©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NEET PREVIOUS YEAR

 (YEARWISE + CHAPTERWISE)
MOTION IN ONE DIMENSION

Exercise

1. Preeti reached the metro station and found
that the escalator was not working. She
walked up the stationary escalator in time t_{1}.

On other days, if the remains stationary on the moving escalator, then the escalator takes her up in time t_{2}. The time taken by her to walk up on the moving escalator will be :

$$
\begin{aligned}
& \text { A. } \frac{t_{1}+t_{2}}{2} \\
& \text { B. } \frac{t_{1} t_{2}}{t_{2}-t_{1}} \\
& \text { C. } \frac{t_{1} t_{2}}{t_{2}+t_{1}} \\
& \text { D. } t_{1}-t_{2}
\end{aligned}
$$

Answer: C

2. If the velocity of a particle is $v=A t+B t^{2}$, where A and B are constant, then the distance travelled by it between $1 s$ and $2 s$ is:
A. $3 A+7 B$
B. $\frac{3}{2} A+\frac{7}{3} B$
C. $\frac{A}{2}+\frac{B}{3}$
D. $\frac{3}{2} A+4 B$

Watch Video Solution

3. Two cars P and Q start from a point at the same time in a straight line and their position are represented by $x_{p}(t)=a t+b t^{2}$ and $x_{Q}(t)=f t-t^{2}$. At what time do the cars have the same velocity?
A. $\frac{a-f}{1+b}$
B. $\frac{a+f}{2(b-1)}$
C. $\frac{a+f}{2(1+b)}$
D. $\frac{f-a}{2(1+b)}$

Answer: D

D Watch Video Solution

4. A particle of unit mass undergoes onedimensional motion such that its velocity
varies according to
$v(x)=\beta x^{-2 n}$
where β and n are constant and x is the position of the particle. The acceleration of the particle as a function of x is given by.
A. $-2 n \beta^{2} x^{-2 n-1}$

$$
\text { B. }-2 n \beta^{2} x^{-4 n-1}
$$

C. $2 \beta^{2} x^{-2 n+1}$
D. $-2 n \beta^{2} e^{-4 n+1}$

Answer: B

D Watch Video Solution

5. If Vectors $\vec{A}=\cos \omega \hat{i}+\sin \omega \hat{j}$ and $\vec{B}=(\cos) \frac{\omega t}{2} \hat{i}+(\sin) \frac{\omega t}{2} \hat{j}$ are functions of
time. Then the value of t at which they are

orthogonal to each other is

> A. $t=\frac{\pi}{4 \omega}$
> B. $t=\frac{\pi}{2 \omega}$
> C. $t=\frac{\pi}{\omega}$
> D. $t=0$

Answer: C
(Watch Video Solution
6. The range R of projectile is same when its maximum heights are h_{1} and h_{2}. What is the relation between R, h_{1} and h_{2} ?

$$
\begin{aligned}
& \text { A. } h_{1}=2 h_{2}=3 h_{3} \\
& \text { B. } h_{1}=\frac{h_{2}}{3}=\frac{h_{3}}{5} \\
& \text { C. } h_{2}=3 h_{1} \text { and } h_{3}=3 h_{2} \\
& \text { D. } h_{1}=h_{2}=h_{3}
\end{aligned}
$$

Answer: B
7. The motion of a particle along a straight line is described by equation : $x=8+12 t-t^{3}$ where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is.

$$
\text { A. } 24 m s^{-2}
$$

B. zero
C. $6 m s^{-2}$
D. $12 m s^{-2}$
8. A boy standing at the top of a tower of 20 m .

Height drops a stone. Assuming $g=10 \mathrm{~ms}^{-2}$ towards north. The average acceleration of the body is.
A. $20 \mathrm{~m} / \mathrm{s}$
B. $40 \mathrm{~m} / \mathrm{s}$
C. $5 m / s$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

9. A body is moving with velocity $30 \mathrm{~m} / \mathrm{s}$ towards east. After $10 s$ its velocity becomes
$40 \mathrm{~m} / \mathrm{s}$ towards north. The average acceleration of the body is.
A. $7 m / s^{2}$
B. $\sqrt{7} m / s^{2}$
C. $5 m / s^{2}$

D. $1 \mathrm{~m} / \mathrm{s}^{2}$

Answer: C

D Watch Video Solution

10. A ball is droped from a high rise platform
$t=0$ starting from rest. After $6 s$ another ball
is thrown downwards from the same platform
with a speed v. The two balls meet at $t=18 s$.

