©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

HEAT AND THERMODYNAMICS

Physics

1. Thermodynamic processes are indicated in
the following diagrams

Match the following
Column - I
Column -II
P Process I a Adiabatic
Q Process II b Isobaric
R Process III c Isochoric
S Process IV d Isothermal

> A. P $\rightarrow \mathrm{a}, \mathrm{Q} \rightarrow \mathrm{c}, \mathrm{R} \rightarrow \mathrm{d}, \mathrm{S} \rightarrow \mathrm{b}$
> B. $\mathrm{P} \rightarrow \mathrm{c}, \mathrm{Q} \rightarrow \mathrm{a}, \mathrm{R} \rightarrow \mathrm{d}, \mathrm{S} \rightarrow \mathrm{b}$
> C. $\mathrm{P} \rightarrow \mathrm{c}, \mathrm{Q} \rightarrow \mathrm{d}, \mathrm{R} \rightarrow \mathrm{b}, \mathrm{S} \rightarrow \mathrm{a}$

$$
\text { D. } \mathrm{P} \rightarrow \mathrm{~d}, \mathrm{Q} \rightarrow \mathrm{~b}, \mathrm{R} \rightarrow \mathrm{a}, \mathrm{~S} \rightarrow \mathrm{c}
$$

Answer: B

D Watch Video Solution

2. A gas mixture consists of 2 moles of oxygen
and 4 of Argon at temperature T. Neglecting
all vibrational modes, the total internal energy
of the system is
A. 4 RT
B. 15 RT
C. 9RT
D. 11RT

Answer: D

D Watch Video Solution

3. A carnot engine, having an efficiency of
$\eta=1 / 10$ as heat engine, is used as a refrigerator. If the work done on the system is
$10 J$, the amount of energy absorbed from the reservior at lower temperature is
A. 1 J
B. 90 J
C. 99 J
D. 100 J

Answer: B
(Watch Video Solution
4. A black body is at a temperature of 5760 K .

The energy of radiation emitted by the body at wavelength 250 nm is U_{1} at wavelength 500 nm is U_{2} and that at 1000 nm is U_{3}. Wien's consant, $b=2.88 \times 10^{6} n m K$. Which of the following is correct?
A. $U_{3}=0$
B. $U_{1}>U_{2}$
C. $U_{2}>U_{1}$
D. $U_{1}=0$

Answer: C

D Watch Video Solution

5. A gas is compressed isothermally to half its
initial volume. The same gas is compressed
separately through an adiabatic process untill its volume is again reduced to half. Then
A. compressing the gas through adiabatic process will require more work to be done.
B. compressing the gas isothermally or adiabatically will require the same amount of work.
C. which of the case (whether compression
through isothermal or through adiabatic process) reequires more work will depend upon the atomicity of the gas.
D. compressing the gas isothermally will
require more work to be done

- Watch Video Solution

6. A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absobed by the ice and all energy of ice gets converted into heat during its fall.

The value of h is
[Latent heat of ice is $3.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ and $g=10 \mathrm{~N} / \mathrm{kg}]$
A. 544 km
B. 136 km

C. 68 km

D. 34 km

Answer: B

D Watch Video Solution

7. A refrigerator works between $4^{\circ} C$ and $30^{\circ} \mathrm{C}$. It is required to remove 600 cal or ies of heat every second in order to keep the temperature of the refrigerator space
constant.The power required is (Take $1 c a l$ or $i e=4.2 J)$
A. 23.65 W
B. 236.5 W
C. 2365 W
D. 2.365 W

Answer: B
(Watch Video Solution
8. Two identical bodies are made of a material
for which the heat capacity increases with temperature. One of these is at $100^{\circ} \mathrm{C}$. While
the other one is at $0^{\circ} C$. If the two bodies are brought into contact, then assuming no heat
loss, the final common temperature is
A. $50^{\circ} \mathrm{C}$
B. more than $50^{\circ} C$
C. less than $50^{\circ} \mathrm{C}$ but greater than $0^{\circ} \mathrm{C}$
D. $0^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

9. A body cools from a temperature $3 T$ to $2 T$
in 10 minutes. The room temperature is T.
Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 minutes will be
A. $\frac{7}{4} T$
B. $\frac{3}{2} T$
C. $\frac{4}{3} T$
D. T

Answer: B

D Watch Video Solution

10. One mole of an ideal monatomic gas undergoes a process described by the equation $P V^{3}=$ constant. The heat capacity of the gas during this process is
A. $\frac{3}{2} R$
B. $\frac{5}{2} R$
C. $2 R$
D. R

Answer: D

D Watch Video Solution

11. The temperature inside a refrigerator is
$t_{2}^{\circ} C$. The amount of heat delivered to the
room for each joule of electrical energy

consumed ideally will be

$$
\begin{aligned}
& \text { A. } \frac{t_{1}}{t_{1}-t_{2}} \\
& \text { B. } \frac{t_{1}+273}{t_{1}-t_{2}} \\
& \text { C. } \frac{t_{2}+273}{t_{1}-t_{2}} \\
& \text { D. } \frac{t_{1}+t_{2}}{t_{1}+273}
\end{aligned}
$$

Answer: B

D Watch Video Solution

12. A fiven sample of an ideal gas occupise a volume V at a pressure p and sbsoulte temperature T.The mass of each molecule of the gas is m . Which of the following fives the dinsity of the gas?
A. $p /(k T)$
B. $p m /(k T)$
C. $p /(k T V)$
D. $m k T$

