đず doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

THERMODYNAMICS

Questions

1. For a given reaction, $\Delta H=35.5 K J \mathrm{~mol}^{-1}$ and
$\Delta S=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The reaction is
spontaneous at: (Assume that ΔH and δS so not vary with temperature)
A. $T<425 K$
B. $T>425 K$
C. all temperature
D. $T>298 K$

Answer: B

- Watch Video Solution

2. A gas is allowed to expand in a well insulated container against a constant external pressure of
2.5 atm from an initial volume of 2.50 L to a final volume of $4.50 L$. The change in internal energy ΔU of the gas in joules will be:
A. 1136.25 J
B. -500 J
C. -505 J
D. +505 J

Answer: C

3. The addition of a catallystic during a chemical reaction alters which of the following quantities ?
A. Internal energy
B. Enthalpy
C. Activation energy
D. Entropy

Answer: C

D Watch Video Solution

4. The correct thermodnamic conditions for the spontaneous reaction at all temperature is:
A. $\Delta H>0$ and $\Delta S<0$
B. $\Delta H<0$ and $\Delta S>0$
C. $\Delta H<0$ and $\Delta S<0$
D. $\Delta H<0$ and $\Delta S=0$

Answer: B::D

D Watch Video Solution

5. Consider the following liquid-vapour equilibrium.

Liquid \Leftrightarrow Vapour

Which of the following relations is correct?

$$
\begin{aligned}
& \text { A. } \frac{\mathrm{dInP}}{d T}=\frac{-\Delta H_{v}}{R T} \\
& \text { B. } \frac{\mathrm{dInP}}{d T^{2}}=\frac{-\Delta H_{v}}{T^{2}} \\
& \text { C. } \frac{\mathrm{dInP}}{d T}=\frac{-\Delta H_{v}}{R T^{2}} \\
& \text { D. } \frac{\mathrm{dInG}}{d T^{2}}=-\frac{\Delta H_{v}}{R T^{2}}
\end{aligned}
$$

Answer: C

6. For a sample of perfect gas when its pressure is changed isothermally from p_{i} to p_{f}, the entropy change is given by
A. $\Delta S=n R \operatorname{In}\left(\frac{P_{f}}{P_{i}}\right)$
B. $\Delta S=n R \operatorname{In}\left(\frac{P_{i}}{P_{f}}\right)$
C. $\Delta S=n R T \operatorname{In}\left(\frac{P_{f}}{P_{i}}\right)$
D. $\Delta S=R T \operatorname{In}\left(\frac{P_{i}}{P_{f}}\right)$

Answer: B

- Watch Video Solution

7. Enthalpy of combustion of carbon to CO_{2} is
$-393.5 \mathrm{kJmol}^{-1}$. Calculate the heat released upon formation of $35.2 g$ of CO_{2} from carbon and dioxygen gas.

A. $-315 K J$
B. $+315 K J$
C. $-630 K J$
$$
\text { D. }-3.15 K J
$$

Answer: A

8. Which of the following statements is correct for a

 reversible process in a state of equilibrium?A. $\Delta G=-2.30 R T \log k$
B. $\Delta G=2.30 R T \log k$
C. $\Delta G^{\circ}=-2.30 R T \log k$
D. $\Delta G^{\circ}=2.30 R T \log k$

Answer: A

- Watch Video Solution

9. Which of the following statements of correct for the spontaneous adsoption of a gas?
A. ΔS is negative and therefore, ΔH should be highly positive.
B. ΔS is negative and therefore, ΔH should be highly negative
C. ΔS is positve and therefore, ΔH should be negative
D. ΔS is positive and therefore, ΔH should also be highly positive

Answer: B

D Watch Video Solution

10. For the reaction:
$\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g})$
$\Delta U=2.1 \mathrm{cal}, \Delta S=20 \mathrm{cal} K^{-1}$ at $300 K$
Hence ΔG is
A. 2.7 kcal
B. -2.7 kcal
C. 9.3 kcal
D. -9.3 kcal

