©゙doubtnut

PHYSICS

BOOKS - NEET PREVIOUS YEAR (YEARWISE +
 CHAPTERWISE)

ALTERNATING CURRENT AND

ELECTROMAGNETIC WAVES

Physics

1. if λ_{v}, λ_{x} and λ_{m} represent the wavelengths of visible light X-rays and microwaves respectively then:
A. $\lambda_{m}>\lambda_{X}>\lambda_{v}$
B. $\lambda_{v}>\lambda_{m}>\lambda_{x}$
C. $\lambda_{m}>\lambda_{v}>\lambda_{x}$
D. $\lambda_{v}>\lambda_{x}>\lambda_{m}$

Answer: C

D Watch Video Solution

2. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :
A. $\frac{1}{2 \pi f(2 \pi f L+R)}$
B. $\frac{1}{\pi f(2 \pi f L+R)}$
C. $\frac{1}{2 \pi(2 \pi f L-R)}$
D. $\frac{1}{\pi f(2 \pi f L-R)}$

Answer: C

- Watch Video Solution

3. Which of the following are not electromagnetic waves?
A. $\beta-r a y s$
B. Heat rays
C. $X-r a y s$
D. $\gamma-r a y s$

Answer: A

D Watch Video Solution

4. For a series L C R circuit, the power loss at resonance is
A. $\frac{V_{2}}{\omega L-\frac{1}{\omega C}}$
B. $i^{2} C \omega$
C. $i^{2} R$
D. $\frac{V^{2}}{\omega C}$

Answer: C

D Watch Video Solution

5. Which of the following has minimum wavelenght?
A. $X-$ rays
B. ultraviolet rays
C. $\gamma-$ rays
D. Cosmic rays

Answer: D

Watch Video Solution

6. The velocity of electromagnetic wave is along the direction of
A. $B \times E$
B. $E \times B$
C. E
D. B

Answer: B

D Watch Video Solution

7. What is the cause of "Green house effect"?
A. Infrared rays
B. Ultraviolet rays
C. X-rays
D. Radio-waves

Answer: A

D Watch Video Solution

8. In a certain region of space electric field E and magnetic field B are perpendicular ot each other and an electron enters region perpendicular to the direction of B and E both and moves undeflected, then velocity of electron is
A. $\frac{|E|}{|B|}$
B. $E \times B$
C. $\frac{|B|}{|E|}$
D. $E . B$

Answer: A

- Watch Video Solution

9. The reactance of a capacitor of capacitance C is X. If
both th frequency and capacitance be doubled, then new reactance will be
A. X
B. $2 X$
C. $4 X$
D. $\frac{X}{4}$

Answer: D

D Watch Video Solution

10. A wire of reistance R is connected in series with an inductor of reactance $\omega \mathrm{L}$. Then quality factor of $R L$ circuit is
A. $\frac{R}{\omega L}$
B. $\frac{\omega L}{R}$
C. $\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}}$
D. $\frac{\omega L}{\sqrt{R^{2}+\omega^{2} L^{2}}}$

Answer: B

- Watch Video Solution

11. In a circuit inductance L and capacitance C are connected as shown in figure and A_{1} and A_{2} are ammeters. When key k is pressed to complete the circuit, then just after closing key k, the readig of A_{1}
and A_{2} will be:

A. zero in both A_{1} and A_{2}
B. maximum in both A_{1} and A_{2}
C. zero in A_{1} and maximum in A_{2}
D. maximum in both A_{1} and zero in A_{2}

- Watch Video Solution

12. The electromagnetic radiations are caused by
A. A stationary charge
B. uniformly moving charges
C. accelerated charges
D. All of the above

Answer: C
13. Ozone layer blocks the radiaitons of wave length
A. less than $3 \times 10^{-7} m$
B. equal to $3 \times 10^{-7} m$
C. more than $3 \times 10^{-7} m$
D. All of the above

