©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

CURRENT ELECTRICITY

Others

1. The resistance of a wire is ' R ' ohm. If it is
length, its new resistance will be
A. nR
B. $\frac{R}{n}$
C. $n^{2} R$
D. $\frac{R}{n^{2}}$

Answer: C
2. A potentiometer is an accurate and versatile device to make electrical measurements of $E . M . F$. because the method involves
A. cells
B. potential gradients
C. a condition of no current flow through
the galvanometer
D. a combination of cells, galvanometer and resistance

Answer: C

- Watch Video Solution

3. The diagram below show regions of equipotential:

A positive chrages is moved from A to B in each diagram.

A. Maximum work is required to move q in figure (ii)
B. In all the four cases, the work done is the
same
C. Minimum work is required to move q in
figure (i)
D. Maximum work is required to move q in
figure (ii)

Answer: B

4. A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emfs is:
A. 5:4
B. 3:4
C. 3:2
D. 5:1

Answer: C

D Watch Video Solution

5. The potential difference $\left(V_{A}-V_{B}\right)$
between the point A and B in the given figure
is

A. $-3 V$
B. +3 V
C. +6 V
D. +9 V

Answer: D

D Watch Video Solution

6. A potentiometer wire has length $4 m$ and resistance 8Ω. The resistance that must be connected in series with the wire and an
accumulator of e.m.f. $2 V$, so as the get a potential gradient $1 m V$ per $\mathrm{cm}^{`}$ on the wire is
A. 32Ω
B. 40Ω
C. 44Ω
D. 48Ω

Answer: A

- Watch Video Solution

7. A, B and C are voltmeters of resistances
$R, 1.5 R$ and $3 R$ respectively. When some potential difference is applied between x and y the voltmeter readings are $V_{A}, V_{-} \mathrm{B}$ and V_C, then

A. $V_{A}=V_{B}=V_{C}$
B. $V_{A} \neq V_{B}=V_{C}$
c. $V_{A}=V_{B} \neq V_{C}$

D. $V_{A} \neq V_{B} \neq V_{C}$

Answer: A

D Watch Video Solution

8. Across a metallic conductor of non-uniform

cross-section a constant potential difference is

applied. The quantity
A. current density
B. current

C. drift velocity

D. electric field

Answer: B

D Watch Video Solution

9. Two metal wires of identical dimesnios are connected in series. If σ_{1} and σ_{2} are the conducties of the metal wires respectively, the effective conductivity of the combination is
A. $\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
B. $\frac{\sigma_{1}+\sigma_{2}}{2 \sigma_{1} \sigma_{2}}$
C. $\frac{\sigma_{1}+\sigma_{2}}{\sigma_{1} \sigma_{2}}$
D. $\frac{\sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$

Answer: A

D Watch Video Solution

10. A circuit contains an ammeter, a battery of 30 V and a resistance 40.8 ohm all connected

reading in the ammeter will be

A. 0.5 A
B. 0.25 A
C. 2A
D. 1A

Answer: A
(Watch Video Solution
11. A potentiometer wire of Length L and a resistance r are connected in series with a battery of e.m.f. E_{0} and a resistance r_{1}. An unknown e.m.f. E is balanced at a length l of
the potentiometer wire. The e.m.f. E will be given by :
A. $\frac{L E_{0} r}{l i r_{1}}$
B. $\frac{E_{0} r}{\left(r+r_{1}\right)} \cdot \frac{l}{L}$
C. $\frac{E_{0} l}{L}$
D. $\frac{L E_{0} r}{\left(r+r_{1}\right) l}$

Answer: B

D Watch Video Solution

12. The resistance in the two arms of the meter bridge are 5Ω and $R \Omega$, respectively. When the resistance R is shunted with an equal resistance, the new balance point is $1.6 l_{1}$.

The resistance R is

A. 10Ω
B. 15Ω
C. 20Ω
D. 25Ω

Answer: B

- Watch Video Solution

13. A potentiometer circuit has been setup for
finding. The internal resistance of a given cell.
The main battery used a negligible internal resistance. The potentiometer wire itsef is $4 m$
long. When the resistance, R, connected across the given cell, has value of
(i) Infinity 9.5Ω,
(ii) the 'balancing length' , on the
potentiometer wire are found to be $3 m$ and
$2.85 m$, respectively.