Answer: B

- Watch Video Solution

11. For a given exothermic reaction, K_{p} and k_{p}^{\prime} are the equilibrium constants at temperatures T_{1} and T_{2} respectively. Assuming that heat of reaction is constant in temperature range reaction is constant in temperature range between T_{1} and T_{2}, it is readily observed that
A. $K_{p}>K_{p}^{\prime}$
B. $K_{p}<K_{p}^{\prime}$
C. $K_{p}=K_{p}^{\prime}$
D. $K_{p}=\frac{1}{k_{p}^{\prime}}$

Answer: A

(Watch Video Solution

12. A reaction having equal energies of activation for forward and reverse reactions has
A. $\Delta S=0$
B. $\Delta G=0$
C. $\Delta H=0$

$$
\text { D. } \Delta H=\Delta G=\Delta V=0
$$

Answer: C

D Watch Video Solution

13. In which of the following reactions,standard reaction entropy change $\left(\Delta S^{\circ}\right)$ is positive and standard Gibb,s energy change $\left(\Delta G^{\circ}\right)$ decreases sharply with increasing temperature?
A. C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)$
B. $\mathrm{CO}(\mathrm{g}) \rightarrow \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
C. $M g(s) \rightarrow \frac{1}{2} O_{2}(g) \rightarrow M g O(s)$
D. $\frac{1}{2} \mathrm{C}$ (graphite) $+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \frac{1}{2} \mathrm{CO}_{2}(g)$

Answer: A

- Watch Video Solution

14. The enthalpy of fusion of water is $1.435 \mathrm{kcal} / \mathrm{mol}$
.The molar entropy change for the melting of ice at $0^{\circ} C$ is
A. $10.52 \mathrm{cal} / \mathrm{mol} \mathrm{K}$
B. $21.04 \mathrm{cal} / \mathrm{mol} \mathrm{K}$
C. $5.260 \mathrm{cal} / \mathrm{mol} \mathrm{K}$

D. $0.526 \mathrm{cal} / \mathrm{mol} \mathrm{K}$

Answer: C

D Watch Video Solution

15. Standard enthalpy of vaporisation $\Delta V_{\text {vap }} . H^{\Theta}$ for water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{kJmol}^{-1}$. The internal energy of Vaporization of water at $100^{\circ} C\left(\mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}\right)$ is
A. +37.56
B. -43.76
C. +42.76

Answer: A

- Watch Video Solution

16. If the enthaply change for the transition of liquid water to steam is $30 \mathrm{KJ} \mathrm{mol}^{-1}$ at $27^{\circ} \mathrm{C}$. The entropy change for the process would be
A. $1.0 \mathrm{Jmol}^{-1} K^{-1}$
B. $0.1 \mathrm{Jmol}^{-1} K^{-1}$
C. $100 \mathrm{Jmol}^{-1} K^{-1}$
D. $10 \mathrm{Jmol}^{-1} K^{-1}$

Answer: C

- Watch Video Solution

17. Which of the following is the correct option for the free expansion of an ideal gas under adiabatic condition?

$$
\text { A. } q \neq o, \Delta T=0, W=0
$$

B. $q=0, \Delta T=0, W=0$
C. $q=0, \Delta T<0, W \neq 0$

$$
\text { D. } q=0, \Delta T \neq 0, W=0
$$

Answer: B

D Watch Video Solution

18. Enthalpy change for the reaction
$2 H(2)(g) \rightarrow 4 H(g)$ is $-869.6 k J$
The dissociation energy of $H--H$ bond is:
A. $-869.9 K J$
B. $+434.8 K J$
C. $+217.4 K J$
D. -434.8 KJ

Answer: B

D Watch Video Solution

19. The values of ΔH and ΔS for the reaction,
$C_{\text {graphite }}+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(g)$
are 170 KJ and $170 J J K^{-}$respectively. This reaction
will be spontaneous at
A. 710 K
B. 910 K
C. 1110 K

D. 510 K

Answer: C

D Watch Video Solution

20. From the following bond energies: $H--H$ bond energy: $431.37 \mathrm{KJmol}^{-1}$
$C=C$ bond energy: $606.10 \mathrm{KJmol}^{-1}$
$C--C$ bond energy: $336.49 \mathrm{KJmol}^{-1}$
$C--H$ bond energy: $410.50 \mathrm{KJmol}^{-1}$
Enthalpy for the reaction will be:

