A. wave nature of electron
B. particle nature of electron
C. bohr wave and particle nature of electron
D. none of these

Answer: A

189. If N_{0} is the original mass of the substance of half - life period $t_{1 / 2}=5 y e a r$ then the amount of substance left after 15 year is
A. $N_{0} / 8$
B. $N_{0} / 16$
C. $N_{0} / 2$
D. $N_{0} / 4$

Answer: A

- Watch Video Solution

190. By increasing the temperature, the specific of a conductor and a semiconductor
A. increases for both
B. decrases for both
C. increases, decreases
D. decreases , increases

Answer: C

- Watch Video Solution

191. The energy band gap is maximum in
A. metals
B. superoonductors
C. insulators
D. semiconductors

Answer: C

- Watch Video Solution

192. The part of a transistor which is most heavily doped to product large number of majority carriers is
A. emmiter
B. base
C. collector
D. can be any of the above three

Answer: A

- Watch Video Solution

193. which of the following are not electromagnetic waves ?
A. cosmic rays
B. Гrays
C. β-rays
D. X - rays

Answer: C

- Watch Video Solution

194. A strip of copper and another of germanium are cooled from room tempreature to $80 K$ The resistance of
A. each of these decreases
B. copper strip increase and that of germanium decreases
C. copper strip increase and that of germanium increase
D. each of these increase

Answer: C

- Watch Video Solution

195. Which of the following radiation has the least wavelength ?
A. $\lambda-r a y s$
B. $\beta-r a y s$
C. $a-r a y s$
D. $X-r a y s$

Answer: A

- Watch Video Solution

196. which a U^{238} nucleus original at rest, decay by emitting an alpha particle having a speed u, the recoil speed of the residual nucleus is
A. $\frac{4 u}{238}$
B. $-\frac{4 u}{234}$
C. $\frac{4 u}{234}$
D. $-\frac{4 u}{238}$

Answer: C

197. The difference in the variation of resistence with temperature in a metel and a semiconductor arises essmially due to the difference in the
A. crystal sturcture
B. variation of the number of change carriers with tempeature
C. type of bonding
D. variation of scattaring mechanism with temperature

Answer: B

- Watch Video Solution

198. A radioactive sample at any instant has its disintegration ratye 5000 disintegrations per minute After 5 minutes , the rate is 1250 disintegration per Then, the decay constant (per minute)
A. $0.4 \in 2$
B. $0.2 \in 2$
C. $0.1 \in 2$
D. $0.8 \in 2$

Answer: A

- Watch Video Solution

199. A nucleus with $Z=92$ emits the following in a sequence
$a, \beta^{-}, \beta^{-} a, a, a, a, a, \beta^{-}, \beta^{-}, a, \beta^{+}, \beta^{+}, a$
Them Z of the resulting nucleus is
A. 76
B. 78
C. 82
D. 74

D Watch Video Solution

200. Two identical photocathodes receive light of frequency f_{1} and f_{2} if the velocites of the photo electrons (of mass m) coming out are repectively v_{1} and v_{2} then
A. $v_{1}^{2}-v_{-}(2)^{\wedge}(2)=(2 h) /(m)\left(f_{-}(1)-f_{-}(2)\right)^{\wedge}$
B. $v_{1}+v_{2}=\left[\frac{2 h}{m}\left(f_{1}+f_{2}\right)\right]^{1 / 2}$
C. $v_{1}^{2}+v_{-}(2)^{\wedge}(2)=(2 h) /(m)\left(f_{-}(1)+f_{-}(2)\right)^{\wedge}$
D. $v_{1}+v_{2}=\left[\frac{2 h}{m}\left(f_{1}-f_{2}\right)\right]^{1 / 2}$

Answer: A

- Watch Video Solution

201. Which of the following cannot be emited by radicative subsstances durind their decay?
A. protons
B. Neutroes
C. Helium nuclei
D. Elactrons

Answer: A

- Watch Video Solution

202. In the nuclear fusion reaction

- $(1)^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} \mathrm{He}+n$
given that the repulsive potential energy between the two nuclei is $-7.7 \times 10^{-14} J$, the temperature at which the gases must be beated the reaction is nearly
[Boltzmann's constant $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$]
A. $10^{7} \mathrm{~K}$
B. $10^{5} \mathrm{~K}$
C. $10^{3} \mathrm{~K}$
D. $10^{9} \mathrm{~K}$

Answer: B::D

- Watch Video Solution

203. Which of the following atoms has the lowest ionization potential ?
A. $-(7)^{14} N$
B. $-(55)^{133} \mathrm{Cs}$
C. $-(18)^{40} \mathrm{Ar}$
D. $-(8)^{16} O$

