©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

GRAVITATION

Gravitation

1. The acceleration due to gravity at a height

1 km above the earth is the same as at a depth
d below the surface of earth. Then :

$$
\begin{aligned}
& \text { A. } d=\frac{1}{2} k m \\
& \text { B. } d=1 k m \\
& \text { C. } d=\frac{3}{2} k m \\
& \text { D. } d=2 m
\end{aligned}
$$

Answer: D

D Watch Video Solution

2. Two astronauts are floating in gravitational
free space after having lost contanct with their spaceship. The two will:
A. keep floating at the same distance between them
B. move towards each other
C. move away from each other
D. will beome stationary

Answer: B
3. At what height from the surface of earth the gravitation potential and the value of g are
$-5.4 \times 10^{7} \mathrm{Jkg}^{-2}$ and $6.0 \mathrm{~ms}^{-2}$ respectively ?

Take the radius of earth as 6400 km :
A. 1600 km
B. 1400 km
C. 2000 km
D. 2600 km

Answer: D

D Watch Video Solution

4. The ratio of escape velocity at earth $\left(v_{e}\right)$ to
the escape velocity at a planet $\left(v_{y}\right)$ whose radius and density are twice
A. $1: 2 \sqrt{2}$
B. 1: 4
C. $1: \sqrt{2}$
D. $1: 2$

Answer: A

- Watch Video Solution

5. The dependence of acceleration due to gravity g on the distance r from the centre of the earth, assumed to be a sphere of radius R of uniform density is as shown in Fig. below:
(1)

(2)

(3)

(4)

The correct figure is
A.
(a)

B.
(b) ${ }_{0}^{\frac{1}{g}}$
C.
$(c)^{\stackrel{\dagger}{g}} \underbrace{\text { (}}_{R \longrightarrow r}$
D.
(d) \underbrace{g}_{R-1}

Answer: B

D Watch Video Solution

6. A satellite of mass m is orbiting the earth
(of radius R) at a height h from its surface.

The total energy of the satellite in terms of g_{0}, the value of acceleration due to gravity at the earth's surface,

$$
\begin{aligned}
& \text { A. } \frac{m g_{0} R^{2}}{2(R+h)} \\
& \text { B. }-\frac{m g_{0} R^{2}}{2(R+h)}
\end{aligned}
$$

> C. $\frac{2 m g_{0} R^{2}}{R+h}$
> D. $-\frac{2 m g_{0} R^{2}}{R+h}$

Answer: B

D Watch Video Solution

7. Kepler's third law states that square of period revolution (T) of a planet around the sun is proportional to third power of average distance i between sun and planet i.e.

$$
T^{2}=K r^{3}
$$

here K is constant
if the mass of sun and planet are M and m respectively then as per Newton's law of gravitational the force of alteaction between them is $F=\frac{G M m}{r^{2}}$, here G is gravitational constant. The relation between G and K is described as

$$
\begin{aligned}
& \text { A. } G K=4 \pi^{2} \\
& \text { B. } G M K=4 \pi^{2} \\
& \text { C. } K=G \\
& \text { D. } K=\frac{1}{G}
\end{aligned}
$$

Answer: B

D Watch Video Solution

8. Two spherical bodies of mass M and $5 M$ \&
radii $R \& 2 R$ respectively are released in free
space with initial separation between their centres equal to $12 R$. If they attract each other due to gravitational force only, then the distance covered by the smallar body just before collision is
A. $2.5 R$
B. $4.5 R$
C. $7.5 R$
D. $1.5 R$

Answer: C

D Watch Video Solution
9. A remote-sensing satellite of earth revolves
in a circular orbit at a hight of $0.25 \times 10^{6} \mathrm{~m}$
above the surface of earth. If earth's radius is
$6.38 \times 10^{6} m$ and $g=9.8 m s^{-2}$, then the orbital speed of the satellite is
A. $7.76 \mathrm{kms}^{-1}$
B. $8.56 \mathrm{kms}^{-1}$
C. $9.13 k m s^{-1}$
D. $6.67 \mathrm{kms}^{-1}$

Answer: A
(Watch Video Solution
10. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is
very small compared to the mass of the earth.
A. the angular momentum of S about the centre of the earth changes in direction,
but its magnitude remains constant
B. the total mechanical energy of S varies
periodically with time
C. the linear momentum of S remains
constant in magnitude
D. the acceleration of S is always directed towards the centre of the earth

Answer: D

D Watch Video Solution

11. A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass $=5.98 \times 10^{24} \mathrm{~kg}$) have to be compresed to be a black hole?
A. $10^{-9} m$
B. $10^{-6} m$
C. $10^{-2} m$
D. 100 m

Answer: C

D Watch Video Solution

12. Dependence of intensity of gravitational
field (E) of earth with distance (r) from
centre of earth is correctly represented by
A.
(b)

C.