A. $1523.6 K \mathrm{Jmol}^{-1}$

$$
\begin{aligned}
& \text { B. }-243.6 K \mathrm{Jmol}^{-1} \\
& \text { C. }-120.0 K \mathrm{Jmol}^{-1} \\
& \text { D. } 553.0 K \mathrm{Jmol}^{-1}
\end{aligned}
$$

Answer: C

- Watch Video Solution

21. Bond dissociation enthalpy of $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 434,242 and $431 \mathrm{~K} \mathrm{Jmol}^{-1}$ respectively. Enthalpy of formation of HCl is
A. $93 \mathrm{KJmol}^{-1}$

> B. $-245 \mathrm{KJmol}^{-1}$
> C. $-93 \mathrm{KJmol}^{-1}$

D. $245 K \mathrm{Jmol}^{-1}$

Answer: C

D Watch Video Solution

22. For the gas phase reaction
$P C l_{5} \rightarrow \mathrm{PCl}_{3}(g)+C l_{2}(g)$
which of the following conditions are correct?
A. $\Delta H=0$ and $\Delta S<0$
B. $\Delta H>0$ and $\Delta S>0$
C. $\Delta H<0$ and $\Delta S<0$
D. $\Delta H>0$ and $\Delta S<0$

Answer: B

- Watch Video Solution

23. Which of the following are not state functions?
(I) $q+w$
(II) q
(III) w
(IV) $H-T S$
A. I and IV
B. II, III and IV
C. I, II and III
D. II and III

Answer: D

- Watch Video Solution

24. Given the bond energies of $\mathrm{H}-\mathrm{H}$ and $\mathrm{Cl}-\mathrm{Cl}$
are $430 \mathrm{kJmol}^{-1}$ and $240 \mathrm{kJmol}^{-1}$, respectively, and
$\Delta_{f} H^{\circ}$ for HCl is $-90 \mathrm{kJmol}^{-1}$. Bond enthalpy of HCl is
A. $290 \mathrm{KJmol}^{-1}$
B. $380 \mathrm{~K} \mathrm{~mol}^{-1}$
C. $425 \mathrm{KJmol}^{-1}$
D. $245 K \mathrm{Kmol}^{-1}$

Answer: B

- Watch Video Solution

25. Consider the following reactions:
(i) $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$,
$\Delta H==-X_{1} K^{\mathrm{Kmol}^{-1}}$
(ii)
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-\mathrm{X}_{2} \mathrm{Kjmol}^{-1}$
(iii) $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(l)$,

(iv) $\mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$,
$\Delta H=+X_{4} K J m o l^{-1}$
Enthanlpy of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ is
A. $-x_{2} K \mathrm{Jmol}^{-1}$
B. $+x_{3} \mathrm{KJmol}^{-1}$
C. $-x_{4} K J \mathrm{~mol}^{-1}$
D. $+x_{1} K J \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

26. The enthalpy of combustion of H_{2}, cyclohexene
$\left(C_{6} H_{10}\right)$ and cyclohexane $\left(C_{6} H_{12}\right)$ are -241 ,
-3800 and $-3920 K J$ per mol respectively. Heat of hydrogenation of cyclohexene is
A. -121 KJ per mol
B. +121 KJ per mol
C. +242 KJ per mol
D. -242 KJ per mol

Answer: A

- Watch Video Solution

27. The enthalpy and entropy change for the reaction,
$B r_{2}(l)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{BrCl}(g)$
are $30 \mathrm{~K} \mathrm{Jmol}^{-1}$ and $105 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.
The temperature at which the raction will be in equilibrium is:
A. 285.7 K
B. 273 K

C. 450 K

D. 300 K

Answer: A

- Watch Video Solution

28. Assume each reaction is carried out in an open container.

For which reaction will $\Delta H=\Delta U$?

$$
\begin{aligned}
& \text { A. } \mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g) \\
& \text { B. } \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)
\end{aligned}
$$

