© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NEET PREVIOUS YEAR

(YEARWISE + CHAPTERWISE)

IONIC EQUILIBRIUM

Others

1. Concentration of the $A g^{+}$ions in a saturated
solution of $\mathrm{Ag}_{2} \mathrm{CO}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{molL}^{-1}$

Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is:
A. 2.42×10^{-8}
B. 2.66×10^{-12}
C. 4.5×10^{-11}
D. 5.3×10^{-12}

Answer: D

D Watch Video Solution

2. MY and $N Y_{3}$ two nearly insoluble salts, have the same $K_{s p}$ values of 6.2×10^{-13} at room
temperature. Which statement would be true in rearged to MY and $N Y_{3}$?
A. The molar solubility of MY in water is less
than that of NY_{3}.
B. The salts MY and $N Y_{3}$ are more soluble in
0.5 M KY than in pure water
C. The addition of the salt of KY to solution of

MY and $N Y_{3}$ will have no effect on their solubilities
D. The molar solubilities of MU and $N Y_{3}$ in
water are identical.

Answer: A

D Watch Video Solution

3. The percentage of pyridine $\left(C_{5} H_{5} N\right)$ that forms pyridinium ion $\left(C_{5} H_{5} N^{+} H\right)$ in a 0.10 M aqueous pyridine solution (K_{b} for
$C_{5} H_{5} N=1.7 \times 10^{-9}$) is
A. 0.0060%
B. 0.013%
C. 0.77%

D. 1.6%

Answer: B

D Watch Video Solution

4. The solubility product of AgCl is 1.8×10^{-10}
at $18^{\circ} \mathrm{C}$. The solubility of AgCl in 0.1 M solution of sodium chloride would be
A. $1.26 \times 10^{-5} M$
B. $1.6 \times 10^{-9} M$
C. $1.6 \times 10^{-11} M$

D. zero

Answer: B

D Watch Video Solution

5. Which of the of the following fluoro compouds is most likely to beahve as a Lewis base?
A. $B F_{3}$
B. $P F_{3}$
C. $C F_{4}$
D. $S i F_{4}$

Answer: D

D Watch Video Solution

6. The $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{AgCl}, \mathrm{AgBr}$ and Ag I are respectively,

$$
1.1 \times 10^{-12}, 1.8 \times 10^{-10}, 5.0 \times 10^{-13}, 8.3 \times 10^{-17}
$$

. Which one of the following salts will precipitate
last if AgNO_{3} solution is added to the solution
containing equal moles of $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$ and
$\mathrm{Na}_{2} \mathrm{CrO}_{4}$?
A. Ag I
B. AgCl
C. AgBr
D. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$

Answer: D

D Watch Video Solution

7. What is the $p H$ of the resulting solution when
equal volumes of 0.1 MNaOH and 0.01 MHCl
are mixed?

A. 12.65

B. 2.0
C. 7.0
D. 1.04

Answer: A

D Watch Video Solution

8. Which one of the following pairs of solution is not an acidic buffer?
A. HClO_{4} and NaClO_{4}
B. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$

Answer: A

D Watch Video Solution

9. Which of the following salts will give highest $p H$ in water?
A. KCl

B. NaCl

C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{CuSO} \mathrm{O}_{4}$

Answer: C

D Watch Video Solution

10. Which is the strongest acid in the following ?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. HClO_{3}
C. HClO_{4}

D. $\mathrm{H}_{2} \mathrm{SO}_{3}$

Answer: C

D Watch Video Solution

11. Which of these is least likely to act as Lewis base?
A. CO
B. F^{-}
C. $B F_{3}$
D. $P F_{3}$

Answer: C

- Watch Video Solution

12. Which of the following is electron deficient ?
A. $\left(\mathrm{CH}_{3}\right)_{2}$
B. $\left(S i H_{3}\right)_{2}$
C. $\left(B H_{3}\right)_{2}$
D. PH_{3}

Answer: C
13. $p H$ of saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 .

