©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

ATOMIC STRUCTURE

Mcq

1. Which one is the wrong statement ?
A. de-Broglie's wavelength is given by

$$
\lambda=\frac{h}{m v}
$$

where

$m=$ mass of the particle,

$v=$ group velocity of the particle

B. The uncertainty
 principle
 is

$\Delta E \times \Delta t \geq h / 4 \pi$
C. Half-filled and fully filled orbitals have
greater stability due to greater
exchange energy, greater symmetry and
more balanced arrangement
D. The energy of 2 s -orbital is less than the
energy of 2 p-orbital in case of hydrogen
like atoms

Answer: D

2. Two electrons occupying the same orbital are distinguished by :
A. Magnetic quantum number
B. Azimuthal quantum number
C. Spin quantum number

D. Principal quantum number

Answer: C

(Watch Video Solution
3. How many delectrons can fit in the orbital
for which $\mathrm{n}=3$ and $l=1$?
A. 2
B. 6
C. 10
D. 14

Answer: A

- Watch Video Solution

4. Which is the correct order of increasing energy of the listed orbitals in the atom of titanium?
A. 3 s 4 s 3 p 3 d
B. 4 s 3 s 3 p 3 d
C. 3 s 3 p 3 d 4 s
D. 3 s 3 p 4 s 3 d

Answer: C

D Watch Video Solution
5. The number of d-electrons in $\mathrm{Fe}^{2+}(\mathrm{Z}=26)$ is not equal to the number of electrons in which one of the following ?
A. s-electrons in $\mathrm{Mg}(\mathrm{Z}=12)$
B. p-electrons in $\mathrm{Cl}(\mathrm{Z}=17)$
C. d-electrons in $\mathrm{Fe}(\mathrm{Z}=26)$
D. p-electrons in $\mathrm{Ne}(\mathrm{Z}=10)$

Answer: B

D Watch Video Solution
6. The angular momentum of electrons in d

orbital is equal to

A. $\sqrt{6} h$
B. $\sqrt{2} h$
C. $2 \sqrt{3} h$
D. 0 h

Answer: A

D Watch Video Solution
7. What is the maximum number of orbitals that can be identified with the following quantum numbers ? $n=3, l=1, m_{l}=0$.
A. 1
B. 2
C. 3
D. 4

Answer: A

8. Calculate the energy in joule corresponding to light of wavelength 45 nm :
(Planck' constant $h=6.63 \times 10^{-34} J s$, speed of light $c=3 \times 10^{8} m s^{-1}$)
A. 6.67×10^{15}
B. 6.67×10^{11}
C. 4.42×10^{-15}
D. 4.42×10^{-18}

Answer: D
9. The value of Planck's constant is
$6.63 \times 10^{-34} \mathrm{Js}$. The speed of light is
$3 \times 10^{17} \mathrm{nms}^{-1}$. Which value is the closed to
the wavelength in nanometers of a quantum
of light with frequency $6 \times 10^{10} s^{-1}$?
A. 10
B. 25
C. 50
D. 75

Answer: C

- Watch Video Solution

10. What is the maximum number of electrons
that can be associated with a following set of
quantum numbers

$$
(n=3, l=1 \text { and } m=-1)
$$

A. 10
B. 6
C. 4
D. 2

Answer: D

D Watch Video Solution

11. Maximum number of electrons in a subshell with $l=3$ and $n=4$ is.
A. 14
B. 16
C. 10

D. 12

Answer: A

D Watch Video Solution

12. Correct set of four quantum numbers for
the valence (outermost) electron of rubidium
$(Z=37)$ is

$$
\begin{aligned}
& \text { A. } 5,1,1,+\frac{1}{2} \\
& \text { B. } 6,0,0,+\frac{1}{2}
\end{aligned}
$$

> C. $5,0,0,+\frac{1}{2}$
> D. $5,1,0,+\frac{1}{2}$

Answer: C

- Watch Video Solution

13. The energies E_{1} and E_{2} of two radiations
are 25 eV and 50 eV respectively. The relation
between their wavelengths, i.e., λ_{1} and λ_{2} will be.
A. $\lambda_{1}=2 \lambda_{2}$
B. $\lambda_{1}=4 \lambda_{2}$
C. $\lambda_{1}=\frac{1}{2} \lambda_{2}$
D. $\lambda_{1}=\lambda_{2}$

