©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NEET PREVIOUS YEAR (YEARWISE + CHAPTERWISE)

OSCILLATIONS

Exercise

1. A particle executes linear simple harmonic
motion with an amplitude of 3 cm . When the
particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its
acceleration. Then, its time period in seconds
is
A. $\frac{\sqrt{5}}{\pi}$
B. $\frac{\sqrt{5}}{2 \pi}$
C. $\frac{4 \pi}{\sqrt{4}}$
D. $\frac{2 \pi}{\sqrt{3}}$

Answer: C

2. A body of mass m is attached to the lower end of a spring whose upper end is fixed. The spring has negligible mass. When the mass m is slightly pulled down and released, it oscillates with a time period of 3 s . When the mass m is increased by 1 kg , the time period of oscillations becomes 5 s . The value of m in kg is
A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. $\frac{16}{9}$

D. $\frac{9}{16}$

Answer: D

D Watch Video Solution

3. When two displacement represented by
$y_{1}=a \sin (\omega t) \quad$ and $\quad y_{2}=b \cos (\omega t) \quad$ are
superimposed, the motion is
A. not a simple harmonic
B. simple harmonic with amplitude $\frac{a}{b}$
C. simple harmonic with amplitude

$$
\sqrt{a^{2}+b^{2}}
$$

D. simple harmonic with amplitude

$$
\frac{\left(a^{2}+b^{2}\right)}{2}
$$

Answer: C

- Watch Video Solution

4. A particle is executing SHM along a straight
line. Its velocities at distances x_{1} and x_{2} from
the mean position are v_{1} and v_{2}, respectively.

Its time period is

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{x_{1}^{2}+x_{2}^{2}}{v_{1}^{2}+v_{2}^{2}}} \\
& \text { B. } 2 \pi \sqrt{\frac{x_{2}^{2}-x_{1}^{2}}{v_{1}^{2}-v_{2}^{2}}} \\
& \text { C. } 2 \pi \sqrt{\frac{v_{1}^{2}+v_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}} \\
& \text { D. } 2 \pi \sqrt{\frac{v_{1}^{2}-v_{2}^{2}}{x_{1}^{2}-x_{2}^{2}}}
\end{aligned}
$$

Answer: B
5. A particle is executing a simple harmonic motion. Its maximum acceleration is α and maximum velocity is β. Then, its time period of vibration will be
A. $\frac{\beta^{2}}{\alpha^{2}}$
B. $\frac{\alpha}{\beta}$
c. $\frac{\beta^{2}}{\alpha}$
D. $\frac{2 \pi \beta}{\alpha}$

Answer: D

6. An air column, closed at one end and open
at the other, resonates with a tunning fork when the smallest length of the coloumn is 50
cm . The next larger length of the column resonating with the same tunning fork is
A. 100 cm
B. 150 cm
C. 200 cm
D. 66.7 cm

Answer: B

- Watch Video Solution

7. A string is stretched betweeb fixed points separated by 75.0 cm . It observed to have resonant frequencies of 420 Hz and 315 Hz .

There are no other resonant frequencies
between these two. The lowest resonant frequency for this strings is
8. The oscillation of a body on a smooth horizontal surface is represented by the equation,
$X=A \cos (\omega t)$
where, $X=$ displacement at time t
$\omega=$ frequency of oscillation
Which one of the following graphs shows
correctly the variation a with t ?

Here, $\mathrm{a}=$ acceleration at time t
$\mathrm{T}=$ time period
A.
B.
C.
D.

