## © 'doubtnut

India's Number 1 Education App

## PHYSICS

## BOOKS - NEET PREVIOUS YEAR

## (YEARWISE + CHAPTERWISE)

## MOTION IN TWO AND THREE

## DIMENSION

Others

1. The $x$ and $y$ coordinates of the particle at any time are $x=5 t-2 t^{2}$ and $y=10 t$ respectively, where $x$ and $y$ are in meters and $t$ in seconds. The acceleration of the particle at $t=2 \mathrm{~s}$ is:
A. 0
B. $5 m / s^{2}$
C. $-4 m / s^{2}$
D. $-8 m / s^{2}$
2. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vector, the angle between these Vector is
A. $90^{\circ}$
B. $45^{\circ}$
C. $108^{\circ}$
D. $0^{\circ}$
3. In the given figure, $a=15 \mathrm{~m} / \mathrm{s}^{2}$ represents
the total acceleration of a particle moving in
the clockwise direction in a circle of radius
$R=2.5 m$ at a given instant of time. The
speed of the particle is.

A. $4.5 \mathrm{~m} / \mathrm{s}$
B. $5.0 \mathrm{~m} / \mathrm{s}$
C. $5.7 \mathrm{~m} / \mathrm{s}$
D. $6.2 \mathrm{~m} / \mathrm{s}$

## Answer: c

## D Watch Video Solution

4. A ship A is moving Westwards with a speed of $10 \mathrm{kmh}^{-1}$ and a ship B 100 km South of A is moving northwards with a speed of $10 \mathrm{kmh}^{-1}$.

The time after which the distance between them shortest is
A. Oh
B. 5 h
C. $5 \sqrt{2} h$

D. $10 \sqrt{2} h$

## Answer: b

## D Watch Video Solution

5. Two particles, 1 and 2 , move with constant velocities $v_{1}$ and $v_{2}$. At the initial moment their radius vectors are equal to $r_{1}$ and $r_{2}$.

How must these four vectors be interrelated for the particles to collide?

$$
\begin{aligned}
& \text { A. } \frac{r_{1}-r_{2}}{\left|r_{1}-r_{2}\right|}=\frac{v_{2}-v_{1}}{\left|v_{2}-v_{1}\right|} \\
& \text { B. } r_{2} \cdot v_{1}=r_{2} \cdot r_{2} \\
& \text { C. } r_{1} \times v_{1}=r_{2} \times v_{2} \\
& \text { D. } r_{1} \times v_{1}=v_{1}-v_{2}
\end{aligned}
$$

## Answer: a

## D Watch Video Solution

6. Two stone of masses $m$ and $2 m$ are whirled in horizontal circles, the heavier one in a radius $r / 2$ and the lighter one in radius $r$. The
tangential speed of lighter stone is $n$ times
that of the value of heavier stone when the experience same centripetal forces. the value of $n$ is
A. 2
B. 3
C. 4
D. 1

## Answer: a

7. The position vector of a particle $\vec{R}$ as a funtion of time is given by:
$\vec{R}=4 \sin (2 \pi t) \hat{i}+4 \cos (2 \pi t) \hat{j}$
Where $R$ is in meters, $t$ is in seconds and $\hat{i}$
and $\hat{j}$ denote until vectors along $x$-and $y$ directions, respectively Which one of the following statements is wrong for the motion of particle ?
A. Acceleraion is along $-R$
B. Magnitude of accleration vector is $\frac{v^{2}}{R}$. where $v$ in the velocity of particle is 8 $\mathrm{m} / \mathrm{s}$
C. path of the particle is a circle of radius 4
m
D.

## Answer: c

## D Watch Video Solution

8. a projectile is fired from the surface of the earth with a velocity of $5 m s^{-1}$ and angle $\theta$
with the horizontal. Another projectile fired
from another planet with a velocity of $3 m s^{-1}$
at the same angle follows a trajectory which is
identical with the trajectory of the projectile
fired from the earth. The value of the acceleration due to gravity on the planet is in
$m s^{-2}$ is given $\left(g=9.8 m s^{-2}\right)$
A. 3.5
B. 5.9
C. 16.3
D. 110.8

## Answer: a

## D Watch Video Solution

9. A particle is moving such that its position coordinates $(x, y)$ are $(2 m, 3 m)$ at time $t=0,(6 m, 7 m) \quad$ at $\quad$ time $\quad t=2 s, \quad$ and
$(13 m, 14 m)$ at time $t=5 s$.

