© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - NEET PREVIOUS YEAR

(YEARWISE + CHAPTERWISE)

PHYSICAL WORLD AND

MEASUREMENT

1. A physical energy of the dimension of length
that can be formula cut of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}}$ is [c is velocity of light G is universal constant of gravilation e is change

$$
\begin{aligned}
& \text { A. } \frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2} \\
& \text { B. } c^{2}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2} \\
& \text { C. } \frac{1}{c^{2}}\left[\frac{e^{2}}{G 4 \pi \varepsilon_{0}}\right]^{1 / 2} \\
& \text { D. } \frac{1}{c} G \frac{e^{2}}{4 \pi \varepsilon_{0}}
\end{aligned}
$$

Answer: A
2. If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensions formula of surface tension will be
A. $\left[E v^{-2} T^{-1}\right]$
B. $\left[E v^{-1} T^{-2}\right]$
C. $\left[E v^{-2} T^{-2}\right]$
D. $\left[E^{-2} v^{-1} T^{-3}\right]$

Answer: C

- Watch Video Solution

3. In dimension of circal velocity v_{0} liquid following through a take are expressed as
($\eta^{x} \rho^{y} r^{z}$) where η, ρ and r are the coefficient of viscosity of liquid density of liquid and radius of the tube respectively then the value of x, y and z are given by
A. $1,-1,-1$
B. $-1,-1,1$
C. $-1,-1,-1$

D. $1,1,1$

Answer: A

D Watch Video Solution

4. If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are
A. $\left[F v T^{-1}\right]$
B. $\left[F v T^{-2}\right]$

$$
\text { C. }\left[F v^{-1} T^{-1}\right]
$$

D. $\left[F v^{-1} T\right]$

Answer: D

D Watch Video Solution

5. In an experiment four quantities a, b, c and d are measure with percentage error $1 \%, 2 \%, 3 \%$,and 4% respectively quantity is P is calculate as follow
$P=\frac{a^{3} b^{2}}{c d} \%$ error in P is
A. 14%
B. 10%
C. 7%
D. 4%

Answer: A

- Watch Video Solution

6. The dimensions of $\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ are
A. $\left[L^{1 / 2} T^{-1 / 2}\right]$
B. $\left[L^{-1} T\right]$
C. $\left[L T^{-1}\right]$
D. $\left[L^{1 / 2} T^{1 / 2}\right]$

Answer: C

D Watch Video Solution

7. The dimension of $\quad\left(\frac{1}{2}\right) \varepsilon_{0} E^{2} \quad\left(\varepsilon_{0} \quad\right.$: permittivity of free space, E electric field

$$
\text { A. }\left[M L^{2} T^{-2}\right]
$$

B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M L^{2} T^{-1}\right]$
D. $\left[M L T^{-1}\right]$

Answer: B

D Watch Video Solution

8. If the dimension of a physical quantity are given by $M^{a} L^{b} T^{c}$, then the physical quantity will be
A. pressure if $a=b, b=-1, c=-2$
B. velocity is $a=1, b=0, c=-1$
C. acceleration if $a=1, b=1, c=-2$
D. force if $a=0, b=-1, c=-2$

Answer: A

- Watch Video Solution

9. Which two of the following five physical parameters have the same dimension?
(1) Energy density
(2) refractive index
(3) dielectric constant
(4) Young's modulus
(5) magnitic field
A. (ii) and (iv)
B. (iii) and (v)
C. (i) and (iv)
D. (i) and (v)

Answer: C

10. If the error in the measurement of radius of a sphere in 2% then the error in the determination of volume of the spahere will be
A. 4%
B. 6%
C. 8%
D. 2%
11. Dimension of resistance in an elecatrical circuit, in terms of dimension of mass M, of length L, of time T, and of current I, would be
A. $\left[M L^{2} T^{-3} l^{-1}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L^{2} T^{-1} l^{-1}\right]$
D. $\left[M L^{2} T^{-3} l^{-2}\right]$

Answer: D
12. The velocity v of a particle at time t is given by $v=a t+\frac{b}{t+c}$, where a, b and c are constants. The dimensions of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are respectively :-
A. $\left[L T^{-2}\right],[L]$ and $[T]$
B. $\left[L^{2}\right],[T]$ and $\left[L T^{2}\right]$
C. $\left[L T^{2}\right],[L T]$ and $[L]$
D. $[L],[L T]$ and $\left[T^{2}\right]$

Answer: A

- Watch Video Solution

13. The ratio of the dimensions of plank's constant and that of the moment of inertia is
the dimension of
A. frequency
B. velocity
C. angular momentum
D. time