Answer: B

204. The wavelength involved in the spectrum of deuterium $\left(-(1)^{2} D\right)$ are slightly different from that of hydrogen spectrum because
A. the size of the two nuclei are different
B. the nucllear forces are different in the two cases
C. the masses of the two neclei rae different
D. the atraction between the electron and the nucleus is different in the two cases

Answer: C

- Watch Video Solution

205. In the middle of the depletion layer of a reverse - biased $p-n$ junction, the
A. electron field is zero
B. potential is maximum
C. electron field is maximum
D. potential is zero

Answer: A

- Watch Video Solution

206. If the bineding energy of the electron of the electron in a hydrogen atom is 13.6 eV the energy required to remove the electron from the first excited state of $L i^{++}$is
A. 30.6 eV
B. 13.6 eV
C. 3.4 eV
D. $122.4 e V$

Answer: A

207. A radiation of energy E falls normally on a perfctly refelecting surface. The momentum transferred to the surface is
A. $E c$
B. $2 E / c$
C. E / c
D. E / c^{2}

Answer: B

- Watch Video Solution

208. According to Einstein's photoelectric equjation, the plot of the kinetic energy of the incident radaiation given as straight the whose used slope
A. depends both on the intensity of the radiation and the mertal used
B. depend on the intensity of the radiation
C. depends on the nature of the metal used
D. is the for the all metal s and independent of the intensity of the radiation

Answer: D

- Watch Video Solution

209. The work function of a substance is 4.0 eV The longest wavwlength of light that can cause photoelectron emission from this substance is approximately
A. 310 nm
B. 400 nm
C. 540 mm
D. 220 nm

D Watch Video Solution

210. A nucleus desintegrated into two nucleus which have their velocities in the ratio of $2: 1$. The ratio of their nuiclear sizes will be
A. $3^{\frac{1}{2}}: 1$
B. $1: 2^{1 / 3}$
C. $2^{1 / 3}: 1$
D. $1: 3^{\frac{1}{2}}$

Answer: B

D Watch Video Solution

211. The binding energies per nucleon for deuteron (${ }^{1} H^{2}$) and helium (${ }_{\cdot 2} \mathrm{He}^{4}$) are 1.1 MeV and 7.0 MeV respectively. The energy released when
two deutrons fuse to form a helium nucleus $\left({ }_{\cdot 2} H e^{4}\right)$ is \qquad
A. 23.6 MeV
B. 26.9 MeV
C. $13.9 \mathrm{MeV}^{`}$
D. 19.2 MeV

Answer: A

- Watch Video Solution

212. An alpha particle of energy 5 MeV is scattered through 180° by a found uramiam nucleus. The distance of closest approach is of the order of
A. $10^{-12} \mathrm{~cm}$
B. $10^{-10} \mathrm{~cm}$
C. $1 A$
D. $10^{-15} \mathrm{~cm}$

Answer: A

- Watch Video Solution

213. When npn transistor is used as an ampliffer
A. electron move from collector to base
B. boles move from emitted to base
C. electron move from base to collector
D. holes move from base to emiter

Answer: C

- Watch Video Solution

214. For a transistor amplifier in common emitter configuration for load impedance of $1 k \Omega$. $\left(h_{f e}=50\right.$ and $\left.h_{o e}=25 \times 10^{-6}\right)$ the current gain is
A. -24.8
B. -15.7
C. -5.2
D. -48.78

Answer: D

- Watch Video Solution

215. Apiece of copper and another of germanium are cooler from room teperature to $77 K$, the resistence of
A. copper increase and germanium decrease
B. each of them decraeses
C. each of them incraeses
D. copper decrease and germanium increase

Answer: D

- Watch Video Solution

216. The manifestation of band structure in solids is due to
A. Bohr's correspondence principle
B. pauli's exclusion principle
C. Heisenberg's encerainly principle
D. Boltzmann's law

Answer: B

- Watch Video Solution

217. When $p-n$ junction diode is forward baised them
A. both the deplection regain and harrier height are reducted
B. the depletion regain is widened and harrier height is reduced
C. the deplection regain , is reducted and harrier heighis increases
D. Both the depletion regain and barrier are increases

Answer: A

- Watch Video Solution

218. If radius of the $-(13)^{27} \mathrm{Al}$ necleus is estimated to be 3.6 fermithen the radius of ${ }_{-}(52)^{125} \mathrm{Te}$ nucleus be nearly
A. 8 fermi
B. 6 fermi
C. 5 fermi
D. 6 fermi