Answer: A

D Watch Video Solution

14. If $n=6$, the correct sequence for filling of electrons will be.
A. $\mathrm{ns} \rightarrow(\mathrm{n}-1) \mathrm{d} \rightarrow(\mathrm{n}-2) \mathrm{f} \rightarrow \mathrm{np}$
B. $\mathrm{ns} \rightarrow(\mathrm{n}-2) \mathrm{f} \rightarrow \mathrm{np} \rightarrow(\mathrm{n}-1) \mathrm{d}$
C. $\mathrm{ns} \rightarrow \mathrm{np} \rightarrow(\mathrm{n}-1) \mathrm{d} \rightarrow(\mathrm{n}-2) \mathrm{f}$
D. $\mathrm{ns} \rightarrow(\mathrm{n}-2) \mathrm{f} \rightarrow(\mathrm{n}-1) \mathrm{d} \rightarrow \mathrm{np}$

Answer: D

D Watch Video Solution

15. Which of the following is not permissible arrangement of electrons in an atom ?
A. $n=4, l=0, m=0, s=-1 / 2$
B. $n=5, l=3, m=0, s=+1 / 2$
C. $n=3, l=2, m=-3, s=-1 / 2$
D. $n=3, l=2, m=-2, s=-1 / 2$

Answer: C

D Watch Video Solution

16. The energy absorbed by each molecule $\left(A_{2}\right)$ of a substance is $4.4 \times 10^{-19} J$ and bond energy per molecule is $4.0 \times 10^{-19} \mathrm{~J}$. The
kinetic energy of the molecule per atom will be.

> A. $2.0 \times 10^{-20} J$
> B. $2.2 \times 10^{-19} J$
> C. $2.0 \times 10^{-19} J$
> D. $4.0 \times 10^{-20} J$

Answer: A
(Watch Video Solution
17. Maximum number of electrons in a sub-
shell of an atom is determined by the following.
A. $4 \mid+2$
B. $2 l+1$
C. 4I-2
D. $2 n^{2}$

Answer: A

- Watch Video Solution

18. The measurement of the electron position
is associated with an uncertainty in
momentum, which is equal to
$1 \times 10^{-18} \mathrm{gcms}{ }^{-1}$. The uncertainty in electron
velocity is (mass of an electron is $9 \times 10^{-28} g$)

> A. $1 \times 10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$
> B. $1 \times 10^{6} \mathrm{~cm} \mathrm{~s}^{-1}$
> C. $1 \times 10^{5} \mathrm{~cm} \mathrm{~s}$
> D. $1 \times 10^{11} \mathrm{~cm} \mathrm{~s}^{-1}$

Answer: A
19. If uncertainty in position and momentum are equal then uncertainty in velocity is.
A. $\frac{1}{2 m} \sqrt{\frac{h}{\pi}}$
B. $\sqrt{\frac{h}{2 \pi}}$
C. $\frac{1}{m} \sqrt{\frac{h}{\pi}}$
D. $\sqrt{\frac{h}{\pi}}$

Answer: A
20. Consider the following sets of quantum numbers.
(i) $\begin{array}{llll}n & l & m & s\end{array}$
(i) $3000+1 / 2$
(ii) $\begin{array}{llll}n & l & m & s\end{array}$
$\begin{array}{llll}2 & 2 & 1\end{array}+1 / 2$
(iii) $n \quad m \quad s$

$$
\begin{array}{llll}
4 & 3 & -2 & -1 / 2
\end{array}
$$

(iv) $\begin{array}{lll}n & l & m\end{array}$
(iv) $\begin{array}{llll}1 & 0 & -1 & -1 / 2\end{array}$
(v) $\begin{array}{llll}n & l & m & s \\ 3 & 2 & 3 & +1 / 2\end{array}$

Which of the following sets of quantum
number is not possible?
A. (ii), (iii) and (iv)
B. (i), (ii), (iii) and (iv)
C. (ii), (iv) and (v)
D. (i) and (iii)

Answer: D

D Watch Video Solution

21. The orientation of an atomic orbital is governed by :
A. azimuthal quantum number
B. spin quantum number
C. magnetic quantum number
D. Principal quantum number