The value of solubility product $\left(K_{s p}\right)$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
A. 3.3×10^{-7}
B. 5.0×10^{-7}
C. 4.0×10^{-6}
D. 5.0×10^{-6}

Answer: B
14. Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest $p H$ value?
A. $B a C l_{2}$
B. AlCl_{3}
C. LiCl
D. BeCl_{2}

Answer: A
15. Buffer solutions have constant acidity and alkalinity because
A. these given unionised acid or base on reaction with added acid or alkali
B. acids and alkalies in these solutions are
shielded from attack by other ions
C. they have large excess of H^{+}or OH^{-}
ions
D. they have fixed value of pH

Answer: A

- Watch Video Solution

16. A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of NH_{4}^{+}is 0.20 M . If the equilibrium constant, K_{b} for NH_{3} equals 1.8×10^{-5}, what is the $p H$ of this solution? ($\log 2.7=0.43)$
A. 9.43
B. 11.72
C. 8.73
D. 9.08

Answer: A

(D) Watch Video Solution

17. pH of saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 .

The value of solubility product $\left(K_{s p}\right)$ of
$\mathrm{Ba}(\mathrm{OH})_{2}$ is
A. $4.00 \times 10^{-6} M^{3}$
B. $4.00 \times 10^{-7} M^{3}$
C. $5.00 \times 10^{-7} M^{3}$

D. $5.00 \times 10^{-6} M^{3}$

Answer: D

D Watch Video Solution

18. What is $\left[\mathrm{H}^{+}\right]$in $\mathrm{mol} / \mathrm{L}$ of a solution that is
0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.1 M in
$\mathrm{CH}_{3} \mathrm{COOH} ? \mathrm{~K}_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} ?
A. 3.5×10^{-4}
B. 1.1×10^{-5}
C. 1.8×10^{-5}
D. 9.0×10^{-6}

Answer: D

(D) Watch Video Solution

19. In a buffer solution containing equal concentration of B^{-}and $H B$, the K_{b} for B^{-}is 10^{-10}. The $p H$ of buffer solution is
A. 10
B. 7
C. 6
D. 4

Answer: D

D Watch Video Solution

20. What is the $\left[O H^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 MHCl with 30.0 mL of $0.10 \mathrm{MBa}(\mathrm{OH})_{2}$?
A. 0.10 M
B. 0.40 M

C. $0.0050 M$

D. $0.12 M$

Answer: A

(D) Watch Video Solution

21. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at $298 K$. Hydrolysis constant of ammonium chloride is
A. 5.65×10^{-10}
B. 6.50×10^{-12}
C. 5.65×10^{-13}
D. 5.65×10^{-12}

Answer: A

(D) Watch Video Solution

22. Which of the following molecules acts as a Lewis acid?
A. $\left(\mathrm{CH}_{3}\right)_{3} B$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
C. $\left(\mathrm{CH}_{3}\right)_{3} P$

D. $\left(\mathrm{CH}_{3}\right)_{3} N$

Answer: A

D Watch Video Solution

23. The values of $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions
$X \Leftrightarrow Y+Z \ldots$...(i)
and $A \Leftrightarrow 2 B$...(ii)
are in ratio of $9: 1$. If degree of dissociation of X
and A be equal, then total presure at equilibrium
(i) and (ii) are in the ratio.
A. $3: 1$
B. 1:9
C. $36: 1$
D. 1:1

Answer: C

D Watch Video Solution

24. The dissociation equilibrium of a gas $A B$, can be represented as The degree of dissociation is x and is small compared to 1 . The expression
relating the degree of dissociation (x) with equilibrium constant K , and total pressure p is
A. $\left(2 K_{p} / p\right)$
B. $\left(2 K_{p} / p\right)^{1 / 3}$
C. $\left(2 K_{p} / p\right)^{1 / 2}$
D. $\left(K_{p} / p\right)$

Answer: B
(Watch Video Solution
25. Equal volumes of three acid solutions of $p H 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?