Answer: B

- Watch Video Solution

13. On observing light from three different stars P, Q and R, it was found that intensity of violet colour is maximum in the spectrum of
P, the intensity of green colour is maximum in the spectrum of R and the intensity of red colour is maximum in the spectrum of Q. if T_{P},
T_{Q} and T_{R} are respective absolute temperature of P, Q and R. then it can be concluded from the above observation that
A. $T_{p}>T_{Q}>T_{R}$
B. $T_{P}>T_{R}>T_{Q}$
C. $T_{P}<T_{R}<T_{Q}$
D. $T_{P}<T_{Q}<T_{R}$

Answer: B

D Watch Video Solution

14. The two ends of a metal rod are maintained at temperature $100^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$
. The rate of heat flow in the rod is found to be
$4.0 \mathrm{~J} / \mathrm{s}$. If the ends are maintained at temperature s $200^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$. The rate of heat flow will be
A. $44.0 \mathrm{~J} / \mathrm{s}$
B. $16.8 \mathrm{~J} / \mathrm{s}$
C. $8.0 \mathrm{~J} / \mathrm{s}$
D. $4.0 \mathrm{~J} / \mathrm{s}$

Answer: D

D Watch Video Solution
15. In (figure). shows two path that may be taken by a gas to go from a state A to state C

In the process $\mathrm{AB}, 400 \mathrm{~J}$ of heat is added to the system and in process $B c, 100 J$ of heat is added to the system. The heat absorbed by the system in the process AC will be A. 380 J
B. 500 J
C. 460 J
D. 300 J

Answer: C

D Watch Video Solution

16. A carnot engine, having an efficiency of
$\eta=1 / 10$ as heat engine, is used as a refrigerator. If the work done on the system is
$10 J$, the amount of energy absorbed from the reservior at lower temperature is
A. 100J
B. 99 J
C. 90 J
D. 1 J

Answer: C
(Watch Video Solution
17. One mole of an ideal diatomic gas undergoes a transition from A to B along a path $A B$ as shown in (figure). The change in internal energy of the gas during the transition is $(\gamma=3 / 5)$

A. $20 k J$

$$
\text { B. }-20 k J
$$

C. $20 J$
D. $-12 J$

Answer: B

D Watch Video Solution
18. The ratio of the specific heats $\frac{C_{P}}{C_{v}}=\gamma$ in terms of degrees of freedom is given by
A. $\left(1+\frac{1}{n}\right)$
B. $\left(1+\frac{n}{3}\right)$
C. $\left(1+\frac{2}{n}\right)$
D. $\left(1+\frac{n}{2}\right)$

Answer: C

- Watch Video Solution

19. An ideal gas is compressed to half its initial volume by means of several peocesses. Which
of the process results in the maximum work done on the gas?
A. Adiabatic
B. Isobaric
C. Isochoric

D. Isothermal

Answer: A
(Watch Video Solution
20. 4.0 g of a gas occupies 22.4 litres at NTP.

The specific heat capacity of the gas at constant volume is $5.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. If the speed of sound in this gas at NTP is $952 m s^{-1}$.

Then the heat capacity at constant pressure is

> A. $8.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
> B. $7.5 \mathrm{KJ}^{-1} \mathrm{~mol}^{-1}$
> C. $7.0 \mathrm{KJ}^{-1} \mathrm{~mol}^{-1}$
> D. $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: A
21. The cofficient of performance of a refrigerator is 5 . If the temperature inside freezer is $-20^{\circ} C$, the temperature of the surroundings to which it rejects heat is :
A. $31^{\circ} \mathrm{C}$
B. $41^{\circ} \mathrm{C}$
C. $11^{\circ} \mathrm{C}$
D. $21^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

22. Two vessel separately contains two ideal gases A and B at the same temperature, the pressure of A being twice that of B. under such conditions, the density of A is found to be 1.5
times the density of B. the ratio of molecular weight of A and B is
A. $\frac{2}{3}$
B. $\frac{3}{4}$
C. 2
D. $\frac{1}{2}$

Answer: B

D Watch Video Solution

23. The value of coefficient of volume expansion of glycerin is $5 \times 10^{-4} K^{-1}$. The
fractional change in the density of glycerin for a rise of $40^{\circ} C$ in its temperature is

A. 0.015

B. 0.02
C. 0.025
D. 0.01

Answer: B

D Watch Video Solution

24. Steam at $100^{\circ} C$ is passed into $20 g$ of water at $10^{\circ} \mathrm{C}$ when water acquire a temperature of $80^{\circ} C$, the mass of water
present will be
[Take
specific
heat
of
water
$=1 \mathrm{calg}{ }^{-1} .{ }^{\circ} C^{-1}$ and latent heat of steam
$\left.=540 \mathrm{calg}^{-1}\right]$
A. 24 g
B. 31.5 g
C. 42.5 g
D. 22.5 g

Answer: D

25. Certain quantity of water cools from $70^{\circ} \mathrm{C}$
to $60^{\circ} C$ in the first 5 minutes and to $54^{\circ} C$ in
the next 5 minutes. The temperature of the surrounding is
A. $45^{\circ} C$
B. $20^{\circ} \mathrm{C}$
C. $42^{\circ} \mathrm{C}$
D. $10^{\circ} \mathrm{C}$
26. A monoatomic gas at a pressure p, having
a volume 2 V and then adiabatically to a
volume 16 V . The final pressure of the gas is
(take $\gamma=\frac{5}{3}$)
A. 64 p
B. 32 p
C. $\frac{p}{32}$
D. 16 p