Answer: A

D Watch Video Solution

14. A step up transformer operates on a 230 V line and a load current of 2 ampere. The ratio of the primary
and secondary windings is $1: 25$. What is the current in the primary?
A. $15 A$
B. 50 A
C. $25 A$
D. $12.5 A$

Answer: B

D Watch Video Solution

15. If ε_{0} and μ_{0} are respectively the electric permittivity and the magnetic permeability of free space and ε and
μ the corresponding quantities in a medium, the refractive index of the medium is
A. $\sqrt{\frac{\varepsilon_{0} \mu_{0}}{\varepsilon \mu}}$
B. $\sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}$
C. $\sqrt{\frac{\varepsilon_{0} \mu}{\varepsilon \mu_{0}}}$
D. $\sqrt{\frac{\varepsilon}{\varepsilon_{0}}}$

Answer: B

- Watch Video Solution

16. The primary winding of transformer has 500 turns whereas its secondary has 5000 turns. The primary is
connected to an ac supply of $20 \mathrm{~V}, 50 \mathrm{~Hz}$. The secondary will have an output of
A. $2 \mathrm{~V}, 5 \mathrm{~Hz}$
B. $200 \mathrm{~V}, 500 \mathrm{~Hz}$
C. $2 \mathrm{~V}, 50 \mathrm{~Hz}$
D. $200 \mathrm{~V}, 50 \mathrm{~Hz}$

Answer: D

- Watch Video Solution

17. In an $A C$ circuit with voltage V and current I, the power dissipated is
A. Depends on the phase between V and I
B. $\frac{1}{\sqrt{2}} V i$
C. $\frac{1}{2} V i$
D. $v i$

Answer: A

D Watch Video Solution

18. In an experiment, 200 V AC is applied at the end of an LCR circuit. The circuit consists of an inductive reactance
$\left(X_{L}\right)=50 \Omega$, capacitive reactance
($X_{c} L=50 \Omega$, and capacitives resistance
$(R)=10 \Omega$, The impendance of the circuit is
A. 10Ω
B. 20Ω
C. 30Ω
D. 40Ω

Answer: A

- Watch Video Solution

19. The oscillating electric and magnetic vectors of an electromagnetic wave are oriented along
A. the same direction and in phase
B. the same direction but have a phase difference of 90°
C. mutually perpendicular direction and are in phase
D. mutually perpendicular direction but has a phase difference of 90°

Answer: C

- Watch Video Solution

20. An $L C R$ circuit is connected to a source of alternating current. At resonance, the applied voltage and the current flowing through the circuit will have a phase difference of
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. zero

Answer: D

21. In an $A C$ circuit, the mass value of the current I_{rms} is related to the peak current I_{0} as

$$
\begin{aligned}
& \text { A. } i_{r m s}=\sqrt{2} i_{0} \\
& \text { B. } i_{r m s}=\pi i_{0} \\
& \text { C. } i_{r m s}=\frac{i_{0}}{\pi} \\
& \text { D. } i_{r m s}=\frac{1}{\sqrt{2}} i_{0}
\end{aligned}
$$

Answer: D

- Watch Video Solution

22. A signal emitted by an antenna from a certain point can be received at another point of the surface in the
form of
A. sky wave
B. ground wave
C. sea wave
D. Both A And C

Answer: D

D Watch Video Solution

23. The time constant of $C-R$ circuit is
A. $\frac{1}{C R}$
B. $\frac{C}{R}$
C. $C R$
D. $\frac{R}{C}$

Answer: C

D Watch Video Solution

24. The structure of solids is invested by using
A. cosmic rays
B. X-rays
C. $\gamma-$ rays
D. infrared waves

Answer: C

D Watch Video Solution

25. The frequency of $e . m$ wave which is best suit to observe a particle of radius 3×10^{-4} is of order of:
A. 10^{15}
B. 10^{14}
C. 10^{13}
D. 10^{12}

Answer: B
26. Which of the following is the longest wave?
A. $X-$ rays
B. $\gamma-$ rays
C. Microwaves
D. Radiowaves