The value of internal resistance of the cell is
A. 0.25Ω
B. 0.95Ω
C. 0.5Ω
D. 0.75Ω

Answer: C

D Watch Video Solution
14. In a ammeter 0.2% of main current passes
through the galvanometer. If resistance of galvanometer is G, the resistance of ammeter will be

$$
\begin{aligned}
& \text { A. } \frac{1}{499} G \\
& \text { B. } \frac{499}{500} G \\
& \text { C. } \frac{1}{500} G \\
& \text { D. } \frac{500}{499} G
\end{aligned}
$$

Answer: C
15. A wire of resistance 4Ω is stretched to
twice its original length. The resistance of stretched wire would be
A. 2Ω
B. 4Ω
C. 8Ω
D. 16Ω

Answer: D

- Watch Video Solution

16. The internal resistance of a 2.1 V cell which gives a current $0.2 A$ through a resistance of 10Ω
A. 0.2Ω
B. 0.5Ω
C. 0.8Ω
D. 1.0Ω

Answer: B
17. The resistance of the four arms P, Q, R and S in a Wheatstone's bridge are 10 ohm 30 ohm and 90 ohm rerspectively. The e.m.f. and internal resistance of the cell are
$7 v o<$ and $50 h m$ respectively. If the galvanometer resistance is 50 ohm , the current drawn for the cell will be
A. 1.0A
B. 0.2 A
C. 0.1A
D. 2.0 A

Answer: B

D Watch Video Solution

18. A milli voltmeter of 25 milli volt range is to
be converted into an ammeter of 25 ampere
range. The value (in ohm) of necessary shunt will be

A. 0.001

B. 0.01
C. 1
D. 0.05

Answer: A

D Watch Video Solution

19. In the circuit shown the cells A and B have negligible resistance.

For
$V_{A}=12 V, R_{1}=500 \Omega$ and $R=100 \Omega$, the
galvanometer (G) shows no deflection. The
value of V_{B} is

A. 4 V
B. 2 V
C. 12V
D. 6 V

Answer: B

- Watch Video Solution

20. A current of $2 A$ flows through a 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a 9Ω resistor. The internal resistance of the battery is
A. $1 / 3 \Omega$
B. $1 / 4 \Omega$
C. 1Ω

D. 0.5Ω

Answer: A

D Watch Video Solution

21. A potentiometer circuit is setup as shown.

The potential gradient across the potentiometer wire is k volt $/ \mathrm{cm}$ and the ammeter present in the circuit reads. $1.0 A$ When two-way key is switched off. The balance point, when the key between the terminals (i) 1
and 2 (ii) 1 and 3 , is plugged in, are found to be at lengths $l_{2} \mathrm{~cm}$ and $l_{2} \mathrm{~cm}$ respectively. The magnitudes, of the resistors R and X, in ohm, are then, equal, respectively, to

A. $k\left(l_{2}-l_{1}\right)$ and $k l_{2}$
B. $k l_{1}$ and $k\left(l_{2}-l_{1}\right)$
C. $k\left(l_{2}-l_{1}\right)$ and $k l_{1}$
D. $k l_{1}$ and $k l_{2}$

Answer: C

D Watch Video Solution

22. A galvanometer has a coil of resistance
100Ω and gives a full-scale deflection for 30 mA current. If it is to work as a voltmeter of

30 V range, the resistance required to be added will be
A. 900Ω
B. 1800Ω
C. 500Ω
D. 1000Ω

Answer: A
(Watch Video Solution
23. Consider the following two statements:
(A)Kirchhoff's junction law follows from
conservation of charge.
(B)Kirchhoff's loop law follows from
conservative nature of electirc field .
A. Both I and II are wrong
B. I is correct and II is wrong
C. I is wrong and II is correct
D. Both I and II are correct

Answer: D
24. The mean free path of electrons in a metal is $4 \times 10^{-8} \mathrm{~m}$ The electric field which can give on an average 2 eV energy to an electron in the metal will be in the units V / m
A. 8×10^{7}
B. 5×10^{-11}
C. 8×10^{-11}
D. 5×10^{7}

Answer: D

D Watch Video Solution

25. See the electrical circuit shown in this
figure. Which of the following equations is the correct equation for it ?

A. $\varepsilon_{1}\left(i_{1}+i_{2}\right) R-i_{1} r_{1}=0$

$$
\text { B. } \varepsilon_{2}-i_{2} r_{2}-\varepsilon_{1}-i_{1} r_{1}=0
$$

C. $\varepsilon_{2}\left(i_{1}+i_{2}\right) R+i_{2} r_{2}=0$
D. $\varepsilon_{1}\left(i_{1}+i_{2}\right) R-i_{1} r_{1}=0$

Answer: A

- Watch Video Solution

26. A student measures the terminal potential
difference (V) of a cell (of emf ε and internal resistance r) as a function of the current (I)
flowing through it. The slope and intercept of
the graph between V and I, then respectively, equal
A. ε and $-r$
B. $-r$ and ε
C. r and $-\varepsilon$
D. $-\varepsilon$ and r

