

CHEMISTRY

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

THERMODYNAMICS

1. For a given reaction, $\Delta H = 35.5 K J \mathrm{mol}^{-1}$ and $\Delta S = 83.6 J K^{-1} \mathrm{mol}^{-1}$. The reaction is

spontaneous at: (Assume that ΔH and δS so not

vary with temperature)

A. T < 425 K

 $\mathrm{B.}\,T>425K$

C. all temperature

D. T>298K

Answer: B

2. A gas is allowed to expand in a well insulated container against a constant external pressure of

2.5atm from an initial volume of 2.50L to a final volume of 4.50L. The change in internal energy ΔU of the gas in joules will be:

A. 1136.25 J

 $\mathrm{B.}-500J$

 $\mathrm{C.}-505J$

 $\mathrm{D.}+505J$

Answer: C

3. The addition of a catallystic during a chemical reaction alters which of the following quantities ?

A. Internal energy

B. Enthalpy

C. Activation energy

D. Entropy

Answer: C

4. The correct thermodnamic conditions for the spontaneous reaction at all temperature is:

A. $\Delta H > 0 \, \, {
m and} \, \, \Delta S < 0$

 $\texttt{B.}\ \Delta H < 0 \ \text{and} \ \Delta S > 0$

 $\mathsf{C.}\,\Delta H < 0 \, \text{ and } \, \Delta S < 0$

D. $\Delta H < 0 \, \, {
m and} \, \, \Delta S = 0$

Answer: B::D

5. Consider the following liquid-vapour equilibrium.

 $Liquid \Leftrightarrow Vapour$

Which of the following relations is correct?

A.	dInP	_	$-\Delta H_v$
	dT		RT
Β.	dInP	_	$-\Delta H_v$
	dT^2	_	T^2
C.	dInP		$-\Delta H_v$
	dT	=	RT^2
D.	dInG		ΔH_v
	dT^2	=	$-\overline{RT^2}$

Answer: C

6. For a sample of perfect gas when its pressure is changed isothermally from p_i to p_f , the entropy change is given by

A.
$$\Delta S = nR \mathrm{In} igg(rac{P_f}{P_i} igg)$$

B. $\Delta S = nR \mathrm{In} igg(rac{P_i}{P_f} igg)$
C. $\Delta S = nRT \mathrm{In} igg(rac{P_f}{P_i} igg)$
D. $\Delta S = RT \mathrm{In} igg(rac{P_f}{P_f} igg)$

Answer: B

Watch Video Solution

7. Enthalpy of combustion of carbon to CO_2 is $-393.5kJmol^{-1}$. Calculate the heat released upon formation of 35.2g of CO_2 from carbon and dioxygen gas.

 $\mathsf{A.}-315KJ$

B. + 315KJ

 ${\rm C.}-630KJ$

 $\mathsf{D.}-3.15KJ$

Answer: A

0

Watch Video Solution

8. Which of the following statements is correct for a

reversible process in a state of equilibrium ?

A.
$$\Delta G = -2.30 RT \mathrm{log}k$$

B. $\Delta G = 2.30 RT \mathrm{log}k$

C. $\Delta G^\circ = -2.30 RT {
m log}k$

D. $\Delta G^{\,\circ}\,=\,2.30 RT {
m log}k$

Answer: A

9. Which of the following statements of correct for the spontaneous adsoption of a gas?

A. ΔS is negative and therefore, ΔH should be highly positive.

B. ΔS is negative and therefore, ΔH should be highly negative

C. ΔS is positve and therefore, ΔH should be negative

D. ΔS is positive and therefore, ΔH should also be highly positive

Answer: B

 $\mathrm{D.}-9.3\,\mathrm{kcal}$

11. For a given exothermic reaction , K_p and k'_p are the equilibrium constants at temperatures T_1 and T_2 respectively. Assuming that heat of reaction is constant in temperature range reaction is constant in temperature range between T_1 and T_2 , it is readily observed that

A.
$$K_p > K'_p$$

B.
$$K_p < K'_p$$

C.
$$K_p = K'_p$$

D. $K_p = rac{1}{k'_p}$

Answer: A

12. A reaction having equal energies of activation for

forward and reverse reactions has

A.
$$\Delta S=0$$

B.
$$\Delta G=0$$

 $\mathrm{C.}\,\Delta H=0$

D.
$$\Delta H = \Delta G = \Delta V = 0$$

Answer: C

Watch Video Solution

13. In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibb, s energy change (ΔG°) decreases sharply with increasing temperature?