C. $P C l_{5}(g) \rightarrow P C l_{3}+C l_{2}(g)$
 D. $2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(g)$

Answer: A

- Watch Video Solution

29. Identify the correct statement for change of

Gibbs energy for a system $\left(\Delta G_{\text {system }}\right)$ at constant temperature and pressure:
A. If $\Delta G_{\text {system }}>0$, the process is spontaneous
B. If $\Delta G_{\text {system }}=0$ the system has attained

equilibrium

C. If $\Delta G_{\text {system }}=0$, the system is still moving in a

particlular direction

D. If $\Delta G_{\text {system }}<0$, the process is not

spontaneous

Answer: B

D Watch Video Solution

30. The absolute enthalpy of neutralisation of the
$\mathrm{MgO}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$ will be
A. less than $-57.33 \mathrm{KJ} \mathrm{mol}^{-1}$
B. $-57.33 K \mathrm{Kmol}^{-1}$
C. greater than $-57.33 \mathrm{KJmol}^{-1}$
D. $57.33 \mathrm{KJ} \mathrm{mol}^{-1}$

Answer: A

D View Text Solution

31. Which of the following pairs of a chemical reaction is certain to result in a spontaneous

reaction?

A. Exothermic and decreasing disoder
B. Endothermic and increasing disorder
C. Exothermic and increasing disorder
D. Endothermic and decreasing disorder

Answer: C

- Watch Video Solution

32. A reaction occurs spontanecously if : -
A. $T \Delta S<\Delta H$ and both ΔH and ΔS are +ve
B. $T \Delta S>\Delta H$ and both ΔH and ΔS are +ve
C. $T \Delta S=\Delta H$ and both ΔH and ΔS are +ve

D. $T \Delta S>\Delta H$ and ΔH is +ve and ΔS is -ve

Answer: B

D Watch Video Solution

33. The work done during the expanision of a gas
from a volume of $4 d m^{3}$ to $6 d m^{3}$ against a constant external pressure of 3 atm is $(1 \mathrm{~L} \mathrm{~atm}=101.32 \mathrm{~J})$
A. $-6 J$
B. $-608 J$
C. +304 J

$$
\text { D. }-304 \mathrm{~J}
$$

Answer: B

D Watch Video Solution

34. Considering entropy (S) as a thermodynamics parameter, the criterion for the spontaneity of any process is
A. $\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}>0$

B. $\Delta S_{\text {system }}-\Delta S_{\text {surrounding }}>0$

C. $\Delta S_{\text {system }}>0$
D. $\Delta S_{\text {surrounding }}>0$

Answer: A

- Watch Video Solution

35. Standard enthalpy and standard entropy change for the oxidation of NH_{3} at 298 K are $-382.64 \mathrm{~K} \mathrm{Jmol}^{-1}$ and $145.6 \mathrm{Jmol}^{-1}$ respectively.

Standard free energy change for the same reaction at 298 K is
A. $-221.1 K{J \mathrm{~mol}^{-1}}^{-1}$
B. $-339.3 K \mathrm{Jmol}^{-1}$
C. $-439.3 K \mathrm{Jmol}^{-1}$
D. $-523.2 K \mathrm{Jmol}^{-1}$

Answer: B

- Watch Video Solution

36. The bond energies of $H--H, B r--B r$ and $H--B r$ are $433,, 192$ and $364 \mathrm{KJmol}^{-1}$ respectively. The ΔH° for the reaction

$$
H_{2}(g)+B r_{2}(g) \rightarrow 2 H B r(g) \text { is }
$$

A. $-261 K J$
B. +103 KJ
C. $+261 K J$
D. -103 KJ

Answer: D

- Watch Video Solution

37. For the reaction
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{3}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
at constant temperature, $\Delta H-\Delta U$ is
A. $+3 R T$
B. $-R T$
C. $+R T$
D. $-3 R T$

Answer: D

Watch Video Solution

38. For which one of the following equation is
$\Delta H_{\text {reaction }}^{\circ}$ equal to ΔH_{f}° for the product ?
A. $\mathrm{Xe}(g)+2 \mathrm{Fe}(g) \rightarrow \mathrm{XeF}_{4}(g)$

$$
\begin{aligned}
& \text { B. } 2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g) \\
& \text { C. } \mathrm{N}_{2}(g)+\mathrm{O}_{3}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{3}(g) \\
& \text { D. } \mathrm{CH}_{4}(g)+2 \mathrm{Cl}_{2}(g) \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}(l)+2 \mathrm{HCl}(g)
\end{aligned}
$$

Answer: A

D Watch Video Solution

39. What is the entropy change (in $J K^{-1} \mathrm{~mol}^{-1}$) when one mole of ice is converted into water at $0^{\circ} \mathrm{C}$

?