Answer: C

D Watch Video Solution

9. The damping force on an oscillator is directly proportional to the velocity. The units of the constant to proportionality are
A. $k g m s^{-1}$
B. $k g m s^{-2}$
C. $k g s^{-1}$
D. kgs

Answer: C

D Watch Video Solution

10. Out of the following functions
representing motion of a particle which
represents SHM
I. $y=\sin \omega t-\cos \omega t$
II. $y=\sin ^{3} \omega t$
III. $y=5 \cos \left(\frac{3 \pi}{4}-3 \omega t\right)$
$\mathrm{IV} . y=1+\omega t+\omega^{2} t^{2}$
A. Only (IV) does not represent SHM
B. (I) and (II)
C. (I) and (III)
D. Only (I)

Answer: B
11. The displacement of a particle along the x axis it given by $x=a \sin ^{2} \omega t$ The motion of the particle corresponds to
A. simple harmonic motion of frequency ω / π
B. simple harmonic of frequency $3 \omega / 2 \pi$
C. non-simple harmonic motion
D. simple harmonic motion of frequency $\omega / 2 \pi$

Answer: C

D Watch Video Solution

12. The period of oscillation of mass M
suspended from a spring of negligible mass is
T. If along with it another mass M is also
suspended, the period of oscillation will now be
A. T
B. $T / \sqrt{2}$
C. $2 T$
D. $\sqrt{2} T$

Answer: D

D Watch Video Solution

13. Which one of the following equations of motion represents simple harmonic motion?
A. Acceleration $=-k_{0} x+k_{1} x^{2}$
B. Acceleration $=-k(x+a)$
C. Acceleration $=k(x+a)$
D. Acceleration $=k x$

Answer: B

D Watch Video Solution

14. A simple pendulum performs simple
harmonic motion about $x=0$ with an
amplitude a ans time period T. The speed of
the pendulum at $x=\frac{a}{2}$ will be
A. $\frac{\pi a \sqrt{3}}{2 T}$
B. $\frac{\pi a}{T}$
C. $\frac{3 \pi^{2} a}{T}$
D. $\frac{\pi a \sqrt{3}}{T}$

Answer: D

D Watch Video Solution

15. Two simple harmonic motions of angular frequency $100 \mathrm{rads}^{-1}$ and $1000 \mathrm{rads}^{-1}$ have
the same displacement amplitude. The ratio of their maximum accelerations is
A. $1: 10$
B. $1: 10^{2}$
C. $1: 10^{3}$
D. $1: 10^{4}$

Answer: B
(Watch Video Solution
16. A point performs simple harmonic oscillation of period T and the equation of motion is given by $x=a \sin \left(\omega t+\frac{\pi}{6}\right)$. After the elapse of what fraction of the time period,
the velocity of the point will be equal to half of
its maximum velocity?
A. $\frac{T}{8}$
B. $\frac{T}{6}$
C. $\frac{T}{3}$
D. $\frac{T}{12}$

Answer: D

D Watch Video Solution

17. A mass of 2.0 kg is put on a that pan attached to a vertical spring fixed on the ground as shown in the figure The mass of the spring and the pen is negligible the mass executing a simple harmonic motion The spring constant is $200 \mathrm{~N} / \mathrm{m}$ what should be the minimum amplitude of the motion so that the mass get detached from the pan?

$\left(T a k \in g g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. 8.0 cm

B. 10.0 cm

C. Any value less than 12.0 cm
D. 4.0 cm

Answer: B

- Watch Video Solution

18. The particle executing simple harmonic motion has a kinetic energy $K_{0} \cos ^{2} \omega t$. The maximum values of the potential energy and the energy are respectively
A. 0 and $2 K_{0}$
B. $\frac{K_{0}}{2}$ and K_{0}
C. K_{0} and $2 K_{0}$

D. K_{0} and K_{0}

Answer: D

D Watch Video Solution

19. A particle executes simple harmonic oscillation with an amplitudes a. The period of oscillation is T. The minimum time taken by the particle to travel half of the amplitude from the equilibrium position is

$$
\text { A. } \frac{T}{4}
$$

B. $\frac{T}{8}$
C. $\frac{T}{12}$
D. $\frac{T}{2}$

Answer: C

D Watch Video Solution

20. A rectangular block of mass m and area of cross-section A floats in a liquid of density ρ. If
it is given a small vertical displacement from
equilibrium, it undergoes oscillation with a
time period T. Then
A. $T \propto \sqrt{\rho}$
B. $T \propto \frac{1}{\sqrt{A}}$
C. $T \propto \frac{1}{\rho}$
D. $T \propto \frac{1}{\sqrt{m}}$

