© ${ }^{\text {T doubtnut }}$

CHEMISTRY

BOOKS - NEET PREVIOUS YEAR

 (YEARWISE + CHAPTERWISE)
CHEMICAL EQUILIBRIUM

Others

1. The equilibrium constants of the following
A. $K_{1} K_{3}^{3} / K_{2}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3} / K_{1}$
D. $K_{2}^{3} K_{3} / K_{1}$

Answer: B

- View Text Solution

2. If the value of equilibrium constant for a particular reaction is 1.6×10^{12}, then art equilibrium the system will contain
A. all reactants
B. mostly reactants
C. mostly products
D. similar amounts of reactants and products

Answer: C

Watch Video Solution

3. If the equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) \quad$ is $\quad \mathrm{K} \quad$, the
equilibrium
constant for $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$
will be
A. $K^{1 / 2}$
B. $\frac{1}{2} K$
C. K
D. K^{2}

Answer: A
4. For the reversible reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+$ heat

The equilibrium shifts in forward direction
A. by increasing the concentration of
$\mathrm{NH}_{3}(\mathrm{~g})$
B. by decreasing the pressure
C. by decreasing the concentrations of
$N_{2}(g)$ and $H_{2}(g)$
D. by increasing pressure and decreasing

Answer: D

D Watch Video Solution

5. Using the Gibbs energy change,
$\Delta G^{\circ}=+63.3 k J$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \Leftrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}$
the $K_{s p}$ of $A g_{2} C O_{3}(s)$ in water at $25^{\circ} C$ is
$\left(R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right)$
A. 3.2×10^{-26}
B. 8.0×10^{-12}
C. 2.9×10^{-3}

$$
\text { D. } 7.9 \times 10^{-2}
$$

Answer: B

(D) Watch Video Solution

6. KMnO_{4} can be prepared from $\mathrm{K}_{2} \mathrm{MnO}_{4}$ as per the reaction:

The reaction can go the completion by removing $O H^{\ominus}$ ions by adding.
A. HCl

B. KOH

C. CO_{2}
D. SO_{2}

Answer: C

D Watch Video Solution

7. The value of ΔH for the reaction
$\left.X_{2}(g)+4 Y_{2} 9 g\right) \Leftrightarrow 2 X Y_{4}(g)$ is less than zero.
Formation of $X Y_{4}(g)$ will be favoured at :
A. low pressure and low temperature B. high temperature and low pressure
C. high pressure and low temperature
D. high temperature and high pressure

Answer: C

- Watch Video Solution

8. For the reaction $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$,
the equilibrium constant is K_{1}. The equilibrium
constant is K_{2} for the reaction
$2 \mathrm{NO}(g)+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}(g)$

What is K for the reaction
$N O_{2}(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+O_{2}(g) ?$
A. $1 /\left(4 K_{1} K_{2}\right)$
B. $\left[1 / K_{1} K_{2}\right]^{1 / 2}$
C. $1 /\left(K_{1} K_{2}\right)$
D. $1 /\left(2 K_{1} K_{2}\right)$

Answer: B
9. In which of the following equilibrium K_{c} and K_{p} are not equal ?

$$
\begin{aligned}
& \text { A. } 2 \mathrm{NO}(g) \Leftrightarrow \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \\
& \text { B. } S O_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)+\mathrm{NO}(g) \\
& \text { C. } H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g) \\
& \text { D. } 2 C(s)+O_{2}(g) \Leftrightarrow 2 C O_{2}(g)
\end{aligned}
$$

Answer: D

10. The dissociation constants for acetic acid and HCN at $25^{\circ} C$ are 1.5×10^{-5} and 4.5×10^{-10}, respectively. The equilibrium constant for the equilibirum
$\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
would be
A. 3.0×10^{5}
B. 3.0×10^{-5}
C. 3.0×10^{-4}
D. 3.0×10^{4}

Answer: D

D Watch Video Solution

11. If the concentration of OH^{-}ions in the reaction
$F e(O H)_{3}(s) \Leftrightarrow F e^{3+}(a q)+.3 O H^{-}(a q$.
is decreased by $1 / 4$ times, then the equilibrium
concentration of $F e^{3+}$ will increase by
A. 8 times
B. 16 times
C. 64 times

D. 4 times

Answer: C

(D) Watch Video Solution

12. The value of equilibrium constant of the reaction. $\quad H I(g) \Leftrightarrow \frac{1}{2} H_{2}(g)+\frac{1}{2} I_{2}(g) i s 8.0$

The equilibrium constant of the reaction.
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ will be
A. $\frac{1}{16}$
B. $\frac{1}{64}$
C. 16
D. $\frac{1}{8}$

Answer: B

D Watch Video Solution

13.