Answer: C

- Watch Video Solution

27. A thermodynamic system undergoes cyclic process $A B C D A$ as shown in figure. The work
done by the system is

A. $p_{0} v_{0}$
B. $2 p_{0} v_{0}$
C. $\frac{p_{0} v_{0}}{2}$
D. zero

Answer: d

D Watch Video Solution

28. The mean free path of molecules of a gas
(radius r) is inversely proportional to
A. r^{3}
B. r^{2}
C. r
D. \sqrt{r}

Answer: d

- Watch Video Solution

29. The molar specific heats of an ideal gas at constant pressure and volume are denotes by C_{P} and C_{v} respectively. If $\gamma=\frac{C_{P}}{C_{v}}$ and R is the universal gas constant, then C_{v} is equal to
A. $\frac{1+\gamma}{1-\gamma}$
B. $\frac{R}{(\gamma-1)}$
C. $\frac{(\gamma-1)}{R}$

D. γR

Answer: c

D Watch Video Solution

30. A piece of iron is heated in a flame. It first becomes dull red then becomes reddish yellow and finally turns to white hot. The correct explanation for the above observation is possible by using.
A. Stefan's law
B. Wien's displacement law
C. Kirchhoff's law
D. Newton's law of cooling

Answer: c

D Watch Video Solution

31. A gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in figure, what
is the net work done by the gas?

A. 2000 J
B. 1000 J
C. Zero
D. $-2000 J$

Answer: b

D Watch Video Solution

32. During an adiabatic process, the pressure of gas is found to be proportional to the cube of its absolute temperature. The ratio of
$\left(C_{p, m} / C_{v, m}\right)$ for gas is :
A. $\frac{4}{3}$
B. 2
C. $\frac{5}{3}$
D. $\frac{3}{2}$

Answer: d

D Watch Video Solution

33. In the given (V-T) diagram, what is the relation between pressure P_{1} and P_{2} ?

A. $p_{2}=p_{1}$
B. $p_{2}>p_{1}$
C. $p_{2}<p_{1}$
D. Cannot be predicated

Answer: c

- Watch Video Solution

34. The amount of heat energy required to
raise the temperature of 1 g of Helium at NTP,
from $T_{1} \mathrm{~K}$ to $T_{2} \mathrm{~K}$ is:
A. $\frac{3}{8} N_{a} K_{B}\left(T_{2}-T_{1}\right)$
B. $\frac{3}{2} N_{a} K_{B}\left(T_{2}-T_{1}\right)$
C. $\frac{3}{4} N_{a} K_{B}\left(T_{2}-T_{1}\right)$
D. $\frac{3}{4} N_{a} K_{B}\left(\frac{T_{2}}{T_{1}}\right)$

Answer: a

D Watch Video Solution

35. A thermodynamic system is taken through
the cycle $A B C D$ as shown in the figure. Heat
rejected by the gas during the cycle is

A. 2 pV
B. 4 pV
C. $\frac{1}{2} p V$
D. $p V$

Answer: a

- Watch Video Solution

36. If the radius of a star is R and it acts as a
black body, what would b the temperature of
the star, in which the rate of energy production is Q ?
A. $Q / 4 \pi R^{2} \sigma$
B. $\left(Q / 4 \pi R^{2} \sigma\right)^{-1 / 2}$
C. $\left(4 \pi R^{2} Q / \sigma\right)^{1 / 4}$

D. $\left(Q / 4 \pi R^{2} \sigma\right)^{1 / 4}$

Answer: d

D Watch Video Solution

37. One mole of an ideal gas goes from an initial state A to final state B via two processs :

It first undergoes isothermal expansion from volume V to $3 V$ and then its volume is reduced from $3 V$ to V at constant pressure.

The correct $P-V$ diagram representing the two process in (figure)
A.
B.

C.
$\rightarrow V$
$\rightarrow V$

D. $\rightarrow V$

Answer: d
38. Liquid oxygen at 50 K is heated to 300 K at constant pressure of 1 atm . The rate of heating is constant. Which of the following graphs represents the variation of temperature with time?

B.

Answer: a

D Watch Video Solution

39. When 1 kg of ice at $0^{\circ} \mathrm{C}$ melts to water at
$0^{\circ} C$, the resulting change in its entropy, taking latent heat of ice to be $80 \mathrm{cal} / \mathrm{g}$ is
A. $8 \times 10^{4} \mathrm{cal} / \mathrm{K}$
B. $80 \mathrm{cal} / \mathrm{K}$
C. $293 \mathrm{cal} / \mathrm{K}$
D. $273 \mathrm{cal} / \mathrm{K}$

Answer: c

D Watch Video Solution
40. During an isothermal expansion, a confined ideal gas does $-150 J$ of work aginst its surroundings. This implies that
A. 300 J of heat has been added to the gas
B. no heat is transferred because the
process is isothermal
C. 150 J of heat has been added to the gas
D. 150 J of heat has been removed from the
gas

Answer: c

D Watch Video Solution

41. If ΔU and ΔW represent the increase in internal energy and work done by the system resectively in a thermodynamical process, which of the following is true?
A. $\Delta U=-\Delta W$, in an adiabatic process
B. $\Delta U=\Delta W$, in an isothermal process
C. $\Delta U=\Delta W$, in an adiabatic process
D. $\Delta U=-\Delta W$, in an isothermal process

Answer: a

42. A cylindrical metallic rod in thermal contact with two reservation of heat at its two ends conducts an amount of heat Q in time t.