(The enthalpy change for the conversion of ice to liquid water is $6.0 \mathrm{KJmol}^{-1}$ at $0^{\circ} \mathrm{C}$)
A. $2.198 J K^{-1} \mathrm{~mol}^{-1}$
B. $21.98 J K^{-1} \mathrm{~mol}^{-1}$
C. $20.13 J K^{-1} \mathrm{~mol}^{-1}$

D. $2.013 J K^{-1} \mathrm{~mol}^{-1}$

Answer: B

Watch Video Solution

40. The molar heat capacity of water at constant pressure, C , is $75 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 1.0 kJ of heat is supplied to 100 g water which is free to expand, the increase in temperature of water is:
A. 4.8 K
B. 6.6 K
C. 1.2 K
D. 2.4 K

Answer: D

Watch Video Solution

41. The densities of graphite and diamond at 298 K are 2.25 and $3.31 \mathrm{gcm}^{-3}$, respectively. If the standard free energy difference $\left(\Delta G^{0}\right)$ is equal to
$1895 \mathrm{Jmol}^{-1}$, the pressure at which graphite will be transformed into diamond at 298 K is
A. $9.92 \times 10^{6} \mathrm{pa}$
B. $9.02 \times 10^{5} \mathrm{pa}$
C. $9.92 \times 10^{8} \mathrm{pa}$
D. $9.92 \times 10^{7} \mathrm{pa}$

Answer: C

- Watch Video Solution

42. Heat of combustion ΔH° for $C(s), H_{2}(g)$ and
$\mathrm{CH}_{4}(\mathrm{~g})$ are $94,-68$ and $-213 \mathrm{Kcal} / \mathrm{mol}$. Then
ΔH° for $C(s)+2 H_{2}(g) \rightarrow \Delta C H_{4}(g)$ is
A. $-17 \mathrm{kcal} / \mathrm{mol}$
B. $-111 \mathrm{kcal} / \mathrm{mol}$
C. $-170 \mathrm{kcal} / \mathrm{mol}$
D. $-85 \mathrm{kcal} / \mathrm{mol}$

Answer: A

D Watch Video Solution

43. 2 mol of an ideal gas at $27^{\circ} \mathrm{C}$ temperature is expanded reversibly from $2 L$ to $20 L$. Find entropy change $\left(R=2\right.$ calmol $\left.^{-1} \mathrm{~K}^{-1}\right)$
A. 92.1
B. 0
C. 4
D. 9.2

Answer: D

Watch Video Solution

44. In a closed insulated container, a liquid is stirred with a paddle to increase the temperature. Which of the following is true?
A. $\Delta E=W \neq, q=0$
B. $\Delta E=W=0, q \neq 0$
C. $\Delta E=0, W=q \neq 0$
D. $W=0, \Delta E=q \neq 0$

Answer: A

- Watch Video Solution

45. The unit of entropy is
A. $J K^{-1} \mathrm{~mol}^{-1}$
B. $J \mathrm{~mol}^{-1}$
C. $J^{-1} K^{-1} \mathrm{~mol}^{-1}$
D. $J K \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

46. Enthalpy of $\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ is
negative. If enthalpy of combustion of CH_{4} and
$\mathrm{CH}_{3} \mathrm{OH}$ are x and y respectively, then which relation is correct?
A. $x>y$
B. $x<y$
C. $x=y$
D. $x \geq y$

Answer: B

(Watch Video Solution

47. When 1 mole gas is heated at constant volume, temperature is raised from 298 to 308 K. Heat supplied to the gas in 500 J . Then, which statement is correct ?
A. $q=W=500 J, \Delta E=0$
B. $q=\Delta E=500 J m W=0$

$$
\text { C. } q=-W=500 J, \Delta E=0
$$

$$
\text { D. } \Delta E=0, q=W=-500 J
$$

Answer: B

D View Text Solution

48. Change in enthalpy for reaction

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)
$$

if heat of formation of $\mathrm{H}_{2} \mathrm{O}_{2}(l)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are
-188 and $-286 \mathrm{KJ} / \mathrm{mol}$ respectively is
A. $-196 \mathrm{KJ} / \mathrm{mol}$
B. $+196 \mathrm{KJ} / \mathrm{mol}$