Average velocity vector $\left(\vec{V}_{a v}\right)$ from $t=0$ to

$$
t=5 s \text { is }
$$

$$
\begin{aligned}
& \text { А. } \frac{1}{5}(13 \hat{i}+14 \hat{j}) \\
& \text { в. } \frac{7}{3}(i+j) \\
& \text { с. } 29 \hat{i}+\hat{j} 0
\end{aligned}
$$

D. $\frac{11}{56}(i+j)$

Answer: d
10. The velocity of a projectile at the initial
point A is $(2 \hat{i}+3 \hat{j}) m / s$. Its velocity (in $\mathrm{m} / \mathrm{s}$ )
at point $B$ is

A. $-2 \hat{i}-3 \hat{j}$
B. $-2 \hat{i}+3 \hat{j}$
C. $2 \hat{i}-3 \hat{j}$

## D. $2 \hat{i}+3 \hat{j}$

## Answer: c

## D Watch Video Solution

11. Find the angle of projection of a projectile
for which the horizontal range and maximum
height are equal.

$$
\begin{aligned}
& \text { A. } \theta=\tan ^{-1}\left(\frac{1}{4}\right) \\
& \text { B. } \theta=\tan ^{-1}(4)
\end{aligned}
$$

$$
\text { C. } \theta=\tan ^{-1}(2)
$$

D. $\theta=\tan 45^{\circ}$

## Answer: b

## - Watch Video Solution

12. A missile is fired for maximum range with
an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$,
the range of the missile is
A. 50 m

## B. 60 m

C. 20 m
D. 40 m

Answer: d

D Watch Video Solution
13. A particle has initial velocity $(3 \hat{i}+4 \hat{j})$ and has acceleration $(0.4 \hat{i}+0.3 \hat{j})$. Its speed after $10 s$ is.
A. 7 unit
B. $7 \sqrt{2}$
C. 8.5 unit
D. 10 unit

Answer: b

## D Watch Video Solution

14. Six vector $\vec{a}$ through $\vec{f}$ have the magnitudes and direction indicated in the
figure. Which of the following statements is
true?

A. $b=c=f$
B. $d=c=f$
C. $d=e=f$
D. $b=e=f$

Answer: c
15. A particle of mass $m$ is projected with velocity making an angle of $45^{\circ}$ with the horizontal When the particle lands on the level ground the magnitude of the change in its momentum will be .
A. 2 mv
B. $\frac{m v}{\sqrt{2}}$
C. $m v \sqrt{2}$
D. zero

## D Watch Video Solution

16. $\vec{A}$ and $\vec{B}$ are two Vectors and $\theta$ is the angle
$|\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B})$ the value of $\theta$ is
A. $60^{\circ}$
B. $45^{\circ}$
C. $30^{\circ}$

## D. $90^{\circ}$

## Answer: a

## D Watch Video Solution

17. A paricle starting from the origin $(0,0)$ moves in a straight line in $(x, y)$ plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the $x$-axis an angle of
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $0^{\circ}$

## Answer: c

## D Watch Video Solution

18. A car runs at a constant speed on a circulat track of radius 100 m . Taking 62.8 s for every circular lap. The average velocity and average speed for each circular lap respectively are :
A. 0,0
B. $0,10 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m} / \mathrm{s}, 0$

Answer: b

D Watch Video Solution
19. For angles of projection of a projectile at angle $\left(45^{\circ}-\theta\right)$ and $\left(45^{\circ}+\theta\right)$,
the
horizontal ranges described by the projectile are in the ratio of :
A. 1:1
B. $2: 3$
C. 1:2
D. 2:1

Answer: a

- Watch Video Solution

20. A stone tied to the end of string 1 m long is
whirled in a horizontal circle with a constant
speed. If the stone makes 22 revolution in 44 s ,

What is the magnitude and direction of acceleration of the ston is ?
A. $\frac{\pi^{2}}{4} m s^{-2}$ and direction along the radius
towards the centre
B. $\pi^{2} m s^{-2}$ and direction along the radius
away from centre

# C. $\pi^{2} m s^{-2}$ and direction aloing the radius 

from centre
D. $\pi^{2} m s^{-2}$ and direction along the
tangent to the circle

## Answer: c

## D Watch Video Solution

21. If a vector $2 \hat{i}+3 \hat{j}+8 \hat{k}$ is perpendicular to
the vector $4 \hat{j}-4 \hat{i}+\alpha \hat{k}$. Then the value of $\alpha$ is
A. -1
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. 1