Answer: C

D Watch Video Solution

22. Given $m_{e}=9.11 \times 10^{-31} \mathrm{~kg} \quad$ and
$h=6.626 \times 10^{-34} J s, \quad$ the uncertainty
involved in the measuremenetof velocity
within a distance of $0.1 \AA$ is

> A. $5.79 \times 10^{6} \mathrm{~ms}^{-1}$
> B. $5.79 \times 10^{7} \mathrm{~ms}^{-1}$
> C. $5.79 \times 10^{8} \mathrm{~ms}^{-1}$
> D. $5.79 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: A
(Watch Video Solution
23. The energy of second Bohr orbit of the hydrogen atom is $-328 \mathrm{kJmol}^{-1}$, hence the energy of fourth Bohr orbit would be.

$$
\begin{aligned}
& \text { A. }-41 \mathrm{kJmol}^{-1} \\
& \text { B. }-1312 \mathrm{kJmol}^{-1} \\
& \text { C. }-164 \mathrm{kJmol}^{-1} \\
& \text { D. }-82 \mathrm{kJmol}^{-1}
\end{aligned}
$$

Answer: D

D Watch Video Solution

24. The frequency of radiations emitted when

 electron falls from $n=4$ to $n=1$ inH - atom would be (Given E_{1} for

$$
H=2.18 \times 10^{-18} \mathrm{Jatom}^{-1}
$$

$$
\left.h=6.625 \times 10^{-34} J s .\right)
$$

A. $1.54 \times 10^{15} s^{-1}$
B. $1.03 \times 10^{15} s^{-1}$
C. $3.08 \times 10^{15} s^{-1}$
D. $2.00 \times 10^{15} s^{-1}$

Answer: C

- Watch Video Solution

25. The value of Planck's constant is
$6.63 \times 10^{-34} \mathrm{Js}$. The velocity of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$. Which value is closest to the wavelength in nanometers of a quantum of light with frequency $8 \times 10^{15} s^{-1}$?
A. 4×10^{1}
B. 3×10^{7}
C. 2×10^{-25}

D. 5×10^{-18}

Answer: A

D Watch Video Solution

26. In hydrogen atom, energy of first excited
state is $-3.4 e V$. Then, $K E$ of the same orbit of hydrogen atom is.
A. $+3.4 e V$
B. +6.8 eV

C. -13.6 eV

D. +13.6 eV

Answer: A

- Watch Video Solution

27. The following quantum numbers are possible for how many orbitals
$(s) n=3, l=2, m=+2 ?$
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

28. The energy of a photon is given as, ΔE
/atom $=3.03 \times 10^{-19} \mathrm{Jatom}^{-1}$ then, the wavelength (λ) of the photon is

A. 6.56 nm

B. 65.6 nm
C. 656 nm
D. 0.656 nm

Answer: C

D Watch Video Solution

29. The de-Broglie wavelength of a particle with mass $1 g$ and velocity $100 \mathrm{~m} / \mathrm{sec}$ is.
A. $6.63 \times 10^{-33} \mathrm{~m}$
B. $6.63 \times 10^{-34} \mathrm{~m}$
C. $6.63 \times 10^{-35} \mathrm{~m}$
D. $6.65 \times 10^{-36} \mathrm{~m}$

Answer: A

D Watch Video Solution
30. Who modified Bohr's theory of introducing elliptical orbits for electron path?
A. Hund
B. Thomson
C. Rutherford
D. Sommerfeld

Answer: D

D Watch Video Solution

31. Which of the following electron configurations is correct for iron,(atomic number26)?
A. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{5}$
B. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{2}, 3 d^{5}$
C. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{2}, 3 d^{7}$
D. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{6}, 4 s^{2}$

Answer: D

D Watch Video Solution

32. The uncertainty in momentum of an electron is $1 \times 10^{-5} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$. The
uncertainty in its position will be

$$
\left(h=6.62 \times 10^{-34} \mathrm{~kg}=\mathrm{m}^{2} / \mathrm{s}\right) .
$$

A. $1.05 \times 10^{-28} m$
B. $1.05 \times 10^{-26} m$
C. $5.27 \times 10^{-30} \mathrm{~m}$
D. $5.25 \times 10^{-28} \mathrm{~m}$

Answer: C
(Watch Video Solution
33. The position of both an electron and a helium atom is known within 1.0 nm and the momentum of the electron is known within
$50 \times 10^{-26} \mathrm{kgms}^{-1} . \quad$ The minimum
uncertainty in the measurement of the momentum of the helium atom is.