D Watch Video Solution

14. The dimensionas of universal gravitational constant are
A. $\left[M^{-1} L^{3} T^{-2}\right]$
B. $\left[M L^{2} T^{-1}\right]$
C. $\left[M^{-2} L^{3} T^{-2}\right]$
D. $\left[M^{-2} L^{2} T^{-1}\right]$

D Watch Video Solution

15. The unit of permittivity of free space ε_{0} is:
A. coulomb/newton-metre
newton-metre ${ }^{2}$
coulomb ${ }^{2}$
C. $\frac{\text { coulomb }^{2}}{\text { newton-metre }}{ }^{2}$
D. $\frac{\text { coulomb }^{2}}{(\text { newton-metre })^{2}}$
A. $6.63 \times 10^{-31} J-s$
B. $6.63 \times 10^{-30} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
C. $6.63 \times 10^{-32} \mathrm{~kg}-\mathrm{m}^{2}$
D. $6.63 \times 10^{-34} J-s$

Answer: D

17. Plancks' constant has the dimensions of
A. linear momentum
B. angular momentum
C. energy
D. power

Answer: B
18. A pair of physical quantities having same dimensional formula is
A. force and torque
B. work and energy
C. force and impulse
D. linear momentum and angular
momentum

Answer: B

- Watch Video Solution

19. The dimensional formula for magnetic flux is
A. $\left[M L^{2} T^{-2} A^{-1}\right]$
B. $\left[M L^{3} T^{-2} A^{-2}\right]$
C. $\left[M^{0} L^{-2} T^{2} A^{-2}\right]$
D. $\left[M L^{2} T^{-1} A^{2}\right]$

Answer: A

D Watch Video Solution
20. The force F on a sphere of radius r moving in a medium with velocity v is given by $F=6 \pi \eta r v$. The dimensions of η are
A. $\left[M L^{-3}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M T^{-1}\right]$
D. $\left[M L^{-1} T^{-1}\right]$

Answer: D

21. Which of the following will have the

dimensions of time ?

A. $L C$
B. $\frac{R}{L}$
C. $\frac{L}{R}$
D. $\frac{C}{L}$

Answer: C

D Watch Video Solution
22. The density of a cube is measured by measuring its mass and length of its sides. If the maximum error in the measurement of mass and length are 4% and 3% respectively, the maximum error in the measurement of density will be
A. 7%
B. 9%
C. 12%
D. 13%

Answer: D

- Watch Video Solution

23. An equation is given as $\left(p+\frac{a}{V^{2}}\right)=b \frac{\theta}{V}$,where $p=$ pressure $V=$ volumen and $\theta=$ absolute temperature. If a and b are constants, then dimensions of a will be
A. $\left[M L^{5} T^{-2}\right]$
B. $\left[M^{-1} L^{5} T^{-2}\right]$
c. $\left[M L^{-5} T^{-1}\right]$

$$
\text { D. }\left[M L^{5} T\right]
$$

Answer: A

D Watch Video Solution

24. Percentage error in the measurement of mass and speed are 2% and 3% respectively.

The error in the measurement of kinetic energy obtained by measuring mass and speed will be

$$
\text { A. } 12 \%
$$

B. 10%
C. 8%
D. 2%

Answer: C

D Watch Video Solution

25. Which of the following is a dimensional

 constant?A. Refractive index
B. Poisson's ratio
C. Relative density
D. Gravitational constant

Answer: D

D Watch Video Solution

26. In a vernier calliper, N divisions of vernier scale coincide with ($\mathrm{N}-1$) divisions of main scale
(in which division represent 1 mm). The least count of the instrument in cm . should be
A. N
B. $N-1$
C. $\frac{1}{10 N}$
D. $\frac{1}{(N-1)}$

Answer: C

D Watch Video Solution

27. In a particular system the units of length, mass and time are chosen to be $10 \mathrm{~cm}, 10 \mathrm{~g}$
and $0.1 s$ respectively. The unit of force in this
system will be equal to
A. $0.1 N$
B. $1 N$
C. 10 N
D. 100 N