Answer: B

219. Starting with a sample of pure. ${ }^{66} \mathrm{Cu}, \frac{3}{4}$ of it decays into $Z n$ in 15 minutes. The corresponding half-life is
A. $15 \min$ utes
B. 10 min utes
C. $7 \frac{1}{2} \mathrm{~min}$ utes
D. 5 min utes

Answer: D

- Watch Video Solution

220. A photocell is illuminated buy asmall bright source places 1 m away when the same source oh light is placed '(1)/(2) m away. The number of electron emitted by photocathode would
A. increase by a factor of 4
B. decrease by a factor of 4
C. increase by a factor of 2
D. decrease by a factor of 4

Answer: A

- Watch Video Solution

221. The electron condactivety of a samiconductor increases 2480 nm is incident on it . The hand gap in (eV) for the semicondactor is
A. 25 eV
B. 1.1 eV
C. 0.7 eV
D. 0.5 eV
222. The intensity of gamma radiation from a given source is 1

On passing through 36 mm of lead, it is reduced to $\frac{1}{8}$. The thickness of lead which will redace the intensity to $\frac{1}{2}$ will be
A. 9 mm
B. 6 mm
C. 12 mm
D. 18 mm

Answer: C

- Watch Video Solution

223. In a common base ampifier, the phase difference between the input signal and output voltage is
A. π
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $0^{`}$

Answer: D

- Watch Video Solution

224. The disgram shown the energy levels for an electron is a certain atom . Which transition shown the emission of a photon with the most
energy ?

A. iv
B. iii
C. ii
D. i

Answer: B

Watch Video Solution
225. If the kinetic energy of a electron, it's debroglie wavelength changes by the factor
A. 2
B. $\frac{1}{2}$
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: D

- Watch Video Solution

226. A necear transformation is denoted by $X(n, a){ }_{3}^{7} L i$ Which of the following is the neclues of electron X ?
A. $-(5)^{10} B e$
B. ${ }^{\wedge}(12) C_{6}$
C. $-(4)^{11} B e$
D. $-(5)^{9} B$

Answer: A

- Watch Video Solution

227. In a fall wave rectifer circuit operating from 50 Hz mains frequency, the fundamental frequency in the ripple would be
A. 25 Hz
B. 50 Hz
C. 70.7 Hz
D. 100 Hz

Answer: D
228. In a common base mode of a transition, the collector current is 5.488 mA for an emitter currect of 5.60 mA . The value of the base current amplification factor (β) will be
A. 49
B. 50
C. 51
D. 48

Answer: A

- Watch Video Solution

229. The threshould frequency for a metallic surface corresponds to an energy of 6.2 eV and the stopping potential for a radiation insident on this surface is 5 V . The incident radiation lies in
A. ultra - violet region
B. infra- red regaion
C. visible region
D. X- ray ragion

Answer: A

- Watch Video Solution

230. An alpha nucleus of energy $\frac{1}{2} m \nu^{2}$ bombards a heavy nucleus of charge $Z e$. Then the distance of closed approach for the alpha nucleus will be prpportional to
A. ν^{2}
B. $\frac{1}{m}$
C. $\frac{1}{\nu^{2}}$
D. $\frac{1}{Z e}$

Answer: C

231. The time taken by a photoelectron to come out after the photon strikes is approximately
A. $10^{-4} s$
B. $10^{-10} s$
C. $10^{-16} s$
D. $10^{-1} s$

Answer: B

- Watch Video Solution

232. When _ (3) $L i^{7}$ nucleii are bombarded by protons, and the resultant nucleii are _ (4) $B e^{8}$, the emitted particle will be
A. α particle
B. β particle
C. γ particle
D. neutrons

Answer: C

- Watch Video Solution

233. The energy spectrum of β - partic \leq [number $N €$ as a function of $\beta-e \neq r g y E]$ emitterfrom a radioactive source is

A.
(b)

B.
(c)

C.

Answer: C

D Watch Video Solution

234. A solid which is not transperent to visible light and whose conductivily increase with temperature is formed by
A. Ionic bonding
B. Covatent bonding
C. vander Waals bonding
D. Metallic bonding

Answer: B

235. If the ratio of the concentration of electron to that of holes in a semiconductor is $\frac{7}{5}$ and the ratio of currect is $\frac{7}{4}$ then what is the ratio of their drift velocities ?
A. $\frac{5}{8}$
B. $\frac{4}{5}$
C. $\frac{5}{4}$
D. $\frac{4}{7}$

Answer: C

- Watch Video Solution

236. The circuit has two opposotively connected ideal diodes in parallel what is the currect flowing in the circuit ?

A. $1.71 A$
B. 2.00 A
C. $2.31 A$
D. $1.33 A$

Answer: B

237. If the following which one of the diodes reverse biased?
(a)

A.