A. $1.11 \times 10^{-4} M$
B. $3.7 \times 10^{-4} M$
C. $3.7 \times 10^{-3} M$
D. $1.11 \times 10^{-3} M$

Answer: B

D Watch Video Solution
26. A weak acid, HA, has a K_{a} of 1.00×10^{-5}. If 0.100 mol of the acid is dissolved in 1 L of water, the percentage of the acid dissociated at equilibrium is the closed to
A. 99.0%
B. 1.00%
C. 99.9%
D. 0.100%

Answer: B
27. Calculate the pOH of solution at $25^{\circ} \mathrm{C}$ that contains $1 \times 10^{-10} M$ of hydronium ions, i.e., $\mathrm{H}_{3} \mathrm{O}^{+}$
A. 7.00
B. 4.00
C. 9.00
D. 1.00

Answer: B

- Watch Video Solution

28. The hydrogen ion concentration of a $10^{-8} \mathrm{MHCl}$ aqueous soultion at $298 K\left(K_{w}=10^{-14}\right)$ is
A. $1.0 \times 10^{-6} M$
B. $1.0525 \times 10^{-7} M$
C. $9.525 \times 10^{-8} M$
D. $1.0 \times 10^{-8} M$

Answer: B
29. Which of the following constitutes a buffer ?
A. HNO_{2} and NaNO_{2}
B. NaOH and NaCl
C. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. HCl and KCl

Answer: A
(D) Watch Video Solution
30. $H_{2} S$ gas when passed through a solution of
cations containing HCl precipitates the cations
of second group in qualitative analysis but not those belonging to the fourth group. It is because
A. presence of HCl decreases the sulphide ion
concentration
B. presence of HCl increases the sulphide ion
concentration
C. solubility product of group II sulphides is more than that of group IV sulphides

D. sulphides of group IV cations are unstable

 in HClAnswer: A

(Watch Video Solution

31. What is the correct relationship between the pH of isomolar solutions of sodium oxide $\left(p H_{1}\right)$, sodium sulphide $\left(p H_{2}\right)$, sodium selenide $\left(p H_{3}\right)$, and sodium telluride $\left(p H_{4}\right)$?

$$
\text { A. } p H_{1}>p H_{2} \approx p H_{3}>p H_{4}
$$

$$
\text { B. } p H_{1}<p H_{2}<p H_{3}<p H_{4}
$$

C. $p H_{1}<p H_{2}<p H_{3} \approx p H_{4}$
D. $p H_{1}>p H_{2}>p H_{3}>p H_{4}$

Answer: D

D Watch Video Solution

32. At $25^{\circ} C$, the dissociation constant of a base.

BOH is 1.0×10^{-12}. The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be
A. $2.0 \times 10^{-6} \mathrm{molL}^{-1}$
B. $1.0 \times 10^{-5} \mathrm{~mol} L^{-1}$
C. $1.0 \times 10^{-6} \mathrm{~mol}^{-1}$
D. $1.0 \times 10^{-7} \mathrm{~mol}^{-1}$

Answer: D

D Watch Video Solution

33. The rapid change of $p H$ near the stoichiometric point of an acid-base titration is the basic of indicator detection. $p H$ of the
solution is related to the ratio of the concentration of conjugate acid $(H \in)$ and base (In^{-}) forms of the indicator by the expression
A. log. $\frac{\left[I n^{-}\right]}{[H I n]}=p K_{I n}-p H$
B. log. $\frac{[H I n]}{\left[I n^{-}\right]}=p K_{I n}-p H$
C. log. $\frac{[H I n]}{\left[\text { In }^{-}\right]}=p H-p K_{\text {In }}$
D. log. $\frac{\left[I n^{-}\right]}{[H I n]}=p H-p K_{I n}$