Answer: A
(Watch Video Solution
28. Turpentine oil is flowing through a tube of
length L and radius r. The pressure difference
between the two ends of the tube is p, the
viscosity of the coil is given by
$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v L}$, where v is the velocity of oil
at a distance x from the axis of the tube. From
this relation, the dimensions of viscosity η are
A. $\left[M^{0} L^{0} T^{0}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M L^{2} T^{-2}\right]$

$$
\text { D. }\left[M L^{-1} T^{-1}\right]
$$

Answer: D

D Watch Video Solution

29. The time dependence of a physical quantity

P is given by $P=P_{0} \exp \left(-\alpha t^{2}\right)$, where α is
a constant and t is time. The constant α
A. is dimensionless
B. has dimensions $\left[T^{-2}\right]$
C. has dimensions $\left[T^{2}\right]$
D. has dimensions of p

Answer: B

- Watch Video Solution

30. If P represents radiation pressure,C represents the speed of light, and Q represents radiation energy striking a unit area per second, then non - zero integers
x, y, z such that $P^{x} Q^{y} C^{z}$ is dimensionless,
find the values of x, y, and z.

$$
\begin{aligned}
& \text { А. } x=1, y=1, z=1 \\
& \text { В. } x=-1, y=1, z=1 \\
& \text { С. } x=1, y=-1, z=1 \\
& \text { D. } x=1, y=1, z=-1
\end{aligned}
$$

Answer: C

D Watch Video Solution

31. The dimensional formula for permeability of free space, μ_{0} is
A. $\left[M L T^{-2} A^{-2}\right]$
B. $\left[M L^{-1} T^{2} A^{-2}\right]$
C. $\left[M L^{-1} T^{-2} A^{2}\right]$
D. $\left[M L T^{-2} A^{-1}\right]$

Answer: A
(Watch Video Solution
32. A certain body weighs $22.42 g$ and has a measured volumen of $4.7 c c$. The possible error in the measurement of mass and volumen are
$0.01 g$ and $0.1 c c$. Then, maximum error in the density will be
A. 22%
B. 2%
C. 0.2%
D. 0.02%

Answer: B
33. The frequency f of vibrations of a mass m
suspended from a spring of spring constant k is given by $f=C m^{x} k^{y}$, where C is a dimensionnless constant. The values of x and y are, respectively,
A. $x=\frac{1}{2}, y=\frac{1}{2}$
B. $x=-\frac{1}{2}, y=-\frac{1}{2}$
C. $x=\frac{1}{2}, y=-\frac{1}{2}$
D. $x=-\frac{1}{2}, y=\frac{1}{2}$

Answer: D

D Watch Video Solution

34. According to Newton, the viscous force acting between liquid layers of area A and velocity gradient $\frac{\Delta v}{\Delta z}$ is given by $F=-\eta A \frac{d v}{d z}$, where η is constant called
A. $\left[M L^{-2} T^{-2}\right]$
B. $\left[M^{0} L^{0} T^{0}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{-1} T^{-1}\right]$

Answer: D

D Watch Video Solution

35. Thd dimensional formula of pressure is
A. $\left[M L T^{-2}\right]$
B. $\left[M L^{-1} T^{2}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M L^{-1} T^{-1}\right]$

Answer: C

D Watch Video Solution

36. The dimensional formula of torque is
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L^{-2} T^{-2}\right]$
37. If $x=a t+b t^{2}$, where x is the distance rtravelled by the body in kilometer while t is the time in seconds, then find the units of b.
A. $k m / s$
B. $k m-s$
C. $k m / s^{2}$
D. $k m-s^{2}$

38. Dimensional formula of self-inductance is

$$
\begin{aligned}
& \text { A. }\left[M L T^{-2} A^{-2}\right] \\
& \text { B. }\left[M L^{2} T^{-1} A^{-2}\right] \\
& \text { C. }\left[M L^{2} T^{-2} A^{-2}\right] \\
& \text { D. }\left[M L^{2} T^{-2} A^{-1}\right]
\end{aligned}
$$

Answer: C

39. Of the following quantities, which one has
the dimensions different from the remaining three?
A. Energy per unit volume
B. Force per unti area
C. Product of voltage and charge per unti

volume

D. Angular momentum

- Watch Video Solution

40. The dimensional formula for angular momentum is
A. $\left[M L^{0} L^{2} T^{-2}\right]$
B. $\left[M L^{2} T^{-1}\right]$
c. $\left[M L T^{-1}\right]$
D. $\left[M L^{2} T^{-2}\right]$

Answer: B

D Watch Video Solution
41. If C and R denote capacitance and resistance respectively, then the dimensional formula of $C R$ is
A. $\left[M L^{0} L^{0} T\right]$
B. $\left[M^{0} L^{0} T^{0}\right]$
C. $\left[M^{0} L^{0} T^{-1}\right]$
D. Not expressible in terms of $[M L T]$

Answer: A