B.

Answer: D

Watch Video Solution

238. The anode vollage of a photocell is kept fixed. The wavelength λ of the light falling on the cathode varies as follows
(a) 1

A.
B.

C.

D.
(d)

Answer: B

Watch Video Solution

239.

$P+{ }_{3}^{7} L i \rightarrow 2_{2}^{4} \mathrm{He}$
energy of proton mnust be
A. 28.24 MeV
B. 17.28 MeV
C. 1.46 MeV
D. 39.2 MeV

Answer: B

- Watch Video Solution

240. The half is the correct unit used to report the measurement of
A. the obility of a beam of gamma rey photons to produce ions in a target
B. the energy effect by radiation to a target
C. the biological effect of radiation
D. the rate of decay of a radioactive source

Answer: C

- Watch Video Solution

241. If the lattice constant of this semiconductor is decreases, then which
of the following is correct ? gtbrgt

A. All E_{c}, E_{g}, E_{v}, \in crease
B. E_{c} and $E_{v} \in$ creasebut E_{g}, decrease
C. E_{c} and E_{v} decreasebut E_{g}, \in crease
D. All E_{c}, E_{g}, E_{v}, decrease

Answer: C

- Watch Video Solution

242. The rms value of the electric field of the light from the sun is $720 \mathrm{~N} / \mathrm{C}$ The energy total energy total energy density of the electromagnetic wave is
A. $4.58 \times 10^{-6} \mathrm{~J} / \mathrm{m}^{3}$
B. $6.37 \times 10^{-9} \mathrm{~J} / \mathrm{m}^{3}$
C. $81.35 \times 10^{-12} \mathrm{~J} / \mathrm{m}^{3}$
D. $3.3 \times 10^{-3} \mathrm{~J} / \mathrm{m}^{3}$

Answer: A

- Watch Video Solution

243. If M_{O} is the mass of an oxygen is otpe $-(8) O^{17}, M_{p}$ and M_{N} are the mases of a proton and a neutron respectively, the nuclear binding energy of the isotope is
A. $\left(M_{O}-17 M_{N}\right) c^{2}$
B. $\left(M_{O}-8 M_{p}\right) c^{2}$
C. $\left(M_{O}-8 M_{p}-9 M_{N}\right) c^{2}$
D. $\left(M_{O} c^{2}\right.$

Answer: C

- Watch Video Solution

244. In gamma ray emission from a nucleus
A. only the proton number changes
B. both the neutron and the proton number change
C. there in no change in the proton number and the neutron number
D. only the neutron number changes

Answer: C

- Watch Video Solution

245. If in a $p-n$ junction diode, a squire input single of 10 V is applied as shown

(a)

A.

(c)
C.

(d)

$-5 \mathrm{~V}$

D.

Answer: A

- Watch Video Solution

246. Photon of frequency v has a momentum associated with it . If c is the velocity of light, the momentum is
A. $h c / c$
B. v / c
C. $h v c$
D. $h v / c^{2}$

Answer: A

- Watch Video Solution

247. The half-life period of a radioactive element x is same as the mean life time of another radioactive element y . Initially, both of them have the same number of atoms. Then,
(a) x and y have the same decay rate initially
(b) x and y decay at the same rate always
(c) y will decay at a faster rate than x
(d) x will decay at a faster rate than y
A. X and Y decay at same rate always
B. X will decay faster then Y
C. Y will decay faster then X
D. X and Y have same rate initially

Answer: C

248. Carbon, silicon and germanium have four velence electrons each . At room temperature which one of the following statements is most appropriate ?
A. the number of free electron for conduction is significant is $S i$ and $G e$ but small in C
B. the number of free conduction electron is significant in C but small in $S i$ and $G e$
C. the number of free conduction electron is negligibly small in all the three.
D. the number of free electron for conduction is significant in allthe three

Answer: A

- Watch Video Solution

249. Which of the following transition in hydrogen atom emit photons of bighest frequency?
A. $n=1 \rightarrow n=2$
B. $n=2 \rightarrow n=6$
C. $n=6 \rightarrow n=2$
D. $n=2 \rightarrow n=1$

Answer: D

- Watch Video Solution

250. Wave property of electron implies that they will show diffraction effected. Davisson and Germer demonstrated this by diffracting electron from crystals. The law governing the diffraction from a crystals is obtained by requiring that electron waves reflected from the planes of atoms in a crystal inter fere constructiely