The metallic rod is melted and the material is
formed into a rod of half the radius of the original rod. What is the amount of heat conducted by the new rod when placed in thermal contact with the two reservation in time $t ?$
A. $Q / 4$
B. $Q / 16$
C. $2 Q$
D. $Q / 2$

Answer: b

D Watch Video Solution

43. A black body at $227^{\circ} \mathrm{C}$ radiates heat at the
rate of $7 \mathrm{calcm}^{-2} s^{-1}$. At a temperature of
$727^{\circ} \mathrm{C}$, the rate of heat radiated in the same
A. 60
B. 50
C. 112
D. 80

Answer: c

D Watch Video Solution

44. In thermodynamic processes which of the following statement is not true?
A. In an adiabatic process the system is insulated from the surrounding
B. In an isochoric process remains constant
C. In an isothermal process the
temperature remains constant
D. In an adiabatic process $p V^{\gamma}=$ constant

Answer: b

D Watch Video Solution

45. The two ends of a rod of length L and a uniform cross-sectional area A are kept at two temperature T_{1} and $T_{2}\left(T_{1}>T_{2}\right)$. The rate of heat transfer. $\frac{d Q}{d t}$, through the rod in a steady state is given by

$$
\begin{aligned}
& \text { A. } \frac{d Q}{d t}=\frac{K L\left(T_{1}-T_{2}\right)}{A} \\
& \text { B. } \frac{d Q}{d t}=\frac{L\left(T_{1}-T_{2}\right)}{L A} \\
& \text { C. } \frac{d Q}{d t}=K L A\left(T_{1}-T_{2}\right) \\
& \text { D. } \frac{d Q}{d t}=\frac{K A\left(T_{1}-T_{2}\right)}{L}
\end{aligned}
$$

46. The internal energy change in a system
that has absorbed $2 k c a l$ of heat and done 500 J of work is
A. 8900 J
B. 6400 J
C. 5400 J
D. 7900 J
47. At $10^{\circ} \mathrm{C}$, the value of the density of a fixed mass of an ideal gas divided by its pressure is x . at $110^{\circ} \mathrm{C}$, this ratio is
A. x
B. $\frac{383}{283} x$
C. $\frac{10}{110} x$
D. $\frac{283}{383} x$
48. If Q, E and W denote respectively the heat added, change in internal energy and the work done in a closed cycle process, then
A. $W=0$
B. $Q=W=0$
C. $E=0$
D. $Q=0$

- Watch Video Solution

49. On a new scale of temperature (which is
linear) and called the W scale. The freezing and boiling points of water are $39^{\circ} \mathrm{W}$ and $239^{\circ} W$ respectively. What will be the temperature on the new scale, corresponding to a temperature of $39^{\circ} \mathrm{C}$ on the Celsius scale?
A. $78^{\circ} W$
B. $117^{\circ} \mathrm{W}$
C. $200^{\circ} W$
D. $139^{\circ} W$

Answer: b

D Watch Video Solution

50. An engine has an efficiency of $\frac{1}{6}$. When the temperature of sink is reduced by $62^{\circ} \mathrm{C}$, its efficiency is doubled. Temperature of the source is
A. $124^{\circ} C$
B. $37^{\circ} \mathrm{C}$
C. $62^{\circ} C$
D. $99^{\circ} \mathrm{C}$

Answer: d

D Watch Video Solution
51. A black body is at $727^{\circ} \mathrm{C}$. It emits energy at a rate which is proportional to
A. $(727)^{2}$
B. $(1000)^{4}$
C. $(1000)^{2}$
D. $(727)^{4}$

Answer: b

D Watch Video Solution

52. Assuming the sun to have a spherical outer surface of radius r radiating like a black body at temperature $t^{\circ} C$. The power received by a
unit surface (normal to the incident rays) at a
distance R from the centre of the sun is
where σ is the Stefan's constant.

$$
\begin{aligned}
& \text { A. } \frac{4 \pi r^{2} t^{4}}{R^{2}} \\
& \text { B. } \frac{r^{2} \sigma(t+273)^{4}}{4 \pi R^{2}} \\
& \text { C. } \frac{16 \pi^{2} r^{2} \sigma t^{4}}{R^{2}} \\
& \text { D. } \frac{r^{2} \sigma(t+273)^{4}}{R^{2}}
\end{aligned}
$$

Answer: d

53. The molar specific heat at constant pressure of an ideal gas is $(7 / 2 R)$. The ratio of specific heat at constant pressure to that at constant volume is
A. $7 / 5$
B. $8 / 7$
C. $5 / 7$
D. $9 / 7$

Answer: a

D Watch Video Solution
54. A black body at $1227^{\circ} \mathrm{C}$ emits radiations with maximum intensity at a wavelength of $5000 \AA$. If the temperature of the body is increased by 1000°, the maximum intensity will be observed at
A. $4000 \AA$
B. $5000 \AA$
C. $6000 \AA$
D. $3000 \AA$