C. $+948 \mathrm{KJ} / \mathrm{mol}$

D. $-948 \mathrm{KJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

49. $\mathrm{PbO}_{2} \rightarrow \mathrm{PbO}, \Delta G_{298}<0$
$\mathrm{SnO}_{2} \rightarrow \mathrm{SnO}, \Delta G_{298}>0$
Most proble oxidation states of Pb and $S n$ will be
A. $\mathrm{Pb}^{4+} m \mathrm{Sn}^{4+}$
B. $P b^{4+}, S n^{2+}$
C. $\mathrm{Pb}^{2+}, \mathrm{Sn}^{2+}$
D. $\mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}$

Answer: D

- Watch Video Solution

50. On the basic of the following $\Delta_{r} G^{\Theta}$ values at 1073K:
$S_{1}(s)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{2}(g) \Delta_{r} G^{\Theta}=-544 \mathrm{kJmol}^{-1}$
$2 Z n(s)+O_{2}(g) \rightarrow 2 Z n O(s) \Delta_{r} G^{\Theta}=-480 \mathrm{kJmol}^{-1}$
$2 Z n(s)+S_{2}(s) \rightarrow 2 Z n S(s) \Delta_{r} G^{\Theta}=-293 \mathrm{KJmol}^{-1}$
Show that roasting of zinc sulphide to zinc oxide is a
spontaneous process.
A. $-357 K J$
B. $-731 K J$
C. $-773 K J$
D. $-229 K J$

Answer: B

D Watch Video Solution

51. At $27^{\circ} C$ latent heat of I^{-}fusion of a compound is $2.7 \times 10^{3} \mathrm{Jmol}^{-1}$. Calculate the entropy change during fusion.
A. $9.77 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $10.73 J K^{-1} \mathrm{~mol}^{-1}$
C. $2930 J K^{-1} \mathrm{~mol}^{-1}$
D. $108.5 J K^{-1} \mathrm{~mol}^{-1}$

Answer: A

- Watch Video Solution

52. If ΔE is the heat of reaction for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}+3 \mathrm{O}_{2(g)} \rightarrow 2 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(1)}$ at constant volume, the ΔH (Heat of reaction at constant pressure) at constant temperature is
A. $\Delta H=\Delta E+R T$
B. $\Delta H=\Delta E-R T$
C. $\Delta H=\Delta E-2 R T$
D. $\Delta H=\Delta E+2 R T$

Answer: B

D Watch Video Solution

53. Given : $S_{(s)}+\frac{3}{2} O_{2(g)} \rightarrow \mathrm{SO}_{3(g)+2 X K c a l}$
$\mathrm{SO}_{2(\mathrm{~s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{SO}_{3(\mathrm{~g})+\mathrm{YKcal}}$
The heat of formation of $S O_{2}$ is : -
A. $(x+y)$
B. $(x-y)$
C. $(2 x+y)$
D. $(2 x-y)$

Answer: D

Watch Video Solution

54. In an endothermic reaction, the value of ΔH is
A. zero
B. positive

C. negative

D. constant

Answer: B

- View Text Solution

55. One mole of an ideal gas at $300 K$ is expanded isothermally from an inital volume of 1 litre to 10
litres. The ΔE for this process is
$\left(R=2\right.$ calmol $\left.^{-1} K^{-1}\right)$
A. 163.7 cal
B. zero

C. 1381.1 cal

D. 9 L atm

Answer: B

- Watch Video Solution

56. Identify the correct statement regarding entropy
A. At absolute zero temperature, entropy of a perfectly crystalline substance is taken to be zero
B. At absolute zero temperature, the entropy of a perfectly crystalline substance is positive
C. At absolute zero temperature, the entropy of all crystalline substance is to be zero.
D. At $0^{\circ} \mathrm{C}$, the entropy of a perfectly crystalline substance is taken to be zero.