Electron accelerated by potential V are diffracted from a crystal if $d=1 \AA$ and $i=30^{\circ}, V$ should be about $\left(h=6.6 \times 10^{-34} J s, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, e=1.6 \times 10^{-19} \mathrm{C}\right)$
A. 2000 V
B. 50 V
C. 500 V
D. 1000 V

Answer: B

251. Wave property of electron implies that they will show diffraction effected. Davisson and Germer demonstrated this by diffracting electron from crystals. The law governing the diffraction from a crystals is obtained by requiring that electron waves reflected from the planes of atoms in a crystal inter fere constructiely

If a strong diffraction peak is observed when electrons are incident at an angle i from the normal to the crystal planes with distance d between them (see fig) de Brogle wavelength $\lambda_{d B}$ of electrons can be calculated by the relationship (n is an intenger)
A. $d \sin i=n \lambda_{d B}$
B. $2 d \cos i=n \lambda_{d B}$
C. $2 d \sin i=n \lambda_{d B}$
D. $d \cos i=n \lambda_{d B}$

Answer: B

- Watch Video Solution

252. This question contains Statement - 1 and Statement -2 Of the four choice given after the Statements, choose the one that best decribes the two Statements

Statement-1:

Energy is reased when heavy underge fission or light nuclei undergo fasion and

Statement-2:

for nuclei, binding energy nucleon increases with increasing Z while for light nuclei it decreases with increasing Z
A. Statement - 1 is false, Statement - 2 is true
B. Statement - 1 is true, Statement - 2 is true, Statement - 2 is a correct
explanation for Statement - 1
C. Statement - 1 is true, Statement - 2 is true, Statement -2 is not a correct explanation for Statement -1
D. Statement - 1 is true ,Statement -2 is false

Answer: D

- Watch Video Solution

253. A working transitior with its three legs marked P, Q and R is tested using a multimeter No conduction is found between P, Q by connecting the common (negative) terminal of the multimeter to R and the ofther (positive) terminal to or Q some resistance is seen on the multimeter . Which of the following is true for the transistor?
A. it is an npn transistor with R as base
B. it is a pop transistor with R as collector
C. it is a pop transistor with R as emitter
D. it is an npn transistor with R as collector

Answer: A

- Watch Video Solution

254. Suppose an electron is attracted toward the origin by a force $\frac{k}{r}$ where k is a constant and r is the distance of the electron from the origein .By appling Bohr model to this system the radius of the $n^{\text {th }}$ orbital of the electron is found to be r_{n} and the kinetic energy of the electron to be T_{n}, Then which of the following is true?
A. $T_{n} \propto \frac{1}{n^{2}}, r_{n} \propto n^{2}$
B. T_{n} independent of $n, r_{n} \propto n$
C. $T_{n} \propto \frac{1}{n}, r_{n} \propto n$
D. $T_{n} \propto \frac{1}{n}, r_{n} \propto n^{2}$

- Watch Video Solution

255. The transition from the state $n=4$ to $n=3$ in a hydrogen-like atom results in ultraviolet radiation. Infared radiation will be obtained in the transition
A. $3 \rightarrow 2$
B. 4 rarr $2^{\text {` }}$
C. $5 \rightarrow 4$
D. 2 rarr $1^{\text {` }}$

Answer: C

256. The surface of a metal is illuminted with the light of 400 nm The kinetic energy of the ejection photoelectron was found to be 1.68 eV The work function of the metal is :
A. 1.41 eV
B. 1.51 eV
C. 1.68 eV
D. 3.09 eV

Answer: A

- Watch Video Solution

257.

The above is a plot of binding energy per nucleon E_{b} against the nuclear mass M, A, B, C, D, E, F correspond to different nuclei Consider four reactions:
A. $A+B \rightarrow C+\varepsilon$
B. $C \rightarrow A+B+\varepsilon$
C. $D+E \rightarrow F+\varepsilon$ and
D. $F \rightarrow D+E+\varepsilon$,

Answer: D

258. a p-n juction (D) shown in the figure can act an a rectifier An alternatting current source (V) is connected in the circuit

The corrent (I) in the resistor ${ }^{\circledR}$ can be shown by:
(a)

A.
(b)

B.
C.
(d)

D.