Answer: D

34. The solubility product of a sparingly soluble
salt $A X_{2}$ is 3.2×10^{-11}. Its solubility (in $m o / L$)
is
A. 5.6×10^{-6}
B. 3.1×10^{-4}
C. 2×10^{-4}
D. 4×10^{-4}

Answer: C
35. The solubility product of AgI at $25^{\circ} \mathrm{C}$ is
$1.0 \times 10^{-16} \mathrm{~mol}^{2} L^{-2}$. The solubility of $A g I$ in
$10^{-4} N$ solution of $K I$ at $25^{\circ} C$ is approximately
(in $\mathrm{mol} L^{-1}$)
A. 1.0×10^{-10}
B. 1.0×10^{-8}
C. 1.0×10^{-16}
D. 1.0×10^{12}

Answer: D
36. Solution of $0.1 \mathrm{NNH}_{4} \mathrm{OH}$ and $0.1 \mathrm{NNH}_{4} \mathrm{Cl}$
has pH 9.25 , then find out K_{b} of $\mathrm{NH}_{4} \mathrm{OH}$.
A. 9.25
B. 4.75
C. 3.75
D. 8.25

Answer: B
37. Which has the highest $p H$?
A. $\mathrm{CH}_{3} \mathrm{CO}^{-} \mathrm{OK}^{+}$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. NaNO_{3}

Answer: B
38. Solubility of $M X_{2}$ type electrolytes is $0.5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, then find out $K_{s p}$ of electrolytes.
A. 5×10^{-12}
B. 25×10^{-10}
C. 1×10^{-13}
D. 5×10^{-13}

Answer: D

D Watch Video Solution
39. Solubility if $M_{2} S$ type salt is 3.5×10^{-6}, then
find out its solubility product
A. 1.7×10^{-6}
B. 1.7×10^{-16}
C. 1.7×10^{-18}
D. 1.7×10^{-12}

Answer: B
40. Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is
1.7×10^{-5} and concentration of H^{+}ions is
3.4×10^{-4}. Then, find out initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules.
A. 3.4×10^{-4}
B. 3.4×10^{-3}
C. 6.8×10^{-4}
D. 6.8×10^{-3}

Answer: D
41. Which one of the following is true for any diprotic acid, $\mathrm{H}_{2} \mathrm{X}$?
A. $K_{a_{2}}=K_{a_{1}}$
B. $K_{a_{2}}>K_{a_{1}}$
C. $K_{a_{2}}<K_{a_{1}}$
D. $K_{a_{2}}=\frac{1}{K_{a_{1}}}$

Answer: C
42. Which of the following statements about pH and H^{+}ion concentration is incorrect ?
A. Addition of one drop of concentrated HCl in $\mathrm{NH}_{4} \mathrm{OH}$ solution decreases pH of the solution
B. A solution of the mixture of one equivalent
of each of $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH has a pH
of 7.
C. pH of pure neutral water is not zero

D. A cold and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ has lower

 H^{+}ion concentration than a dilute solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$.Answer: B

D Watch Video Solution

Θ
 43. The conjugate acid of NH_{2} is

A. $N_{2} H_{4}$
B. NH_{4}^{+}
C. $\mathrm{NH}_{2} \mathrm{OH}$

D. NH_{3}

Answer: D

D Watch Video Solution

44. The solubility of a saturated solution of calcium fluoride is $2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. Its solubility product is
A. 12×10^{-2}
B. 14×10^{-4}
C. 22×10^{-11}
D. 32×10^{-12}

Answer: D

D Watch Video Solution

45. The strongest conjugate base is
A. NO_{3}^{-}
B. Cl^{-}
C. SO_{4}^{2-}

D. $\mathrm{CH}_{3} \mathrm{COO}^{-}$

Answer: D

D Watch Video Solution

46. The concentration of $\left[H^{+}\right]$and concentration of $\left[\mathrm{OH}^{-}\right]$of a 0.1 aqueous solution of 2% ionised weak acid is [Ionic product of water $=1 \times 10^{-14}$]
A. $0.02 \times 10^{-3} M$ and $5 \times 10^{-11} M$
B. $1 \times 10^{-3} M$ and $3 \times 10^{-11} M$