For
the
reaction
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{l}:$
$\left(\Delta H=-170.8 \mathrm{kJmol}^{-1}\right)$. Which of the
following statement is not true?
A. At equilibrium the concentrations of
$\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are not equal.
B. The equilibrium constant for the reaction
is given by $K_{p}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]}$
C. Addition of $\mathrm{CH}_{4}(g)$ or $\mathrm{O}_{2}(g)$ at equilibrium will cause a shift to the right

D. The reaction is exothermic

Answer: B

D Watch Video Solution
14. In the two gaseous reactions (i) and (ii) at $250^{\circ} \mathrm{C}$
(i) $2 \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g}) \mathrm{K}_{1}$
(ii) $\quad 2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}(g)+O_{2}(g), K_{2} \quad$ the equilibrium constants K_{1} and K_{2} are releated as

$$
\begin{aligned}
& \text { A. } K_{2}=\frac{1}{K_{1}} \\
& \text { B. } K_{2}=K_{1}^{1 / 2} \\
& \text { C. } K_{2}=\frac{K_{1}}{K_{1}^{2}} \\
& \text { D. } K_{2}=K_{1}^{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

15. The reaction quotient Q for :
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is given by
$Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$ The reaction will proceed in backward direction, when :
A. $Q>K_{c}$
B. $Q=0$
C. $Q=K_{c}$

$$
\text { D. } Q<K_{c}
$$

Answer: A

D Watch Video Solution

16.

Reaction
$2 \mathrm{BaO}_{2}(s) \Leftrightarrow 2 \mathrm{BaO}(s)+\mathrm{O}_{2}(g), \Delta H=+v e$
. At equilibrium condition, pressure of O_{2} is depended on:
A. increased mass of BaO_{2}
B. increased mass of BaO
C. increased temperature of equilibrium

D. increased mass of BaO and BaO both

Answer: C

D Watch Video Solution

17. For the equilibrium
$\mathrm{MgCO}_{3}(g) \stackrel{\Delta}{\Longleftrightarrow} \mathrm{MgO}(s) \mathrm{CO}_{2}(s)$ which of the
following expressions is correct ?
A. $K_{p}=p c o_{2}$

$$
\begin{aligned}
& \text { B. } K_{p}=\frac{[M g O]\left[\mathrm{CO}_{2}\right]}{\left[M g C O_{3}\right]} \\
& \text { С. } K_{p}=\frac{p_{M g o} \cdot p_{C O_{2}}}{p_{M g C O_{3}}} \\
& \text { D. } K_{p}=\frac{p_{M g o}+p_{C O_{2}}}{p_{M g C O_{3}}}
\end{aligned}
$$

Answer: A

D View Text Solution

18. In a reversible chemical reaction having two reactants in equilibrium, if the concentration of the reactants are doubled then the equilibrium constant will :

A. one-fourth

B. halved

C. doubled
D. the same

Answer: D

D Watch Video Solution

19. If K_{1} and K_{2} are respective equilibrium constants for two reactions :
$\mathrm{XeF}_{6}(g)+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{XeOF}_{4}(g)+2 \mathrm{HF}_{g}$
$\mathrm{XeO}_{4}(g)+\mathrm{XeF}_{6}(g) \Leftrightarrow \mathrm{XeOF}_{4}(g)+\mathrm{XeO}_{3} F_{2}(g)$

Then equilibrium constant for the reaction
$\mathrm{XeO}_{4}(g)+2 \mathrm{HF}(g) \Leftrightarrow \mathrm{XeO}_{3} \mathrm{~F}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
will be
A. $K_{1} /\left(K_{2}\right)^{2}$
B. $K_{1} . K_{2}$
C. K_{1} / K_{2}
D. K_{2} / K_{1}

Answer: D
20. The equilibrium constants for the reaction,
$A_{2} \Leftrightarrow 2 A$ A at $500 K$ and $700 K$ are 1×10^{-10}
and 1×10^{-5}. The given reaction is
A. exothermic
B. slow
C. endothermic
D. fast

Answer: B
21. If α is the fraction of HI dissociated at equilibrium in the reaction,
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$ starting with the 2 moles of HI. Then the total number of moles of reactants and products at equilibrium are

A. $2+2 \alpha$

B. 2
C. $1+\alpha$
D. $2-\alpha$

- Watch Video Solution

22. The rate constant for forward and backward reactions of hydrolysis of ester are 1.1×10^{-2} and 1.5×10^{-3} per minute respectively. Equilibrium constant for the reaction is
A. 4.33
B. 5.33
C. 6.33
D. 7.33

Answer: D

D Watch Video Solution

23. According to le-Chatelier's principle, adding
heat to a solid and liquid in equilibrium will cause the
A. temperature to increase.
B. temperature to decrease
C. amount of liquid to decrease
D. amount of solid to decrease

Answer: D

D Watch Video Solution

24. Which one of the following information can be obtained on the basis of Le-chatelier's principle?
A. Dissociation constant of a weak acid B. entropy change in a raction
C. equilibrium constant of a chemical

D. Shift in equilibrium postion on changing

value of a constant.

Answer: D

D Watch Video Solution

25. K_{1} and K_{2} are equilibrium constants for reaction (i) and (ii)
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) \ldots(\mathrm{i})$
$N O(g) \Leftrightarrow 1 / 2 N_{2}(g)+1 / 2 O_{2}(g) . . .(i i)$
then,
A. $K_{1}=\left[\frac{1}{K_{2}}\right]^{2}$
B. $K_{1}=K_{2}^{2}$
C. $K_{1}=\frac{1}{K_{2}}$
D. $K_{1}=\left(K_{2}\right)^{0}$

Answer: A

D Watch Video Solution