What is the value of v ?

$$
\text { A. } 74 m s^{-1}
$$

B. $55 m s^{-1}$
C. $40 m s^{-1}$
D. $60 m s^{-1}$

Answer: A

D Watch Video Solution

11. A particle move a distance x in time t according to equation $x=(t+5)^{-1}$. The acceleration of particle is alphaortional to.
A. $(\text { velocity })^{3 / 2}$
B. $(\text { distance })^{2}$
C. $(\text { distance })^{-2}$
D. $(\text { velocity })^{2 / 3}$

Answer: A

D Watch Video Solution
12. A particle starts its motion from rest under
the action of a constant force. If the distance
covered in first $10 s$ is s_{1} and the covered in
the first $20 s$ is s_{2}, then.

$$
\begin{aligned}
& \text { A. } s_{2}=2 s_{1} \\
& \text { B. } s_{2}=3 s_{1} \\
& \text { C. } s_{2}=4 s_{1} \\
& \text { D. } s_{2}=s_{1}
\end{aligned}
$$

Answer: C
(Watch Video Solution
13. A bus is moving with a speed of $10 \mathrm{~ms}^{-1}$ on a straight road. A scooterist wishes to overtake the bus in $10 s$. If the bus is at a distance of 1 km from the scooterist with what speed should the scooterist chase the bus?
A. $20 m s^{-1}$
B. $40 \mathrm{~ms}^{-1}$
C. $25 m s^{-1}$
D. $10 m s^{-1}$
14. A particle moves in a straight line with a constant acceleration. It changes its velocity from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ while passing through a distance $135 m$ in t seconds. The value of t is.
A. 10
B. 1.8
C. 12
D. 9

Answer: D

D Watch Video Solution

15. A particle shows distance-time curve as given in this figure. The maximum instantaneous velocity of the particle is
around the point.

A. B
B. C
C. D
D. A

Answer: B

D Watch Video Solution

16. The distance travelled by a particle starting
from rest and moving with an acceleration
$\frac{4}{3} m s^{-2}$, in the third second is.
A. 6 m
B. 4 m
C. $\frac{10}{3} m$
D. $\frac{19}{3} m$

Answer: C

D Watch Video Solution

17. A particle moving along x-axis has acceleration f, at time t, given by $f=f_{0}\left(1-\frac{t}{T}\right)$, where f_{0} and T are constant.

The particle at $t=0$ has zero velocity. In the time interval between $t=0$ and the instant when $f=0$, the particle's velocity $\left(v_{x}\right)$ is :
A. $f_{0} T$
B. $\frac{1}{2} f_{0} T^{2}$
C. $f_{0} T^{2}$
D. $\frac{1}{2} f_{0} T$

Answer: D

D Watch Video Solution

18. A car moves from X to Y with a uniform speed v_{u} and returns to Y with a uniform
speed v_{d}. The average speed for this round trip is :
A. $\frac{2 v_{d} v_{u}}{v_{d}+v_{u}}$
B. $\sqrt{v_{u} u_{d}}$
C. $\frac{v_{d} v_{u}}{v_{d}+v_{u}}$
D. $\frac{v_{u}+v_{d}}{2}$

Answer: A

D Watch Video Solution

19. The position x of a particle with respect to
time t along the x -axis is given by $x=9 t^{2}-t^{3}$
where x is in meter and t in second. What will
be the position of this particle when it achieves maximum speed along the positive x direction
A. 32 m
B. 54 m
C. 81 m
D. 24 m

Answer: B

D Watch Video Solution

20. Two bodies A (of mass 1 kg) and B (of mass 3 kg) are dropped from heights of 16 m and 25 m . Respectively. The ratio of the time taken to reach the ground is :
A. $-5 / 4$
B. $12 / 5$
C. $5 / 12$

D. $4 / 5$

Answer: D

D Watch Video Solution

21. A particle moves along a straight line $O X$.

At a time t (in seconds) the distance x (in metre) of the particle is given by
$x=40+12 t-t^{3}$. How long would the particle travel before coming to rest ?
A. $24 m$
B. $40 m$
C. $56 m$
D. $16 m$

Answer: C

- Watch Video Solution

22. The displacement x of a particle varies with
time t as $x=a e^{-\alpha t}+b e^{\beta t}$. Where a, b, α and
β positive constant.