(d)

Answer: A

- Watch Video Solution

13. Infinite number of bodies, each of mass 2 kg
, are situated on x-axis at distance
$1 m, 2 m, 4 m, 8 m \ldots \ldots$. respectively, from the origin. The resulting gravitational potential the to this system at the origing will be
A. $-G$
B. $-\frac{8}{3} G$
C. $-\frac{4}{3} G$
D. $-4 G$

Answer: D
14. The height a which the weight of a body becomes $1 / 16$ th its weight on the surface of earth (radius R) is
A. $5 R$
B. $15 R$
C. $3 R$
D. $4 R$

- Watch Video Solution

15. A compose needle which is allowed to move in a horizontal plane is taken to a geomagnetic pole. It
A. will become rigid showing no movement
B. will stay in any position
C. will stay in North-South direction only
D. will stay in East-West direction only

- Watch Video Solution

16. A spherical planet far out in space has a mass M_{0} and diameter D_{0}. A particle of mass m falling freely near the surface of this planet will experience an accelertion due to gravity which is equal to
A. $4 G M_{p} / D_{p}^{2}$
B. $G M_{p} m / D_{p}^{2}$
C. $G M_{p} / D_{p}^{2}$

$$
\text { D. } 4 G M_{p} m / D_{p}^{2}
$$

Answer: A

D Watch Video Solution

17. A geostationary satellite is orbiting the earth at a height of $5 R$ above the surface of
the earth, $2 R$ being the radius of the earth.

The time period of another satellite in hours
at a height of $2 R$ form the surface of the earth
is
A. 5
B. 10
C. $6 \sqrt{2}$
D. $6 / \sqrt{2}$

Answer: C

D Watch Video Solution

18. A plenet moving along an elliptical orbit is
closest to the sun at a distance r_{1} and farthest away at a distance of r_{2}. If v_{1} and v_{2}
are the linear velocities at these points
respectively, then the ratio $\frac{v_{1}}{v_{2}}$ is
A. r_{2} / r_{1}
B. $\left(r_{2} / r_{1}\right)^{2}$
C. r_{1} / r_{2}
D. $\left(r_{1} / r_{2}\right)^{2}$

Answer: A
(Watch Video Solution
19. A body projected vertically from the earth
reaches a height equal to earth's radius before
returning to the earth. The power exerted by
the gravitational force is greatest.
A. at the instant just before the body hits
the earth
B. it remains constant all through
C. at the instant just after the body is
projected
D. at the highest position of the body

Answer: A

D Watch Video Solution

20. The radii of circular orbits of two satellite
A and B of the earth are $4 R$ and R, respectively. If the speed of satellite A is $3 v$, then the speed of satellite B will be
A. $3 v / 4$
B. $6 v$
C. $12 v$

D. $3 v / 2$

Answer: B

D Watch Video Solution

21. A particle of mass M is placed at the centre of a uniform spherical shell of equal mass and radius a. Find the gravitational potential at a point P at a distance $\frac{a}{2}$ from the centre.

$$
\text { A. }-\frac{3 G M}{a}
$$

$$
\begin{aligned}
& \text { B. }-\frac{2 G M}{a} \\
& \text { C. }-\frac{G M}{a} \\
& \text { D. }-\frac{4 G M}{a}
\end{aligned}
$$

Answer: A

- Watch Video Solution

22.

The figure shows elliptical orbit of a planet m about the sun S. the shaded area SCD is twice
the shaded area SAB. If t_{1} be the time for the planet to move from C to D and t_{2} is the time to move from A to B, then:

$$
\text { A. } t_{1}>t_{2}
$$

$$
\text { B. } t_{1}=4 t_{2}
$$

C. $t_{1}=2 t_{2}$

D. $t_{1}=t_{2}$

Answer: C

D Watch Video Solution

23. A roller coaster is designed such that riders experience "weightlessness" as they go round the top of a hill whose radius of curvature is 20 m . The speed of the car at the top of the hill is between
A. $14 m / s$ and $15 m / s$
B. $15 m / s$ and $16 m / s$
C. $16 m / s$ and $17 m / s$
D. $13 m / s$ and $14 m / s$

Answer: A

D Watch Video Solution
24. Two satellites of earth S_{1} and S_{2} are moving in the same orbit. The mass of S_{1} is
four times the mass of S_{2}. Which one of the following statements is true?
A. The time period of S_{1} is four times that of S_{2}
B. The potential energies of the earth and
satellite in the two cases are equal
C. S_{1} and S_{2} are moving with the same
speed
D. The kinetic energies of the two satellites
are equal

Answer: C

D Watch Video Solution

25. The earth is assumed to be a sphere of
raduis R. A plateform is arranged at a height
R from the surface of the $f v_{e}$, where v_{e} is its escape velocity form the surface of the earth.