A. C (graphite)
$$+rac{1}{2}O_2(g) o CO(g)$$

B. $CO(g) o rac{1}{2}O_2(g) o CO_2(g)$
C. $Mg(s) o rac{1}{2}O_2(g) o MgO(s)$

D.
$$rac{1}{2}C$$
 (graphite) $+rac{1}{2}O_2(g) o rac{1}{2}CO_2(g)$

Answer: A

Watch Video Solution

14. The enthalpy of fusion of water is 1.435kcal/mol.The molar entropy change for the melting of ice at $0^{\circ}C$ is

A. 10.52 cal/mol K

B. 21.04 cal/mol K

C. 5.260 cal/mol K

D. 0.526 cal/mol K

Answer: C

Watch Video Solution

15. Standard enthalpy of vaporisation ΔV_{vap} . H^{Θ} for water at $100^{\circ}C$ is $40.66kJmol^{-1}$. The internal energy of Vaporization of water at $100^{\circ}C(\ln kJ \mod^{-1})$ is

A. + 37.56

B. - 43.76

C. + 42.76

 $\mathsf{D.}+40.66$

Answer: A

Watch Video Solution

16. If the enthaply change for the transition of liquid water to steam is 30 KJ $m mol^{-1}$ at 27° C . The entropy change for the process would be

A.
$$1.0 J \mathrm{mol}^{-1} K^{-1}$$

B.
$$0.1 J \text{mol}^{-1} K^{-1}$$

C.
$$100 J \text{mol}^{-1} K^{-1}$$

D.
$$10 J \mathrm{mol}^{-1} K^{-1}$$

Answer: C

O Watch Video Solution

17. Which of the following is the correct option for the free expansion of an ideal gas under adiabatic condition?

A.
$$q
eq o, \Delta T = 0, W = 0$$

B.
$$q=0, \Delta T=0, W=0$$

C. $q=0,\Delta T<0,W
eq 0$

D.
$$q=0, \Delta T
eq 0, W=0$$

Answer: B

Watch Video Solution

18. Enthalpy change for the reaction

2H(2)(g)
ightarrow 4H(g) is -869.6kJ

The dissociation energy of H - -H bond is:

 $\mathsf{A.}-869.9KJ$

 $\mathsf{B.}+434.8KJ$

 $\mathsf{C.}+217.4KJ$

 $\mathrm{D.}-434.8~\mathrm{KJ}$

Answer: B

Watch Video Solution

19. The values of ΔH and ΔS for the reaction,

 $C_{ ext{graphite}} + CO_2(g) o 2CO(g)$

are 170KJ and $170JJK^-$ respectively. This reaction

will be spontaneous at

A. 710 K

B. 910 K

C. 1110 K

D. 510 K

Answer: C

Watch Video Solution

20. From the following bond energies: H - -Hbond energy: $431.37KJmol^{-1}$ C = C bond energy: $606.10KJmol^{-1}$ C - -C bond energy: $336.49KJmol^{-1}$ C - -H bond energy: $410.50KJmol^{-1}$ Enthalpy for the reaction will be:

A. 1523.6 KJ mol⁻¹

B. $-243.6 K J mol^{-1}$

 $C. - 120.0 KJ mol^{-1}$

D. 553.0 KJ mol⁻¹

Answer: C

Watch Video Solution

21. Bond dissociation enthalpy of H_2 , Cl_2 and HCl are 434, 242 and $431KJmol^{-1}$ respectively. Enthalpy of formation of HCl is

A. 93KJmol $^{-1}$

 $\mathsf{B.}-245KJ\mathrm{mol}^{-1}$

 $C. - 93KJmol^{-1}$

D. $245 K J \text{mol}^{-1}$

Answer: C

22. For the gas phase reaction

 $PCl_5
ightarrow PCl_3(g) + Cl_2(g)$

which of the following conditions are correct?

