

PHYSICS

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

MOTION IN TWO AND THREE DIMENSION

1. The x and y coordinates of the particle at any time are $x = 5t - 2t^2$ and y = 10trespectively, where x and y are in meters and t in seconds. The acceleration of the particle at t=2s is:

A. 0

B. $5m/s^2$

C.
$$-4m/s^2$$

D.
$$-8m\,/\,s^2$$

Answer: c

2. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vector, the angle between these Vector is

A. $90^{\,\circ}$

B. 45°

C. $108\,^\circ$

D. 0°

Answer: a

3. In the given figure, $a = 15m/s^2$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius R = 2.5m at a given instant of time. The

speed of the particle is.

A. 4.5 m/s

B. 5.0 m/s

C. 5.7 m/s

D. 6.2 m/s

Answer: c

4. A ship A is moving Westwards with a speed of $10kmh^{-1}$ and a ship B 100km South of A is moving northwards with a speed of $10kmh^{-1}$. The time after which the distance between them shortest is

A. 0h

C. $5\sqrt{2}h$

D. $10\sqrt{2}h$

Answer: b

5. Two particles, 1 and 2, move with constant velocities v_1 and v_2 . At the initial moment their radius vectors are equal to r_1 and r_2 . How must these four vectors be interrelated for the particles to collide?

A.
$$rac{r_1-r_2}{|r_1-r_2|}=rac{v_2-v_1}{|v_2-v_1|}$$

B. r_2 . $v_1 = r_2$. r_2

C. $r_1 imes v_1 = r_2 imes v_2$

D. $r_1 imes v_1=v_1-v_2$

Answer: a

Watch Video Solution

6. Two stone of masses m and 2m are whirled in horizontal circles, the heavier one in a radius r/2 and the lighter one in radius r. The tangential speed of lighter stone is n times that of the value of heavier stone when the experience same centripetal forces. the value of n is

- A. 2
- B. 3
- C. 4
- D. 1

Answer: a

7. The position vector of a particle $\stackrel{
ightarrow}{R}$ as a funtion of time is given by: $\stackrel{
ightarrow}{R} = 4\sin(2\pi t)\hat{i} + 4\cos(2\pi t)\hat{j}$ Where R is in meters, t is in seconds and \hat{i} and \hat{j} denote until vectors along x-and ydirections, respectively Which one of the following statements is wrong for the motion of particle?

A. Acceleraion is along -R

Watch Video Solution

8. a projectile is fired from the surface of the earth with a velocity of $5ms^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a velocity of $3ms^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is in ms^{-2} is given $(g = 9.8ms^{-2})$

B. 5.9

C. 16.3

D. 110.8

Answer: a

9. A particle is moving such that its position coordinates (x, y) are (2m, 3m) at time t = 0, (6m, 7m) at time t = 2s, and (13m, 14m) at time t = 5s.

Average velocity
$$\operatorname{vector}\left(\overrightarrow{V}_{av}
ight)$$
 from $t=0$ to

t=5s is

A.
$$rac{1}{5} \Big(13 \hat{i} + 14 \hat{j} \Big)$$

B. $rac{7}{3} (i+j)$

C.
$$29\hat{i}+\hat{j}0$$

D.
$$rac{11}{56}(i+j)$$

Answer: d

O Watch Video Solution

10. The velocity of a projectile at the initial point A is $(2\hat{i} + 3\hat{j})m/s$. Its velocity (in m/s) at point B is

A.
$$-2\hat{i}-3\hat{j}$$

 $\mathsf{B}.-2\hat{i}+3\hat{j}$

 $\mathsf{C.}\,2\hat{i}-3\hat{j}$

D.
$$2\hat{i}+3\hat{j}$$

Answer: c

Watch Video Solution

11. Find the angle of projection of a projectile for which the horizontal range and maximum height are equal.

A.
$$heta = an^{-1} igg(rac{1}{4} igg)$$

B. $heta = an^{-1}(4)$

$$\mathsf{C}.\, heta= an^{-1}(2)$$

D. $heta= an45^\circ$

Answer: b

12. A missile is fired for maximum range with an initial velocity of 20m/s. If $g = 10m/s^2$, the range of the missile is

B. 60 m

C. 20 m

D. 40 m

Answer: d

13. A particle has initial velocity $(3\hat{i} + 4\hat{j})$ and has acceleration $(0.4\hat{i} + 0.3\hat{j})$. Its speed after 10s is. A. 7 unit

B. $7\sqrt{2}$

C. 8.5 unit

D. 10 unit

Answer: b

Watch Video Solution

14. Six vector \overrightarrow{a} through \overrightarrow{f} have the magnitudes and direction indicated in the figure. Which of the following statements is

true?

Natch Video Solution

A. b = c =f

- B.d = c = f
- C. d =e =f
- D. b = e =f

Answer: c

15. A particle of mass m is projected with velocity making an angle of 45° with the horizontal When the particle lands on the level ground the magnitude of the change in its momentum will be .

