

CHEMISTRY

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

CHEMICAL EQUILIBRIUM

1. The equilibrium constants of the following

are

A. $K_1 K_3^3 \,/\, K_2$

B. $K_2 K_3^3 / K_1$

C. $K_2 K_3 \,/\, K_1$

D. $K_2^3 K_3 \,/\, K_1$

Answer: B

View Text Solution

2. If the value of equilibrium constant for a particular reaction is $1.6 imes10^{12}$, then art equilibrium the system will contain

A.	all	reactants

B. mostly reactants

C. mostly products

D. similar amounts of reactants and

products

Answer: C

Watch Video Solution

3. If the equilibrium constant for

 $N_2(g) + O_2(g) \Leftrightarrow 2NO(g)$ is K , the

equilibrium

$$ext{constant for } rac{1}{2}N_2(g) + rac{1}{2}O_2(g) \Leftrightarrow NO(g)$$

will be

A.
$$K^{1/2}$$

B. $rac{1}{2}K$

C. K

D.
$$K^2$$

Answer: A

Watch Video Solution

4. For the reversible reaction,

 $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$ + heat

The equilibrium shifts in forward direction

- A. by increasing the concentration of $NH_3(g)$
- B. by decreasing the pressure
- C. by decreasing the concentrations of $N_2(g)$ and $H_2(g)$
- D. by increasing pressure and decreasing temperature

Answer: D

5. Using the Gibbs energy change, $\Delta G^{\circ} = + 63.3 kJ$, for the following reaction, $Ag_2CO_3 \Leftrightarrow 2Ag^+(aq) + CO_3^{2-}$ the K_{sp} of $Ag_2CO_3(s)$ in water at $25^{\circ}C$ is $(R = 8.314 JK^{-1}mol^{-1})$ A. 3.2×10^{-26}

B. 8.0 imes 10 $^{-12}$

C.
$$2.9 imes10^{-3}$$

D. $7.9 imes10^{-2}$

Answer: B

6. $KMnO_4$ can be prepared from K_2MnO_4 as

per the reaction: 📄

The reaction can go the completion by removing OH^{Θ} ions by adding.

A. HCI

B. KOH

 $\mathsf{C}.CO_2$

D. SO_2

Answer: C

Watch Video Solution

7. The value of ΔH for the reaction $X_2(g) + 4Y_29g) \Leftrightarrow 2XY_4(g)$ is less than zero. Formation of $XY_4(g)$ will be favoured at :

A. low pressure and low temperature

B. high temperature and low pressure

C. high pressure and low temperature

D. high temperature and high pressure

Answer: C

Watch Video Solution

8. For the reaction $N_2(g) + O_2(g) \Leftrightarrow 2NO(g)$,

the equilibrium constant is K_1 . The equilibrium

constant is K_2 for the reaction

 $2NO(g) + O_2 \Leftrightarrow 2NO_2(g)$

What is K for the reaction $NO_2(g) \Leftrightarrow rac{1}{2}N_2(g) + O_2(g)?$

A. $1/(4K_1K_2)$

B. $[1/K_1K_2]^{1/2}$

 $\mathsf{C.1/}(K_1K_2)$

D. $1/(2K_1K_2)$

Answer: B

Watch Video Solution

9. In which of the following equilibrium
$$K_c$$
 and
 K_p are not equal ?
A. $2NO(g) \Leftrightarrow N_2(g) + O_2(g)$
B. $SO_2(g) + NO_2(g) \Leftrightarrow SO_3(g) + NO(g)$
C. $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$
D. $2C(s) + O_2(g) \Leftrightarrow 2CO_2(g)$

Answer: D

10. The dissociation constants for acetic acid and HCN at $25^{\circ}C$ are 1.5×10^{-5} and 4.5×10^{-10} , respectively. The equilibrium constant for the equilibirum $CN^{-} + CH_3COOH \Leftrightarrow HCN + CH_3COO^{-}$ would be

A. $3.0 imes10^5$

B. $3.0 imes10^{-5}$

C. $3.0 imes10^{-4}$

D. $3.0 imes10^4$

Answer: D

11. If the concentration of OH^- ions in the reaction

$$Fe(OH)_3(s) \Leftrightarrow Fe^{3\,+}(\mathit{aq.}\,) + 3OH^{\,-}(\mathit{aq.}\,)$$

is decreased by 1/4 times, then the equilibrium

concentration of Fe^{3+} will increase by

A. 8 times

B. 16 times

C. 64 times

D. 4 times

Answer: C

Watch Video Solution

12. The value of equilibrium constant of the reaction. $HI(g) \Leftrightarrow rac{1}{2}H_2(g) + rac{1}{2}I_2(g)is8.0$ The equilibrium constant of the reaction. $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$ will be

A.
$$\frac{1}{16}$$

B. $\frac{1}{64}$ C. 16

D. $\frac{1}{8}$

Answer: B

A. At equilibrium the concentrations of

 $CO_2(g)$ and $H_2O(I)$ are not equal.