Answer: B

D Watch Video Solution

259. Statement-1: When ultraviolet light is incident on a photoncell, its stopping potential is V_{0} and the maximum kinetic energy of the photoelectrons is $K_{\max }$ when the altraviolet light is replaces by X-rays both V_{0} and $K_{\text {max }}$ increase

Statement - 2 : photoelectrons are emitted with speeds ranging from zero to a maximum value because of the range of frequencies present in the incident light
A. Statement - 1 is true, statement -2 is true, statement -2 is the correct explanation of statement - 1
B. Statement -1 is true, statement -2 is true, statement -2 is not the correct explanation of statement - 1
C. Statement -1 is false, statement -2 is true
D. Statement-1 is true, styatement-2 is false

Answer: D

- Watch Video Solution

260. A nuclear of mass $M+\delta m$ is at rest and decay into two daughter nuclei of equal mass $\frac{M}{2}$ each speed is c

The binding energy per nucleon for the nucleus is E_{1} and that for the daugther nuclei is E_{2} Then
A. $E_{2}=2 E_{1}$
B. $E_{1}>E_{2}$
C. $E_{2}>E_{1}$
D. $E_{1}=2 E_{2}$

D Watch Video Solution

261. A nuclear of mass $M+\delta m$ is at rest and decay into two daughter nuclei of equal mass $\frac{M}{2}$ each speed is c

The speed of daughter nuclei is
A. $c \frac{\delta m}{M+\delta m}$
B. $c \sqrt{\frac{2 \delta m}{M+\delta m}}$
C. $c \sqrt{\frac{\delta m}{M}}$
D. $c \sqrt{\frac{\delta m}{M+\delta m}}$

Answer: B

D Watch Video Solution

262. A radiaoactive nucleus (initial mass number A and atomic number Z emits $3 a-$ partic $\leq s$ and 2 positronsThe ratio of number of neutrons to that of proton in the final nucleus will be
A. $\frac{A-Z-8}{Z-4}$
B. $\frac{A-Z-4}{Z-8}$
C. $\frac{A-Z-12}{Z-4}$
D. $\frac{A-Z-4}{Z-2}$

Answer: B

- Watch Video Solution

263. The combination of shown below yieds

A. ORgate
B. NOTgate
C. XORgate
D. NANDgate

Answer: A

264. If the source of power $4 k W$ product 10^{20} photons //second, the radiation belongs to a part spectrum called
A. X - rays
B. ultraviolet rays
C. microwaves
D. γ rays

Answer: A

- Watch Video Solution

265. The quwstion has statement - 1 and statement - 2 Of the four choices given after the statements, choose the one that best describes the two statements
statement - 1: Sky wave signals are used for long distance radio communication. These signals are in generel, less stable then ground wave signals
statement - 2 : The state of inosphere varies from to hour day and season to season .
A. Statement -1 is true ,Statement -2 is true, Statement -2 is the correct explanation of Statement -1
B. Statement -1 is true ,Statement -2 is true, Statement -2 is not the correct explanation of Statement -1
C. Statement -1 is false ,Statement -2 is true
D. Statement -1 is true ,Statement -2 is false

Answer: B

- Watch Video Solution

266. Energy required for the electron excitation in Li^{++}from the first to the third Bohr orbit is
A. 36.3 eV
B. 108.8 eV
C. 122.4 eV
D. 12.1 eV

Answer: B

- Watch Video Solution

267. The half life of a radioactive substance is 20 minutes. The approximate time interval $\left(t_{1}-t_{2}\right)$ between the time t_{2} when $\frac{2}{3}$ of it had decayed and time t_(1)when(1)/(3)' of it had decay is
A. 14 min
B. 20 min
C. 28 min
D. 7 min

Answer: B

268. This question has statement - 1 and statement - 2 of the four choice given after the statements choose the one that best describes the two statements
statement-1: A metallic surface is irradiated by a monochromatic light of frequency
$v>v_{0}($ thethresholdequency $)$. The \max im, umkimetice $\neq r g y$ and thes
K_(max) and
respectively if theequency \in cidentonthesurfaceisdoub $\leq d, \perp$ hthe $K_{-}(m a x)$ and $V_{-}(0)$ are also doubled
statement-2 : The maximum kinetic energy and the stopping potantial of photonelectron emitted from a surface are linearly dependent on the frequency of incident light
A. Statement -1 is true ,Statement -2 is true, Statement -2 is the correct explanation of Statement -1
B. Statement -1 is true ,Statement -2 is true , Statement -2 is not the correct explanation of Statement -1
C. Statement -1 is false ,Statement -2 is true
D. Statement -1 is true ,Statement -2 is false

Answer: C

- Watch Video Solution

269. Hydrogen atom is exited from ground state to another state with principal quantum number equal to 4 Then the number of spectral linear in the emission spectra will be
A. 2
B. 3
C. 5
D. 6