Answer: c

## - Watch Video Solution

22. the circular motion of a particle with constant speed is
A. Simple harmonic but not periodic
B. Periodic and simple harmonic
C. neither periodic nor simple harmonic
D. periodic but not simple harmonic

## Answer: d

## D Watch Video Solution

23. If $|A \times B|=\sqrt{3} A . B$, then the value of
$|A+B|$ is
A. $\left(A^{2}+B^{2}+A B\right)^{1 / 2}$
B. $\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)$
C. $A=B$
D. $\left(A^{2}+B^{2} \sqrt{3} A B\right)^{1 / 2}$

Answer: a

## D Watch Video Solution

24. The vector sum of two forces is perpendicular to their vector differences. In
that case, the forces
A. are not equal to each other in magnitude
B. cannot be predicted
C. are equal to each other
D. are equal to each other in magnitude

Answer: d

- Watch Video Solution

25. A particle moves along a circle if radius (20
//pi) m with constant tangential acceleration.
If the velocity of the particle is $80 \mathrm{~m} / \mathrm{s}$ at the end of the second revolution after motion has begun the tangential acceleration is .
A. $160 \pi m / s^{2}$
B. $40 \pi m / s^{2}$
C. $40 \pi m / s^{2}$
D. $640 \pi m / s^{2}$
26. A wheel of radius $1 m$ rolls forward half a revolution on a horizontal ground. The magnitude of the displacement of the point of the wheel initially on contact with the ground is.
A. 2 m
B. $\sqrt{\pi^{2}+4} m$
C. $\pi m$
D. $\left.\sqrt{\pi^{2}+2 m}\right)$

## Answer: b

## D Watch Video Solution

27. A stone is attached to one end of a straing
and roteted in verticle cricle .If string breaks at
the position of maximum tension, will break at

A. A
B. B
C. C
D. D

## Answer: b

## D Watch Video Solution

28. Two particle are projected with same initial
velocities at an angle $30^{\circ}$ and $60^{\circ}$ with the horizontal .Then
A. their heights will be equal
B. their height will be different
C. their range of flight will be equal
D. their ranges will be different

## Answer: b

## D Watch Video Solution

29. What is the value of linear velocity, if $\vec{\omega}=3 \hat{i}-4 \hat{j}+\hat{k}$ and $\vec{r}=5 \hat{i}-6 \hat{j}+6 \hat{k} ?$
A. $6 \hat{i}+2 \hat{j}-3 \hat{k}$
B. $-18 \hat{i}-13 \hat{j}+2 \hat{k}$
C. $18 \hat{i}-13 \hat{j}+2 \hat{k}$
D. $6 \hat{i}-2 \hat{j}+8 \hat{k}$

Answer: \b

## D Watch Video Solution

30. Person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of $0.5 m s^{-1}$ at an angle of $120^{\circ}$ with the direction of flow of water.The speed of water in the stream is
A. $1.0 \mathrm{~m} / \mathrm{s}$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $0.25 \mathrm{~m} / \mathrm{s}$
D. $0.43 \mathrm{~m} / \mathrm{s}$

## Answer: c

## D Watch Video Solution

31. If $a$ unit vector is represented by $0.5 \hat{i}+0.8 \hat{j}+c \hat{k}$ the value of c is
A. 1
B. $\sqrt{0.11}$
C. $\sqrt{0.01}$
D. 0.39

Answer: b

## - Watch Video Solution

$32.9 .8 \mathrm{~m} / \mathrm{s}$
A. $10 \mathrm{~m} / \mathrm{s}$
B. $5.8 \mathrm{~m} / \mathrm{s}$
C. $17.3 \mathrm{~m} / \mathrm{s}$

## D.

## Answer: d

## D View Text Solution

33. A boat which has a speed of 5 km per hour in still water crosses a river of width 1 km along the shortest possible path in fifteen minutes. The velocity of the river water in km per hour is :-
A. 5
B. 1
C. 3
D. 4

## Answer: c

## - Watch Video Solution

34. Find the torque of a force
$\vec{F}=-3 \hat{i}+\hat{j}+5 \hat{k}$ acting at the point
$\vec{r}=7 \hat{i}+3 \hat{j}+\hat{k}$
A. $-21 \hat{i}+3 \hat{j}+5 \hat{k}$
B. $-14 \hat{i}+3 \hat{j}-16 \hat{k}$
C. $4 \hat{i}+4 \hat{i}+6 \hat{k}$
D. $14 \hat{i}-38 \hat{j}+16 \hat{k}$