B. The equilibrium constant for the reaction

is given by
$$K_p=rac{[CO_2]}{[CH_4][O_2]}$$

C. Addition of $CH_4(g)$ or $O_2(g)$ at

equilibrium will cause a shift to the right

D. The reaction is exothermic

Answer: B

Watch Video Solution

14. In the two gaseous reactions (i) and (ii) at $250^{\circ}C$ (i) $2NO(g) + \frac{1}{2}O_2(g) \Leftrightarrow NO_2(g)K_1$ (ii) $2NO_2(g) \Leftrightarrow 2NO(g) + O_2(g), K_2$ the equilibrium constants K_1 and K_2 are releated

as

A.
$$K_2 = rac{1}{K_1}$$

B. $K_2 = K_1^{1/2}$
C. $K_2 = rac{K_1}{K_1^2}$
D. $K_2 = K_1^2$

Answer: C

15. The reaction quotient Q for :

$$N_2(g)+3H_2(g)\Leftrightarrow 2NH_3(g)$$
 is given by $Q=rac{\left[NH_3
ight]^2}{\left[N_2
ight]\left[H_2
ight]^3}$ The reaction will proceed in

backward direction, when :

A. $Q > K_c$

 $\mathsf{B.}\,Q=0$

$$\mathsf{C}.\,Q=K_c$$

D. $Q < K_c$

Answer: A

Watch Video Solution

16.

Reaction

$2BaO_2(s) \Leftrightarrow 2BaO(s) + O_2(g), \Delta H = + ve$

. At equilibrium condition, pressure of O_2 is depended on:

A. increased mass of BaO_2

B. increased mass of BaO

C. increased temperature of equilibrium

D. increased mass of BaO_2 and BaO both

Answer: C

Watch Video Solution

17. For the equilibrium

 $MgCO_3(g) \stackrel{\Delta}{\Longleftrightarrow} MgO(s)CO_2(s)$ which of the

following expressions is correct ?

A.
$$K_p = pco_2$$

$$egin{aligned} {\sf B.} \ K_p &= rac{[MgO][CO_2]}{[MgCO_3]} \ {\sf C.} \ K_p &= rac{p_{Mgo}.\ p_{CO_2}}{p_{MgCO_3}} \ {\sf D.} \ K_p &= rac{p_{Mgo}+p_{CO_2}}{p_{MgCO_3}} \end{aligned}$$

Answer: A

18. In a reversible chemical reaction having two reactants in equilibrium, if the concentration of the reactants are doubled then the equilibrium constant will :

A. one-fourth

B. halved

C. doubled

D. the same

Answer: D

Watch Video Solution

19. If K_1 and K_2 are respective equilibrium

constants for two reactions :

 $XeF_6(g) + H_2O \Leftrightarrow XeOF_4(g) + 2HF_g$

$$XeO_4(g) + XeF_6(g) \Leftrightarrow XeOF_4(g) + XeO_3F_2(g)$$

Then equilibrium constant for the reaction

 $XeO_4(g)+2HF(g) \Leftrightarrow XeO_3F_2(g)+H_2O(g)$ will be

A.
$$K_{1}\left/\left(K_{2}
ight)^{2}$$

B. K_1 . K_2

- C. K_1 / K_2
- D. $K_2 \,/\, K_1$

Answer: D

20. The equilibrium constants for the reaction, $A_2 \Leftrightarrow 2A$ A at 500K and 700K are 1×10^{-10} and 1×10^{-5} . The given reaction is

A. exothermic

B. slow

C. endothermic

D. fast

Answer: B

Watch Video Solution

21. If α is the fraction of HI dissociated at equilibrium in the reaction, $2HI(g) \Leftrightarrow H_2(g) + I_2(g)$ starting with the 2 moles of HI. Then the total number of moles of reactants and products at equilibrium are

A. 2+2lpha

B. 2

 $\mathsf{C.1} + \alpha$

D. 2-lpha

Answer: B

22. The rate constant for forward and backward reactions of hydrolysis of ester are 1.1×10^{-2} and 1.5×10^{-3} per minute respectively. Equilibrium constant for the reaction is

A. 4.33

B. 5.33

C. 6.33

D. 7.33

Answer: D

23. According to le-Chatelier's principle, adding heat to a solid and liquid in equilibrium will cause the

A. temperature to increase.

B. temperature to decrease

C. amount of liquid to decrease

D. amount of solid to decrease

Answer: D

24. Which one of the following information can be obtained on the basis of Le-chatelier's principle ?

A. Dissociation constant of a weak acid

B. entropy change in a raction

C. equilibrium constant of a chemical

reaction

D. Shift in equilibrium postion on changing

value of a constant.

Answer: D

Watch Video Solution

25. K_1 and K_2 are equilibrium constants for reaction (i) and (ii) $N_2(g) + O_2(g) \Leftrightarrow 2NO(g)$...(i) $NO(g) \Leftrightarrow 1/2N_2(g) + 1/2O_2(g)$...(ii) then,

A.
$$K_1 = \left[rac{1}{K_2}
ight]^2$$

$$\mathsf{B.}\,K_1=K_2^2$$

C.
$$K_1=rac{1}{K_2}$$

D.
$$K_1=\left(K_2
ight)^0$$

Answer: A