The velocity of the particle will.
A. decrease with time
B. be independent of α and β
C. drop to zero when $\alpha=\beta$
D. increase with time

Answer: D

- Watch Video Solution

23. A man throws ball with the same speed vertically upwards one after the other at an interval of 2 seconds. What should be the
speed of the throw so that more than two ball
are in the sky at any time (Given $g=10 \frac{\mathrm{~m}}{2^{2}}$)
A. Any speed less than $19.6 m / s$
B. Only with speed $19.6 m / s$
C. More than $19.6 m / s$

D. Al least $9.8 m / s$

Answer: C

D Watch Video Solution

24. If a ball is thrown vertically upwards with speed u, the distance covered during the last t second of its ascent is

$$
\begin{aligned}
& \text { A. } u t-\frac{1}{2} g t^{2} \\
& \text { B. }(u+g t) t \\
& \text { C. } u t \\
& \text { D. } \frac{1}{2} g t^{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

25. A stone is thrown vertically upwards. When
stone is at a height half of its maximum
height, its speed is $10 \mathrm{~ms}^{-1}$, then the maximum height attained by the stone is (

$$
\left.g=10 m s^{-2}\right)
$$

A. $8 m$
B. $10 m$
C. $15 m$
D. 20 m

Answer: B
26. A particle moves along a straight line such
that its displacement at any time t is given by
$s=3 t^{3}+7 t^{2}+14 t+5$. The acceleration of
the particle at $t=1 s$ is
A. $18 m / s^{2}$
B. $32 m / s^{2}$
C. $29 m / s^{2}$
D. $24 m / s^{2}$

Answer: B

D Watch Video Solution

27. A car moving with a speed of $40 \mathrm{~km} / \mathrm{h}$ can
be stopped by applying the brakes after at
least 2 m . If the same car is moving with a speed of $80 \mathrm{~km} / \mathrm{h}$, what is the minimum stopping distance?
A. $8 m$
B. $2 m$
C. $4 m$
D. $6 m$

Answer: A

- Watch Video Solution

28. If a car at rest, accelerates uniformly to a
speed of $144 k m / h$ in $20 s$, it covers a distance
of
A. $2880 m$
B. $1440 m$
C. 400 m
D. 20 m

Answer: C

D Watch Video Solution

29. The position x of a particle varies with time
t as $x=a t^{2}-b t^{3}$. The acceleration at time t
of the particle will be equal to zero, where (t)
is equal to .
A. zero
B. $\frac{a}{3 b}$
C. $\frac{2 a}{3 b}$
D. $\frac{a}{b}$

Answer: B

D Watch Video Solution

30. If a ball is thrown vertically upwards with a velocity of $40 \mathrm{~m} / \mathrm{s}$, then velocity of the ball after $2 s$ will be $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $15 m / s$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $25 m / s$
D. $28 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

31. Three different objects of masses m_{1}, m_{2}
and m_{2} are allowed to fall from rest and from
the same point O along three different
frictionless paths. The speeds of three objects on reaching the ground will be:
A. $m_{1}: m_{2}: m_{3}$
B. $m_{1}: 2 m_{2}: 3 m_{3}$
C. $1: 1: 1$
D. $\frac{1}{m_{1}}: \frac{1}{m_{2}}: \frac{1}{m_{3}}$

Answer: C

D Watch Video Solution

32. Water drops fall at regular intervals from a
tap 5 m above the ground. The third drop is
leaving the tap, the instant the first drop touches the ground. How far above the ground is the second drop at that instant. $\left(g=10 m s^{-2}\right)$
A. $1.25 m$
B. 2.50 m
C. $3.75 m$
D. 5.00 m

Answer: C

- Watch Video Solution

33. A body is thrown vertically upwards from
the ground. It reaches a maximum height of $20 m$ in $5 s$. After what time it will reach the ground from its maximum height position ?
A. 2.5 s
B. $5 s$
C. $10 s$

D. 25 s

Answer: B

D Watch Video Solution

34. A stone released with zero velocity from
the top of a water, reaches the ground in 4 s .
The height of the tower is $\left(g=10 m / s^{2}\right)$
A. $20 m$
B. $40 m$
C. $80 m$
D. 160 m

Answer: C

D Watch Video Solution

35. A car accelerates from rest at a constant
rate α for some time, after which it decelerates at a constant rate β, to come to rest. If the total time elapsed is t seconds.