Answer: d

D Watch Video Solution

55. A Carnot engine whose sinl is at $300 K$ has
an efficiency of 40%. By how much should the
temperature of source be increased so as to
increase its efficiency by 50% of original efficiency.
A. 275 K
B. 325 K

C. 250 K

D. 380 K

Answer: c

D Watch Video Solution

56. An ideal gas heat engine operates in

Carnot cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs $6.0 \times 10^{4} \mathrm{cal}$ of heat at high temperature. Amount of heat converted to work is :
A. $2.4 \times 10^{4} \mathrm{cal}$
B. $6 \times 10^{4} \mathrm{cal}$
C. $1.2 \times 10^{4} \mathrm{cal}$
D. $4.8 \times 10^{4} \mathrm{cal}$

Answer: c

D Watch Video Solution

57. Which of the following processes is reversible?
A. Transfer of heat by radiation
B. Electrical heating of a nichrome wire
C. Transfer of heat by conduction
D. Isothermal compression

Answer: d

D Watch Video Solution
58. Which of the following circular rods (given radius r and length l) each made of the same
material and whose ends are maintained at
the same temperature will conduct most heat?

$$
\begin{aligned}
& \text { A. } r=2 r_{0}, l=2 l_{0} \\
& \text { B. } r=2 r_{0}, l=l_{0} \\
& \text { C. } r=r_{0}, l=l_{0} \\
& \text { D. } r=r_{0}, l=2 l_{0}
\end{aligned}
$$

Answer: b

D Watch Video Solution

59. The equation of state for 5 g of oxygen at a
pressure P and temperature T, when occupying
a volume V , will be

$$
\begin{aligned}
& \text { A. } p V=\left(\frac{5}{32}\right) R T \\
& \text { B. } p V=5 R T \\
& \text { C. } p V=\left(\frac{5}{32}\right) R T \\
& \text { D. } p V=\left(\frac{5}{16}\right) R T
\end{aligned}
$$

Answer: a

D Watch Video Solution

60. One mole of an ideal gas at an initial temperature true of $T K$ does $6 R$ joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of the gas will be
A. $(T+2.4) K$
B. $(T-2.4) K$
C. $(T+4) K$
D. $(T-4) K$

Answer: d

D Watch Video Solution

61. If λ_{m} denotes the wavelength at which the radiative emission from a black body at a temperature $T K$ is maximum, then
A. $l a m b d_{m} \propto T^{4}$
B. λ_{m} is independent of T
C. $\lambda_{m} \propto T$
D. $\lambda_{m} \propto T^{-1}$

Answer: d

D Watch Video Solution

62. We consider the radition emitted by the
human body which of the following
statements is true?
A. The radiation is emitted during the
summers and absorbed during the
winters
B. The radiation emitted lies in the ultraviolet region and hence is not visible
C. The radiation emitted is in the infrared
ragion
D. The ratiation is emitted only during the day

Answer: c

63. An ideal gas heat engine operates in a

Carnot cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs 6 Kcal . of heat at higher
temperature. The amount of heat in kcal rejected to sink is
A. 1.6
B. 1.2
C. 4.8
D. 3.5
64. Consider a compound slab consisting of two different material having equal thickness and thermal conductivities K and $2 K$ respectively. The equivalent thermal conductivity of the slab is
A. $3 K$
B. $\frac{4}{3} K$
C. $\frac{2}{3} K$

D. $\sqrt{2} K$

Answer: b

D Watch Video Solution

65. For a black body at temperature $727^{\circ} \mathrm{C}$, its
radiating power is 60 watt and temperature of
surrounding is $227^{\circ} \mathrm{C}$. If temperature of black
body is changed to $1227^{\circ} \mathrm{C}$ then its radiating power will be-

A. 120 W

B. 240 W
C. 304 W
D. 320W

Answer: d

D Watch Video Solution

66. The efficiency of carnot engine is 50% and temperature of sink is 500 K . If temperature of source is kept constant and its efficiency
raised to 60%, then the required temperature of the sink will be :-
A. $600 K$
B. 500 K
C. 400 K
D. $100 K$

Answer: c
(Watch Video Solution
67. Condider two rods of same length and different specific heats $\left(s_{1}, s_{2}\right)$, thermal conductivities $\left(K_{1}, K_{2}\right)$ and areas of crosssection $\left(A_{1}, A_{2}\right)$ and both having temperatures $\left(T_{1}, T_{2}\right)$ at their ends. If their rate of loss of heat due to conduction are equal, then
A. $K_{1} A_{1}=K_{2} A_{2}$
B. $\frac{K_{1} A_{1}}{s_{1}}=\frac{K_{2} A_{2}}{s_{2}}$
C. $K_{2} A_{1}=K_{1} A_{2}$
D. $\frac{K_{2} A_{1}}{s_{2}}=\frac{K_{1} A_{2}}{s_{1}}$

Answer: a

D View Text Solution

68. The unit of Stefan's constant σ is

$$
\text { A. } W-m^{2}-K^{4}
$$

B. $W-m^{2} / K^{4}$
C. $W / m^{2}-K$
D. $W / m^{2}-K^{4}$

Answer: d

D Watch Video Solution

69. Wien's law is concerned with
A. wavelength corresponding to maximum
energy and absolute temperature
B. radiated energy and wavelength
C. emissive power and temperature
D. colour of light and temperature