Answer: B
(Watch Video Solution
21. A particle executing simple harmonic motion of amplitude 5 cm has maximum speed of $3.14 \mathrm{~cm} / \mathrm{s}$. The frequency of its oscillation is
A. 3 Hz
B. 2 Hz
C. 4 Hz
D. 1 Hz

Answer: D

- Watch Video Solution

22. Two springs of spring constants K_{1} and K_{2}
are joined in series. The effective spring constant of the combination is given by
A. $\sqrt{k_{1} k_{2}}$
B. $\frac{\left(k_{1}+k_{2}\right)}{2}$
C. $k_{1}+k_{2}$
D. $\frac{k_{1} k_{2}}{\left(k_{1}+k_{2}\right)}$

Answer: D

- Watch Video Solution

23. Which one of the following statement is
true for the speed v and the acceleration a of
a particle executing simple harmonic motion?
A. When v is maximum, α is maximum
B. Value of α is zero, whatever may be the
value of v
C. When v is zero, α is zero
D. When v is maximum, α is zero

Answer: D
24. The potential energy of a harmonic oscillation when is half way to its and end point is (where E it's the total energy)

$$
\begin{aligned}
& \text { A. } \frac{1}{4} E \\
& \text { B. } \frac{1}{2} E \\
& \text { C. } \frac{2}{3} E \\
& \text { D. } \frac{1}{8} E
\end{aligned}
$$

25. A particle of mass m oscillates with simple
harmonic motion between points x_{1} and x_{2}, the equilibrium position being O . Its potential energy is plotted. It will be as given below in the graph
A.
B.
c.
D.

Answer: C

D Watch Video Solution

26. Displacement between maximum potential
energy position energy potential and maximum kinetic energy position for a particle executing $S . H . M$ is
A. $\pm \frac{a}{2}$
B. $\pm a$
C. $\pm 2 a$

D. ± 1

Answer: B

D Watch Video Solution

27. When a dampled harmonic oscillator completes 100 oscillations, its amplitude is reduced to $\frac{1}{3}$ of its initial value. When will be its amplitude when it completes 200 oscillations?

$$
\text { A. } \frac{1}{5}
$$

B. $\frac{2}{3}$
C. $\frac{1}{6}$
D. $\frac{1}{9}$

Answer: D

- Watch Video Solution

28. A mass is suspended separately by two
springs of spring constants k_{1} and k_{2} in
successive order. The time periods of oscillations in the two cases are T_{1} and T_{2}
respectively. If the same mass be suspended by
connecting the two springs in parallel, (as
shown in figure) then the time period of oscillations is T . The correct relations is

$$
\begin{aligned}
& \text { A. } T^{2}=T_{1}^{2}+T_{2}^{2} \\
& \text { B. } T^{-2}=T_{1}^{-2}+T_{2}^{-2} \\
& \text { C. } T^{-1}=T_{1}^{-1}+T_{2}^{-1} \\
& \text { D. } T=T_{1}+T_{2}
\end{aligned}
$$

29. In SHM restoring force is $F=-k x$, where k is force constant, x is displacement and a is amplitude of motion, then total energy depends upon
A. k, a and m
B. k, x, m
C. k, a
D. k, x

Answer: C

- Watch Video Solution

30. Two simple harmonic motions given by,
$x=a \sin (\omega t+\delta)$
and
$y=a \sin \left(\omega t+\delta+\frac{\pi}{2}\right)$ act on a particle will be
A. circular anti-clockwise
B. circular clockwise
C. elliptical anti-clockwise