A. 2 mv

B.
$$\frac{mv}{\sqrt{2}}$$

C. $mv\sqrt{2}$

D. zero

Answer: c

16.
$$\overrightarrow{A}$$
 and \overrightarrow{B} are two Vectors and θ is the angle between them, if $\left|\overrightarrow{A} \times \overrightarrow{B}\right| = \sqrt{3} \left(\overrightarrow{A} \cdot \overrightarrow{B}\right)$ the value of θ is A. 60°

B. 45°

C. 30°

D. 90°

Answer: a

Watch Video Solution

17. A paricle starting from the origin (0,0) moves in a straight line in (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of

B. 45°

C. 60°

D. 0°

Answer: c

Watch Video Solution

18. A car runs at a constant speed on a circulat track of radius 100m. Taking 62.8s for every circular lap. The average velocity and average speed for each circular lap respectively are :

A. 0,0

B. 0,10m/s

C. 10 m/s, 10 m/s

D. 10 m/s, 0

Answer: b

Watch Video Solution

19. For angles of projection of a projectile at angle $(45^{\circ} - \theta)$ and $(45^{\circ} + \theta)$, the

horizontal ranges described by the projectile

are in the ratio of :

A. 1:1

B. 2:3

C. 1: 2

D. 2:1

Answer: a

20. A stone tied to the end of string 1m long is whirled in a horizontal circle with a constant speed. If the stone makes 22 revolution in 44s, What is the magnitude and direction of acceleration of the ston is ?

A. $\frac{\pi^2}{4}ms^{-2}$ and direction along the radius

towards the centre

B. $\pi^2 m s^{-2}$ and direction along the radius

away from centre

C. $\pi^2 m s^{-2}$ and direction aloing the radius

from centre

D. $\pi^2 m s^{-2}$ and direction along the

tangent to the circle

Answer: c

Watch Video Solution

21. If a vector $2\hat{i} + 3\hat{j} + 8\hat{k}$ is perpendicular to the vector $4\hat{j} - 4\hat{i} + lpha\hat{k}$. Then the value of lpha

B. $\frac{1}{2}$ C. $-\frac{1}{2}$ D. 1

A. -1

Answer: c

Watch Video Solution

22. the circular motion of a particle with constant speed is

A. Simple harmonic but not periodic

- B. Periodic and simple harmonic
- C. neither periodic nor simple harmonic
- D. periodic but not simple harmonic

Answer: d

Watch Video Solution

23. If $|A imes B| = \sqrt{3}A. B$, then the value of

|A+B| is

A.
$$\left(A^2+B^2+AB
ight)^{1/2}$$

B. $\left(A^2+B^2+rac{AB}{\sqrt{3}}
ight)$

C. A = B

D.
$$\left(A^2+B^2\sqrt{3}AB
ight)^{1/2}$$

Answer: a

Watch Video Solution

24. The vector sum of two forces is perpendicular to their vector differences. In

that case, the forces

A. are not equal to each other in

magnitude

- B. cannot be predicted
- C. are equal to each other
- D. are equal to each other in magnitude

Answer: d

Watch Video Solution

25. A particle moves along a circle if radius (20 //pi) m with constant tangential acceleration. If the velocity of the particle is 80m/s at the end of the second revolution after motion has begun the tangential acceleration is .

- A. $160\pi m\,/\,s^2$
- B. $40\pi m\,/\,s^2$
- C. $40\pi m\,/\,s^2$
- D. $640\pi m\,/\,s^2$

Answer: b

26. A wheel of radius 1m rolls forward half a revolution on a horizontal ground. The magnitude of the displacement of the point of the wheel initially on contact with the ground is.

A. 2 m

B.
$$\sqrt{\pi^2+4}m$$

D.
$$\sqrt{\pi^2+2m}\Big)$$

Answer: b

Watch Video Solution

27. A stone is attached to one end of a straing and roteted in verticle cricle .If string breaks at

the position of maximum tension, will break at

A. A

B. B

C. C

D. D

Answer: b

28. Two particle are projected with same initial velocities at an angle 30° and 60° with the horizontal .Then

- A. their heights will be equal
- B. their height will be different
- C. their range of flight will be equal
- D. their ranges will be different

Answer: b

29. What is the value of linear velocity, if $ec{\omega}=3\hat{i}-4\hat{j}+\hat{k}$ and $ec{r}=5\hat{i}-6\hat{j}+6\hat{k}$? A. $6\hat{i}+2\hat{j}-3\hat{k}$ B. $-18\hat{i} - 13\hat{j} + 2\hat{k}$ C. $18\hat{i}-13\hat{j}+2\hat{k}$ D. $\hat{6i}-2\hat{j}+8\hat{k}$

Answer: \b

30. Person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of $0.5ms^{-1}$ at an angle of 120° with the direction of flow of water.The speed of water in the stream is

A. 1.0m/s

B. 0.5m/s

C. 0.25m/s

D. 0.43m/s

Answer: c

31. If a unit vector is represented by $0.5\hat{i} + 0.8\hat{j} + c\hat{k}$ the value of c is

A. 1

$\mathsf{B.}\,\sqrt{0.11}$

$\mathsf{C}.\sqrt{0.01}$

D. 0.39

Answer: b

32. 9.8m/s

A. 10 m/s

B. 5.8m/s

C. 17.3m/s

D.