The value of f is
A. $\sqrt{2}$
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: B

D Watch Video Solution

26. For a satellite moving in an orbit around
the earth, ratio of kinetic energy to potential energy is
A. 2
B. $1 / 2$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution
27. Imagine a new planet having the same density as that of earth but 3 times bigger than the earth in size. If the acceleration due
to gravity on the surface of earth is g and that on the new plane is g, then :

$$
\begin{aligned}
& \text { A. } g^{\prime}=3 g \\
& \text { B. } g^{\prime}=\frac{g}{g} \\
& \text { C. } g^{\prime}=9 g \\
& \text { D. } g^{\prime}=27 g
\end{aligned}
$$

Answer: C

D Watch Video Solution

28. The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is R, the radius of the planet would be
A. $2 R$
B. $4 R$
C. $\frac{1}{4} R$
D. $\frac{1}{2} R$

Answer: D

D Watch Video Solution

29. Two sphere of masses m and M are situated in air and the gravitational force between them is F. The space around the masses in now filled with a liquid of specific gravity 3 . The gravitational force will now be
A. $\frac{F}{3}$
B. $\frac{F}{9}$
C. $3 F$
D. F

Answer: D

D Watch Video Solution

30. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a height of $2 m$ on the surface of A. What is the height of jump by the same person on the planet B ?
A. $6 m$
B. $\frac{2}{3} m$
C. $\frac{2}{9} m$
D. $18 m$

Answer: D

D Watch Video Solution

31. A body of mass m is placed on the earth surface is taken to a height of $h=3 R$, then, change in gravitational potential energy is
A. $\frac{m g h}{R}$
B. $\frac{2}{3} m g R$
C. $\frac{3}{4} m g R$
D. $\frac{m g R}{2}$

Answer: C

D Watch Video Solution

32. A body attains a height equal to the radius
of the earth when projected from earth's
surface the velocity of body with which it was
projected is
A. $\sqrt{\frac{G M}{R}}$
B. $\sqrt{\frac{2 G M}{R}}$
C. $\sqrt{\frac{5}{4} \frac{G M}{R}}$
D. $\sqrt{\frac{3 G M}{R}}$

Answer: A
(Watch Video Solution
33. The mass of a planet is six times that of the earth. The radius of the planet is twice that of the earth. It's the escape velocity from the earth is v, then the escape velocity from the planet is:
A. $11.2 \mathrm{~km} / \mathrm{s}$
B. $44.8 \mathrm{~km} / \mathrm{s}$
C. $22.4 \mathrm{~km} / \mathrm{s}$
D. $5.6 \mathrm{~km} / \mathrm{s}$

Answer: C
34. The escape velocity of a sphere of mass m
is given by ($\mathrm{G}=$ univesal gravitational constant,
$M_{e}=$ mass of the earth and $R_{e}=$ radius of the earth)
A. $\sqrt{\frac{G M_{e}}{R_{e}}}$
B. $\sqrt{\frac{2 G M_{e}}{R_{e}}}$
C. $\sqrt{\frac{2 G m}{R_{e}}}$
D. $\frac{G M_{e}}{R_{e}^{2}}$

Answer: B

- Watch Video Solution

35. A rubber ball is dropped from a height of
$5 m$ on a plane, where the acceleration due to
gravity is not shown. On bouncing it rises to
1.8 m . The ball loses its velocity on bouncing
by a factor of
A. $16 / 25$
B. $2 / 5$
C. $3 / 5$
D. $9 / 25$

Answer: B

- Watch Video Solution

36. The time of revolution of planet A round
the sun is 8 times that of another planet B.

The distance of planet A from the sun is how many B from the sun
A. 5
B. 4
C. 3
D. 2

Answer: B

D Watch Video Solution
37. Escape velocity of a body from the surface of earth is $11.2 \mathrm{~km} / \mathrm{sec}$. from the earth surface.

If the mass of earth becomes double of its
present mass and radius becomes half of its present radius then escape velocity will become
A. $44.8 \mathrm{~km} / \mathrm{s}$
B. $22.4 \mathrm{~km} / \mathrm{s}$
C. $11.2 \mathrm{~km} / \mathrm{s}$ (remain unchanged)
D. $5.6 \mathrm{~km} / \mathrm{s}$

Answer: B

D Watch Video Solution
38. A ball is dropped from a spacecraft revolving around the earth at a height of 1200 km . What will happen to the ball ? .
A. continue to move with same speed
along a straight line tangentially to the
satellite at that time
B. continue to move with the same speed
along the original orbit of satellite
C. fall down to the earth gradually
D. go far away in space