Answer: D

- Watch Video Solution

270. A ratio has a power of $1 k W$ and is operating at a frequency of $10 G H z$ it is located on a mountain top of beigh 500 m The maximum distance upto which it can detect object located on the surface of the earth (Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$) is
A. 80 km
B. 16 km
C. 40 km
D. 64 km

Answer: A

271. Assume that a neutron breaks into a proton and an electron. The energy reased during this process is (mass of neutron $=1.6725 \times 10^{-27} \mathrm{~kg}$ mass of proton $=1.6725 \times 10^{-27} \mathrm{~kg}$ mass of electron $=9 \times 10^{-31} \mathrm{~kg}$)
A. 0.73 MeV
B. 7.10 MeV
C. 6.30 MeV
D. 5.4 MeV

Answer: A

- Watch Video Solution

272. A diatomic molecule is madde of two masses m_{1} and m_{2} which are separated by a distance r. If we calculate its rotational energy by appliying Bohr's rule of angular momemtum quantization it energy will be (n is an integer)
A. $\frac{\left(m_{1}+m_{2}\right)^{2} n^{2} h^{2}}{2 m_{1}^{2} m_{2}^{2} r^{2}}$
B. $\frac{n^{2} h^{2}}{2\left(m_{1}+m_{2}\right) r^{2}}$
C. $\left.\frac{2 n^{2} h^{2}}{m_{1}+m_{2}} r^{2}\right)$
D. $\frac{\left(m_{1}+m_{2}\right) n^{2} h^{2}}{2 m_{1} m_{2} r^{2}}$

Answer: D

D Watch Video Solution

273. A diode detector is used to detect an amplitudennodulated wave of 60% modulation by using a condence of capacity 250 picodarad in parallel with a load resistance 100 kilo obm find the maximum modulated which could be find the maximum modalated frequency which could be
detected by it

A. $10.62 M H z$
B. 10.62 kHz
C. 5.31 MHz
D. 5.31 kHz

Answer: B

0
 Watch Video Solution

274. The magnetic field In a tranvelling dectromagnetic wave has a penk value of $20 n T$ The peak value of electron field strength is :
A. 3 Vm
B. 6 Vm
C. 9 Vm
D. 12 Vm

Answer: B

- Watch Video Solution

275. The anode vollage of a photocell is kept fixed. The wavelength λ of the light falling on the cathode varies as follows
A.
(a)

B.
(b)

C.

D.
(d)

Answer: D

Watch Video Solution

276. The $1-V$ characteristic of on LED is
(a)

B.
(b)

C.

(d)

Answer: A

- Watch Video Solution

277. In a hydrogen like atom electron make transition from an energy level with quantum number n to another with quantum number $(n-1)$
if $n \gg 1$, the frequency of radiation emitted is proportional to:
A. $\frac{1}{n}$
B. $\frac{1}{n^{2}}$
C. $\frac{1}{n^{3} / 2}$
D. $\frac{1}{n^{2}}$

Answer: D

D Watch Video Solution

278. The currect voltage relation of a diode is given by $1=\left(e^{v a n v / T}-1\right) m A$ where the applied volied V is in volts and the tempetature T is in degree kelvin if a student make an error meassurting $\pm 01 V$ while measuring the current of $5 m$ Aat $300 K$ what be the error in the value of current in $m A$
A. $0.2 m A$
B. $0.02 m A$
C. $0.5 m A$
D. 0.05 mA

Answer: A

- Watch Video Solution

279. During the propogation wave in a medium
A. Electric energy density is double of the magnetic energy density
B. Electric energy density is half of the magnetic energy density
C. Electric energy equal is double of the magnetic energy density
D. Both eneric and magnetic energy densities are zero

Answer: C

- Watch Video Solution

280. The radiation corresponding to $3 \rightarrow 2$ transition of hydrogen atom falls on a metal surface to produce photoelectrons. These electrons are made to enter circuit a magnitic field $3 \times 10^{-4} T$ if the ratio of thelargest circular path follow by these electron is ${ }^{`} 10.0 \mathrm{~mm}$, the work function of the metal is close to
A. 1.8 eV
B. 1.1 eV
C. 0.8 eV
D. 1.6 eV

Answer: B

- Watch Video Solution

281. Hydrogen $\left(-(1) H^{1}\right)$ Deuterium $\left(-(1) H^{2}\right)$ singly omised helium ($\left.-(1) H e^{1}\right)$ and doubly ionised lithium $\left(-(1) L i^{6}\right)^{++}$all have one electron around the nucleus Consider an electron transition from $n=2 \rightarrow n=1$ if the wavelength of emitted radiartion are $\lambda_{1}, \lambda_{2}, \lambda_{3}$, and λ_{4}, repectivelly then approximetely which one of the following is correct ?
A. $4 \lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4}$
B. $\lambda_{1}=2 \lambda_{2}=2 \lambda_{3}=\lambda_{4}$
C. $\lambda_{1}=\lambda_{2}=4 \lambda_{3}=9 \lambda_{4}$
D. $\lambda_{1}=2 \lambda_{2}=3 \lambda_{3}=4 \lambda_{4}$