> A. $50 \mathrm{kgms}^{-1}$
> B. $80 \mathrm{kgms}^{-1}$
> C. $80 \times 10^{-26} \mathrm{kgms}^{-1}$
> D. $5.0 \times 10^{-26} \mathrm{kgms}^{-1}$

Answer: D

D Watch Video Solution

34. The radus of hydrogen atom in the ground state $0.53 \AA$. The radius of Li^{2+} ion (Atomic number $=3$) in a similar state is
A. 0.13
B. 0.06
C. 4.77
D. 2.12

Answer: D

- Watch Video Solution

35. The electronic configuration of gadolinium
(Atomic number 64) is
A. [Xe] $4 f^{8}, 5 d^{9}, 6 s^{2}$
B. [Xe] $4 f^{7}, 5 d^{1}, 6 s^{2}$
C. [Xe] $4 f^{6}, 5 d^{2}, 6 s^{2}$
D. $[\mathrm{Xe}] 4 f^{3}, 5 d^{5}, 6 s^{2}$

Answer: B

D Watch Video Solution

36. The momentum of a particle having a deBroglie wavelength of $10^{17} \mathrm{~m}$ is (Given,

$$
\left.h=6.625 \times 10^{-34} m\right)
$$

A. $3.3125 \times 10^{-7} \mathrm{kgms}^{-1}$
B. $26.5 \times 10^{-7} \mathrm{kgms}^{-1}$
C. $6.625 \times 10^{-17} \mathrm{kgms}^{-1}$
D. $13.25 \times 10^{-17} \mathrm{kgms}^{-1}$

- Watch Video Solution

37. The orbitals are called degenerate when
A. they have the same wave functions
B. they have the same wave functions but
different energies
C. they have different wave functions but
same energy

D. they have the same energy

Answer: D

D Watch Video Solution

38. The uncertainty in the position of an electron $\quad\left(\right.$ mass $\left.=9.1 \times 10^{-28} g\right) \quad$ moving with a velocity of $3.0 \times 10^{4} \mathrm{cms}^{-1}$ accurate up to 0.001% will be
(Use $\frac{h}{4 \pi}$ in the uncertainty expression, where $\left.h=6.626 \times 10^{-27} \mathrm{erg}-s\right)$
A. 1.93 cm
B. 3.84 cm
C. 5.76 cm
D. 7.68 cm

Answer: A

- Watch Video Solution

39. The radus of hydrogen atom in the ground state $0.53 \AA$. The radius of $L i^{2+}$ ion (Atomic number $=3$) in a similar state is
A. $0.17 \AA$
B. $0.53 \AA$
C. $0.265 \AA$
D. $1.06 \AA$

Answer: A

- Watch Video Solution

40. An electron has a spin quantum number $+1 \frac{1}{2}$ and a magnetic quantum number -1. It cannot be present in
A. d-orbital
B. f-orbital
C. p-orbital
D. s-orbital

Answer: D

D Watch Video Solution

41. In photoelectric emission, the energy of the emitted electron is
A. greater than the incident photon
B. same as that of the incident photon
C. smaller than the incident photon
D. proportional to the intensity of incident
photon

Answer: C

- Watch Video Solution

42. An electron of mass m and charge -e moves
in circular orbit of radius r round the nucleus of charge + Ze in unielectron system. In CGS
system the potential energy of electron is

$$
\begin{aligned}
& \text { A. } \frac{Z^{2} e^{2}}{r} \\
& \text { B. }-\frac{Z e^{2}}{r} \\
& \text { C. } \frac{Z e^{2}}{r} \\
& \text { D. } \frac{m v^{2}}{r}
\end{aligned}
$$

Answer: B
43. The wave character of moving electron was experimentally verified by:
A. de-Broglie
B. N Bohr
C. Davisson and Germer
D. Schrodinger

Answer: C
44. Which of the following is/are false regarding cathode rays?
A. They possess kinetic energy
B. They are electromagnetic waves
C. They produce heat
D. They produce mechanical pressure

Answer: B

D Watch Video Solution
45. For which of the following sets of quantum numbers, an electrons will have the highest energy?