- Watch Video Solution

70. Which of the following is close to an ideal black body ?
A. Black lamp
B. Cavity maintained at constant
temprature
C. Platinum black
D. A lamp of charcoal heated to high temperature

Answer: b

D View Text Solution

71. Rate of heat flow through a cylindrical rod is H_{1}. Temperatures of ends of rod are T_{1} and
T_{2}. If all the dimensions of rod become double and temperature difference remains same and
rate of heat flow becomes H_{2}. Then $\frac{H_{1}}{H_{2}}$ is $0 . x$
. Find value of x.
A. $H_{2}=2 H_{1}$
B. $H_{2}=\frac{H_{1}}{2}$
C. $H_{2}=\frac{H_{1}}{4}$
D. $H_{2}=4 H_{1}$

Answer: a

- Watch Video Solution

72. A scientist says that the efficiency of his
heat engine which operates at source temperature $127^{\circ} \mathrm{C}$ and sink temperature $27^{\circ} \mathrm{Cis} 26 \%$, then
A. it is impossible
B. it is possible with high probability
C. it is possible with low probability
D. Date is insufficient

Answer: a

73. A black body has maximum wavelength λ_{m}

at temperature $2000 K$. Its corresponding
wavelength at temperature 3000 will be

> A. $\frac{2}{3} \lambda$
> B. $\frac{16}{81} \lambda$
> C. $\frac{81}{16} \lambda$
> D. $\frac{4}{3} \lambda$

Answer: a
74. Which one of the following processes depends on gravity ?
A. Conduction
B. Convection
C. Radiation
D. None of these

Answer: b
75. The gases carbon-monoxide (CO) and nitrogen at the same temperature have kinetic energies E_{1} and E_{2} respectively. Then
A. $E_{1}=E_{2}$
B. $E_{1}>E_{2}$
C. $E_{1}<E_{2}$
D. E_{1} and E_{2} cannot be compared

Answer: a
76. An engine takes heat from a reservior and converts its $1 / 6$ part into work. By decreasing temperature of sink by $62^{\circ} \mathrm{C}$, its efficiency becomes double. The temperatures of source and sink must be
A. $90^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
B. $99^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
C. $372^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
D. $206^{\circ}, 37^{\circ} \mathrm{C}$

Answer: b

- View Text Solution

77. The degrees of freedom of a molecule of a triatomic gas are
A. 2
B. 4
C. 6
D. 8

Answer: c

- Watch Video Solution

78. An ideal gas at $27^{\circ} C$ is compressed adiabatically to $8 / 27$ of its original volume. If $\gamma=5 / 3$, then the rise in temperature is
A. $475^{\circ} C$
B. $402^{\circ} \mathrm{C}$
C. $275^{\circ} \mathrm{C}$
D. $375^{\circ} \mathrm{C}$

Answer: d

D Watch Video Solution

79. Coefficient of linear expansion of brass and
steel rods are α_{1} and α_{2}. Length of brass and
steel rods are l_{1} and l_{2} respectively. If $\left(l_{2}-l_{1}\right)$
is maintained same at all temperature, which
one of the following relations holds good?

$$
\text { A. } \alpha_{1} l_{1}=\alpha_{2} l_{2}
$$

$$
\text { B. } \alpha_{1} l_{2}=\alpha_{2} l_{1}
$$

$$
\begin{aligned}
& \text { C. } \alpha_{1}^{2} l_{2}=\alpha_{2}^{2} l_{1} \\
& \text { D. } \alpha_{1} l_{2}^{2}=\alpha_{2} l_{1}^{2}
\end{aligned}
$$

Answer: a

- Watch Video Solution

80. if 1 g of system is mixed with 1 g of ice,
then the resultant temperature of the mixture is
A. $270^{\circ} C$
B. $230^{\circ} C$
C. $100^{\circ} \mathrm{C}$
D. $50^{\circ} \mathrm{C}$

Answer: c

D Watch Video Solution

81. The radiant energy from the Sun incident normally at the surface of earth is $20 \mathrm{kcal} / \mathrm{m}^{2}$ min What would have been the radiant energy
incident normally on the earth if the sun had a
temperature twice of the present one?.
A. $160 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{~min}$
B. $40 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{~min}$
C. $320 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{~min}$
D. $80 \mathrm{kcal} / \mathrm{m}^{2} \mathrm{~min}$

Answer: c

D Watch Video Solution
82. We consider a thermodynamic system. If
ΔU represents the increase in its internal energy and W the work done by the system, which of the following statements is true?
A. $\Delta U=-W$ in an adiabatic process
B. $\Delta U=W$ in an isothermal process
C. $\Delta U=-W$ in an isothernal process
D. $\Delta U=W$ in an adiabatic process

Answer: a

83. If the ratio of specific heat of a gas of constant pressure to that at constant volume is γ, the change in internal energy of the mass of gas, when the volume changes from V to $2 V$ at constant pressure p is
A. $\frac{R}{(\gamma-1)}$
B. $p V$
C. $\frac{p V}{(\gamma-1)}$
D. $\frac{\gamma p V}{(\gamma-1)}$

Answer: c

D Watch Video Solution

84. The efficiency of a Carnot engine operating
between temperatures of $100^{\circ} \mathrm{C}$ and $-23^{\circ} \mathrm{C}$
will be
A. $\frac{100-23}{273}$
B. $\frac{100+23}{373}$
C. $\frac{100+23}{100}$
D. $\frac{100-23}{100}$