A. $\Delta H=0 \,\, {
m and} \,\, \Delta S < 0$

 $\texttt{B.}\ \Delta H > 0 \ \text{and} \ \Delta S > 0$

C. $\Delta H < 0 \, \, {
m and} \, \, \Delta S < 0$

D. $\Delta H > 0 \, \, {
m and} \, \, \Delta S < 0$

Answer: B

Watch Video Solution

23. Which of the following are not state functions?

(I) q + w

(II)q

(III) *w*

(IV) H-TS

A. I and IV

B. II, III and IV

C. I, II and III

D. II and III

Answer: D

Watch Video Solution

24. Given the bond energies of H-H and Cl-Cl

are $430kJmol^{-1}$ and $240kJmol^{-1}$, respectively, and

 $\Delta_f H^\circ$ for HCl is $-90kJmol^{-1}$. Bond enthalpy of HCl is

A. 290 KJmol $^{-1}$

B. $380 K J \text{mol}^{-1}$

C. $425 K J \text{mol}^{-1}$

D. $245 K J \text{mol}^{-1}$

Answer: B

Watch Video Solution

25. Consider the following reactions:

(i) $H^+(aq)+OH^-(aq)
ightarrow H_2O(l)$,

$$\Delta H=~=~-X_1Kjmol^{-1}$$

(ii)

$$egin{aligned} &H_2(g)+rac{1}{2}O_2(g) o H_2O(l), \Delta H=-X_2Kjmol^{-1}\ &(ext{iii})\ CO_2(g)+H_2(g) o CO(g)+H_2O(l)\ ,\ &\Delta H=-X_3KJmol^{-1}\ &(ext{iv})\ C_2H_2(g)+rac{5}{2}O_2(g) o 2CO_2(g)+H_2O(l)\ ,\ &\Delta H=+X_4KJmol^{-1} \end{aligned}$$

Enthanlpy of formation of $H_2O(l)$ is

A. $-x_2 K J \mathrm{mol}^{-1}$

- $\mathsf{B.} + x_3 K J \mathrm{mol}^{-1}$
- $\mathsf{C.} x_4 K J \mathrm{mol}^{-1}$
- $\mathsf{D}.+x_1KJ\mathrm{mol}^{-1}$

Answer: A

26. The enthalpy of combustion of H_2 , cyclohexene (C_6H_{10}) and cyclohexane (C_6H_{12}) are -241, -3800 and -3920KJ per mol respectively. Heat of hydrogenation of cyclohexene is

- A. $-121~{\rm KJ}~{\rm per}~{\rm mol}$
- $B. + 121 ext{ KJ per mol}$
- $\mathrm{C.}+242~\mathrm{KJ}~\mathrm{per}~\mathrm{mol}$

 ${\rm D.}-242~{\rm KJ}~{\rm per}~{\rm mol}$

Answer: A

27. The enthalpy and entropy change for the reaction,

 $Br_2(l) + Cl_2(g) \rightarrow 2BrCl(g)$ are $30KJmol^{-1}$ and $105JK^{-1}mol^{-1}$ respectively. The temperature at which the raction will be in equilibrium is:

A. 285.7 K

B. 273 K

C. 450 K

D. 300 K

Answer: A

28. Assume each reaction is carried out in an open container.

For which reaction will $\Delta H = \Delta U$?