Answer: D

- Watch Video Solution

27. The frequencies of X-rays, γ-rays and ultraviolet rays are respectively a, b and c.Then
A. $a>b>c$
B. $a<b<c$
C. $a=b=c$
D. $a>c>b$

Answer: A

D Watch Video Solution

1. A circuit that contains three identical resistors with resistance $R=9.0 \Omega$ each, two identical inductors with inductance $L=2.0 \mathrm{mH}$ each, and an ideal battery with emf $\varepsilon=18 \mathrm{~V}$. The current 'i' through the battery just after the switch closed

A. $2 M a$
B. $0.2 A$
C. $2 A$
D. $0 . A$

Answer: C

- Watch Video Solution

2. In an electromagnetic wave in free space the root mean square value of the electric field is $E_{r m s}=6 \mathrm{~V} / \mathrm{m}$. The peak value of the magnetic field is
A. $1.41 \times 10^{-8} T$
B. $2.83 \times 10^{-8} T$
C. $0.70 \times 10^{-8} T$
D. $4.23 \times 10^{-8} T$

D Watch Video Solution

3. Out of the following options which one can be used produce a propagating electromagnetic wave?
A. A stationary charge
B. A chargeless particle
C. An accelerating charge
D. A charge moving at constant velocity

Answer: C

4. An inductor $20 m H$, a capacitor $100 \mu F$ and a resistor
50Ω are connected in series across a source of emf, $V=10 \sin 314 t$. The power loss in the circuit is
A. $0.67 W$
B. 0.76 W
C. 0.89 W
D. 0.51 W

Answer: D

- Watch Video Solution

5. Which of the following combinations should be selected for better turning of an LCR circuit used for communication?
A. $R=20 \Omega, L=1.5 H, C=35, \mu F$
B. $R=25 \Omega, L=2.5 H, C=45, \mu F$
C. $R=15 \Omega, L=3.5 H, C=30, \mu F$
D. $R=25 \Omega, L=1.5 H, C=45, \mu F$

Answer: C

- Watch Video Solution

6. The potential differences across the resistance, capacitance and inductance are $80 \mathrm{~V}, 40 \mathrm{~V}$ and 100 V respectively in an $L-C-R$ circuit. The power factor of this circuit is
A. 0.4
B. 0.5
C. 0.8
D. 1.0

Answer: C

- Watch Video Solution

7. A 100Ω resistance and a capacitor of 100Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is
A. $2.2 A$
B. $11 A$
C. $4.4 A$
D. $11 \sqrt{2} A$

Answer: A
8. A resistance R draws power P when connected to an $A C$ source. If an inductance is now placed in series with the resistance, such that the impedence of the circuit becomes Z, the power drawn will be
A. $P\left(\frac{R}{Z}\right)^{2}$
B. $P \sqrt{\frac{R}{Z}}$
C. $P\left(\frac{R}{Z}\right)$
D. P

Answer: A

D Watch Video Solution

9. A series $R-C$ circuit is connected to an alternating
voltage source. Consider two situations
(a) When capacitor is air filled.
(b) When capacitor is mica filled.
current through resistor is i and voltage across
capacitor is V then
A. $V_{a}<V_{b}$
B. $V_{a}>V_{b}$
C. $i_{a}>i_{b}$
D. $V_{a}=V_{b}$

Answer: B

10. The energy of the electromagetic wave is of the order of 15 keV . To which part of the spectrum dose it belong?
A. $X-r a y s$
B. Infrared rays
C. Ultraviolet rays
D. $\gamma-$ rays

Answer: A

- Watch Video Solution

11. A transformer having efficiency of 90% is working on 200 V and $3 k W$ power supply. If the current in the secondary coil is $6 A$, the voltage across the secondary coil and current in the primary coil respectively are
A. $300 \mathrm{~V}, 15 \mathrm{~A}$
B. $450 \mathrm{~V}, 15 \mathrm{~A}$
C. $450 \mathrm{~V}, 13.5 \mathrm{~A}$
D. $600 \mathrm{~V}, 15 \mathrm{~A}$