Answer: B

D Watch Video Solution

39. What will be the formula of the mass in terms of g, R and $G ?(R=$ radius of the earth $)$
A. $\frac{g^{2}(R)}{G}$
B. $G \frac{R^{2}}{g}$
C. $G \frac{R}{g}$
D. $\frac{g\left(R^{2}\right)}{G}$

Answer: D

D Watch Video Solution

40. The escape velocity from the surface of the
earth is V_{e}. The escape velcotiy from the
surface of a planet whose mass and radius are three times those of the earth, will be
A. v_{e}
B. $3 v_{e}$
C. $9 v_{e}$
D. $\frac{1}{3 v_{e}}$

Answer: A

D Watch Video Solution

41. A satellite A of mass m is at a distance of r
from the centre of the earth. Another satellite
B of mass $2 m$ is at distance of $2 r$ from the earth's centre. Their time periode are in the ratio of
A. $1: 2$
B. 1:16
C. 1:32
D. $1: 2 \sqrt{2}$

Answer: D

- Watch Video Solution

42. The escape velocity for a body projected vertically upwards from the surface of the earth is $11.2 \mathrm{kms}^{-1}$. If the body is projected in
a direction making an angle 45° with the vertical, the escape velocity will be
A. $11.2 \times 2 \mathrm{~km} / \mathrm{s}$
B. $11.2 \mathrm{~km} / \mathrm{s}$
C. $\frac{11.2}{\sqrt{2}} \mathrm{~km} / \mathrm{s}$
D. $11.2 \sqrt{2} \mathrm{~km} / \mathrm{s}$

Answer: B
43. The mean radius of earth is R, its angular
speed on its own axis is wand the acceleration
due to gravity at earth's surface is g . What will be the radius of the orbit of a geostationary satellite
A. $\left(\frac{R^{2} g}{\omega^{2}}\right)^{1 / 3}$
B. $\left(\frac{R g}{\omega^{2}}\right)^{1 / 3}$
C. $\left(\frac{R^{2} \omega^{2}}{g}\right)^{1 / 3}$
D. $\left(\frac{R^{2} g}{\omega}\right)^{1 / 3}$

Answer: A

D Watch Video Solution

44. A satellite moves around the earth in a
circular orbit with speed v. If m is the mass of
the satellite, its total energy is

> A. $\frac{3}{4} m v^{2}$
> B. $\frac{1}{2} m v^{2}$
> C. $m v^{2}$
> D. $-\left(\frac{1}{2}\right) m v^{2}$

Answer: D

D Watch Video Solution

45. A seconds pendulum is mounted in a rocket. Its period of oscillation decreases when the rocket
A. comes down with uniform accceleration
B. moves round the earth in a
geostationaly orbit
C. moves up with a uniform veloctiy

D. moves up with uniform acceleration

Answer: D

D Watch Video Solution

46. A planet is moving in an elliptic orbit. If
T, V, E and L stand, respectively, for its kinetic energy, gravitational potential energy, total energy and angular momentum about the centre of force, then
A. T is conserved
B. U is always positive
C. E is always negative
D. L is conserved but direction of vector L
changes continuously

Answer: C

D Watch Video Solution

47. The gravitational force between two objects is proportional to $1 / R$ (and not as $1 / R^{2}$) where R is separation between them,
then a particle in circular orbit under such a
force would have its orbital speed v
proportional to
A. $\frac{1}{R^{2}}$
B. R^{0}
C. R
D. $\frac{1}{R}$

Answer: B

D Watch Video Solution
48. For a satellite, escape speed is $11 \mathrm{kms}^{-1}$. If
the satellite is launched at an angle of 60°
with the vertical, what will be the escape speed?
A. $11 \mathrm{~km} / \mathrm{s}$
B. $11 \sqrt{3} \mathrm{~km} / \mathrm{s}$
C. $\frac{11}{\sqrt{3}} \mathrm{~km} / \mathrm{s}$
D. $33 \mathrm{~km} / \mathrm{s}$

Answer: A

D Watch Video Solution
49. The distance of the two planets from the Sun are $10^{13} \mathrm{~m}$ and $10^{12} \mathrm{~m}$, respectively. Find the ratio of time periods and speeds of the two planets.

$$
\text { A. } \frac{1}{\sqrt{10}}
$$

B. 100
C. $10 \sqrt{10}$
D. $\sqrt{10}$
50. The largest and the shortest distance of the earth from the sun are r_{1} and r_{2}, its distance from the sun when it is at the perpendicular to the major axis of the orbit drawn from the sun
A. $\frac{r_{1}+r_{2}}{4}$
B. $\frac{r_{1}+r_{2}}{r_{1}-r_{2}}$
C. $\frac{2 r_{1} r_{2}}{r_{1}+r_{2}}$
D. $\frac{r_{1}+r_{2}}{3}$

Answer: C

- Watch Video Solution