A.
$$H_2(g)+Br_2(g)
ightarrow 2HBr(g)$$

B. $C(s)+2H_2O(g)
ightarrow 2H_2(g)+CO_2(g)$

 $\mathsf{C}. PCl_5(g)
ightarrow PCl_3 + Cl_2(g)$

$extsf{D.} 2CO(g) + O_2(g) o 2CO_2(g)$

Answer: A

29. Identify the correct statement for change of Gibbs energy for a system (ΔG_{system}) at constant temperature and pressure:

A. If $\Delta G_{
m system} > 0$, the process is spontaneous

B. If $\,\Delta G_{
m system} = 0\,$ the system has attained

equilibrium

C. If $\Delta G_{
m system}=0$, the system is still moving in a

particlular direction

D. If $\Delta G_{
m system} < 0$, the process is not

spontaneous

Answer: B

30. The absolute enthalpy of neutralisation of the

reaction

 $MgO(s) + 2HCl(aq)
ightarrow MgCl_2(aq) + H_2O(l)$ will

be

A. less than -57.33 KJ mol^{-1}

B. $-57.33 K J mol^{-1}$

C. greater than -57.33 KJmol $^{-1}$

D. 57.33 KJ mol^{-1}

Answer: A

31. Which of the following pairs of a chemical reaction is certain to result in a spontaneous

reaction ?

A. Exothermic and decreasing disoder

B. Endothermic and increasing disorder

C. Exothermic and increasing disorder

D. Endothermic and decreasing disorder

Answer: C

> Watch Video Solution

32. A reaction occurs spontanecously if : -

A. $T\Delta S < \Delta H$ and both $\Delta H \, ext{ and } \, \Delta S$ are +ve

B. $T\Delta S > \Delta H$ and both $\Delta H \, ext{ and } \, \Delta S$ are +ve

C. $T\Delta S = \Delta H$ and both ΔH and ΔS are +ve

D. $T\Delta S > \Delta H \, ext{ and } \, \Delta H ext{ is +ve and } \Delta S ext{ is -ve}$

Answer: B

Watch Video Solution

33. The work done during the expanision of a gas from a volume of $4dm^3$ to $6dm^3$ against a constant external pressure of 3 atm is (1 L atm = 101.32 J)

A.
$$-6J$$

 $\mathsf{B.}-608J$

 ${\rm C.}+304J$

 $\mathrm{D.}-304J$

Answer: B

Watch Video Solution

34. Considering entropy (S) as a thermodynamics parameter, the criterion for the spontaneity of any process is

A.
$$\Delta S_{
m system} + \Delta S_{
m surrounding} > 0$$

B.
$$\Delta S_{
m system} - \Delta S_{
m surrounding} > 0$$

C.
$$\Delta S_{
m system} > 0$$

D.
$$\Delta S_{
m surrounding} > 0$$

Answer: A

35. Standard enthalpy and standard entropy change for the oxidation of NH_3 at 298K are $-382.64KJmol^{-1}$ and $145.6Jmol^{-1}$ respectively. Standard free energy change for the same reaction at 298K is A. -221.1 KJ mol⁻¹

B. -339.3 KJ mol⁻¹

 $C. - 439.3 KJ mol^{-1}$

D. $-523.2 K J mol^{-1}$

Answer: B

Watch Video Solution

36. The bond energies of H - -H, Br - -Brand H - -Br are 433, , 192 and $364KJmol^{-1}$ respectively. The ΔH° for the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ is $\mathsf{A.}-261KJ$

 $\mathsf{B.}+103KJ$

 ${\rm C.}+261KJ$

D. - 103 KJ

Answer: D

37. For the reaction

 $C_3H_8(g)+5O_2
ightarrow 3CO_3(g)+4H_2O(l)$

at constant temperature, $\Delta H - \Delta U$ is

A. +3RT

B. - RT

C. + RT

D. - 3RT

Answer: D

Watch Video Solution

38. For which one of the following equation is $\Delta H^{\,\circ}_{reaction}$ equal to $\Delta H^{\,\circ}_f$ for the product ?