Answer: A

D Watch Video Solution

57. Given that $C+O_{2} \rightarrow \mathrm{CO}_{2}, \Delta H^{\circ}=-x K J$ and

$$
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}^{\circ}=-y K J
$$

The

enthalpy of formation of carbon monoxide will be

A. $y-2 x$
B. $2 x-y$
C. $\frac{y-2 x}{2}$
D. $\frac{2 x-y}{2}$

Answer: C

- Watch Video Solution

58. Given the following entropy values (in $J K^{-1} \mathrm{~mol}^{-1}$) at 298 K and 1 atm: $H_{2}(g): 130.6, C l_{2}(g): 223.0, H C l(g): 186.7$.
entropy change (in $J K^{-1} \mathrm{~mol}^{-1}$) for the reaction

$$
\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g) \text {, is }
$$

A. +540.3
B. +727.0
C. -166.9
D. +19.8

Answer: D

D View Text Solution

59. According to the third law of thermodynamics which one of the following quantities for a perfectly
crystalline solid is zero at absolute zero?
A. Free energy
B. Entropy
C. Enthalpy
D. Internal energy

Answer: B

D View Text Solution

60. The correct relationship between free energy
change in a reaction and the corresponding
equilibrium constant K_{c} is:
A. $\Delta G^{\circ}=-R T \ln \mathrm{~K}$
B. $\Delta G=R T \ln \mathrm{~K}$
C. $\Delta G^{\circ}=R T \ln \mathrm{~K}$
D. $\Delta G^{\circ}=-R T \ln \mathrm{~K}$

Answer: A

- Watch Video Solution

61. If enthalpies of formation of $C_{2} H_{4}(g) 1, \mathrm{CO}_{-}(2)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at25(०) C and1atm pressure be $52,-394$ and $-286 \mathrm{kJmol}^{-1}$ respectively ,the enthalpy of combustion of $C_{2} H_{4}(g)$ will be
A. $-141.2 \mathrm{KJ} / \mathrm{mol}$
B. $-1412 \mathrm{KJ} / \mathrm{mol}$
C. $+14.2 \mathrm{KJ} / \mathrm{mol}$
D. $+1412 \mathrm{KJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

62. The standard state Gibbs's energy change for the isomerisation reaction

$$
\text { cis }-2-\text { pentence } \Leftrightarrow \text { trans }-2-\text { pentence is }
$$

$-3.67 \mathrm{kJmol}^{-1}$

at

$400 K$.

If

more
trans -2 -pentence is added to the reaction vessel, then:
A. more cis-2-pentene is formed
B. equilibrium remains unaffected
C. additional trans-2-pentene is formed
D. equilibrium is shifted in forward direction

Answer: A

- Watch Video Solution

63. The combustion reaction occuring in an
$2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)$ This
reaction is accompanied with:

$$
\begin{aligned}
& \text { A. }+,-,+ \\
& \text { B. }-,+,- \\
& \text { C. }-,+,+ \\
& \text { D. }+,+,-
\end{aligned}
$$

Answer: B

- Watch Video Solution

64. A chemical reaction will be spontaneous if it is
A. entropy of the system
B. enthalpy of the system
C. internal eneryg of the system
D. free energy of the system

Answer: D

D View Text Solution

65. During isothermal expansion of an ideal gas, its:
A. internal energy increases
B. enthalpy decreases

C. enthalpy remains unaffected

D. enthalpy reduces to zero

Answer: C

D Watch Video Solution

66. For the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=?$
A. $\Delta E+2 R T$
B. $\Delta E-2 R T$
C. $\Delta H=R T$
```
D. }\DeltaE-R
```


Answer: B

- Watch Video Solution

67. Equal volumes of molar hydrochloric acid and
sulphuric acid are neutralized by dil. NaOH solution
and x Kcal and y Kcal of heat are liberated respectively. Which of the following is true?
A. $x=y$
B. $x=\frac{1}{2} y$
C. $x=2 y$

D. None of the above

Answer: B

D Watch Video Solution

68. If ΔH is the enthalpy change and ΔU the change
in internal energy accompanying a gaseous reaction, then
A. ΔH is always greater than ΔE
B. $\Delta H<\Delta E$ only if the number of moles of products is greater than the number of moles
of the reactants
C. ΔH is always less than ΔE
D. $\Delta G<\Delta E$ only if the number of moles of products is less than the number of moles of the reactants

Answer: D

- Watch Video Solution