D. elliptical clockwise

Answer: B

D Watch Video Solution

31. A pendulum is displaced to an angle θ from
its equilibrium position, then it will pass
through its mean position with a velocity v equal to
A. $\sqrt{2 g l}$
B. $\sqrt{2 g l \sin \theta}$
C. $\sqrt{2 g l \cos \theta}$
D. $\sqrt{2 g l(1-\cos \theta)}$

Answer: D

D Watch Video Solution

32. The time period of a simple pendulum is 2 s .

It its length is increased by 4 times, then its period becomes
A. $16 s$
B. $12 s$
C. $8 s$
D. $4 s$

Answer: D

D Watch Video Solution

33. A mass m is vertically suspended from a spring of negligible mass, the system oscillates with a frequency n. what will be the
frequency of the system, if a mass $4 m$ is suspended from the same spring?
A. $\frac{n}{4}$
B. $4 n$
C. $\frac{n}{2}$
D. $2 n$

Answer: C
(Watch Video Solution
34. Two simple pendulums of length 0.5 m and

20 m respectively are given small linear displacement in one direction at the same time. They will again be in the phase when the pendulum of shorter length has completed oscillations $\left[n T_{1}=(n-1) T_{2}\right.$, where T_{1} is time period of shorter length $\& T_{2}$ be time period of longer length and n are no. of oscillations completed]
A. 5
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution

35. Two simple harmonic motions with the same frequency act on a particle at right angles i.e., along X-axis and Y-axis. If the two amplitudes are equal and the phase difference is $\pi / 2$, the resultant motion will be
A. a circle
B. an ellipse with the major axis along Y axis
C. an ellipse with the major axis along X-
axis
D. a straight line inclined at 45° to the X -
axis

Answer: A

36. A hollow sphere is filled with water. It is
hung by a long thread. As the water flows out of a hole at the bottom, the period of oscillation will
A. first increase and then decrease
B. first decrease and then increase
C. increase continuously
D. decrease continuously

Answer: A

37. A particle starts simple harmonic motion
from the mean position. Its amplitude is a and time period is T . what is its displacement when its speed is half of its displacement when its speed is half of its maximum speed?
A. $\frac{\sqrt{2}}{3} a$
B. $\frac{\sqrt{3}}{2} a$
C. $\frac{2}{\sqrt{3}} a$
D. $\frac{a}{\sqrt{2}}$

Answer: B

- Watch Video Solution

38. A linear harmonic oscillator of force constant $2 \times 10^{6} \mathrm{~N} / \mathrm{m}$ and amplitude (0.01 m) has a total mechanical energy of (160 J). Its.
A. maximum potential enregy is $160 J$
B. maximum potential energy is $100 J$
C. maximum potential energy is zero
D. maximum potential energy is $100{ }^{\prime}$

D Watch Video Solution

39. In a simple harmonic motion, when the
displacement is one-half the amplitude, what
fraction of the total energy is kinetic?
A. Zero
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: D

D Watch Video Solution

40. A particle is subjected to two mutually
perpendicular simple harmonic motions such
that its X and y coordinates are given by
$X=2 \sin \omega t, y=2 \sin \left(\omega+\frac{\pi}{4}\right)$
The path of the particle will be:
A. a straight line
B. a circle

C. an ellipse

D. a parabola

Answer: C

- Watch Video Solution

41. A body executes SHM with an amplitude a.

At what displacement from the mean positions, the potentail energy of the body is one-fourth of its total energy?
A. $\frac{a}{4}$
B. $\frac{a}{2}$
C. $\frac{3 a}{4}$
D. Some other fraction of a

Answer: B

D Watch Video Solution
42. A simple harmonic oscillation has an amplitude A and time period T. The time required to travel from $x=A$ to $x=\frac{A}{2}$ is
A. $\frac{T}{2}$
B. $\frac{T}{4}$
C. $\frac{T}{3}$
D. $\frac{T}{2}$