Answer: B

D Watch Video Solution
27. A wire of resistance $12 \Omega m^{-1}$ is bent to
from a complete circle of radius 10 cm . The resistance between its two diametrically opposite points, A and B as shown in the figure, is

A. $0.6 \pi \Omega$
B. 3Ω
C. $6 \pi \Omega$
D. 6Ω

Answer: A

D Watch Video Solution

28. In the circuit shown, the current through
the 4Ω resistors is $1 a m p$ when the points P
and M are connected to a $d c$ voltage source.
The potential difference between the points
M and N is.

A. 1.5 V
B. 1.0 V
C. 0.5 V
D. 3.2 V

Answer: D

D Watch Video Solution

29. A cell can be balanced against 110 cm and

100 cm of potentiometer wire, respectively with and without being short circuited through a resistance of 10Ω. Its internal resistance is
А. 1.0Ω
B. 0.5Ω
C. 2.0Ω
D. zero

Answer: A

D Watch Video Solution

30. A wire of a certain material is stretched slowly by ten percent. Its new resistance and specific resistance become respectively.
A. 1.2 times, 1.1 times
B. 1.21 times, same
C. Both remain the same
D. 1.1times,1.1times

Answer: B

D Watch Video Solution

31. Three resistance P, Q, R each of 2Ω and an unknown resistance S from the four amrs
of a Wheatstone's bridge circuit. When a resistance of 6Ω is connected in parallel to S
the bridge gets balanced. What is the value of S ?
A. 2Ω
B. 3Ω
C. 6Ω
D. 1Ω

Answer: B
(Watch Video Solution
32. The resistance of an ammeter is 13Ω and
its scale is graduated for a current upto $100 A$.

After an additional shunt has been connected
to this ammeter it becomes possible to measure currents upto 750 A by this meter.

The value of shunt resistance is
A. 20Ω
B. 2Ω
C. 0.2Ω
D. $2 k \Omega$

Answer: B

- Watch Video Solution

33. Two cells, having the same emf, are connected in series through an external resistance R. Cells have internal resistance r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively. When the circuit is closed, the potentail difference across the first cell is zero the value of R is

$$
\text { A. } r_{1}-r_{2}
$$

B. $\frac{r_{1}+r_{2}}{2}$
C. $\frac{r_{1}-r_{2}}{2}$
D. $r_{1}+r_{2}$

Answer: A

D Watch Video Solution

34. In the circuit of a condacting wire is connected between point A and B the current
is this wire will

A. flow from A to B
B. flow in the direction which will be decided by the value of V
C. be zero
D. flow from B to A

Answer: D

D Watch Video Solution

35. When a wire of uniform cross-section a,
length I and resistance R is bent into a complete circle, resistance between two of diametrically opposite points will be

$$
\text { A. } \frac{R}{4}
$$

B. $\frac{R}{8}$
C. $4 R$
D. $\frac{R}{2}$

Answer: A

D Watch Video Solution

36. Two batteries, one of emf 18 V and internal resistance 2Ω and the other of emf 12 and internal resistance 1Ω, are connected as shown. The voltmeter V will record a reading

A. 15 V
B. 30 V
C. 14V
D. 18 V

Answer: C

D Watch Video Solution

37. A battery of 6 volts is connected ot the termainals of a three meter long wire of uniform thickness and resistance of the order of 100Ω. The difference of potential between two points separated by 50 cm on the wire will
A. 2 V
B. 3 V
C. 1V
D. 1.5 V

Answer: C

- Watch Video Solution

38. Five equal resistances each of resistance R
are connected as shown in the figure. A battery of V volts is connected between A
and B. The current flowing in $A F C E B$ will be

A. $\frac{3 V}{R}$
B. $\frac{V}{R}$
c. $\frac{V}{2 R}$
D. $\frac{2 V}{R}$

Answer: C

D Watch Video Solution

39. Resistance n, each of rohm, when connected in parallel give an equivalent resistance of $R o h m$. If these resistances were connected series, the combination would have a resistance in ohm, equal to
A. $n^{2} R$
B. $\frac{R}{n^{2}}$
C. $\frac{R}{n}$
D. $n R$

Answer: A

- Watch Video Solution

40. The electric resistance of a certain wire of
iron is R. If its length and radius are both doubled, then
A. the resistance will be doubled and the specific resistance will be halved
B. the resistance will be halved and the specific resistance will remain
unchanged
C. the resistance will be halved and the specific resistance will be doubled
D. the resistance and the specific resistance
will both remain unchanged