A. $Xe(g)+2Fe(g)
ightarrow XeF_4(g)$

 $\texttt{B.} \, 2CO(g) + O_2(g) \rightarrow 2CO_2(g)$

$$\mathsf{C}.\, N_2(g) + O_3(g) \rightarrow N_2O_3(g)$$

 $\mathsf{D}.\, CH_4(g)+2Cl_2(g)
ightarrow CH_2Cl_2(l)+2HCl(g)$

Answer: A

39. What is the entropy change (in $JK^{-1}mol^{-1}$) when one mole of ice is converted into water at $0^{\circ}C$?

(The enthalpy change for the conversion of ice to liquid water is $6.0 K Jmol^{-1}$ at $0^{\circ}C$)

A. $2.198 J K^{-1} \text{mol}^{-1}$

B.
$$21.98 J K^{-1} mol^{-1}$$

C. $20.13 J K^{-1} \text{mol}^{-1}$

D. $2.013 J K^{-1} mol^{-1}$

Answer: B

40. The molar heat capacity of water at constant pressure, C, is $75JK^{-1}mol^{-1}$. When 1.0 kJ of heat is supplied to 100 g water which is free to expand, the increase in temperature of water is :

A. 4.8 K

B. 6.6 K

C. 1.2 K

D. 2.4 K

Answer: D

Watch Video Solution

41. The densities of graphite and diamond at 298K are 2.25 and $3.31gcm^{-3}$, respectively. If the standard free energy difference (ΔG^0) is equal to

 $1895 Jmol^{-1}$, the pressure at which graphite will be

transformed into diamond at 298K is

A.
$$9.92 imes 10^6$$
pa
B. $9.02 imes 10^5$ pa
C. $9.92 imes 10^8$ pa
D. $9.92 imes 10^7$ pa

Answer: C

Watch Video Solution

42. Heat of combustion $\Delta H^{\,\circ}$ for $C(s),\,H_2(g)$ and $CH_4(g)$ are $94,\,-68$ and $-213Kcal\,/\,mol$. Then

 $\Delta H^{\,\circ}\,\, {
m for}\,\, C(s) + 2 H_2(g) o \Delta C H_4(g)$ is

A. -17 kcal/mol

B. -111 kcal/mol

C. - 170 kcal/mol

D.-85 kcal/mol

Answer: A

43. 2 mol of an ideal gas at $27^{\circ}C$ temperature is expanded reversibly from 2L to 20L. Find entropy change $(R = 2calmol^{-1}K^{-1})$ A. 92.1

B. 0

C. 4

D. 9.2

Answer: D

44. In a closed insulated container, a liquid is stirred with a paddle to increase the temperature. Which of the following is true?

A. $\Delta E=W
eq$, q=0

B.
$$\Delta E = W = 0, q
eq 0$$

C.
$$\Delta E=0, W=q
eq 0$$

D.
$$W=0,$$
 $\Delta E=q
eq 0$

Answer: A

45. The unit of entropy is

A.
$$JK^{-1}$$
mol $^{-1}$

B. Jmol⁻¹

C.
$$J^{-1}K^{-1}$$
mol⁻¹

D. JKmol $^{-1}$

Answer: A

Watch Video Solution

46. Enthalpy of
$$CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$$
 is
negative. If enthalpy of combustion of CH_4 and
 CH_3OH are x and y respectively, then which
relation is correct?

A.
$$x > y$$

 $\mathsf{B.}\, x < y$

 $\mathsf{C}. x = y$

 $\mathsf{D}.\,x\geq y$

Answer: B

47. When 1 mole gas is heated at constant volume, temperature is raised from 298 to 308 K. Heat supplied to the gas in 500 J. Then, which statement is correct ?