Answer: A

D Watch Video Solution

43. If a simple harmonic oscillator has got a displacement of $0.02 m$ and acceleration equal
to $2.0 m s^{-2}$ at any time, the angular frequency of the oscillator is equal to
A. $10 \mathrm{rad} / \mathrm{s}$
B. $0.1 \mathrm{rad} / \mathrm{s}$
C. $100 \mathrm{rad} / \mathrm{s}$
D. $1 \mathrm{rad} / \mathrm{s}$

Answer: A
(Watch Video Solution
44. A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration α, then the time period is given by $T=2 \pi \sqrt{\left(\frac{I}{T}\right)}$ where g is equal to
A. g
B. $g-\alpha$
C. $g+\alpha$
D. $\sqrt{\left(g^{2}+\alpha^{2}\right)}$

Answer: D

D Watch Video Solution

45. A body is executing S.H.M. when its
displacement from the mean position is 4 cm
and 5 cm , the corresponding velocity of the body is $10 \mathrm{~cm} / \mathrm{sec}$ and $8 \mathrm{~cm} / \mathrm{sec}$. Then the time period of the body is
A. $2 \pi \mathrm{sec}$
B. $\frac{\pi}{2} \mathrm{sec}$
C. $\pi \mathrm{sec}$
D. $\frac{3 \pi}{2} \mathrm{sec}$

Answer: C

D Watch Video Solution

46. The amgular velocity and the amplitude of a simple pendulum is ω and a respectively. At a displacement x from the mean position, if its kinetic energy is T and potential energy is U, then the ratio of T to U is
A. $\left(\frac{a^{2}-x^{2} \omega^{2}}{x^{2} \omega^{2}}\right)$
B. $\frac{x^{2} \omega^{2}}{\left(a^{2}-x^{2} \omega^{2}\right)}$
C. $\frac{\left(a^{2}-x^{2}\right)}{x^{2}}$
D. $\frac{x^{2}}{\left(a^{2}-x^{2}\right)}$

Answer: C

- Watch Video Solution

47. The composition of two simple harmonic motions of equal periods at right angle to each other and with a phase difference of p
results in the displacement of the particle along
A. circle
B. figure of eight
C. straight line
D. ellipse

Answer: C
(Watch Video Solution
48. A mass m is suspended from the two coupled springs connected in series. The force constant for springs are k_{1} and k_{2}. The time period of the suspended mass will be

$$
\begin{aligned}
& \text { A. } T=2 \pi \sqrt{\frac{m}{k_{1}-k_{2}}} \\
& \text { B. } T=2 \pi \sqrt{\frac{m k_{1} k_{2}}{k_{1}+k_{2}}} \\
& \text { C. } T=2 \pi \sqrt{\frac{m}{k_{1}+k_{2}}} \\
& \text { D. } T=2 \pi \sqrt{\frac{m\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}}
\end{aligned}
$$

Answer: D
49. A particle, with restoring force proportional to displacement and resulting force proportional to velocity is subjected to a force $F \sin \omega t$. If the amplitude of the particle
is maximum for $\omega=\omega_{1}$, and the energy of the particle is maximum for $\omega=\omega_{2}$, then
A. $\omega_{1}=\omega_{0}$ and $\omega_{2} \neq \omega_{0}$
B. $\omega_{1}=\omega_{0}$ and $\omega_{2}=\omega_{0}$
C. $\omega_{1} \neq \omega_{0}$ and $\omega_{2}=\omega_{0}$

D. $\omega_{1} \neq \omega_{0}$ and $\omega_{2} \neq \omega_{0}$

Answer: C

D Watch Video Solution

50. A particle moving along the X-axis executes
simple harmonic motion, then the force acting
on it is given by
where, A and K are positive constants.
A. $-A k x$

B. $A \cos k x$

C. $A \exp (-k x)$
D. Akx

Answer: A

- Watch Video Solution