- Watch Video Solution

41. A battery is charged at a potential fo 15 V
for 8 h when the current folwing is 10 A . The battery on discharge supplies a current of 5A fo 15 h . The mean terminal voltage during discharge is 14 V . The watt-hour efficiency of the battery is
A. 0.825
B. 0.8
C. 0.9

D. 0.875

Answer: D

D Watch Video Solution

42. In a Wheatstone's bridge all the four arms
have equal resistance R. If the resistance of
the galvanometer arm is also R, the equivalent resistance of the combination as seen by the battery is
A. R
B. 2 R
C. $\frac{R}{4}$
D. $\frac{R}{2}$

Answer: A

- Watch Video Solution

43. For a cell, the terminal potential difference
is $2.2 V$, when circuit is open and reduces to
1.8 V . When cell is connected to a resistance
$R=5 \Omega$, the internal resistance of cell (R) is
A. $\frac{10}{9} \Omega$
B. $\frac{9}{10 \Omega}$
C. $\frac{11}{9 \Omega}$
D. $\frac{5}{9 \Omega}$

Answer: A

D Watch Video Solution

44. The specific resistance of a conductor increases with:
A. increase in temperature
B. increase in cross-sectional area
C. decrease in length
D. decrease in cross-sectional area

Answer: A

D Watch Video Solution
45. Resistivity of potentiometer wire is 10^{-7}
ohm metre and its area of cross-section is
$10^{-6} m^{2}$. When a current $l=0.1 A$ flows
through the wire, its potential gradient is:
A. $10^{-2} V / m$
B. $10^{-4} V / m$
C. $0.1 \mathrm{~V} / \mathrm{m}$
D. $10 \mathrm{~V} / \mathrm{m}$

Answer: A
(Watch Video Solution
46. In a wheatstone bridge resistance of each of the four sides is 10Ω. If the resistance of the galvanometer is also 10Ω, then effective resistance of the bridge will be
A. 10Ω
B. 5Ω
C. 20Ω

D. 40Ω

Answer: A
47. A cell has an emf 1.5 V . When connected across an external resistance of 2Ω, the terminal potential difference falls to 1.0 V . The internal resistance of the cell is:
A. 2Ω
B. 1.5Ω
C. 1.0Ω
D. 0.5Ω

Answer: C

- Watch Video Solution

48. Potentiometer measures the potential difference more accurately than a voltmeter, because
A. it has a wire of high resistance
B. it has a wire of low resistance
C. it does not draw current from external

D. it draws a heavy current from external

circuit

Answer: C

D Watch Video Solution

49. A bridge circuit is shown in figure. The equivalent resistance between A and B will be

A. 21Ω
B. 7Ω
C. $\frac{252}{85} \Omega$
D. $\frac{14}{3} \Omega$

Answer: D

- Watch Video Solution

50. A potentiometer consists of a wire of length 4 m and resistance 10Ω. It is connected to a cell of emf 2 V .The potential gradient of the wire is
A. $0.5 \mathrm{~V} / \mathrm{m}$
B. $2 \mathrm{~V} / \mathrm{m}$
C. $5 \mathrm{~V} / \mathrm{m}$
D. $10 \mathrm{~V} / \mathrm{m}$

Answer: A

- Watch Video Solution

51. In meter bridge, the balancing length from left is found to be 20 cm when standard connected of 1Ω is in right gap. The value of unknown resistance is
A. 0.25Ω
B. 0.4Ω
C. 0.5Ω
D. 4Ω

D Watch Video Solution

52. The resistance of a discharge tube is
A. zero
B. ohmic
C. non-ohmic

D. infinity

53. The current (i) in the given circuit is

A. 1.6 A
B. $2 A$
C. 0.32 A
D. 3.2 A

Answer: B

- Watch Video Solution

54. From the given between current I and voltage V shown in figure , indentify the portion corresponding to negative resistance

A. DE
B. $C D$
C. BC
D. $A B$

Answer: B

D Watch Video Solution

55. There are three copper wires of length and cross-sectional area (L,A),(2L,A/2)(L/2,2A). In which case in the resistance minimum?
A. it is the same in all three cases
B. Wire of cross-sectional are 2 A
C. Wire of cross-sectional area A
D. Wire of cross-sectional are $\frac{1}{2} \mathrm{~A}$

Answer: B

D Watch Video Solution
56. The current in the following circuit is

A. $1 A$
B. $\frac{2}{3} A$
C. $\frac{2}{9} A$
D. $\frac{1}{8} A$

Answer: A
57. Kirchhoff's first law i.e., $\sum I=0$ at a junction is based on the law of conservation of
A. angular momentum
B. linear momentum
C. energy
D. charge