Answer: B

12. A coil of self-inductance L is connected in series with a bulb B and an $A C$ source. Brightness of the bulb decreases when
A. Frequency of the AC source is decreased
B. number of turns in the coil is reduced
C. a capcitance of reactance $X_{C}=X_{L}$ is included in the same circuit
D. an iron rod is inserted in the cell

Answer: D

- Watch Video Solution

13. The condition under which a microwave oven heats up a food item containing water molecules most efficiently is
A. the frequency of the microwave must watch the resonant frequency of the water molecules
B. the frequency of the microwave has no relation with natural frequency of water molecules
C. microwave are heat waves, so always produce heating
D. infra-red waves produce heating in a micorwave oven

Answer: A

- View Text Solution

14. In an electrical circuit R, L, C and an $A C$ voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage and the current in the circuit is $\pi / 3$. If instead,
C is removed from the circuit, difference the phase difference is again $\pi / 3$. The power factor of the circuit is
A. $1 / 2$
B. $1 \sqrt{2}$
C. 1
D. $\sqrt{3} / 2$

Answer: C

- Watch Video Solution

15. The electric field associted with an electromagnetic

$$
\begin{aligned}
& \text { wave in vacuum is given } \\
& \vec{E}=\hat{i} 40 \cos \left(k z=6 \times 10^{8} t\right) \text {, when } E, z \text { and } t \text { are in }
\end{aligned}
$$

volt/m metre and second respectively
find the wave vector.
A. $2 m^{-1}$
B. $0.5 m^{-1}$
C. $6 m^{-1}$
D. $3 m^{-1}$

Answer: A

D Watch Video Solution

16. The electric and the magnetic field, associated with
a electromagnetic, wave, propagating along the $+z-$ axis, can be represented by
A. $\left[E=E_{\circ} \hat{k}, B=B_{\circ} \hat{i}\right]$
B. $\left[E=E_{\circ} \hat{j}, B=B_{\circ} \hat{j}\right]$
c. $\left[E=E_{\circ} \hat{j}, B=B_{\circ} \hat{k}\right]$
D. $\left[E=E_{\circ} \hat{i}, B=B_{\circ} \hat{j}\right]$

Answer: D

- Watch Video Solution

17. In an ac circuit , an alternating voltage $e=200 \sqrt{2} \sin 100 t$ volts is connected to a capacitor of capacitance $1 \mu F$. The rms value of the current in the circuit is :
A. 100 mA
B. 200 mA
C. 20 mA
D. $10 m A$

Answer: C

- Watch Video Solution

18. An $A C$ voltage is applied to a resistance R and an inductance L in series. If R and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is
A. $\pi / 4$
B. $\pi / 2$
C. zero
D. $\pi / 6$

Answer: A

D Watch Video Solution

19. The decreasing order of wavelength of infrared, microwave, ultraviolet and gamma rays is
A. gamma rays ,ultraviolet , infrared microwaves
B. microwaves,gamma rays, infrared, violet
C. infrared, microwave,ultraviolet,gamma rays
D. microwave, infrared, ultraviolet, gamma rays

Answer: D

- Watch Video Solution

20. Which of the following statement is false for the properties of electromagnetic waves?
A. both electric and magnetic field vectors attain the the maima and minima at the same place and
same time
B. The energy in electromagnetic wave is divided equally between electric and magnetic vector
C. Both electric and magnetic field vector are parallel to each other and perpendicular to the direction to each other and perpendicular to the direction of propagation of wave
D. These waves do not require any material medium for propagtion

Answer: C

- Watch Video Solution

21. In the given circuit, Fig., the reading of voltmeter V_{1} and $V_{2} 300$ votls each. The reading of the voltemeter
V_{3} and ammeter A are respectively