C. $2 \times 10^{-3} M$ and $5 \times 10^{-12} M$
 $$
\text { D. } 3 \times 10^{-2} M \text { and } 4 \times 10^{-13} M
$$

Answer: C

(D) Watch Video Solution

47. A physician wishes to prepare a buffer solution at $\mathrm{pH}=3.58$ that efficiently resist changes in pH yet contains only small concentration of the buffering agents. Which one of the following weak acid together with its sodium salt would be best to use ?
A. m-chlorobenzoic acid $\left(p K_{a}=3.98\right)$
B. p-chlorocinnamic acid $\left(p K_{a}=4.41\right)$
C. 2,5-dihydroxy benzoic acid $\left(p K_{a}=2.97\right)$
D. Acetoacetic acid $\left(p K_{a}=3.58\right)$

Answer: D

D Watch Video Solution

48. The solubility product of $\mathrm{CuS}, \mathrm{CdS}$ and HgS
are $10^{-31}, 10^{-44}, 10^{-54}$ respectively. The solubility of these sulphides are in the order
A. CdS gt HgS gt CuS
B. HgS gt CdS gt CuS
C. CdS gt CuS gt HgS
D. CuS gt CdS gt HgS

Answer: D

D Watch Video Solution

49. The hydride ion H^{-}is a stronger base than its hydroxide ion OH^{-}. Which of the following
reactions will occurs if sodium hydride (NaH) is dissolved in water?

$$
\begin{aligned}
& \text { A. } 2 \mathrm{H}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2}+2 e^{-} \\
& \text {B. } \mathrm{H}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{OH}^{-}+\mathrm{H}_{2} \\
& \text { C. } \mathrm{H}^{-}+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \text { No reaction }
\end{aligned}
$$

D. None of the above

Answer: B

- Watch Video Solution

50. The pH value of blood does not change appreciably by a small addition of an acid or base, because the blood
A. is a body fluid
B. can be easily coagulated
C. contains iron as a part of the molecule
D. contains serum protein that acts as buffer

Answer: D
51. The pH value of a 10 M solution of HCl is
A. less than 0
B. equal to 0
C. equal to 1
D. equal to 2

Answer: A

- Watch Video Solution

52. Which of the following is most soluble?
A. $B i_{2} S_{3}\left(K_{s p}=1 \times 10^{-70}\right)$
B. $M n S\left(K_{s p}=7 x 10^{-16}\right)$
C. $C u S\left(K_{s p}=8 \times 10^{-37}\right)$
D. $A g_{2} S\left(K_{s p}=6 \times 10^{-51}\right)$

Answer: B

D Watch Video Solution

53. In which of the following the solubility of

AgCl will be minimum ?
A. 0.1 MNaNO 3

B. Water

C. 0.1 MNaCl
D. $0.1 M N a B r$

Answer: C

D Watch Video Solution

54. $0.1 M$ solution of which of the substances will behave basic?
A. Sodium borate
B. Cacium nitrate
C. $\mathrm{NH}_{4} \mathrm{Cl}$

D. Sodium sulphate

Answer: A

D Watch Video Solution

55. Aqueous solution of acetic acid contains
A. $\mathrm{CH}_{3} \mathrm{COO}^{-}$and H^{+}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{H}_{3} \mathrm{O}^{+}$and H^{+}

D. $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COO}^{-}$and H^{+}

Answer: d

D Watch Video Solution

56. A compound whose aqueous solution will have the highest $p H$
A. NaCl
B. NaHCO 3
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{NH}_{4} \mathrm{Cl}$

Answer: C

- Watch Video Solution