Then evalute (a) the maximum velocity
reached and (b) the total distance travelled.
A. $\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right) t$
B. $\left(\frac{\alpha^{2}-\beta^{2}}{\alpha \beta}\right) t$
C. $\frac{(\alpha+\beta) t}{\alpha \beta}$
D. $\left(\frac{\alpha \beta t}{\alpha+\beta}\right)$

Answer: D

D Watch Video Solution

36. A particle moves along a staight line such
that its displacement at any time t is given by
$s=t^{3}-6 t^{2}+3 t+4 m$. Find the velocity when the acceleration is 0 .
A. $3 m s^{-1}$
B. $-12 m s^{-1}$
C. $42 m s^{-1}$

$$
\text { D. }-9 m s^{-1}
$$

Answer: D

37. The displacement-time graph of moving particle is shown below

The instantaneous velocity of the particle in negative at the point
A. D
B. F
C. C
D. E

Answer: D

- Watch Video Solution

38. A body starts from rest, what is the ratio of
the distance travelled by the body during the

4th and 3rd s?
A. $\frac{7}{5}$
B. $\frac{5}{7}$
C. $\frac{7}{3}$
D. $\frac{3}{7}$

Answer: A

D Watch Video Solution

39. A train of $150 m$ length is going toward north direction at a speed of $10 \mathrm{~ms}^{-1}$. A parrot flies at a speed of $5 m s^{-1}$ toward south
direction parallel to the railway track. The time
taken by the parrot to cross the train is equal
to.
A. $12 s$
B. $8 s$
C. $15 s$
D. $10 s$

Answer: D

D Watch Video Solution
40. Which of the following curves does not represent motion in one dimensions?

Answer: C
41. A bus travelled the first one-third distance at a speed of $10 \mathrm{~km} / \mathrm{h}$, the next one-third at $20 \mathrm{~km} / \mathrm{h}$ and the last one-third at $60 \mathrm{~km} / \mathrm{h}$.

The average speed of the bus is
A. $9 \mathrm{~km} / \mathrm{h}$
B. $16 \mathrm{~km} / \mathrm{h}$
C. $18 \mathrm{~km} / \mathrm{h}$
D. $48 \mathrm{~km} / \mathrm{h}$

Answer: C

D Watch Video Solution

42. A car moves a distance of 200 m . It covers
the first-half of the distance at speed $40 \mathrm{~km} / \mathrm{h}$
and the second-half of distance at speed
$v k m / h$. The average speed is $48 \mathrm{~km} / \mathrm{h}$. Find the value of v.
A. $56 \mathrm{~km} / \mathrm{h}$
B. $60 \mathrm{~km} / \mathrm{h}$

C. $50 \mathrm{~km} / \mathrm{h}$

D. $48 \mathrm{~km} / \mathrm{h}$

Answer: B

- Watch Video Solution

43. A body dropped from top of a tower falls
through 40 m during the last two seconds of
its fall. The height of tower in m is ($\mathrm{g}=10$ m//s^@)
A. 60 m
B. $45 m$
C. $80 m$
D. 50 m

Answer: B

D Watch Video Solution
44. A car travels along a straight line for first half time with speed $40 \mathrm{~km} / \mathrm{h}$ and the second
half time with speed $60 \mathrm{~km} / \mathrm{h}$. Find the average speed of the car.
A. $40 \mathrm{~km} / \mathrm{h}$
B. $48 \mathrm{~km} / \mathrm{h}$
C. $50 \mathrm{~km} / \mathrm{h}$
D. $60 \mathrm{~km} / \mathrm{h}$

Answer: B
(Watch Video Solution
45. Find the ratio of the distance moved by a free-falling body from rest in fourth and fifth seconds of its journey.
A. $4: 5$
B. $7: 9$
C. $16: 25$
D. $1: 1$

Answer: B

D Watch Video Solution
46. A car is moving along a straight road with
a uniform acceleration. It passes through two
points P and Q separated by a distance with
velocity $30 \mathrm{~km} / \mathrm{h}$ and $40 \mathrm{~km} / \mathrm{h}$ respectively.

The velocity of the car midway between P and
Q is
A. $33.3 \mathrm{~km} / \mathrm{h}$
B. $20 \sqrt{2} \mathrm{~km} / \mathrm{h}$
C. $25 \sqrt{2} \mathrm{~km} / \mathrm{h}$
D. $0.35 \mathrm{~km} / \mathrm{h}$

Answer: C
(Watch Video Solution