Answer: C

- Watch Video Solution

282. The forward biased diode comection is
(a) $\xrightarrow{+2 \mathrm{~V}} \longrightarrow \sim^{-2 V}$
A.
(b) $\xrightarrow{-3 V} \mathrm{NL}$
B.
(c) $\mathrm{LV}^{2 \mathrm{~V}} \mathrm{CH}$
C.
(d) $\xrightarrow{-2 \mathrm{~V}} \mathrm{D}$
D.

Answer: A

D Watch Video Solution

283. A redc LED emits light at 0.1 wall uniformily around it. The amplitude of the electric field of the light at a distnce of $3 m$ from the diode is
A. 5.48 Vm
B. 7.75 Vm
C. 1.73 Vm
D. 2.45 Vm

Answer: D

284. A signal of 5 kHz frequency is amplitade modulated on a carrue wave of frequency 2 MHz . The frequency of the resulant signal is //are
A. $2005 \mathrm{kHz}, 200 \mathrm{kHz}$ and 1995 kHz
B. 2000 kHz and 1995 kHz
C. 2 MHzonly
D. 2005 Hz and 1995 kHz

Answer: A

- Watch Video Solution

285. As an electron makes a transition from an excited state to the ground state of a hydrogen - like atom //ion
A. kinectic energy decreases potential energy increases but total energy remain same
B. kinectic energy and total energy decreases but potential energy
increases
C. in kinectic energy increases but potential energy and total energy
decreases
D. kinectic energy potential energy and total energy decreases

Answer: C

- Watch Video Solution

286. For a common emiter configuration if a and β have their usualy meaning, the incorrrect relationship between a and β is :
A. $a=\frac{\beta}{1+\beta}$
B. $a=\frac{\beta^{2}}{1+\beta^{2}}$
C. $\frac{1}{a}=\frac{1}{\beta}+1$
D. $a=\frac{\beta}{1-\beta}$

D Watch Video Solution

287. if a, b, c, d are inputs to a gate and x is its output, then as per the following time graph , the gate is :

d

 תЛת几
b

a

A. $O R$

B. $N A N D$

C. NOT
D. $A N D$

D Watch Video Solution

288. Chooce the correct statement :
A. in frequency modulation the amplitude of the high frequency carrieer wave is made to very in proportion to the amplitude of the audio signal.
B. in frequency modulation the amplitude of the high frequency carrieer wave is made to very in proportion to the frequency of the audio signal .
C. in amplitude modulation the amplitude of the high frequency
carrieer wave is made to very in proportion to the amplitude of the audio signal .
D. in amplitude modulation the frequency of the high frequency carrier wave is made to very in proportion to the amplitude of the audio signal .

Answer: C

- Watch Video Solution

289. In a photoelectric experiment, with light of wavelength λ, the fastest election has speed v. If the exciting wavelength is changed to $\frac{3 \lambda}{4}$, the speed of the fastest emitted electron will become
A. $=v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
B. $=v\left(\frac{3}{4}\right)^{\frac{1}{2}}$
C. $>v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
D. $<v\left(\frac{4}{3}\right)^{\frac{1}{2}}$

Answer: C

- Watch Video Solution

290. Half-lives of two radioactive elements A and B are 20 minutes and 40 minutes respectively. Initially, the samples have equal number of nuclei. After 80 minutes, the ratio of decayed numbers of A and B nuclei will be
A. 1:4
B. 5: 4
C. $1: 16$
D. $4: 1$

Answer: c

- Watch Video Solution

291. Identify the semiconductor devices whose characteristics are given below, in the order (a),(b),(c),(d) :

(c)

(c)

(d)
A. Solar cell , Light dependent resistance, zener diode , simple diode
B. Zener diode ,Solar cell , simple diode Light dependent resistance
C. Simple diode,zener diode, Solar cell , Light dependent resistance
D. Zener diode ,simple diode Light dependent resistance,Solar cell

Answer: C

(Watch Video Solution

1. The circuit shown in the contain two diodes each with a forward resitance of 50 obms and with infinite back ward resistence, if the battery voltage is 6 V , the correct through the 100 obm resistence (in amperes) is

A. zero
B. 0.02
C. 0.03
D. 0.036

Answer: B

- View Text Solution