A.
$$q=W=500J,$$
 $\Delta E=0$

B. $q=\Delta E=500JmW=0$

C. $q=~-W=500J,\,\Delta E=0$

D.
$$\Delta E=0, q=W=~-500J$$

Answer: B

48. Change in enthalpy for reaction $2H_2O_2(l)
ightarrow 2H_2O(l) + O_2(g)$

if heat of formation of $H_2O_2(l)$ and $H_2O(l)$ are

-188 and -286 KJ/mol respectively is

A. $-196~\mathrm{KJ/mol}$

B. + 196 KJ/mol

C. + 948 KJ/mol

 $\mathrm{D.}-948~\mathrm{KJ/mol}$

Answer: A

49.
$$PbO_2
ightarrow PbO, \Delta G_{298} < 0$$

 $SnO_2
ightarrow SnO, \Delta G_{298} > 0$

Most proble oxidation states of Pb and Sn will be

A.
$$Pb^{4+}mSn^{4+}$$

B. Pb^{4+}, Sn^{2+}

C.
$$Pb^{2\,+},\,Sn^{2\,+}$$

D. Pb^{2+}, Sn^{4+}

Answer: D

50. On the basic of the following $\Delta_r G^{\Theta}$ values at 1073*K*:

 $egin{aligned} S_1(s)+2O_2(g)&
ightarrow 2SO_2(g)\Delta_r G^{\Theta}=-544kJmol^{-1}\ 2Zn(s)+O_2(g)&
ightarrow 2ZnO(s)\Delta_r G^{\Theta}=-480kJmol^{-1}\ 2Zn(s)+S_2(s)&
ightarrow 2ZnS(s)\Delta_r G^{\Theta}=-293KJmol^{-1}\ \end{aligned}$ Show that roasting of zinc sulphide to zinc oxide is a

spontaneous process.

$\mathsf{A.}-357KJ$

 $\mathsf{B.}-731KJ$

 ${\rm C.}-773KJ$

 $\mathrm{D.}-229KJ$

Answer: B

51. At $27^{\circ}C$ latent heat of I^{-} fusion of a compound is $2.7 \times 10^{3} Jmol^{-1}$. Calculate the entropy change during fusion. A. $9.77 J K^{-1} \text{mol}^{-1}$

B.
$$10.73 J K^{-1} \text{mol}^{-1}$$

C. $2930 J K^{-1} mol^{-1}$

D. $108.5 JK^{-1}$ mol⁻¹

Answer: A

Watch Video Solution

52. If ΔE is the heat of reaction for $C_2H_5OH_{(1)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(1)}$ at constant volume, the ΔH (Heat of reaction at constant pressure) at constant temperature is

A. $\Delta H = \Delta E + RT$

 $\mathsf{B.}\,\Delta H = \Delta E - RT$

 $\mathsf{C.}\,\Delta H=\Delta E-2RT$

D. $\Delta H = \Delta E + 2RT$

Answer: B

Watch Video Solution

53. Given :
$$S_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow SO_{3(g)+2XKcal}$$

 $SO_{2(s)} + \frac{1}{2}O_{2(g)} \rightarrow SO_{3(g)+YKcal}$

The heat of formation of SO_2 is : –

A. (x+y)B. (x-y)C. (2x+y)

$$\mathsf{D.}\left(2x-y\right)$$

Answer: D

54. In an endothermic reaction, the value of ΔH is

A. zero

B. positive

C. negative

D. constant

Answer: B

55. One mole of an ideal gas at 300K is expanded isothermally from an inital volume of 1 litre to 10 litres. The ΔE for this process is $(R = 2calmol^{-1}K^{-1})$

A. 163.7 cal

B. zero

C. 1381.1 cal

D. 9 L atm

Answer: B

56. Identify the correct statement regarding entropy

A. At absolute zero temperature , entropy of a

perfectly crystalline substance is taken to be

zero

B. At absolute zero temperature, the entropy of a

perfectly crystalline substance is positive

C. At absolute zero temperature , the entropy of

all crystalline substance is to be zero.

D. At $0^{\circ}C$, the entropy of a perfectly crystalline

substance is taken to be zero.