Answer: d

View Text Solution

33. A boat which has a speed of 5km per hour in still water crosses a river of width 1 km along the shortest possible path in fifteen minutes. The velocity of the river water in km per hour is :- B. 1

C. 3

D. 4

Answer: c

Watch Video Solution

34. Find the torque of a force
$$\overrightarrow{F}=-3\hat{i}+\hat{j}+5\hat{k}$$
 acting at the point $\overrightarrow{r}=7\hat{i}+3\hat{j}+\hat{k}$

$$egin{aligned} \mathsf{A}.-21\hat{i}+3\hat{j}+5\hat{k} \ \mathsf{B}.-14\hat{i}+3\hat{j}-16\hat{k} \ \mathsf{C}.\,4\hat{i}+4\hat{i}+6\hat{k} \ \mathsf{D}.\,14\hat{i}-38\hat{j}+16\hat{k} \end{aligned}$$

Answer: d

35. A body is whirled in a horizontal circle of radius 20cm. It has an angular velocity of

10rad/s. What is its linear velocity at any

point on the circular path

A. $\sqrt{2}m/s$

B. 2 m/s

- C. 10 m/s, 10 m/s
- D. 20 m/s

Answer: b

36. A bullet is fired from a gun eith a speed of 1000m/s on order to hit target 100 m away At what height above target should the gun be aimed ? (The resistance of air is negligible and $g = 10 m / s^2$)

A. 5cm

B. 10cm

C. 15cm

D. 20cm

Answer: a

37. The position vectors os a particle is $r=(a\cos\omega t)\hat{i}+(a\omega t)\hat{j}.$ The velocity of particle is

- A. directiont towards the origin
- B. directionaway from the origin
- C. parallelto the position vector
- D. perpendicular to the position vector

Answer: d

38. Which one of the following is not the vector quantity?

A. Speed

B. Velocity

C. torque

D. Displaecment

39. The angles between the two vectors $ec{A}=3\hat{i}+4\hat{j}+5\hat{k}$ and $ec{B}=3\hat{i}+4\hat{j}-5\hat{k}$

will be

A. 0°

B. $45^{\,\circ}$

C. 90°

D. 180°

Answer: c

Watch Video Solution

- **40.** A boat crosses a river with a velocity of $8\frac{km}{h}$. If the resulting velocity of boat is $10\frac{km}{h}$ then the velocity of river water is
 - A. $12.8 kmh^{-1}$
 - B. $6kmh^{-1}$
 - C. $8kmh^{-1}$
 - D. $10kmh^{-1}$

Answer: b

41. the resultant of A x 0 will be equal to

A. zero

B.A

C. Zero vector

D. unit vector

Answer: c

42. When milk is churned, cream gets separated due to

A. Centripetal force

B. Centrifugal force

C. friction force

D. Gravititional force

Answer: b

Watch Video Solution

43. An electric fan has blades of length 30 cm neasured from the axis of rotation. If the fanrotating at 120 rev/min. the acceleration of a point on the tip if the blade is

A. $1600 m s^{-2}$

B. $47.4ms^{-2}$

C. $23.7ms^{-2}$

D. $50.55 m s^{-2}$

Answer: b

Watch Video Solution

44. Two bodies of same mass are projected with the same velocity at an angle 30° and 60° respectively. The ration of their horizontal ranges will be

- A. 1:1 B. 1:2
- C. 1: 3
- D. 2: $\sqrt{2}$

Answer: a

45. The maximum range of a gun from horizontal terrain is 16km. If $g = 10m/s^2$ what must be the muzzle velocity of the shell?

A. $160 m s^{-1}$

- B. $200\sqrt{2}ms^{-1}$
- C. $400 m s^{-1}$
- D. $800ms^{-1}$

B. zero

 $\mathsf{C}.\,A^2\sin\theta$

D. $A^2 B \cos heta$

Answer: b

47. A bus is moving on a straight road towards north with a uniform speed of 50 km/hourturns through 90°. If the speed remains unchanged after turning, the increase in the velocity of bus in the turning process is

A. 7007 km/h along South -West driection

B. zero 50 km/h along West

C. 70.7 km/h along North -West direction

D.

Answer: a

48. The magnitude of vectors A, B and C are 3

4 and uints respectively. If A+ B =C , the angle

between A and B is

A.
$$\frac{\pi}{2}$$

B.
$$\cos^{-1}(0.6)$$

C. $\tan^{-1}\left(\frac{7}{5}\right)$
D. $\frac{\pi}{4}$

Answer: a

Watch Video Solution