Answer: D

58. What will be the equivalent resistance fo circuit shown in figure between two points A and D ?

A. 10Ω
B. 20Ω
C. 30Ω

D. 40Ω

Answer: C

D Watch Video Solution

59. A negligibly small current is passed through a wire of length 15 m and uniform cross-section $6.0 \times 10^{-7} \Omega \mathrm{~m}^{2}$, and its resistance is measured to be 5.0Ω. What is the resistivity of the material at the temperature of the experiment?
A. $1 \times 10^{-7} \Omega-m$
B. $2 \times 10^{-7} \Omega-m$
C. $3 \times 10^{-7} \Omega-m$
D. $4 \times 10^{-7} \Omega-m$

Answer: B

D Watch Video Solution
60. If the resistance of a conductor is 5Ω at $50^{\circ} C$ and 7Ω at $100^{\circ} C$ then the mean
temperature coefficient of resistance of the material is
A. $0.01 /{ }^{\circ} \mathrm{C}$
B. $0.04 /{ }^{\circ} \mathrm{C}$
C. $0.06 /{ }^{\circ} \mathrm{C}$
D. $0.08 /{ }^{\circ} \mathrm{C}$

Answer: A
(Watch Video Solution
61. If a wire of resistance R is melted and recasted in to half of its length, then the new resistance of the wire will be

> A. $\frac{R}{4}$
> B. $\frac{R}{2}$
C. R
D. 2 R

Answer: A

D Watch Video Solution
62. Two wire of the same meta have same
length, but their cross-sections are in the rati

3:1. They are joined in series. The resistance
of thicker wire is 10Ω. The total resistance of
the combination will be
A. 10Ω
B. 20Ω
C. 40Ω
D. 100Ω
63. In the circuit of figure, the current in 4Ω resistance is 1.2 A , what is the potential difference between B and C ?

A. 3.6 V
B. 6.3 V
C. 1.8 V
D. 2.4 V

Answer: A

- Watch Video Solution

64. Current through 3Ω resistor is 0.8 A , then potential drop through 4Ω resistor is

A. 9.6 V
B. 2.6 V
C. 4.8 V
D. 1.2 V

Answer: C

D Watch Video Solution
65. Three resistance each of 4Ω are connected
to form a triangle. The resistance between any two terminals is
A. 12Ω
B. 2Ω
C. 6Ω
D. $\frac{8}{3} \Omega$

Watch Video Solution

66. Kirchhoff's first law of electricity follows.
A. only law of conservation of energy
B. only law of conservation of charge
C. law of conservation of both energy and
charge
D. sometimes law of conservation of energy
and some other times law of
conservation of charge

Answer: B

- Watch Video Solution

67. The velocity of charge carries of current
(about 1 A) in a metal under normal conditions
is of the order of
A. a fraction of mm / s
B. velocity of light
C. several thousands m / s
D. a few hundred m / s

Answer: A

- Watch Video Solution

68. You are given several identical resistors
each of value 10Ω and each capable of carrying a maximum current of 1 A . It is required to make a suitable combination of these to resistances to produce a resistance of
5Ω which can carry a current of 4 A . The minimum number of resistors required for this
job is
A. 4
B. 10
C. 8
D. 20

Answer: C

D Watch Video Solution

69. In the network shown in figure each resistance is 1Ω. The effective resistance
between A and B is

A. $\frac{4}{3} \Omega$
B. $\frac{3}{2} \Omega$
C. 7Ω
D. $\frac{8}{7} \Omega$

Answer: D

70. n equal resistors are first connected in series and then connected in parallel. What is
the ratio of the maximum to the minimum resistance ?
A. n
B. $1 / n^{2}$
C. n^{2}
D. $1 / n$
71. The massses of the three wires of copper are in the ratio $1: 3: 5$. And their lengths are in th ratio 5:3:1. the ratio of their electrical resistance is
A. $1: 3: 5$
B. 5:3:1
C. $1: 25: 125$
D. $125: 15: 1$

Answer: D

D Watch Video Solution

72. Two batteries of e.m.f. $4 V$ and $8 V$ with internal resistances 1Ω and 2Ω are connected in a circuit with a resistance of 9Ω as shown in figure. The current and potential difference between the points P and Q

A. $\frac{1}{3} A$ and $3 V$
B. $\frac{1}{6} A$ and $4 V$
C. $\frac{1}{9} A$ and $9 V$
D. $\frac{1}{12} \mathrm{~A}$ and 12 V

Answer: A

- Watch Video Solution