Answer: A

57. Given that $C+O_2
ightarrow CO_2, \Delta H^{\,\circ} = -\,xKJ$

and $2CO+O_2
ightarrow 2CO_2, \Delta H^{\,\circ} = \,-\,yKJ$ The

enthalpy of formation of carbon monoxide will be

A.
$$y-2x$$

B. $2x-y$
C. $\frac{y-2x}{2}$
D. $\frac{2x-y}{2}$

Answer: C

Watch Video Solution

58. Given the following entropy values (in
$$JK^{-1}$$
mol⁻¹) at 298 K and 1 atm: $H_2(g): 130.6, Cl_2(g): 223.0, HCl(g): 186.7.$ The

entropy change (in $JK^{-1}{
m mol}^{-1}$) for the reaction $H_2(g)+Cl_2(g) o 2HCl(g)$, is

 $\mathsf{A.}+540.3$

B. + 727.0

C. - 166.9

 $\mathsf{D.}+19.8$

Answer: D

59. According to the third law of thermodynamics which one of the following quantities for a perfectly

crystalline solid is zero at absolute zero?

A. Free energy

B. Entropy

C. Enthalpy

D. Internal energy

Answer: B

60. The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_c is:

A. $\Delta G^\circ\,=\,-\,RT\,$ ln K

B.
$$\Delta G = RT \ln \mathbf{K}$$

C. $\Delta G^\circ = RT$ In K

D. $\Delta G^\circ \,=\, -\, RT \ln$ K

Answer: A

Watch Video Solution

61. If enthalpies of formation of $C_2H_4(g)$ 1,CO_(2) and $H_2O(l)$ at $25(\circ)C$ and 1 atm pressure be 52, -394 and $-286kJmol^{-1}$ respectively ,the enthalpy of combustion of $C_2H_4(g)$ will be

A. -141.2KJ/mol

 $\mathrm{B.}-1412~\mathrm{KJ/mol}$

 $\mathrm{C.} + 14.2 \ \mathrm{KJ/mol}$

 $\mathrm{D.} + 1412 \ \mathrm{KJ/mol}$

Answer: B

Watch Video Solution

62. The standard state Gibbs's energy change for the

isomerisation

reaction

 $cis - 2 - pentence \Leftrightarrow trans - 2 - pentence$ is

 $-3.67 k J mol^{-1}$ at 400 K. If more

trans - 2 - pentence is added to the reaction

vessel, then:

A. more cis-2-pentene is formed

B. equilibrium remains unaffected

C. additional trans-2-pentene is formed

D. equilibrium is shifted in forward direction

Answer: A

Watch Video Solution

63. The combustion reaction occuring in an

automobile

 $2C_8H_{18}+25O_2(g)
ightarrow 16CO_2(g)+18H_2O(g)$ This

reaction is accompanied with:

$$A.+, -, +$$

 $B.-, +, -$
 $C.-, +, +$

D.+, +, -

Answer: B

64. A chemical reaction will be spontaneous if it is

accompanied by a decrease in

A. entropy of the system

B. enthalpy of the system

C. internal eneryg of the system

D. free energy of the system

Answer: D

View Text Solution

65. During isothermal expansion of an ideal gas, its:

A. internal energy increases

B. enthalpy decreases

C. enthalpy remains unaffected

D. enthalpy reduces to zero

Answer: C

Watch Video Solution

66. For the reaction

 $N_2(g)+3H_2(g) \Leftrightarrow 2NH_3(g), \Delta H=~?$

A. $\Delta E + 2RT$

B. $\Delta E - 2RT$

 $\mathsf{C}.\,\Delta H=RT$

D. $\Delta E - RT$

Answer: B

Watch Video Solution

67. Equal volumes of molar hydrochloric acid and sulphuric acid are neutralized by dil. NaOH solution and x Kcal and y Kcal of heat are liberated respectively. Which of the following is true?

A.
$$x=y$$

B. $x=rac{1}{2}y$
C. $x=2y$

D. None of the above

Answer: B

Watch Video Solution

68. If ΔH is the enthalpy change and ΔU the change

in internal energy accompanying a gaseous reaction, then

A. ΔH is always greater than ΔE

B. $\Delta H < \Delta E$ only if the number of moles of

products is greater than the number of moles

of the reactants

C. ΔH is always less than ΔE

D. $\Delta G < \Delta E$ only if the number of moles of

products is less than the number of moles of

the reactants

Answer: D