Answer: B

46. The ionization potential for hydrogen atom is 13.6 eV , the ionization potential for $H e^{+}$is
A. 54.4 eV
B. 6.8 eV
C. 13.6 eV
D. 24.5 eV

Answer: A

D Watch Video Solution
47. The energy of an electron in the nth Bohr orbit of hydrogen atom is

$$
\begin{aligned}
& \text { A. }-\frac{13.6}{n^{4}} \mathrm{eV} \\
& \text { B. }-\frac{13.6}{n^{3}} \mathrm{eV} \\
& \text { C. }-\frac{13.6}{n^{2}} \mathrm{eV} \\
& \text { D. }-\frac{13.6}{n} \mathrm{eV}
\end{aligned}
$$

Answer: C

D Watch Video Solution

48. Electronic configuration calcium atom can be written as
A. [$\mathrm{Ne} \mathrm{e} 4 p^{2}$
B. $[\mathrm{Ar}] 4 s^{2}$
C. $[\mathrm{Ne}] 4 s^{2}$
D. $[\mathrm{Kr}] 4 p^{2}$

Answer: B

- Watch Video Solution

49. Electronic configuration of $\cdot{ }_{29} C u$ in ground state is :
A. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{2}, 3 d^{9}$
B. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{10}, 4 s^{1}$
C. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{2} 4 p^{6}, 5 s^{2} 5 p^{1}$
D. $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{2} 4 p^{6}, 3 d^{3}$

Answer: B

D Watch Video Solution

50. For azimuthal quantum number $\mathrm{I}=3$, the maximum number of electrons will be
A. 2
B. 6
C. 0
D. 14

Answer: D

D Watch Video Solution
51. FILLING OF ATOMIC ORBITALS- AUFBAU PRINCIPLE
A. $3 \mathrm{~d}, 4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 5 \mathrm{~s}$
B. $4 \mathrm{~s}, 3 \mathrm{~d}, 4 \mathrm{p}, 5 \mathrm{~s}, 4 \mathrm{~d}$
C. $5 \mathrm{~s}, 4 \mathrm{p}, 3 \mathrm{~d}, 4 \mathrm{~d}, 5 \mathrm{~s}$
D. 3d, 4p, 4s, 4d, 5s

Answer: B

D Watch Video Solution
52. No two electrons in an atom will have all the four quantum numbers same. This statement is known as
A. Hund's rule
B. Aufbau principle
C. Uncertainty principle
D. Pauli's exclusion principle

Answer: D

53. An ion has 18 electrons in the outermost shell it is
A. $C u^{+}$
B. $T h^{4+}$
C. $C s^{+}$
D. K^{+}

Answer: A

- Watch Video Solution

54. The total number of electrons that can be accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 are
A. 2
B. 4
C. 6
D. 8

Answer: C
55. The maximum number of electrons in a subshell is given by the expression
A. 4 I -2
B. $41+2$
C. $21+2$
D. $2 n^{2}$

Answer: B

- Watch Video Solution

56. Number of unpaired electrons in N^{2+} is/are
A. 2
B. 0
C. 1
D. 3

Answer: C

- Watch Video Solution

57. Which of the following statement does not
form part of Bohr's model of the hydrogen atomn?
A. Energy of the electrons in the orbits are quantised
B. The electron in the orbit nearest the nucleus has the lowest energy
C. Electrons revolve in different orbits
around the nucleus

D. The position and velocity of electrons in

the orbit cannot be determined simultaneously

Answer: D

- Watch Video Solution

58. If r is radius of first orbit, the radius of nth orbit of the H atom will be
A. $r n^{2}$
B. rn
C. $\frac{r}{n}$
D. $r^{2} n^{2}$

Answer: A

D Watch Video Solution

59. The number of spherical nodes in $3 p$
orbital are
A. one
B. three
C. two
D. None of these

Answer: A

- Watch Video Solution

60. The spectrum of $H e$ is expected to be similar to that of
A. H
B. Na
C. Li^{+}
D. He^{+}

Answer: C

- Watch Video Solution