Answer: d

D Watch Video Solution
35. A body is whirled in a horizontal circle of radius 20 cm . It has an angular velocity of
$10 \mathrm{rad} / \mathrm{s}$. What is its linear velocity at any point on the circular path
A. $\sqrt{2} m / s$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: b

D Watch Video Solution
36. A bullet is fired from a gun eith a speed of
$1000 \mathrm{~m} / \mathrm{s}$ on order to hit target 100 m away At what height above target should the gun be aimed ? (The resistance of air is negligible and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ )
A. 5 cm
B. 10 cm
C. 15 cm
D. 20 cm
37. The position vectors os a particle is
$r=(a \cos \omega t) \hat{i}+(a \omega t) \hat{j}$. The velocity of particle is
A. directiont towards the origin
B. directionaway from the origin
C. parallelto the position vector
D. perpendicular to the position vector
38. Which one of the following is not the vector quantity?
A. Speed
B. Velocity
C. torque
D. Displaecment

Answer: a
39. The angles between the two vectors $\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{B}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ will be
A. $0^{\circ}$
B. $45^{\circ}$
C. $90^{\circ}$
D. $180^{\circ}$
40. A boat crosses a river with a velocity of $8 \frac{\mathrm{~km}}{\mathrm{~h}}$. If the resulting velocity of boat is $10 \frac{\mathrm{~km}}{\mathrm{~h}}$ then the velocity of river water is
A. $12.8 \mathrm{kmh}^{-1}$
B. $6 k m h^{-1}$
C. $8 k m h^{-1}$
D. $10 \mathrm{kmh}^{-1}$

Answer: b

# 41. the resultant of $A \times 0$ will be equal to 

A. zero
B. A
C. Zero vector
D. unit vector

## Answer: c

42. When milk is churned, cream gets separated due to
A. Centripetal force
B. Centrifugal force
C. friction force
D. Gravititional force

Answer: b

- Watch Video Solution

43. An electric fan has blades of length 30 cm neasured from the axis of rotation. If the fanrotating at $120 \mathrm{rev} / \mathrm{min}$. the acceleration of a point on the tip if the blade is
A. $1600 \mathrm{~ms}^{-2}$
B. $47.4 \mathrm{~ms}^{-2}$
C. $23.7 m s^{-2}$

$$
\text { D. } 50.55 \mathrm{~ms}^{-2}
$$

## Answer: b

44. Two bodies of same mass are projected
with the same velocity at an angle $30^{\circ}$ and
$60^{\circ}$ respectively.The ration of their horizontal
ranges will be
A. $1: 1$
B. $1: 2$
C. 1:3
D. $2: \sqrt{2}$
45. The maximum range of a gun from horizontal terrain is 16 km . If $g=10 \mathrm{~m} / \mathrm{s}^{2}$ what must be the muzzle velocity of the shell?
A. $160 m s^{-1}$
B. $200 \sqrt{2} m s^{-1}$
C. $400 m s^{-1}$
D. $800 \mathrm{~ms}^{-1}$
46. The angle between the vector $\vec{A}$ and $\vec{B}$ is
$\theta$. Find the value of triple product $\vec{A} \cdot(\vec{B} \times \vec{A})$.
A. $A^{2} B$
B. zero
C. $A^{2} \sin \theta$
D. $A^{2} B \cos \theta$

Answer: b

## D Watch Video Solution

47. A bus is moving on a straight road towards north with a uniform speed of $50 \mathrm{~km} / \mathrm{hour}$ turns through $90^{\circ}$. If the speed remains unchanged after turning, the increase in the velocity of bus in the turning process is
A. $7007 \mathrm{~km} / \mathrm{h}$ along South -West driection
B. zero $50 \mathrm{~km} / \mathrm{h}$ along West

## C. $70.7 \mathrm{~km} / \mathrm{h}$ along North -West direction

 D.
## Answer: a

## D Watch Video Solution

48. The magnitude of vectors $A, B$ and $C$ are 3

4 and uints respectively. If $A+B=C$, the angle between $A$ and $B$ is
A. $\frac{\pi}{2}$
B. $\cos ^{-1}(0.6)$
C. $\tan ^{-1}\left(\frac{7}{5}\right)$
D. $\frac{\pi}{4}$

Answer: a

- Watch Video Solution