Answer: b

- Watch Video Solution

85. A black body is at temperature of 500 K . It emits energy at rate which is proportional to
A. $(500)^{4}$
B. $(500)^{3}$
C. $(500)^{2}$
D. 500

D Watch Video Solution

86. A sample of gas expands from volume V_{1}
to V_{2}. The amount of work done by the gas is greatest when the expansion is
A. adiabatic
B. isobaric
C. isothermal
D. Equal in all above cases

Answer: b

D Watch Video Solution

87. An ideal gas undergoing adiabatic change
has the following pressure-temperature relationship
A. $p^{\gamma-1} T^{\gamma}=$ constant
B. $p^{\gamma} T^{\gamma-1}=$ constant
C. $p^{\gamma} T^{1-\gamma}=$ constant
D. $p^{1-\gamma} T^{\gamma}=\mathrm{constant}$

Answer: d

- Watch Video Solution

88. A diatomic gas initially at 18° is compressed adiabatically to one- eighth of its original volume. The temperature after compression will b
A. $18^{\circ} C$
B. $668.4 K$
C. $395.4^{\circ} \mathrm{C}$

D. $144^{\circ} \mathrm{C}$

Answer: b

D Watch Video Solution

89. A vessel full of hot water is kept in a room
and it cools from $80^{\circ} C$ to $75^{\circ} C$ in T_{1}
minutes, from $75^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in T_{2} minutes
and from $70^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ in T_{3} minutes Then.

$$
\text { A. } t_{1}=t_{2}=t_{3}
$$

$$
\begin{aligned}
& \text { B. } t_{1}<t_{2}=t_{3} \\
& \text { C. } t_{1}<t_{2}<t_{3} \\
& \text { D. } t_{1}>t_{2}>t_{3}
\end{aligned}
$$

Answer: c

- Watch Video Solution

90. An ideal Carnot's engine whose efficiency
40% receives heat of 500 K . If the efficiency is
to be 50% then the temperature of sink will be
A. 600 K
B. 700 K
C. 800 K
D. 900 K

Answer: a

D Watch Video Solution

91. If c_{0} and c denote the sound velocity and
the rms velocity of the molecules in a gas,
then
A. $c_{s}<c$
B. $c_{s}=c$
C. $c_{s}=c\left(\frac{\gamma}{3}\right)^{1 / 2}$
D. None of these

Answer: c

- Watch Video Solution

92. State the equation corresponding to $8 g$ of
O_{2} is

> A. $p V=8 R T$
> В. $p V=\frac{R T}{4}$
> С. $p V=R T$
> D. $p V=\frac{R T}{2}$

Answer: b

D Watch Video Solution

93. A body cools from $50^{\circ} \mathrm{C}$ to $49^{\circ} \mathrm{C}$ in 5 s .

How long will it take to cool from $40^{\circ} C$ to $39.5^{\circ} C$? Assume the temperature of
A. 2.5 s
B. 10 s
C. 20 s
D. 5 s

Answer: b
(Watch Video Solution
94. The temperature of an ideal gas is
increased from $27^{\circ} C$ to $927^{\circ} C$. The rms
speed of its molecules becomes.
A. is $\sqrt{\left(\frac{927}{27}\right)}$ times the earlier value
B. remains the same
C. gets halved
D. gets doubled

Answer: d

95. If the temperature of the sun (black body)

is doubled, the rate of energy received on earth will be increase by a factor of
A. 2
B. 4
C. 8
D. 16

Answer: d

D Watch Video Solution
96. 110 J of heat is added to a gaseous system,
whose internal energy change is 40 j . then the amount of external work done is
A. 150 J
B. 70 J
C. 110 J
D. 40 J

Answer: b

D Watch Video Solution
97. An ideal gas A and a real gas B have their volumes increases from $V \rightarrow 2 V$ under isothermal condtitions. The increase in internal energy
A. will be same in both A and B
B. will be zero in both the gases
C. of B will be more than that of A
D. of A will be more than that of B

Answer: b

98. The number of translational degree of freedom for a diatomic gas is
A. 2
B. 3
C. 5
D. 6

Answer: b

D Watch Video Solution
99. Which of the following is not thermodynamical function
A. Enthalpy
B. Work done
C. Gibb's energy
D. Internal energy

Answer: b

D Watch Video Solution
100. Mercury thermometers can be used to measure temperatures upto
A. $260^{\circ} C$
B. $100^{\circ} C$
C. $360^{\circ} \mathrm{C}$
D. $500^{\circ} \mathrm{C}$

Answer: c

D Watch Video Solution
101. If for a gas, $\frac{R}{C_{V}}=0.67$, the gas is
A. diatomic
B. mixture of diatomic and polyatomic
molecules
C. monoatomic
D. polyatomic

Answer: c

102. A thermodynamic system is taken from state A to B along $A C B$ and is brought back to

A along BDA as shown in the PV diagram. The net work done during the complete cycle is given by the area

A. $p_{1} A C B P_{2} p_{1}$

> B. A C B B' A' A'
C. ACBDA
D. A D B B' A' A

Answer: c

D Watch Video Solution

103. A thermodynamic process is shown in the figure. The pressure and volumes corresponding to some points in the figure
are

A. $p_{A}=3 \times 10^{4} \mathrm{pa}$,
B. $V_{A}=2 \times 10^{-3} \mathrm{~m}^{3}$
C. $P_{B}=8 \times 10^{4} p a$,
D. $V_{B}=5 \times 10^{-3} \mathrm{~m}^{3}$