A. $150 \mathrm{~V}, 2.2 \mathrm{~A}$
B. $200 \mathrm{~V}, 2.2 \mathrm{~A}$
C. $220 \mathrm{~V}, 2.0 \mathrm{~A}$
D. $100 \mathrm{~V}, 2.0 \mathrm{~A}$

Answer: B
22. A 220 V input is supplied to a transformer. The output circuit draws a current of 2.0 A at 440 V . If the efficiency of the transformer is 80%, the current drawn by the primery winding of the transformer is
A. $3.6 A$
B. $2.8 A$
C. $2.5 A$
D. 5.0 A

Answer: D

23. Power dissipated in an $L-C-R$ series circuit connected to an $A C$ source of emf ε is
A. 2
B.
C.
D.

Answer: A

D Watch Video Solution

24. The electric field part of an electromagnetic wave in a medium is represented by

$$
E_{x}=0
$$

$E_{y}=2.5 \frac{N}{C} \cos \left[\left(2 \pi \times 10^{6} \frac{r a d}{m}\right) t-\left(\pi \times 10^{-2} \frac{r a d}{s}\right) x\right]$
$E_{z}=0$.
The wave is
A. moving along y-direction with frequency

$2 \pi \times 10^{6} \mathrm{~Hz}$ and wavelenght 200 m

B. moving alongx-directionwith frequency 10^{\wedge} (6)
$H z$ and wavelenght $100 \mathrm{~m}^{`}$
C. moving along x-direction with frequency $10^{6} \mathrm{~Hz}$
and wavelength 200 m
D. moving along x-direction with frequency $10^{6} \mathrm{~Hz}$
and wavelenght 200 m

Answer: C

- Watch Video Solution

25. In any $A C$ circuit the emf (e) and the current (i) at any instant are given respectively by $e=E_{0} \sin \omega t$
$i=I_{0} \sin (\omega t-\phi)$
The average power in the circuit over one cycle of $A C$
is
A. $\frac{V_{0} i_{0}}{2}$
B. $\frac{V_{0} i_{0}}{2} \sin \phi$
C. $\frac{V_{0} i_{0}}{2} \cos \phi$
D. $V_{0} i_{0}$

Answer: C

- Watch Video Solution

26. The velocity of electromagnetic radiatior in a medium of permittivity ε_{0} and permeability μ_{0} is given by
A. $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$
B. $\sqrt{\mu_{0} \varepsilon_{0}}$
C. $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
D. $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$

Answer: C

- Watch Video Solution

27. A transformer is used to light a 100 W and 110 V lamp from a 220 V mains. If the main current is 0.5 A , the Efficiency of the transformer is approximately:
A. 30%
B. 50%
C. 90%
D. 10%

Answer: C
28. The primary and secondary coils of a transmformer have 50 and 1500 turns respectively. If the magnetic flux ϕ linked with the primary coil is given by $\phi=\phi_{0}+4 t$, where ϕ is in weber, t is time in second and ϕ_{0} is a constant, the output voltage across the secondary coil is
A. 90 V
B. 120 V
C. 220 V
D. 30 V

Answer: B
29. What is the value of inductance L for which the current is a maximum in series $L C R$ circuit with

$$
C=10 \mu F \text { and } \omega=1000 \frac{r a d}{s} ?
$$

A. 100 mH
B. $1 m H$
C. Cannot be calculted unless R is known
D. 10 mH

Answer: A

D Watch Video Solution

30. A coil of inductive reactance 31Ω has a resistance of 8ohm. It is placed in series with a condenser of capacitive reactance 25Ω. The combination is connected to an $a c$ source of 110 V . The power factor of the circuit is
A. 0.56
B. 0.64
C. 0.80
D. 0.33

Answer: C
31. The core of any transformaer is laminated so as to
A. energy losses due to eddy currents may be minmised
B. the weight of the transformer may be reduced
C. rusting of the core may be prevented
D. ratio of voltage in primary and secondary may be increased

Answer: A

- Watch Video Solution