Answer: a

D View Text Solution

104. Relation between pressure (p) and energy
(E) of a gas is
A. $p=\frac{2}{3} E$
B. $p=\frac{1}{3} E$
C. $p=\frac{3}{2} E$
D. $p=3 E$

Answer: a

D View Text Solution

105. Three containes of the same volume contain three different gases. The masses of
the molecules are m_{1}, m_{2} and m_{3} and the number of molecules in their respective containers are N_{1}, N_{2} and N_{3}. The gas pressure in the containers are P_{1}, P_{2} and P_{3} respectively. All the gases are now mixed and
put in one of the containers. The pressure P of mixture will be

$$
\begin{aligned}
& \text { A. } p<\left(p_{1}+p_{2}+p_{3}\right) \\
& \text { B. } p=\frac{p_{1}+p_{2}+p_{3}}{3} \\
& \text { C. } p=p_{1}+p_{2}+p_{3} \\
& \text { D. } p>\left(p_{1}+p_{2}+p_{3}\right)
\end{aligned}
$$

Answer: c
(Watch Video Solution
106. For hydrogen gas $C_{P}-C_{V}=\alpha$ and for

Oxygen gas $C_{P}-C_{V}=b$, where C_{P} and C_{V}
are molar specific heats. Then the relation between ' a ' and ' b ' is
A. $a=16 b$
B. $16 b=a$
C. $a=4 b$
D. $a=b$

Answer: d
107. One mole of an ideal monoatomic gas
requires 207 J heat to raise the temperature
by 10 K when heated at constant pressure. If
the same gas is heated at constant volume to
raise the temperature by the same 10 K , the
heat required is [Given the gas constant $\mathrm{R}=$ $8.3 \mathrm{~J} / \mathrm{mol} . \mathrm{K}]$
A. 198.7 J
B. 29 J
C. 215.3 J
D. 124 J

Answer: d

- Watch Video Solution

108. According to the kinetic theory of gases,
at absolute temperature
A. water freezes
B. liquid helium freezes

C. molecular motion stops

D. liquid hydrogen freezes

Answer: c

D Watch Video Solution

109. The thermal capacity of 40 g of aluminium
(specific heat $=0.2 \mathrm{cal} / \mathrm{gm}^{\circ} C$)
A. $168 \mathrm{~J} /{ }^{\circ}{ }^{\circ} \mathrm{C}$
B. $672 \mathrm{~J} / .^{\circ} \mathrm{C}$
C. $840 \mathrm{~J} / .^{\circ} \mathrm{C}$
D. $33.6 \mathrm{~J} / .^{\circ} \mathrm{C}$

Answer: d

D Watch Video Solution

110. A centigrade and a Fehrenheit
thermometer are dipped in boiling water. The water temperature is lowered until the

Fehrenheit thermometer registers $140^{\circ} \mathrm{F}$

What is the fall in temperature as register by
the centigrade thermometer
A. 80°
B. 60°
C. 40°
D. 30°

Answer: c
(Watch Video Solution
111. For a certain gas the ratio of specific heats
is given to be $\gamma=15$, for this gas

$$
\begin{aligned}
& \text { A. } C_{v}=\frac{3 R}{J} \\
& \text { B. } C_{p}=\frac{3 R}{J} \\
& \text { С. } C_{p}=\frac{5 R}{J} \\
& \text { D. } C_{p}=\frac{5 R}{J}
\end{aligned}
$$

Answer: b

D View Text Solution
112. $300 K$ a gas $(\gamma=5 / 3)$ is compressed adiabatically so that its pressure becomes $1 / 8$ of the original pressure. The final temperature of the gas is :
A. 420 K
B. 300 K
C. $-142^{\circ} \mathrm{C}$
D. $327 K$

Answer: c

113. At constant volume, temperature is increased. Then
A. collision on walls will be less
B. number of collisions per unit time will increase
C. collisions will be in straight lines
D. collisions will not change

Answer: b
114. A polyatomic gas with (n) degress of
freedom has a mean energy per molecule given by.
A. $\frac{n k T}{N}$
B. $\frac{n k T}{2 N}$
C. $\frac{n k T}{2}$
D. $\frac{3 k T}{2}$
115. Two containers A and B are partly filled with water and closed. The volume of A is
twice that of B and it contains half the amount of water in B. If both are at the same temperature, the water vapour in the containers will have pressure in the ratio of
A. 1:2
B. 1:1
C. 2:1
D. $4: 1$

Answer: b

D View Text Solution
116. The first law of thermodynamics is based on the law of conservation of
A. work
B. energy
C. heat

D. All of these

Answer: b

D Watch Video Solution

117. 10 gm of ice cubes at $0^{\circ} \mathrm{C}$ are released in a tumbler (water equivalent 55 g) at $40^{\circ} \mathrm{C}$.

Assuming that negligible heat is taken from
the surroundings, the temperature of water in
the tumbler becomes nearly $(\mathrm{L}=80 \mathrm{cal} / \mathrm{g})$

$$
\text { A. } 31^{\circ} C
$$

B. $22^{\circ} \mathrm{C}$
C. $19^{\circ} \mathrm{C}$
D. $15^{\circ} \mathrm{C}$

Answer: b

- Watch Video Solution

